forked from OSchip/llvm-project
2258 lines
81 KiB
C++
2258 lines
81 KiB
C++
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that NVPTX uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "NVPTXISelLowering.h"
|
|
#include "NVPTX.h"
|
|
#include "NVPTXTargetMachine.h"
|
|
#include "NVPTXTargetObjectFile.h"
|
|
#include "NVPTXUtilities.h"
|
|
#include "llvm/CodeGen/Analysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCSectionELF.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <sstream>
|
|
|
|
#undef DEBUG_TYPE
|
|
#define DEBUG_TYPE "nvptx-lower"
|
|
|
|
using namespace llvm;
|
|
|
|
static unsigned int uniqueCallSite = 0;
|
|
|
|
static cl::opt<bool> sched4reg(
|
|
"nvptx-sched4reg",
|
|
cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
|
|
|
|
static bool IsPTXVectorType(MVT VT) {
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::v2i1:
|
|
case MVT::v4i1:
|
|
case MVT::v2i8:
|
|
case MVT::v4i8:
|
|
case MVT::v2i16:
|
|
case MVT::v4i16:
|
|
case MVT::v2i32:
|
|
case MVT::v4i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f32:
|
|
case MVT::v4f32:
|
|
case MVT::v2f64:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
|
|
/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
|
|
/// into their primitive components.
|
|
/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
|
|
/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
|
|
/// LowerCall, and LowerReturn.
|
|
static void ComputePTXValueVTs(const TargetLowering &TLI, Type *Ty,
|
|
SmallVectorImpl<EVT> &ValueVTs,
|
|
SmallVectorImpl<uint64_t> *Offsets = 0,
|
|
uint64_t StartingOffset = 0) {
|
|
SmallVector<EVT, 16> TempVTs;
|
|
SmallVector<uint64_t, 16> TempOffsets;
|
|
|
|
ComputeValueVTs(TLI, Ty, TempVTs, &TempOffsets, StartingOffset);
|
|
for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
|
|
EVT VT = TempVTs[i];
|
|
uint64_t Off = TempOffsets[i];
|
|
if (VT.isVector())
|
|
for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
|
|
ValueVTs.push_back(VT.getVectorElementType());
|
|
if (Offsets)
|
|
Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
|
|
}
|
|
else {
|
|
ValueVTs.push_back(VT);
|
|
if (Offsets)
|
|
Offsets->push_back(Off);
|
|
}
|
|
}
|
|
}
|
|
|
|
// NVPTXTargetLowering Constructor.
|
|
NVPTXTargetLowering::NVPTXTargetLowering(NVPTXTargetMachine &TM)
|
|
: TargetLowering(TM, new NVPTXTargetObjectFile()), nvTM(&TM),
|
|
nvptxSubtarget(TM.getSubtarget<NVPTXSubtarget>()) {
|
|
|
|
// always lower memset, memcpy, and memmove intrinsics to load/store
|
|
// instructions, rather
|
|
// then generating calls to memset, mempcy or memmove.
|
|
MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
|
|
MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
|
|
MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
|
|
|
|
setBooleanContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
// Jump is Expensive. Don't create extra control flow for 'and', 'or'
|
|
// condition branches.
|
|
setJumpIsExpensive(true);
|
|
|
|
// By default, use the Source scheduling
|
|
if (sched4reg)
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
else
|
|
setSchedulingPreference(Sched::Source);
|
|
|
|
addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
|
|
addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
|
|
addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
|
|
addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
|
|
addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
|
|
addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
|
|
|
|
// Operations not directly supported by NVPTX.
|
|
setOperationAction(ISD::SELECT_CC, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i8, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i16, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i64, Expand);
|
|
// Some SIGN_EXTEND_INREG can be done using cvt instruction.
|
|
// For others we will expand to a SHL/SRA pair.
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (nvptxSubtarget.hasROT64()) {
|
|
setOperationAction(ISD::ROTL, MVT::i64, Legal);
|
|
setOperationAction(ISD::ROTR, MVT::i64, Legal);
|
|
} else {
|
|
setOperationAction(ISD::ROTL, MVT::i64, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i64, Expand);
|
|
}
|
|
if (nvptxSubtarget.hasROT32()) {
|
|
setOperationAction(ISD::ROTL, MVT::i32, Legal);
|
|
setOperationAction(ISD::ROTR, MVT::i32, Legal);
|
|
} else {
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i32, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::ROTL, MVT::i16, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i16, Expand);
|
|
setOperationAction(ISD::ROTL, MVT::i8, Expand);
|
|
setOperationAction(ISD::ROTR, MVT::i8, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i16, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::BSWAP, MVT::i64, Expand);
|
|
|
|
// Indirect branch is not supported.
|
|
// This also disables Jump Table creation.
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BRIND, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
|
|
|
|
// We want to legalize constant related memmove and memcopy
|
|
// intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
|
|
|
|
// Turn FP extload into load/fextend
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
// Turn FP truncstore into trunc + store.
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
|
|
// PTX does not support load / store predicate registers
|
|
setOperationAction(ISD::LOAD, MVT::i1, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i1, Custom);
|
|
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
|
|
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i32, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i16, MVT::i1, Expand);
|
|
setTruncStoreAction(MVT::i8, MVT::i1, Expand);
|
|
|
|
// This is legal in NVPTX
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
|
|
|
|
// TRAP can be lowered to PTX trap
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
setOperationAction(ISD::ADDC, MVT::i64, Expand);
|
|
setOperationAction(ISD::ADDE, MVT::i64, Expand);
|
|
|
|
// Register custom handling for vector loads/stores
|
|
for (int i = MVT::FIRST_VECTOR_VALUETYPE; i <= MVT::LAST_VECTOR_VALUETYPE;
|
|
++i) {
|
|
MVT VT = (MVT::SimpleValueType) i;
|
|
if (IsPTXVectorType(VT)) {
|
|
setOperationAction(ISD::LOAD, VT, Custom);
|
|
setOperationAction(ISD::STORE, VT, Custom);
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
|
|
}
|
|
}
|
|
|
|
// Custom handling for i8 intrinsics
|
|
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
|
|
|
|
setOperationAction(ISD::CTLZ, MVT::i16, Legal);
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Legal);
|
|
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Legal);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Legal);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Legal);
|
|
setOperationAction(ISD::CTTZ, MVT::i16, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
|
|
setOperationAction(ISD::CTPOP, MVT::i16, Legal);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
|
|
setOperationAction(ISD::CTPOP, MVT::i64, Legal);
|
|
|
|
// Now deduce the information based on the above mentioned
|
|
// actions
|
|
computeRegisterProperties();
|
|
}
|
|
|
|
const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default:
|
|
return 0;
|
|
case NVPTXISD::CALL:
|
|
return "NVPTXISD::CALL";
|
|
case NVPTXISD::RET_FLAG:
|
|
return "NVPTXISD::RET_FLAG";
|
|
case NVPTXISD::Wrapper:
|
|
return "NVPTXISD::Wrapper";
|
|
case NVPTXISD::DeclareParam:
|
|
return "NVPTXISD::DeclareParam";
|
|
case NVPTXISD::DeclareScalarParam:
|
|
return "NVPTXISD::DeclareScalarParam";
|
|
case NVPTXISD::DeclareRet:
|
|
return "NVPTXISD::DeclareRet";
|
|
case NVPTXISD::DeclareRetParam:
|
|
return "NVPTXISD::DeclareRetParam";
|
|
case NVPTXISD::PrintCall:
|
|
return "NVPTXISD::PrintCall";
|
|
case NVPTXISD::LoadParam:
|
|
return "NVPTXISD::LoadParam";
|
|
case NVPTXISD::LoadParamV2:
|
|
return "NVPTXISD::LoadParamV2";
|
|
case NVPTXISD::LoadParamV4:
|
|
return "NVPTXISD::LoadParamV4";
|
|
case NVPTXISD::StoreParam:
|
|
return "NVPTXISD::StoreParam";
|
|
case NVPTXISD::StoreParamV2:
|
|
return "NVPTXISD::StoreParamV2";
|
|
case NVPTXISD::StoreParamV4:
|
|
return "NVPTXISD::StoreParamV4";
|
|
case NVPTXISD::StoreParamS32:
|
|
return "NVPTXISD::StoreParamS32";
|
|
case NVPTXISD::StoreParamU32:
|
|
return "NVPTXISD::StoreParamU32";
|
|
case NVPTXISD::CallArgBegin:
|
|
return "NVPTXISD::CallArgBegin";
|
|
case NVPTXISD::CallArg:
|
|
return "NVPTXISD::CallArg";
|
|
case NVPTXISD::LastCallArg:
|
|
return "NVPTXISD::LastCallArg";
|
|
case NVPTXISD::CallArgEnd:
|
|
return "NVPTXISD::CallArgEnd";
|
|
case NVPTXISD::CallVoid:
|
|
return "NVPTXISD::CallVoid";
|
|
case NVPTXISD::CallVal:
|
|
return "NVPTXISD::CallVal";
|
|
case NVPTXISD::CallSymbol:
|
|
return "NVPTXISD::CallSymbol";
|
|
case NVPTXISD::Prototype:
|
|
return "NVPTXISD::Prototype";
|
|
case NVPTXISD::MoveParam:
|
|
return "NVPTXISD::MoveParam";
|
|
case NVPTXISD::StoreRetval:
|
|
return "NVPTXISD::StoreRetval";
|
|
case NVPTXISD::StoreRetvalV2:
|
|
return "NVPTXISD::StoreRetvalV2";
|
|
case NVPTXISD::StoreRetvalV4:
|
|
return "NVPTXISD::StoreRetvalV4";
|
|
case NVPTXISD::PseudoUseParam:
|
|
return "NVPTXISD::PseudoUseParam";
|
|
case NVPTXISD::RETURN:
|
|
return "NVPTXISD::RETURN";
|
|
case NVPTXISD::CallSeqBegin:
|
|
return "NVPTXISD::CallSeqBegin";
|
|
case NVPTXISD::CallSeqEnd:
|
|
return "NVPTXISD::CallSeqEnd";
|
|
case NVPTXISD::LoadV2:
|
|
return "NVPTXISD::LoadV2";
|
|
case NVPTXISD::LoadV4:
|
|
return "NVPTXISD::LoadV4";
|
|
case NVPTXISD::LDGV2:
|
|
return "NVPTXISD::LDGV2";
|
|
case NVPTXISD::LDGV4:
|
|
return "NVPTXISD::LDGV4";
|
|
case NVPTXISD::LDUV2:
|
|
return "NVPTXISD::LDUV2";
|
|
case NVPTXISD::LDUV4:
|
|
return "NVPTXISD::LDUV4";
|
|
case NVPTXISD::StoreV2:
|
|
return "NVPTXISD::StoreV2";
|
|
case NVPTXISD::StoreV4:
|
|
return "NVPTXISD::StoreV4";
|
|
}
|
|
}
|
|
|
|
bool NVPTXTargetLowering::shouldSplitVectorElementType(EVT VT) const {
|
|
return VT == MVT::i1;
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Op = DAG.getTargetGlobalAddress(GV, dl, getPointerTy());
|
|
return DAG.getNode(NVPTXISD::Wrapper, dl, getPointerTy(), Op);
|
|
}
|
|
|
|
std::string
|
|
NVPTXTargetLowering::getPrototype(Type *retTy, const ArgListTy &Args,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
unsigned retAlignment,
|
|
const ImmutableCallSite *CS) const {
|
|
|
|
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return "";
|
|
|
|
std::stringstream O;
|
|
O << "prototype_" << uniqueCallSite << " : .callprototype ";
|
|
|
|
if (retTy->getTypeID() == Type::VoidTyID) {
|
|
O << "()";
|
|
} else {
|
|
O << "(";
|
|
if (retTy->isPrimitiveType() || retTy->isIntegerTy()) {
|
|
unsigned size = 0;
|
|
if (const IntegerType *ITy = dyn_cast<IntegerType>(retTy)) {
|
|
size = ITy->getBitWidth();
|
|
if (size < 32)
|
|
size = 32;
|
|
} else {
|
|
assert(retTy->isFloatingPointTy() &&
|
|
"Floating point type expected here");
|
|
size = retTy->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
O << ".param .b" << size << " _";
|
|
} else if (isa<PointerType>(retTy)) {
|
|
O << ".param .b" << getPointerTy().getSizeInBits() << " _";
|
|
} else {
|
|
if ((retTy->getTypeID() == Type::StructTyID) || isa<VectorType>(retTy)) {
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*this, retTy, vtparts);
|
|
unsigned totalsz = 0;
|
|
for (unsigned i = 0, e = vtparts.size(); i != e; ++i) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[i];
|
|
if (vtparts[i].isVector()) {
|
|
elems = vtparts[i].getVectorNumElements();
|
|
elemtype = vtparts[i].getVectorElementType();
|
|
}
|
|
// TODO: no need to loop
|
|
for (unsigned j = 0, je = elems; j != je; ++j) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger() && (sz < 8))
|
|
sz = 8;
|
|
totalsz += sz / 8;
|
|
}
|
|
}
|
|
O << ".param .align " << retAlignment << " .b8 _[" << totalsz << "]";
|
|
} else {
|
|
assert(false && "Unknown return type");
|
|
}
|
|
}
|
|
O << ") ";
|
|
}
|
|
O << "_ (";
|
|
|
|
bool first = true;
|
|
MVT thePointerTy = getPointerTy();
|
|
|
|
unsigned OIdx = 0;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
|
|
Type *Ty = Args[i].Ty;
|
|
if (!first) {
|
|
O << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (Outs[OIdx].Flags.isByVal() == false) {
|
|
if (Ty->isAggregateType() || Ty->isVectorTy()) {
|
|
unsigned align = 0;
|
|
const CallInst *CallI = cast<CallInst>(CS->getInstruction());
|
|
const DataLayout *TD = getDataLayout();
|
|
// +1 because index 0 is reserved for return type alignment
|
|
if (!llvm::getAlign(*CallI, i + 1, align))
|
|
align = TD->getABITypeAlignment(Ty);
|
|
unsigned sz = TD->getTypeAllocSize(Ty);
|
|
O << ".param .align " << align << " .b8 ";
|
|
O << "_";
|
|
O << "[" << sz << "]";
|
|
// update the index for Outs
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*this, Ty, vtparts);
|
|
if (unsigned len = vtparts.size())
|
|
OIdx += len - 1;
|
|
continue;
|
|
}
|
|
// i8 types in IR will be i16 types in SDAG
|
|
assert((getValueType(Ty) == Outs[OIdx].VT ||
|
|
(getValueType(Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
|
|
"type mismatch between callee prototype and arguments");
|
|
// scalar type
|
|
unsigned sz = 0;
|
|
if (isa<IntegerType>(Ty)) {
|
|
sz = cast<IntegerType>(Ty)->getBitWidth();
|
|
if (sz < 32)
|
|
sz = 32;
|
|
} else if (isa<PointerType>(Ty))
|
|
sz = thePointerTy.getSizeInBits();
|
|
else
|
|
sz = Ty->getPrimitiveSizeInBits();
|
|
O << ".param .b" << sz << " ";
|
|
O << "_";
|
|
continue;
|
|
}
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ty);
|
|
assert(PTy && "Param with byval attribute should be a pointer type");
|
|
Type *ETy = PTy->getElementType();
|
|
|
|
unsigned align = Outs[OIdx].Flags.getByValAlign();
|
|
unsigned sz = getDataLayout()->getTypeAllocSize(ETy);
|
|
O << ".param .align " << align << " .b8 ";
|
|
O << "_";
|
|
O << "[" << sz << "]";
|
|
}
|
|
O << ");";
|
|
return O.str();
|
|
}
|
|
|
|
unsigned
|
|
NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
|
|
const ImmutableCallSite *CS,
|
|
Type *Ty,
|
|
unsigned Idx) const {
|
|
const DataLayout *TD = getDataLayout();
|
|
unsigned align = 0;
|
|
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
|
|
|
|
if (Func) { // direct call
|
|
assert(CS->getCalledFunction() &&
|
|
"direct call cannot find callee");
|
|
if (!llvm::getAlign(*(CS->getCalledFunction()), Idx, align))
|
|
align = TD->getABITypeAlignment(Ty);
|
|
}
|
|
else { // indirect call
|
|
const CallInst *CallI = dyn_cast<CallInst>(CS->getInstruction());
|
|
if (!llvm::getAlign(*CallI, Idx, align))
|
|
align = TD->getABITypeAlignment(Ty);
|
|
}
|
|
|
|
return align;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
ArgListTy &Args = CLI.Args;
|
|
Type *retTy = CLI.RetTy;
|
|
ImmutableCallSite *CS = CLI.CS;
|
|
|
|
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
const DataLayout *TD = getDataLayout();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *F = MF.getFunction();
|
|
|
|
SDValue tempChain = Chain;
|
|
Chain =
|
|
DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
|
|
dl);
|
|
SDValue InFlag = Chain.getValue(1);
|
|
|
|
unsigned paramCount = 0;
|
|
// Args.size() and Outs.size() need not match.
|
|
// Outs.size() will be larger
|
|
// * if there is an aggregate argument with multiple fields (each field
|
|
// showing up separately in Outs)
|
|
// * if there is a vector argument with more than typical vector-length
|
|
// elements (generally if more than 4) where each vector element is
|
|
// individually present in Outs.
|
|
// So a different index should be used for indexing into Outs/OutVals.
|
|
// See similar issue in LowerFormalArguments.
|
|
unsigned OIdx = 0;
|
|
// Declare the .params or .reg need to pass values
|
|
// to the function
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
|
|
EVT VT = Outs[OIdx].VT;
|
|
Type *Ty = Args[i].Ty;
|
|
|
|
if (Outs[OIdx].Flags.isByVal() == false) {
|
|
if (Ty->isAggregateType()) {
|
|
// aggregate
|
|
SmallVector<EVT, 16> vtparts;
|
|
ComputeValueVTs(*this, Ty, vtparts);
|
|
|
|
unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
|
|
// declare .param .align <align> .b8 .param<n>[<size>];
|
|
unsigned sz = TD->getTypeAllocSize(Ty);
|
|
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(sz, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
|
|
DeclareParamOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
unsigned curOffset = 0;
|
|
for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[j];
|
|
if (vtparts[j].isVector()) {
|
|
elems = vtparts[j].getVectorNumElements();
|
|
elemtype = vtparts[j].getVectorElementType();
|
|
}
|
|
for (unsigned k = 0, ke = elems; k != ke; ++k) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger() && (sz < 8))
|
|
sz = 8;
|
|
SDValue StVal = OutVals[OIdx];
|
|
if (elemtype.getSizeInBits() < 16) {
|
|
StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
|
|
}
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CopyParamOps[] = { Chain,
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(curOffset, MVT::i32),
|
|
StVal, InFlag };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
|
|
CopyParamVTs, &CopyParamOps[0], 5,
|
|
elemtype, MachinePointerInfo());
|
|
InFlag = Chain.getValue(1);
|
|
curOffset += sz / 8;
|
|
++OIdx;
|
|
}
|
|
}
|
|
if (vtparts.size() > 0)
|
|
--OIdx;
|
|
++paramCount;
|
|
continue;
|
|
}
|
|
if (Ty->isVectorTy()) {
|
|
EVT ObjectVT = getValueType(Ty);
|
|
unsigned align = getArgumentAlignment(Callee, CS, Ty, paramCount + 1);
|
|
// declare .param .align <align> .b8 .param<n>[<size>];
|
|
unsigned sz = TD->getTypeAllocSize(Ty);
|
|
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, MVT::i32),
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(sz, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
|
|
DeclareParamOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
unsigned NumElts = ObjectVT.getVectorNumElements();
|
|
EVT EltVT = ObjectVT.getVectorElementType();
|
|
EVT MemVT = EltVT;
|
|
bool NeedExtend = false;
|
|
if (EltVT.getSizeInBits() < 16) {
|
|
NeedExtend = true;
|
|
EltVT = MVT::i16;
|
|
}
|
|
|
|
// V1 store
|
|
if (NumElts == 1) {
|
|
SDValue Elt = OutVals[OIdx++];
|
|
if (NeedExtend)
|
|
Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
|
|
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CopyParamOps[] = { Chain,
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), Elt,
|
|
InFlag };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
|
|
CopyParamVTs, &CopyParamOps[0], 5,
|
|
MemVT, MachinePointerInfo());
|
|
InFlag = Chain.getValue(1);
|
|
} else if (NumElts == 2) {
|
|
SDValue Elt0 = OutVals[OIdx++];
|
|
SDValue Elt1 = OutVals[OIdx++];
|
|
if (NeedExtend) {
|
|
Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
|
|
Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
|
|
}
|
|
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CopyParamOps[] = { Chain,
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), Elt0, Elt1,
|
|
InFlag };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
|
|
CopyParamVTs, &CopyParamOps[0], 6,
|
|
MemVT, MachinePointerInfo());
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
unsigned curOffset = 0;
|
|
// V4 stores
|
|
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and
|
|
// the
|
|
// vector will be expanded to a power of 2 elements, so we know we can
|
|
// always round up to the next multiple of 4 when creating the vector
|
|
// stores.
|
|
// e.g. 4 elem => 1 st.v4
|
|
// 6 elem => 2 st.v4
|
|
// 8 elem => 2 st.v4
|
|
// 11 elem => 3 st.v4
|
|
unsigned VecSize = 4;
|
|
if (EltVT.getSizeInBits() == 64)
|
|
VecSize = 2;
|
|
|
|
// This is potentially only part of a vector, so assume all elements
|
|
// are packed together.
|
|
unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
|
|
|
|
for (unsigned i = 0; i < NumElts; i += VecSize) {
|
|
// Get values
|
|
SDValue StoreVal;
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getConstant(paramCount, MVT::i32));
|
|
Ops.push_back(DAG.getConstant(curOffset, MVT::i32));
|
|
|
|
unsigned Opc = NVPTXISD::StoreParamV2;
|
|
|
|
StoreVal = OutVals[OIdx++];
|
|
if (NeedExtend)
|
|
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (i + 1 < NumElts) {
|
|
StoreVal = OutVals[OIdx++];
|
|
if (NeedExtend)
|
|
StoreVal =
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(EltVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (VecSize == 4) {
|
|
Opc = NVPTXISD::StoreParamV4;
|
|
if (i + 2 < NumElts) {
|
|
StoreVal = OutVals[OIdx++];
|
|
if (NeedExtend)
|
|
StoreVal =
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(EltVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (i + 3 < NumElts) {
|
|
StoreVal = OutVals[OIdx++];
|
|
if (NeedExtend)
|
|
StoreVal =
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(EltVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
}
|
|
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, &Ops[0],
|
|
Ops.size(), MemVT,
|
|
MachinePointerInfo());
|
|
InFlag = Chain.getValue(1);
|
|
curOffset += PerStoreOffset;
|
|
}
|
|
}
|
|
++paramCount;
|
|
--OIdx;
|
|
continue;
|
|
}
|
|
// Plain scalar
|
|
// for ABI, declare .param .b<size> .param<n>;
|
|
unsigned sz = VT.getSizeInBits();
|
|
bool needExtend = false;
|
|
if (VT.isInteger()) {
|
|
if (sz < 16)
|
|
needExtend = true;
|
|
if (sz < 32)
|
|
sz = 32;
|
|
}
|
|
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareParamOps[] = { Chain,
|
|
DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(sz, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
|
|
DeclareParamOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
SDValue OutV = OutVals[OIdx];
|
|
if (needExtend) {
|
|
// zext/sext i1 to i16
|
|
unsigned opc = ISD::ZERO_EXTEND;
|
|
if (Outs[OIdx].Flags.isSExt())
|
|
opc = ISD::SIGN_EXTEND;
|
|
OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
|
|
}
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), OutV, InFlag };
|
|
|
|
unsigned opcode = NVPTXISD::StoreParam;
|
|
if (Outs[OIdx].Flags.isZExt())
|
|
opcode = NVPTXISD::StoreParamU32;
|
|
else if (Outs[OIdx].Flags.isSExt())
|
|
opcode = NVPTXISD::StoreParamS32;
|
|
Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps, 5,
|
|
VT, MachinePointerInfo());
|
|
|
|
InFlag = Chain.getValue(1);
|
|
++paramCount;
|
|
continue;
|
|
}
|
|
// struct or vector
|
|
SmallVector<EVT, 16> vtparts;
|
|
const PointerType *PTy = dyn_cast<PointerType>(Args[i].Ty);
|
|
assert(PTy && "Type of a byval parameter should be pointer");
|
|
ComputeValueVTs(*this, PTy->getElementType(), vtparts);
|
|
|
|
// declare .param .align <align> .b8 .param<n>[<size>];
|
|
unsigned sz = Outs[OIdx].Flags.getByValSize();
|
|
SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
// The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
|
|
// so we don't need to worry about natural alignment or not.
|
|
// See TargetLowering::LowerCallTo().
|
|
SDValue DeclareParamOps[] = {
|
|
Chain, DAG.getConstant(Outs[OIdx].Flags.getByValAlign(), MVT::i32),
|
|
DAG.getConstant(paramCount, MVT::i32), DAG.getConstant(sz, MVT::i32),
|
|
InFlag
|
|
};
|
|
Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
|
|
DeclareParamOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
unsigned curOffset = 0;
|
|
for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
|
|
unsigned elems = 1;
|
|
EVT elemtype = vtparts[j];
|
|
if (vtparts[j].isVector()) {
|
|
elems = vtparts[j].getVectorNumElements();
|
|
elemtype = vtparts[j].getVectorElementType();
|
|
}
|
|
for (unsigned k = 0, ke = elems; k != ke; ++k) {
|
|
unsigned sz = elemtype.getSizeInBits();
|
|
if (elemtype.isInteger() && (sz < 8))
|
|
sz = 8;
|
|
SDValue srcAddr =
|
|
DAG.getNode(ISD::ADD, dl, getPointerTy(), OutVals[OIdx],
|
|
DAG.getConstant(curOffset, getPointerTy()));
|
|
SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
|
|
MachinePointerInfo(), false, false, false,
|
|
0);
|
|
if (elemtype.getSizeInBits() < 16) {
|
|
theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
|
|
}
|
|
SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CopyParamOps[] = { Chain, DAG.getConstant(paramCount, MVT::i32),
|
|
DAG.getConstant(curOffset, MVT::i32), theVal,
|
|
InFlag };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
|
|
CopyParamOps, 5, elemtype,
|
|
MachinePointerInfo());
|
|
|
|
InFlag = Chain.getValue(1);
|
|
curOffset += sz / 8;
|
|
}
|
|
}
|
|
++paramCount;
|
|
}
|
|
|
|
GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
|
|
unsigned retAlignment = 0;
|
|
|
|
// Handle Result
|
|
if (Ins.size() > 0) {
|
|
SmallVector<EVT, 16> resvtparts;
|
|
ComputeValueVTs(*this, retTy, resvtparts);
|
|
|
|
// Declare
|
|
// .param .align 16 .b8 retval0[<size-in-bytes>], or
|
|
// .param .b<size-in-bits> retval0
|
|
unsigned resultsz = TD->getTypeAllocSizeInBits(retTy);
|
|
if (retTy->isPrimitiveType() || retTy->isIntegerTy() ||
|
|
retTy->isPointerTy()) {
|
|
// Scalar needs to be at least 32bit wide
|
|
if (resultsz < 32)
|
|
resultsz = 32;
|
|
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, MVT::i32),
|
|
DAG.getConstant(resultsz, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
|
|
DeclareRetOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
} else {
|
|
retAlignment = getArgumentAlignment(Callee, CS, retTy, 0);
|
|
SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue DeclareRetOps[] = { Chain,
|
|
DAG.getConstant(retAlignment, MVT::i32),
|
|
DAG.getConstant(resultsz / 8, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
|
|
DeclareRetOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
}
|
|
|
|
if (!Func) {
|
|
// This is indirect function call case : PTX requires a prototype of the
|
|
// form
|
|
// proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
|
|
// to be emitted, and the label has to used as the last arg of call
|
|
// instruction.
|
|
// The prototype is embedded in a string and put as the operand for an
|
|
// INLINEASM SDNode.
|
|
SDVTList InlineAsmVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
std::string proto_string =
|
|
getPrototype(retTy, Args, Outs, retAlignment, CS);
|
|
const char *asmstr = nvTM->getManagedStrPool()
|
|
->getManagedString(proto_string.c_str())->c_str();
|
|
SDValue InlineAsmOps[] = {
|
|
Chain, DAG.getTargetExternalSymbol(asmstr, getPointerTy()),
|
|
DAG.getMDNode(0), DAG.getTargetConstant(0, MVT::i32), InFlag
|
|
};
|
|
Chain = DAG.getNode(ISD::INLINEASM, dl, InlineAsmVTs, InlineAsmOps, 5);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
// Op to just print "call"
|
|
SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue PrintCallOps[] = {
|
|
Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, MVT::i32), InFlag
|
|
};
|
|
Chain = DAG.getNode(Func ? (NVPTXISD::PrintCallUni) : (NVPTXISD::PrintCall),
|
|
dl, PrintCallVTs, PrintCallOps, 3);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Ops to print out the function name
|
|
SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallVoidOps[] = { Chain, Callee, InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps, 3);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Ops to print out the param list
|
|
SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgBeginOps[] = { Chain, InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
|
|
CallArgBeginOps, 2);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
for (unsigned i = 0, e = paramCount; i != e; ++i) {
|
|
unsigned opcode;
|
|
if (i == (e - 1))
|
|
opcode = NVPTXISD::LastCallArg;
|
|
else
|
|
opcode = NVPTXISD::CallArg;
|
|
SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgOps[] = { Chain, DAG.getConstant(1, MVT::i32),
|
|
DAG.getConstant(i, MVT::i32), InFlag };
|
|
Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps, 4);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue CallArgEndOps[] = { Chain, DAG.getConstant(Func ? 1 : 0, MVT::i32),
|
|
InFlag };
|
|
Chain =
|
|
DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps, 3);
|
|
InFlag = Chain.getValue(1);
|
|
|
|
if (!Func) {
|
|
SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue PrototypeOps[] = { Chain, DAG.getConstant(uniqueCallSite, MVT::i32),
|
|
InFlag };
|
|
Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps, 3);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// Generate loads from param memory/moves from registers for result
|
|
if (Ins.size() > 0) {
|
|
unsigned resoffset = 0;
|
|
if (retTy && retTy->isVectorTy()) {
|
|
EVT ObjectVT = getValueType(retTy);
|
|
unsigned NumElts = ObjectVT.getVectorNumElements();
|
|
EVT EltVT = ObjectVT.getVectorElementType();
|
|
assert(nvTM->getTargetLowering()->getNumRegisters(F->getContext(),
|
|
ObjectVT) == NumElts &&
|
|
"Vector was not scalarized");
|
|
unsigned sz = EltVT.getSizeInBits();
|
|
bool needTruncate = sz < 16 ? true : false;
|
|
|
|
if (NumElts == 1) {
|
|
// Just a simple load
|
|
std::vector<EVT> LoadRetVTs;
|
|
if (needTruncate) {
|
|
// If loading i1 result, generate
|
|
// load i16
|
|
// trunc i16 to i1
|
|
LoadRetVTs.push_back(MVT::i16);
|
|
} else
|
|
LoadRetVTs.push_back(EltVT);
|
|
LoadRetVTs.push_back(MVT::Other);
|
|
LoadRetVTs.push_back(MVT::Glue);
|
|
std::vector<SDValue> LoadRetOps;
|
|
LoadRetOps.push_back(Chain);
|
|
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
|
|
LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
|
|
LoadRetOps.push_back(InFlag);
|
|
SDValue retval = DAG.getMemIntrinsicNode(
|
|
NVPTXISD::LoadParam, dl,
|
|
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
|
|
LoadRetOps.size(), EltVT, MachinePointerInfo());
|
|
Chain = retval.getValue(1);
|
|
InFlag = retval.getValue(2);
|
|
SDValue Ret0 = retval;
|
|
if (needTruncate)
|
|
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
|
|
InVals.push_back(Ret0);
|
|
} else if (NumElts == 2) {
|
|
// LoadV2
|
|
std::vector<EVT> LoadRetVTs;
|
|
if (needTruncate) {
|
|
// If loading i1 result, generate
|
|
// load i16
|
|
// trunc i16 to i1
|
|
LoadRetVTs.push_back(MVT::i16);
|
|
LoadRetVTs.push_back(MVT::i16);
|
|
} else {
|
|
LoadRetVTs.push_back(EltVT);
|
|
LoadRetVTs.push_back(EltVT);
|
|
}
|
|
LoadRetVTs.push_back(MVT::Other);
|
|
LoadRetVTs.push_back(MVT::Glue);
|
|
std::vector<SDValue> LoadRetOps;
|
|
LoadRetOps.push_back(Chain);
|
|
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
|
|
LoadRetOps.push_back(DAG.getConstant(0, MVT::i32));
|
|
LoadRetOps.push_back(InFlag);
|
|
SDValue retval = DAG.getMemIntrinsicNode(
|
|
NVPTXISD::LoadParamV2, dl,
|
|
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
|
|
LoadRetOps.size(), EltVT, MachinePointerInfo());
|
|
Chain = retval.getValue(2);
|
|
InFlag = retval.getValue(3);
|
|
SDValue Ret0 = retval.getValue(0);
|
|
SDValue Ret1 = retval.getValue(1);
|
|
if (needTruncate) {
|
|
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
|
|
InVals.push_back(Ret0);
|
|
Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
|
|
InVals.push_back(Ret1);
|
|
} else {
|
|
InVals.push_back(Ret0);
|
|
InVals.push_back(Ret1);
|
|
}
|
|
} else {
|
|
// Split into N LoadV4
|
|
unsigned Ofst = 0;
|
|
unsigned VecSize = 4;
|
|
unsigned Opc = NVPTXISD::LoadParamV4;
|
|
if (EltVT.getSizeInBits() == 64) {
|
|
VecSize = 2;
|
|
Opc = NVPTXISD::LoadParamV2;
|
|
}
|
|
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
|
|
for (unsigned i = 0; i < NumElts; i += VecSize) {
|
|
SmallVector<EVT, 8> LoadRetVTs;
|
|
if (needTruncate) {
|
|
// If loading i1 result, generate
|
|
// load i16
|
|
// trunc i16 to i1
|
|
for (unsigned j = 0; j < VecSize; ++j)
|
|
LoadRetVTs.push_back(MVT::i16);
|
|
} else {
|
|
for (unsigned j = 0; j < VecSize; ++j)
|
|
LoadRetVTs.push_back(EltVT);
|
|
}
|
|
LoadRetVTs.push_back(MVT::Other);
|
|
LoadRetVTs.push_back(MVT::Glue);
|
|
SmallVector<SDValue, 4> LoadRetOps;
|
|
LoadRetOps.push_back(Chain);
|
|
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
|
|
LoadRetOps.push_back(DAG.getConstant(Ofst, MVT::i32));
|
|
LoadRetOps.push_back(InFlag);
|
|
SDValue retval = DAG.getMemIntrinsicNode(
|
|
Opc, dl, DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()),
|
|
&LoadRetOps[0], LoadRetOps.size(), EltVT, MachinePointerInfo());
|
|
if (VecSize == 2) {
|
|
Chain = retval.getValue(2);
|
|
InFlag = retval.getValue(3);
|
|
} else {
|
|
Chain = retval.getValue(4);
|
|
InFlag = retval.getValue(5);
|
|
}
|
|
|
|
for (unsigned j = 0; j < VecSize; ++j) {
|
|
if (i + j >= NumElts)
|
|
break;
|
|
SDValue Elt = retval.getValue(j);
|
|
if (needTruncate)
|
|
Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
|
|
InVals.push_back(Elt);
|
|
}
|
|
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
|
|
}
|
|
}
|
|
} else {
|
|
SmallVector<EVT, 16> VTs;
|
|
ComputePTXValueVTs(*this, retTy, VTs);
|
|
assert(VTs.size() == Ins.size() && "Bad value decomposition");
|
|
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
|
|
unsigned sz = VTs[i].getSizeInBits();
|
|
bool needTruncate = sz < 8 ? true : false;
|
|
if (VTs[i].isInteger() && (sz < 8))
|
|
sz = 8;
|
|
|
|
SmallVector<EVT, 4> LoadRetVTs;
|
|
EVT TheLoadType = VTs[i];
|
|
if (retTy->isIntegerTy() &&
|
|
TD->getTypeAllocSizeInBits(retTy) < 32) {
|
|
// This is for integer types only, and specifically not for
|
|
// aggregates.
|
|
LoadRetVTs.push_back(MVT::i32);
|
|
TheLoadType = MVT::i32;
|
|
} else if (sz < 16) {
|
|
// If loading i1/i8 result, generate
|
|
// load i8 (-> i16)
|
|
// trunc i16 to i1/i8
|
|
LoadRetVTs.push_back(MVT::i16);
|
|
} else
|
|
LoadRetVTs.push_back(Ins[i].VT);
|
|
LoadRetVTs.push_back(MVT::Other);
|
|
LoadRetVTs.push_back(MVT::Glue);
|
|
|
|
SmallVector<SDValue, 4> LoadRetOps;
|
|
LoadRetOps.push_back(Chain);
|
|
LoadRetOps.push_back(DAG.getConstant(1, MVT::i32));
|
|
LoadRetOps.push_back(DAG.getConstant(resoffset, MVT::i32));
|
|
LoadRetOps.push_back(InFlag);
|
|
SDValue retval = DAG.getMemIntrinsicNode(
|
|
NVPTXISD::LoadParam, dl,
|
|
DAG.getVTList(&LoadRetVTs[0], LoadRetVTs.size()), &LoadRetOps[0],
|
|
LoadRetOps.size(), TheLoadType, MachinePointerInfo());
|
|
Chain = retval.getValue(1);
|
|
InFlag = retval.getValue(2);
|
|
SDValue Ret0 = retval.getValue(0);
|
|
if (needTruncate)
|
|
Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
|
|
InVals.push_back(Ret0);
|
|
resoffset += sz / 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(uniqueCallSite, true),
|
|
DAG.getIntPtrConstant(uniqueCallSite + 1, true),
|
|
InFlag, dl);
|
|
uniqueCallSite++;
|
|
|
|
// set isTailCall to false for now, until we figure out how to express
|
|
// tail call optimization in PTX
|
|
isTailCall = false;
|
|
return Chain;
|
|
}
|
|
|
|
// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
|
|
// (see LegalizeDAG.cpp). This is slow and uses local memory.
|
|
// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
|
|
SDValue
|
|
NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned NumOperands = Node->getNumOperands();
|
|
for (unsigned i = 0; i < NumOperands; ++i) {
|
|
SDValue SubOp = Node->getOperand(i);
|
|
EVT VVT = SubOp.getNode()->getValueType(0);
|
|
EVT EltVT = VVT.getVectorElementType();
|
|
unsigned NumSubElem = VVT.getVectorNumElements();
|
|
for (unsigned j = 0; j < NumSubElem; ++j) {
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
|
|
DAG.getIntPtrConstant(j)));
|
|
}
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), &Ops[0],
|
|
Ops.size());
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::RETURNADDR:
|
|
return SDValue();
|
|
case ISD::FRAMEADDR:
|
|
return SDValue();
|
|
case ISD::GlobalAddress:
|
|
return LowerGlobalAddress(Op, DAG);
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
return Op;
|
|
case ISD::BUILD_VECTOR:
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return Op;
|
|
case ISD::CONCAT_VECTORS:
|
|
return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::STORE:
|
|
return LowerSTORE(Op, DAG);
|
|
case ISD::LOAD:
|
|
return LowerLOAD(Op, DAG);
|
|
default:
|
|
llvm_unreachable("Custom lowering not defined for operation");
|
|
}
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
if (Op.getValueType() == MVT::i1)
|
|
return LowerLOADi1(Op, DAG);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
// v = ld i1* addr
|
|
// =>
|
|
// v1 = ld i8* addr (-> i16)
|
|
// v = trunc i16 to i1
|
|
SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
LoadSDNode *LD = cast<LoadSDNode>(Node);
|
|
SDLoc dl(Node);
|
|
assert(LD->getExtensionType() == ISD::NON_EXTLOAD);
|
|
assert(Node->getValueType(0) == MVT::i1 &&
|
|
"Custom lowering for i1 load only");
|
|
SDValue newLD =
|
|
DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
|
|
LD->getPointerInfo(), LD->isVolatile(), LD->isNonTemporal(),
|
|
LD->isInvariant(), LD->getAlignment());
|
|
SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
|
|
// The legalizer (the caller) is expecting two values from the legalized
|
|
// load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
|
|
// in LegalizeDAG.cpp which also uses MergeValues.
|
|
SDValue Ops[] = { result, LD->getChain() };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT ValVT = Op.getOperand(1).getValueType();
|
|
if (ValVT == MVT::i1)
|
|
return LowerSTOREi1(Op, DAG);
|
|
else if (ValVT.isVector())
|
|
return LowerSTOREVector(Op, DAG);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *N = Op.getNode();
|
|
SDValue Val = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
EVT ValVT = Val.getValueType();
|
|
|
|
if (ValVT.isVector()) {
|
|
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
|
|
// legal. We can (and should) split that into 2 stores of <2 x double> here
|
|
// but I'm leaving that as a TODO for now.
|
|
if (!ValVT.isSimple())
|
|
return SDValue();
|
|
switch (ValVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return SDValue();
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
case MVT::v2i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f32:
|
|
case MVT::v2f64:
|
|
case MVT::v4i8:
|
|
case MVT::v4i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f32:
|
|
// This is a "native" vector type
|
|
break;
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
EVT EltVT = ValVT.getVectorElementType();
|
|
unsigned NumElts = ValVT.getVectorNumElements();
|
|
|
|
// Since StoreV2 is a target node, we cannot rely on DAG type legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// stored type to i16 and propogate the "real" type as the memory type.
|
|
bool NeedExt = false;
|
|
if (EltVT.getSizeInBits() < 16)
|
|
NeedExt = true;
|
|
|
|
switch (NumElts) {
|
|
default:
|
|
return SDValue();
|
|
case 2:
|
|
Opcode = NVPTXISD::StoreV2;
|
|
break;
|
|
case 4: {
|
|
Opcode = NVPTXISD::StoreV4;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
// First is the chain
|
|
Ops.push_back(N->getOperand(0));
|
|
|
|
// Then the split values
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
|
|
DAG.getIntPtrConstant(i));
|
|
if (NeedExt)
|
|
ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
|
|
Ops.push_back(ExtVal);
|
|
}
|
|
|
|
// Then any remaining arguments
|
|
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i) {
|
|
Ops.push_back(N->getOperand(i));
|
|
}
|
|
|
|
MemSDNode *MemSD = cast<MemSDNode>(N);
|
|
|
|
SDValue NewSt = DAG.getMemIntrinsicNode(
|
|
Opcode, DL, DAG.getVTList(MVT::Other), &Ops[0], Ops.size(),
|
|
MemSD->getMemoryVT(), MemSD->getMemOperand());
|
|
|
|
//return DCI.CombineTo(N, NewSt, true);
|
|
return NewSt;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// st i1 v, addr
|
|
// =>
|
|
// v1 = zxt v to i16
|
|
// st.u8 i16, addr
|
|
SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
|
|
SDNode *Node = Op.getNode();
|
|
SDLoc dl(Node);
|
|
StoreSDNode *ST = cast<StoreSDNode>(Node);
|
|
SDValue Tmp1 = ST->getChain();
|
|
SDValue Tmp2 = ST->getBasePtr();
|
|
SDValue Tmp3 = ST->getValue();
|
|
assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only");
|
|
unsigned Alignment = ST->getAlignment();
|
|
bool isVolatile = ST->isVolatile();
|
|
bool isNonTemporal = ST->isNonTemporal();
|
|
Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
|
|
SDValue Result = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
|
|
ST->getPointerInfo(), MVT::i8, isNonTemporal,
|
|
isVolatile, Alignment);
|
|
return Result;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::getExtSymb(SelectionDAG &DAG, const char *inname,
|
|
int idx, EVT v) const {
|
|
std::string *name = nvTM->getManagedStrPool()->getManagedString(inname);
|
|
std::stringstream suffix;
|
|
suffix << idx;
|
|
*name += suffix.str();
|
|
return DAG.getTargetExternalSymbol(name->c_str(), v);
|
|
}
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
|
|
return getExtSymb(DAG, ".PARAM", idx, v);
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::getParamHelpSymbol(SelectionDAG &DAG, int idx) {
|
|
return getExtSymb(DAG, ".HLPPARAM", idx);
|
|
}
|
|
|
|
// Check to see if the kernel argument is image*_t or sampler_t
|
|
|
|
bool llvm::isImageOrSamplerVal(const Value *arg, const Module *context) {
|
|
static const char *const specialTypes[] = { "struct._image2d_t",
|
|
"struct._image3d_t",
|
|
"struct._sampler_t" };
|
|
|
|
const Type *Ty = arg->getType();
|
|
const PointerType *PTy = dyn_cast<PointerType>(Ty);
|
|
|
|
if (!PTy)
|
|
return false;
|
|
|
|
if (!context)
|
|
return false;
|
|
|
|
const StructType *STy = dyn_cast<StructType>(PTy->getElementType());
|
|
const std::string TypeName = STy && !STy->isLiteral() ? STy->getName() : "";
|
|
|
|
for (int i = 0, e = array_lengthof(specialTypes); i != e; ++i)
|
|
if (TypeName == specialTypes[i])
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue NVPTXTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const DataLayout *TD = getDataLayout();
|
|
|
|
const Function *F = MF.getFunction();
|
|
const AttributeSet &PAL = F->getAttributes();
|
|
const TargetLowering *TLI = nvTM->getTargetLowering();
|
|
|
|
SDValue Root = DAG.getRoot();
|
|
std::vector<SDValue> OutChains;
|
|
|
|
bool isKernel = llvm::isKernelFunction(*F);
|
|
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
|
|
std::vector<Type *> argTypes;
|
|
std::vector<const Argument *> theArgs;
|
|
for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
|
|
I != E; ++I) {
|
|
theArgs.push_back(I);
|
|
argTypes.push_back(I->getType());
|
|
}
|
|
// argTypes.size() (or theArgs.size()) and Ins.size() need not match.
|
|
// Ins.size() will be larger
|
|
// * if there is an aggregate argument with multiple fields (each field
|
|
// showing up separately in Ins)
|
|
// * if there is a vector argument with more than typical vector-length
|
|
// elements (generally if more than 4) where each vector element is
|
|
// individually present in Ins.
|
|
// So a different index should be used for indexing into Ins.
|
|
// See similar issue in LowerCall.
|
|
unsigned InsIdx = 0;
|
|
|
|
int idx = 0;
|
|
for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
|
|
Type *Ty = argTypes[i];
|
|
|
|
// If the kernel argument is image*_t or sampler_t, convert it to
|
|
// a i32 constant holding the parameter position. This can later
|
|
// matched in the AsmPrinter to output the correct mangled name.
|
|
if (isImageOrSamplerVal(
|
|
theArgs[i],
|
|
(theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
|
|
: 0))) {
|
|
assert(isKernel && "Only kernels can have image/sampler params");
|
|
InVals.push_back(DAG.getConstant(i + 1, MVT::i32));
|
|
continue;
|
|
}
|
|
|
|
if (theArgs[i]->use_empty()) {
|
|
// argument is dead
|
|
if (Ty->isAggregateType()) {
|
|
SmallVector<EVT, 16> vtparts;
|
|
|
|
ComputePTXValueVTs(*this, Ty, vtparts);
|
|
assert(vtparts.size() > 0 && "empty aggregate type not expected");
|
|
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
|
|
++parti) {
|
|
EVT partVT = vtparts[parti];
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, partVT));
|
|
++InsIdx;
|
|
}
|
|
if (vtparts.size() > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
if (Ty->isVectorTy()) {
|
|
EVT ObjectVT = getValueType(Ty);
|
|
unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
|
|
for (unsigned parti = 0; parti < NumRegs; ++parti) {
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
|
|
++InsIdx;
|
|
}
|
|
if (NumRegs > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
|
|
continue;
|
|
}
|
|
|
|
// In the following cases, assign a node order of "idx+1"
|
|
// to newly created nodes. The SDNodes for params have to
|
|
// appear in the same order as their order of appearance
|
|
// in the original function. "idx+1" holds that order.
|
|
if (PAL.hasAttribute(i + 1, Attribute::ByVal) == false) {
|
|
if (Ty->isAggregateType()) {
|
|
SmallVector<EVT, 16> vtparts;
|
|
SmallVector<uint64_t, 16> offsets;
|
|
|
|
// NOTE: Here, we lose the ability to issue vector loads for vectors
|
|
// that are a part of a struct. This should be investigated in the
|
|
// future.
|
|
ComputePTXValueVTs(*this, Ty, vtparts, &offsets, 0);
|
|
assert(vtparts.size() > 0 && "empty aggregate type not expected");
|
|
bool aggregateIsPacked = false;
|
|
if (StructType *STy = llvm::dyn_cast<StructType>(Ty))
|
|
aggregateIsPacked = STy->isPacked();
|
|
|
|
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
|
|
for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
|
|
++parti) {
|
|
EVT partVT = vtparts[parti];
|
|
Value *srcValue = Constant::getNullValue(
|
|
PointerType::get(partVT.getTypeForEVT(F->getContext()),
|
|
llvm::ADDRESS_SPACE_PARAM));
|
|
SDValue srcAddr =
|
|
DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
|
|
DAG.getConstant(offsets[parti], getPointerTy()));
|
|
unsigned partAlign =
|
|
aggregateIsPacked ? 1
|
|
: TD->getABITypeAlignment(
|
|
partVT.getTypeForEVT(F->getContext()));
|
|
SDValue p;
|
|
if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
|
|
ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
|
|
ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
|
|
MachinePointerInfo(srcValue), partVT, false,
|
|
false, partAlign);
|
|
} else {
|
|
p = DAG.getLoad(partVT, dl, Root, srcAddr,
|
|
MachinePointerInfo(srcValue), false, false, false,
|
|
partAlign);
|
|
}
|
|
if (p.getNode())
|
|
p.getNode()->setIROrder(idx + 1);
|
|
InVals.push_back(p);
|
|
++InsIdx;
|
|
}
|
|
if (vtparts.size() > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
if (Ty->isVectorTy()) {
|
|
EVT ObjectVT = getValueType(Ty);
|
|
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
|
|
unsigned NumElts = ObjectVT.getVectorNumElements();
|
|
assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&
|
|
"Vector was not scalarized");
|
|
unsigned Ofst = 0;
|
|
EVT EltVT = ObjectVT.getVectorElementType();
|
|
|
|
// V1 load
|
|
// f32 = load ...
|
|
if (NumElts == 1) {
|
|
// We only have one element, so just directly load it
|
|
Value *SrcValue = Constant::getNullValue(PointerType::get(
|
|
EltVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
|
|
SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
|
|
DAG.getConstant(Ofst, getPointerTy()));
|
|
SDValue P = DAG.getLoad(
|
|
EltVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
|
|
false, true,
|
|
TD->getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())));
|
|
if (P.getNode())
|
|
P.getNode()->setIROrder(idx + 1);
|
|
|
|
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
|
|
P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
|
|
InVals.push_back(P);
|
|
Ofst += TD->getTypeAllocSize(EltVT.getTypeForEVT(F->getContext()));
|
|
++InsIdx;
|
|
} else if (NumElts == 2) {
|
|
// V2 load
|
|
// f32,f32 = load ...
|
|
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
|
|
Value *SrcValue = Constant::getNullValue(PointerType::get(
|
|
VecVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
|
|
SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
|
|
DAG.getConstant(Ofst, getPointerTy()));
|
|
SDValue P = DAG.getLoad(
|
|
VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
|
|
false, true,
|
|
TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
|
|
if (P.getNode())
|
|
P.getNode()->setIROrder(idx + 1);
|
|
|
|
SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
|
|
DAG.getIntPtrConstant(1));
|
|
|
|
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
|
|
Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
|
|
Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
|
|
}
|
|
|
|
InVals.push_back(Elt0);
|
|
InVals.push_back(Elt1);
|
|
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
|
|
InsIdx += 2;
|
|
} else {
|
|
// V4 loads
|
|
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and
|
|
// the
|
|
// vector will be expanded to a power of 2 elements, so we know we can
|
|
// always round up to the next multiple of 4 when creating the vector
|
|
// loads.
|
|
// e.g. 4 elem => 1 ld.v4
|
|
// 6 elem => 2 ld.v4
|
|
// 8 elem => 2 ld.v4
|
|
// 11 elem => 3 ld.v4
|
|
unsigned VecSize = 4;
|
|
if (EltVT.getSizeInBits() == 64) {
|
|
VecSize = 2;
|
|
}
|
|
EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
|
|
for (unsigned i = 0; i < NumElts; i += VecSize) {
|
|
Value *SrcValue = Constant::getNullValue(
|
|
PointerType::get(VecVT.getTypeForEVT(F->getContext()),
|
|
llvm::ADDRESS_SPACE_PARAM));
|
|
SDValue SrcAddr =
|
|
DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg,
|
|
DAG.getConstant(Ofst, getPointerTy()));
|
|
SDValue P = DAG.getLoad(
|
|
VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue), false,
|
|
false, true,
|
|
TD->getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())));
|
|
if (P.getNode())
|
|
P.getNode()->setIROrder(idx + 1);
|
|
|
|
for (unsigned j = 0; j < VecSize; ++j) {
|
|
if (i + j >= NumElts)
|
|
break;
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
|
|
DAG.getIntPtrConstant(j));
|
|
if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
|
|
Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
|
|
InVals.push_back(Elt);
|
|
}
|
|
Ofst += TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
|
|
}
|
|
InsIdx += VecSize;
|
|
}
|
|
|
|
if (NumElts > 0)
|
|
--InsIdx;
|
|
continue;
|
|
}
|
|
// A plain scalar.
|
|
EVT ObjectVT = getValueType(Ty);
|
|
// If ABI, load from the param symbol
|
|
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
|
|
Value *srcValue = Constant::getNullValue(PointerType::get(
|
|
ObjectVT.getTypeForEVT(F->getContext()), llvm::ADDRESS_SPACE_PARAM));
|
|
SDValue p;
|
|
if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
|
|
ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
|
|
ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, Arg,
|
|
MachinePointerInfo(srcValue), ObjectVT, false, false,
|
|
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
|
|
} else {
|
|
p = DAG.getLoad(Ins[InsIdx].VT, dl, Root, Arg,
|
|
MachinePointerInfo(srcValue), false, false, false,
|
|
TD->getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
|
|
}
|
|
if (p.getNode())
|
|
p.getNode()->setIROrder(idx + 1);
|
|
InVals.push_back(p);
|
|
continue;
|
|
}
|
|
|
|
// Param has ByVal attribute
|
|
// Return MoveParam(param symbol).
|
|
// Ideally, the param symbol can be returned directly,
|
|
// but when SDNode builder decides to use it in a CopyToReg(),
|
|
// machine instruction fails because TargetExternalSymbol
|
|
// (not lowered) is target dependent, and CopyToReg assumes
|
|
// the source is lowered.
|
|
EVT ObjectVT = getValueType(Ty);
|
|
assert(ObjectVT == Ins[InsIdx].VT &&
|
|
"Ins type did not match function type");
|
|
SDValue Arg = getParamSymbol(DAG, idx, getPointerTy());
|
|
SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
|
|
if (p.getNode())
|
|
p.getNode()->setIROrder(idx + 1);
|
|
if (isKernel)
|
|
InVals.push_back(p);
|
|
else {
|
|
SDValue p2 = DAG.getNode(
|
|
ISD::INTRINSIC_WO_CHAIN, dl, ObjectVT,
|
|
DAG.getConstant(Intrinsic::nvvm_ptr_local_to_gen, MVT::i32), p);
|
|
InVals.push_back(p2);
|
|
}
|
|
}
|
|
|
|
// Clang will check explicit VarArg and issue error if any. However, Clang
|
|
// will let code with
|
|
// implicit var arg like f() pass. See bug 617733.
|
|
// We treat this case as if the arg list is empty.
|
|
// if (F.isVarArg()) {
|
|
// assert(0 && "VarArg not supported yet!");
|
|
//}
|
|
|
|
if (!OutChains.empty())
|
|
DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &OutChains[0],
|
|
OutChains.size()));
|
|
|
|
return Chain;
|
|
}
|
|
|
|
|
|
SDValue
|
|
NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const Function *F = MF.getFunction();
|
|
Type *RetTy = F->getReturnType();
|
|
const DataLayout *TD = getDataLayout();
|
|
|
|
bool isABI = (nvptxSubtarget.getSmVersion() >= 20);
|
|
assert(isABI && "Non-ABI compilation is not supported");
|
|
if (!isABI)
|
|
return Chain;
|
|
|
|
if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
|
|
// If we have a vector type, the OutVals array will be the scalarized
|
|
// components and we have combine them into 1 or more vector stores.
|
|
unsigned NumElts = VTy->getNumElements();
|
|
assert(NumElts == Outs.size() && "Bad scalarization of return value");
|
|
|
|
// const_cast can be removed in later LLVM versions
|
|
EVT EltVT = getValueType(RetTy).getVectorElementType();
|
|
bool NeedExtend = false;
|
|
if (EltVT.getSizeInBits() < 16)
|
|
NeedExtend = true;
|
|
|
|
// V1 store
|
|
if (NumElts == 1) {
|
|
SDValue StoreVal = OutVals[0];
|
|
// We only have one element, so just directly store it
|
|
if (NeedExtend)
|
|
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
|
|
SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
|
|
DAG.getVTList(MVT::Other), &Ops[0], 3,
|
|
EltVT, MachinePointerInfo());
|
|
|
|
} else if (NumElts == 2) {
|
|
// V2 store
|
|
SDValue StoreVal0 = OutVals[0];
|
|
SDValue StoreVal1 = OutVals[1];
|
|
|
|
if (NeedExtend) {
|
|
StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
|
|
StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
|
|
}
|
|
|
|
SDValue Ops[] = { Chain, DAG.getConstant(0, MVT::i32), StoreVal0,
|
|
StoreVal1 };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
|
|
DAG.getVTList(MVT::Other), &Ops[0], 4,
|
|
EltVT, MachinePointerInfo());
|
|
} else {
|
|
// V4 stores
|
|
// We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
|
|
// vector will be expanded to a power of 2 elements, so we know we can
|
|
// always round up to the next multiple of 4 when creating the vector
|
|
// stores.
|
|
// e.g. 4 elem => 1 st.v4
|
|
// 6 elem => 2 st.v4
|
|
// 8 elem => 2 st.v4
|
|
// 11 elem => 3 st.v4
|
|
|
|
unsigned VecSize = 4;
|
|
if (OutVals[0].getValueType().getSizeInBits() == 64)
|
|
VecSize = 2;
|
|
|
|
unsigned Offset = 0;
|
|
|
|
EVT VecVT =
|
|
EVT::getVectorVT(F->getContext(), OutVals[0].getValueType(), VecSize);
|
|
unsigned PerStoreOffset =
|
|
TD->getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
|
|
|
|
for (unsigned i = 0; i < NumElts; i += VecSize) {
|
|
// Get values
|
|
SDValue StoreVal;
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(DAG.getConstant(Offset, MVT::i32));
|
|
unsigned Opc = NVPTXISD::StoreRetvalV2;
|
|
EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
|
|
|
|
StoreVal = OutVals[i];
|
|
if (NeedExtend)
|
|
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (i + 1 < NumElts) {
|
|
StoreVal = OutVals[i + 1];
|
|
if (NeedExtend)
|
|
StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(ExtendedVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (VecSize == 4) {
|
|
Opc = NVPTXISD::StoreRetvalV4;
|
|
if (i + 2 < NumElts) {
|
|
StoreVal = OutVals[i + 2];
|
|
if (NeedExtend)
|
|
StoreVal =
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(ExtendedVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
|
|
if (i + 3 < NumElts) {
|
|
StoreVal = OutVals[i + 3];
|
|
if (NeedExtend)
|
|
StoreVal =
|
|
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
|
|
} else {
|
|
StoreVal = DAG.getUNDEF(ExtendedVT);
|
|
}
|
|
Ops.push_back(StoreVal);
|
|
}
|
|
|
|
// Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
|
|
Chain =
|
|
DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), &Ops[0],
|
|
Ops.size(), EltVT, MachinePointerInfo());
|
|
Offset += PerStoreOffset;
|
|
}
|
|
}
|
|
} else {
|
|
SmallVector<EVT, 16> ValVTs;
|
|
// const_cast is necessary since we are still using an LLVM version from
|
|
// before the type system re-write.
|
|
ComputePTXValueVTs(*this, RetTy, ValVTs);
|
|
assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition");
|
|
|
|
unsigned SizeSoFar = 0;
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
SDValue theVal = OutVals[i];
|
|
EVT TheValType = theVal.getValueType();
|
|
unsigned numElems = 1;
|
|
if (TheValType.isVector())
|
|
numElems = TheValType.getVectorNumElements();
|
|
for (unsigned j = 0, je = numElems; j != je; ++j) {
|
|
SDValue TmpVal = theVal;
|
|
if (TheValType.isVector())
|
|
TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
|
|
TheValType.getVectorElementType(), TmpVal,
|
|
DAG.getIntPtrConstant(j));
|
|
EVT TheStoreType = ValVTs[i];
|
|
if (RetTy->isIntegerTy() &&
|
|
TD->getTypeAllocSizeInBits(RetTy) < 32) {
|
|
// The following zero-extension is for integer types only, and
|
|
// specifically not for aggregates.
|
|
TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
|
|
TheStoreType = MVT::i32;
|
|
}
|
|
else if (TmpVal.getValueType().getSizeInBits() < 16)
|
|
TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
|
|
|
|
SDValue Ops[] = { Chain, DAG.getConstant(SizeSoFar, MVT::i32), TmpVal };
|
|
Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
|
|
DAG.getVTList(MVT::Other), &Ops[0],
|
|
3, TheStoreType,
|
|
MachinePointerInfo());
|
|
if(TheValType.isVector())
|
|
SizeSoFar +=
|
|
TheStoreType.getVectorElementType().getStoreSizeInBits() / 8;
|
|
else
|
|
SizeSoFar += TheStoreType.getStoreSizeInBits()/8;
|
|
}
|
|
}
|
|
}
|
|
|
|
return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
|
|
}
|
|
|
|
|
|
void NVPTXTargetLowering::LowerAsmOperandForConstraint(
|
|
SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
|
|
SelectionDAG &DAG) const {
|
|
if (Constraint.length() > 1)
|
|
return;
|
|
else
|
|
TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
// NVPTX suuport vector of legal types of any length in Intrinsics because the
|
|
// NVPTX specific type legalizer
|
|
// will legalize them to the PTX supported length.
|
|
bool NVPTXTargetLowering::isTypeSupportedInIntrinsic(MVT VT) const {
|
|
if (isTypeLegal(VT))
|
|
return true;
|
|
if (VT.isVector()) {
|
|
MVT eVT = VT.getVectorElementType();
|
|
if (isTypeLegal(eVT))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
|
|
// TgtMemIntrinsic
|
|
// because we need the information that is only available in the "Value" type
|
|
// of destination
|
|
// pointer. In particular, the address space information.
|
|
bool NVPTXTargetLowering::getTgtMemIntrinsic(
|
|
IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
default:
|
|
return false;
|
|
|
|
case Intrinsic::nvvm_atomic_load_add_f32:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::f32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.vol = 0;
|
|
Info.readMem = true;
|
|
Info.writeMem = true;
|
|
Info.align = 0;
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_atomic_load_inc_32:
|
|
case Intrinsic::nvvm_atomic_load_dec_32:
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.vol = 0;
|
|
Info.readMem = true;
|
|
Info.writeMem = true;
|
|
Info.align = 0;
|
|
return true;
|
|
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p:
|
|
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
|
|
Info.memVT = getValueType(I.getType());
|
|
else if (Intrinsic == Intrinsic::nvvm_ldu_global_p)
|
|
Info.memVT = getValueType(I.getType());
|
|
else
|
|
Info.memVT = MVT::f32;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.vol = 0;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
Info.align = 0;
|
|
return true;
|
|
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
/// Used to guide target specific optimizations, like loop strength reduction
|
|
/// (LoopStrengthReduce.cpp) and memory optimization for address mode
|
|
/// (CodeGenPrepare.cpp)
|
|
bool NVPTXTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
|
|
// AddrMode - This represents an addressing mode of:
|
|
// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
|
|
//
|
|
// The legal address modes are
|
|
// - [avar]
|
|
// - [areg]
|
|
// - [areg+immoff]
|
|
// - [immAddr]
|
|
|
|
if (AM.BaseGV) {
|
|
if (AM.BaseOffs || AM.HasBaseReg || AM.Scale)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // "r", "r+i" or "i" is allowed
|
|
break;
|
|
case 1:
|
|
if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
|
|
return false;
|
|
// Otherwise we have r+i.
|
|
break;
|
|
default:
|
|
// No scale > 1 is allowed
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// NVPTX Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
NVPTXTargetLowering::ConstraintType
|
|
NVPTXTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default:
|
|
break;
|
|
case 'r':
|
|
case 'h':
|
|
case 'c':
|
|
case 'l':
|
|
case 'f':
|
|
case 'd':
|
|
case '0':
|
|
case 'N':
|
|
return C_RegisterClass;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
NVPTXTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'c':
|
|
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
|
|
case 'h':
|
|
return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
|
|
case 'r':
|
|
return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
|
|
case 'l':
|
|
case 'N':
|
|
return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
|
|
case 'f':
|
|
return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
|
|
case 'd':
|
|
return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
|
|
}
|
|
}
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// getFunctionAlignment - Return the Log2 alignment of this function.
|
|
unsigned NVPTXTargetLowering::getFunctionAlignment(const Function *) const {
|
|
return 4;
|
|
}
|
|
|
|
/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
|
|
static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
EVT ResVT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
assert(ResVT.isVector() && "Vector load must have vector type");
|
|
|
|
// We only handle "native" vector sizes for now, e.g. <4 x double> is not
|
|
// legal. We can (and should) split that into 2 loads of <2 x double> here
|
|
// but I'm leaving that as a TODO for now.
|
|
assert(ResVT.isSimple() && "Can only handle simple types");
|
|
switch (ResVT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return;
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
case MVT::v2i32:
|
|
case MVT::v2i64:
|
|
case MVT::v2f32:
|
|
case MVT::v2f64:
|
|
case MVT::v4i8:
|
|
case MVT::v4i16:
|
|
case MVT::v4i32:
|
|
case MVT::v4f32:
|
|
// This is a "native" vector type
|
|
break;
|
|
}
|
|
|
|
EVT EltVT = ResVT.getVectorElementType();
|
|
unsigned NumElts = ResVT.getVectorNumElements();
|
|
|
|
// Since LoadV2 is a target node, we cannot rely on DAG type legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// loaded type to i16 and propogate the "real" type as the memory type.
|
|
bool NeedTrunc = false;
|
|
if (EltVT.getSizeInBits() < 16) {
|
|
EltVT = MVT::i16;
|
|
NeedTrunc = true;
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
SDVTList LdResVTs;
|
|
|
|
switch (NumElts) {
|
|
default:
|
|
return;
|
|
case 2:
|
|
Opcode = NVPTXISD::LoadV2;
|
|
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
|
|
break;
|
|
case 4: {
|
|
Opcode = NVPTXISD::LoadV4;
|
|
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
|
|
LdResVTs = DAG.getVTList(ListVTs, 5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> OtherOps;
|
|
|
|
// Copy regular operands
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
OtherOps.push_back(N->getOperand(i));
|
|
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
|
|
// The select routine does not have access to the LoadSDNode instance, so
|
|
// pass along the extension information
|
|
OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType()));
|
|
|
|
SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, &OtherOps[0],
|
|
OtherOps.size(), LD->getMemoryVT(),
|
|
LD->getMemOperand());
|
|
|
|
SmallVector<SDValue, 4> ScalarRes;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Res = NewLD.getValue(i);
|
|
if (NeedTrunc)
|
|
Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
|
|
ScalarRes.push_back(Res);
|
|
}
|
|
|
|
SDValue LoadChain = NewLD.getValue(NumElts);
|
|
|
|
SDValue BuildVec =
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
|
|
|
|
Results.push_back(BuildVec);
|
|
Results.push_back(LoadChain);
|
|
}
|
|
|
|
static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &Results) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Intrin = N->getOperand(1);
|
|
SDLoc DL(N);
|
|
|
|
// Get the intrinsic ID
|
|
unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p: {
|
|
EVT ResVT = N->getValueType(0);
|
|
|
|
if (ResVT.isVector()) {
|
|
// Vector LDG/LDU
|
|
|
|
unsigned NumElts = ResVT.getVectorNumElements();
|
|
EVT EltVT = ResVT.getVectorElementType();
|
|
|
|
// Since LDU/LDG are target nodes, we cannot rely on DAG type
|
|
// legalization.
|
|
// Therefore, we must ensure the type is legal. For i1 and i8, we set the
|
|
// loaded type to i16 and propogate the "real" type as the memory type.
|
|
bool NeedTrunc = false;
|
|
if (EltVT.getSizeInBits() < 16) {
|
|
EltVT = MVT::i16;
|
|
NeedTrunc = true;
|
|
}
|
|
|
|
unsigned Opcode = 0;
|
|
SDVTList LdResVTs;
|
|
|
|
switch (NumElts) {
|
|
default:
|
|
return;
|
|
case 2:
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
Opcode = NVPTXISD::LDGV2;
|
|
break;
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p:
|
|
Opcode = NVPTXISD::LDUV2;
|
|
break;
|
|
}
|
|
LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
|
|
break;
|
|
case 4: {
|
|
switch (IntrinNo) {
|
|
default:
|
|
return;
|
|
case Intrinsic::nvvm_ldg_global_i:
|
|
case Intrinsic::nvvm_ldg_global_f:
|
|
case Intrinsic::nvvm_ldg_global_p:
|
|
Opcode = NVPTXISD::LDGV4;
|
|
break;
|
|
case Intrinsic::nvvm_ldu_global_i:
|
|
case Intrinsic::nvvm_ldu_global_f:
|
|
case Intrinsic::nvvm_ldu_global_p:
|
|
Opcode = NVPTXISD::LDUV4;
|
|
break;
|
|
}
|
|
EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
|
|
LdResVTs = DAG.getVTList(ListVTs, 5);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SmallVector<SDValue, 8> OtherOps;
|
|
|
|
// Copy regular operands
|
|
|
|
OtherOps.push_back(Chain); // Chain
|
|
// Skip operand 1 (intrinsic ID)
|
|
// Others
|
|
for (unsigned i = 2, e = N->getNumOperands(); i != e; ++i)
|
|
OtherOps.push_back(N->getOperand(i));
|
|
|
|
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
|
|
|
|
SDValue NewLD = DAG.getMemIntrinsicNode(
|
|
Opcode, DL, LdResVTs, &OtherOps[0], OtherOps.size(),
|
|
MemSD->getMemoryVT(), MemSD->getMemOperand());
|
|
|
|
SmallVector<SDValue, 4> ScalarRes;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Res = NewLD.getValue(i);
|
|
if (NeedTrunc)
|
|
Res =
|
|
DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
|
|
ScalarRes.push_back(Res);
|
|
}
|
|
|
|
SDValue LoadChain = NewLD.getValue(NumElts);
|
|
|
|
SDValue BuildVec =
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, ResVT, &ScalarRes[0], NumElts);
|
|
|
|
Results.push_back(BuildVec);
|
|
Results.push_back(LoadChain);
|
|
} else {
|
|
// i8 LDG/LDU
|
|
assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&
|
|
"Custom handling of non-i8 ldu/ldg?");
|
|
|
|
// Just copy all operands as-is
|
|
SmallVector<SDValue, 4> Ops;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
|
|
// Force output to i16
|
|
SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
|
|
|
|
MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
|
|
|
|
// We make sure the memory type is i8, which will be used during isel
|
|
// to select the proper instruction.
|
|
SDValue NewLD =
|
|
DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, &Ops[0],
|
|
Ops.size(), MVT::i8, MemSD->getMemOperand());
|
|
|
|
Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
|
|
NewLD.getValue(0)));
|
|
Results.push_back(NewLD.getValue(1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void NVPTXTargetLowering::ReplaceNodeResults(
|
|
SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
report_fatal_error("Unhandled custom legalization");
|
|
case ISD::LOAD:
|
|
ReplaceLoadVector(N, DAG, Results);
|
|
return;
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
|
|
return;
|
|
}
|
|
}
|