llvm-project/lldb/source/Utility/ConstString.cpp

350 lines
12 KiB
C++

//===-- ConstString.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Utility/ConstString.h"
#include "lldb/Utility/Stream.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/FormatProviders.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/Threading.h"
#include <array>
#include <utility>
#include <cinttypes>
#include <cstdint>
#include <cstring>
using namespace lldb_private;
class Pool {
public:
/// The default BumpPtrAllocatorImpl slab size.
static const size_t AllocatorSlabSize = 4096;
static const size_t SizeThreshold = AllocatorSlabSize;
/// Every Pool has its own allocator which receives an equal share of
/// the ConstString allocations. This means that when allocating many
/// ConstStrings, every allocator sees only its small share of allocations and
/// assumes LLDB only allocated a small amount of memory so far. In reality
/// LLDB allocated a total memory that is N times as large as what the
/// allocator sees (where N is the number of string pools). This causes that
/// the BumpPtrAllocator continues a long time to allocate memory in small
/// chunks which only makes sense when allocating a small amount of memory
/// (which is true from the perspective of a single allocator). On some
/// systems doing all these small memory allocations causes LLDB to spend
/// a lot of time in malloc, so we need to force all these allocators to
/// behave like one allocator in terms of scaling their memory allocations
/// with increased demand. To do this we set the growth delay for each single
/// allocator to a rate so that our pool of allocators scales their memory
/// allocations similar to a single BumpPtrAllocatorImpl.
///
/// Currently we have 256 string pools and the normal growth delay of the
/// BumpPtrAllocatorImpl is 128 (i.e., the memory allocation size increases
/// every 128 full chunks), so by changing the delay to 1 we get a
/// total growth delay in our allocator collection of 256/1 = 256. This is
/// still only half as fast as a normal allocator but we can't go any faster
/// without decreasing the number of string pools.
static const size_t AllocatorGrowthDelay = 1;
typedef llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, AllocatorSlabSize,
SizeThreshold, AllocatorGrowthDelay>
Allocator;
typedef const char *StringPoolValueType;
typedef llvm::StringMap<StringPoolValueType, Allocator> StringPool;
typedef llvm::StringMapEntry<StringPoolValueType> StringPoolEntryType;
static StringPoolEntryType &
GetStringMapEntryFromKeyData(const char *keyData) {
return StringPoolEntryType::GetStringMapEntryFromKeyData(keyData);
}
static size_t GetConstCStringLength(const char *ccstr) {
if (ccstr != nullptr) {
// Since the entry is read only, and we derive the entry entirely from
// the pointer, we don't need the lock.
const StringPoolEntryType &entry = GetStringMapEntryFromKeyData(ccstr);
return entry.getKey().size();
}
return 0;
}
StringPoolValueType GetMangledCounterpart(const char *ccstr) const {
if (ccstr != nullptr) {
const uint8_t h = hash(llvm::StringRef(ccstr));
llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
return GetStringMapEntryFromKeyData(ccstr).getValue();
}
return nullptr;
}
const char *GetConstCString(const char *cstr) {
if (cstr != nullptr)
return GetConstCStringWithLength(cstr, strlen(cstr));
return nullptr;
}
const char *GetConstCStringWithLength(const char *cstr, size_t cstr_len) {
if (cstr != nullptr)
return GetConstCStringWithStringRef(llvm::StringRef(cstr, cstr_len));
return nullptr;
}
const char *GetConstCStringWithStringRef(const llvm::StringRef &string_ref) {
if (string_ref.data()) {
const uint8_t h = hash(string_ref);
{
llvm::sys::SmartScopedReader<false> rlock(m_string_pools[h].m_mutex);
auto it = m_string_pools[h].m_string_map.find(string_ref);
if (it != m_string_pools[h].m_string_map.end())
return it->getKeyData();
}
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
StringPoolEntryType &entry =
*m_string_pools[h]
.m_string_map.insert(std::make_pair(string_ref, nullptr))
.first;
return entry.getKeyData();
}
return nullptr;
}
const char *
GetConstCStringAndSetMangledCounterPart(llvm::StringRef demangled,
const char *mangled_ccstr) {
const char *demangled_ccstr = nullptr;
{
const uint8_t h = hash(demangled);
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
// Make or update string pool entry with the mangled counterpart
StringPool &map = m_string_pools[h].m_string_map;
StringPoolEntryType &entry = *map.try_emplace(demangled).first;
entry.second = mangled_ccstr;
// Extract the const version of the demangled_cstr
demangled_ccstr = entry.getKeyData();
}
{
// Now assign the demangled const string as the counterpart of the
// mangled const string...
const uint8_t h = hash(llvm::StringRef(mangled_ccstr));
llvm::sys::SmartScopedWriter<false> wlock(m_string_pools[h].m_mutex);
GetStringMapEntryFromKeyData(mangled_ccstr).setValue(demangled_ccstr);
}
// Return the constant demangled C string
return demangled_ccstr;
}
const char *GetConstTrimmedCStringWithLength(const char *cstr,
size_t cstr_len) {
if (cstr != nullptr) {
const size_t trimmed_len = strnlen(cstr, cstr_len);
return GetConstCStringWithLength(cstr, trimmed_len);
}
return nullptr;
}
ConstString::MemoryStats GetMemoryStats() const {
ConstString::MemoryStats stats;
for (const auto &pool : m_string_pools) {
llvm::sys::SmartScopedReader<false> rlock(pool.m_mutex);
const Allocator &alloc = pool.m_string_map.getAllocator();
stats.bytes_total += alloc.getTotalMemory();
stats.bytes_used += alloc.getBytesAllocated();
}
return stats;
}
protected:
uint8_t hash(const llvm::StringRef &s) const {
uint32_t h = llvm::djbHash(s);
return ((h >> 24) ^ (h >> 16) ^ (h >> 8) ^ h) & 0xff;
}
struct PoolEntry {
mutable llvm::sys::SmartRWMutex<false> m_mutex;
StringPool m_string_map;
};
std::array<PoolEntry, 256> m_string_pools;
};
// Frameworks and dylibs aren't supposed to have global C++ initializers so we
// hide the string pool in a static function so that it will get initialized on
// the first call to this static function.
//
// Note, for now we make the string pool a pointer to the pool, because we
// can't guarantee that some objects won't get destroyed after the global
// destructor chain is run, and trying to make sure no destructors touch
// ConstStrings is difficult. So we leak the pool instead.
static Pool &StringPool() {
static llvm::once_flag g_pool_initialization_flag;
static Pool *g_string_pool = nullptr;
llvm::call_once(g_pool_initialization_flag,
[]() { g_string_pool = new Pool(); });
return *g_string_pool;
}
ConstString::ConstString(const char *cstr)
: m_string(StringPool().GetConstCString(cstr)) {}
ConstString::ConstString(const char *cstr, size_t cstr_len)
: m_string(StringPool().GetConstCStringWithLength(cstr, cstr_len)) {}
ConstString::ConstString(const llvm::StringRef &s)
: m_string(StringPool().GetConstCStringWithStringRef(s)) {}
bool ConstString::operator<(ConstString rhs) const {
if (m_string == rhs.m_string)
return false;
llvm::StringRef lhs_string_ref(GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
// If both have valid C strings, then return the comparison
if (lhs_string_ref.data() && rhs_string_ref.data())
return lhs_string_ref < rhs_string_ref;
// Else one of them was nullptr, so if LHS is nullptr then it is less than
return lhs_string_ref.data() == nullptr;
}
Stream &lldb_private::operator<<(Stream &s, ConstString str) {
const char *cstr = str.GetCString();
if (cstr != nullptr)
s << cstr;
return s;
}
size_t ConstString::GetLength() const {
return Pool::GetConstCStringLength(m_string);
}
bool ConstString::Equals(ConstString lhs, ConstString rhs,
const bool case_sensitive) {
if (lhs.m_string == rhs.m_string)
return true;
// Since the pointers weren't equal, and identical ConstStrings always have
// identical pointers, the result must be false for case sensitive equality
// test.
if (case_sensitive)
return false;
// perform case insensitive equality test
llvm::StringRef lhs_string_ref(lhs.GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
return lhs_string_ref.equals_insensitive(rhs_string_ref);
}
int ConstString::Compare(ConstString lhs, ConstString rhs,
const bool case_sensitive) {
// If the iterators are the same, this is the same string
const char *lhs_cstr = lhs.m_string;
const char *rhs_cstr = rhs.m_string;
if (lhs_cstr == rhs_cstr)
return 0;
if (lhs_cstr && rhs_cstr) {
llvm::StringRef lhs_string_ref(lhs.GetStringRef());
llvm::StringRef rhs_string_ref(rhs.GetStringRef());
if (case_sensitive) {
return lhs_string_ref.compare(rhs_string_ref);
} else {
return lhs_string_ref.compare_insensitive(rhs_string_ref);
}
}
if (lhs_cstr)
return +1; // LHS isn't nullptr but RHS is
else
return -1; // LHS is nullptr but RHS isn't
}
void ConstString::Dump(Stream *s, const char *fail_value) const {
if (s != nullptr) {
const char *cstr = AsCString(fail_value);
if (cstr != nullptr)
s->PutCString(cstr);
}
}
void ConstString::DumpDebug(Stream *s) const {
const char *cstr = GetCString();
size_t cstr_len = GetLength();
// Only print the parens if we have a non-nullptr string
const char *parens = cstr ? "\"" : "";
s->Printf("%*p: ConstString, string = %s%s%s, length = %" PRIu64,
static_cast<int>(sizeof(void *) * 2),
static_cast<const void *>(this), parens, cstr, parens,
static_cast<uint64_t>(cstr_len));
}
void ConstString::SetCString(const char *cstr) {
m_string = StringPool().GetConstCString(cstr);
}
void ConstString::SetString(const llvm::StringRef &s) {
m_string = StringPool().GetConstCStringWithLength(s.data(), s.size());
}
void ConstString::SetStringWithMangledCounterpart(llvm::StringRef demangled,
ConstString mangled) {
m_string = StringPool().GetConstCStringAndSetMangledCounterPart(
demangled, mangled.m_string);
}
bool ConstString::GetMangledCounterpart(ConstString &counterpart) const {
counterpart.m_string = StringPool().GetMangledCounterpart(m_string);
return (bool)counterpart;
}
void ConstString::SetCStringWithLength(const char *cstr, size_t cstr_len) {
m_string = StringPool().GetConstCStringWithLength(cstr, cstr_len);
}
void ConstString::SetTrimmedCStringWithLength(const char *cstr,
size_t cstr_len) {
m_string = StringPool().GetConstTrimmedCStringWithLength(cstr, cstr_len);
}
ConstString::MemoryStats ConstString::GetMemoryStats() {
return StringPool().GetMemoryStats();
}
void llvm::format_provider<ConstString>::format(const ConstString &CS,
llvm::raw_ostream &OS,
llvm::StringRef Options) {
format_provider<StringRef>::format(CS.GetStringRef(), OS, Options);
}
void llvm::yaml::ScalarTraits<ConstString>::output(const ConstString &Val,
void *, raw_ostream &Out) {
Out << Val.GetStringRef();
}
llvm::StringRef
llvm::yaml::ScalarTraits<ConstString>::input(llvm::StringRef Scalar, void *,
ConstString &Val) {
Val = ConstString(Scalar);
return {};
}