llvm-project/llvm/lib/MC/MCSchedule.cpp

141 lines
5.3 KiB
C++

//===- MCSchedule.cpp - Scheduling ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the default scheduling model.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCSchedule.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include <type_traits>
using namespace llvm;
static_assert(std::is_pod<MCSchedModel>::value,
"We shouldn't have a static constructor here");
const MCSchedModel MCSchedModel::Default = {DefaultIssueWidth,
DefaultMicroOpBufferSize,
DefaultLoopMicroOpBufferSize,
DefaultLoadLatency,
DefaultHighLatency,
DefaultMispredictPenalty,
false,
true,
0,
nullptr,
nullptr,
0,
0,
nullptr,
nullptr};
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
int Latency = 0;
for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries;
DefIdx != DefEnd; ++DefIdx) {
// Lookup the definition's write latency in SubtargetInfo.
const MCWriteLatencyEntry *WLEntry =
STI.getWriteLatencyEntry(&SCDesc, DefIdx);
// Early exit if we found an invalid latency.
if (WLEntry->Cycles < 0)
return WLEntry->Cycles;
Latency = std::max(Latency, static_cast<int>(WLEntry->Cycles));
}
return Latency;
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
unsigned SchedClass) const {
const MCSchedClassDesc &SCDesc = *getSchedClassDesc(SchedClass);
if (!SCDesc.isValid())
return 0;
if (!SCDesc.isVariant())
return MCSchedModel::computeInstrLatency(STI, SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
int MCSchedModel::computeInstrLatency(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())
return 0;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::computeInstrLatency(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
Optional<double>
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCSchedClassDesc &SCDesc) {
Optional<double> Throughput;
const MCSchedModel &SM = STI.getSchedModel();
const MCWriteProcResEntry *I = STI.getWriteProcResBegin(&SCDesc);
const MCWriteProcResEntry *E = STI.getWriteProcResEnd(&SCDesc);
for (; I != E; ++I) {
if (!I->Cycles)
continue;
unsigned NumUnits = SM.getProcResource(I->ProcResourceIdx)->NumUnits;
double Temp = NumUnits * 1.0 / I->Cycles;
Throughput = Throughput ? std::min(Throughput.getValue(), Temp) : Temp;
}
return Throughput ? 1 / Throughput.getValue() : Throughput;
}
Optional<double>
MCSchedModel::getReciprocalThroughput(const MCSubtargetInfo &STI,
const MCInstrInfo &MCII,
const MCInst &Inst) const {
Optional<double> Throughput;
unsigned SchedClass = MCII.get(Inst.getOpcode()).getSchedClass();
const MCSchedClassDesc *SCDesc = getSchedClassDesc(SchedClass);
if (!SCDesc->isValid())
return Throughput;
unsigned CPUID = getProcessorID();
while (SCDesc->isVariant()) {
SchedClass = STI.resolveVariantSchedClass(SchedClass, &Inst, CPUID);
SCDesc = getSchedClassDesc(SchedClass);
}
if (SchedClass)
return MCSchedModel::getReciprocalThroughput(STI, *SCDesc);
llvm_unreachable("unsupported variant scheduling class");
}
Optional<double>
MCSchedModel::getReciprocalThroughput(unsigned SchedClass,
const InstrItineraryData &IID) {
Optional<double> Throughput;
const InstrStage *I = IID.beginStage(SchedClass);
const InstrStage *E = IID.endStage(SchedClass);
for (; I != E; ++I) {
if (!I->getCycles())
continue;
double Temp = countPopulation(I->getUnits()) * 1.0 / I->getCycles();
Throughput = Throughput ? std::min(Throughput.getValue(), Temp) : Temp;
}
return Throughput ? 1 / Throughput.getValue() : Throughput;
}