llvm-project/llvm/lib/Target/X86/X86ISelLowering.cpp

30607 lines
1.2 MiB

//===-- X86ISelLowering.cpp - X86 DAG Lowering Implementation -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that X86 uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "X86ISelLowering.h"
#include "Utils/X86ShuffleDecode.h"
#include "X86CallingConv.h"
#include "X86FrameLowering.h"
#include "X86InstrBuilder.h"
#include "X86MachineFunctionInfo.h"
#include "X86ShuffleDecodeConstantPool.h"
#include "X86TargetMachine.h"
#include "X86TargetObjectFile.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetOptions.h"
#include "X86IntrinsicsInfo.h"
#include <bitset>
#include <numeric>
#include <cctype>
using namespace llvm;
#define DEBUG_TYPE "x86-isel"
STATISTIC(NumTailCalls, "Number of tail calls");
static cl::opt<bool> ExperimentalVectorWideningLegalization(
"x86-experimental-vector-widening-legalization", cl::init(false),
cl::desc("Enable an experimental vector type legalization through widening "
"rather than promotion."),
cl::Hidden);
X86TargetLowering::X86TargetLowering(const X86TargetMachine &TM,
const X86Subtarget &STI)
: TargetLowering(TM), Subtarget(STI) {
bool UseX87 = !Subtarget.useSoftFloat() && Subtarget.hasX87();
X86ScalarSSEf64 = Subtarget.hasSSE2();
X86ScalarSSEf32 = Subtarget.hasSSE1();
MVT PtrVT = MVT::getIntegerVT(8 * TM.getPointerSize());
// Set up the TargetLowering object.
// X86 is weird. It always uses i8 for shift amounts and setcc results.
setBooleanContents(ZeroOrOneBooleanContent);
// X86-SSE is even stranger. It uses -1 or 0 for vector masks.
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
// For 64-bit, since we have so many registers, use the ILP scheduler.
// For 32-bit, use the register pressure specific scheduling.
// For Atom, always use ILP scheduling.
if (Subtarget.isAtom())
setSchedulingPreference(Sched::ILP);
else if (Subtarget.is64Bit())
setSchedulingPreference(Sched::ILP);
else
setSchedulingPreference(Sched::RegPressure);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
setStackPointerRegisterToSaveRestore(RegInfo->getStackRegister());
// Bypass expensive divides on Atom when compiling with O2.
if (TM.getOptLevel() >= CodeGenOpt::Default) {
if (Subtarget.hasSlowDivide32())
addBypassSlowDiv(32, 8);
if (Subtarget.hasSlowDivide64() && Subtarget.is64Bit())
addBypassSlowDiv(64, 16);
}
if (Subtarget.isTargetKnownWindowsMSVC()) {
// Setup Windows compiler runtime calls.
setLibcallName(RTLIB::SDIV_I64, "_alldiv");
setLibcallName(RTLIB::UDIV_I64, "_aulldiv");
setLibcallName(RTLIB::SREM_I64, "_allrem");
setLibcallName(RTLIB::UREM_I64, "_aullrem");
setLibcallName(RTLIB::MUL_I64, "_allmul");
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::SREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::UREM_I64, CallingConv::X86_StdCall);
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::X86_StdCall);
}
if (Subtarget.isTargetDarwin()) {
// Darwin should use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmp(false);
setUseUnderscoreLongJmp(false);
} else if (Subtarget.isTargetWindowsGNU()) {
// MS runtime is weird: it exports _setjmp, but longjmp!
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(false);
} else {
setUseUnderscoreSetJmp(true);
setUseUnderscoreLongJmp(true);
}
// Set up the register classes.
addRegisterClass(MVT::i8, &X86::GR8RegClass);
addRegisterClass(MVT::i16, &X86::GR16RegClass);
addRegisterClass(MVT::i32, &X86::GR32RegClass);
if (Subtarget.is64Bit())
addRegisterClass(MVT::i64, &X86::GR64RegClass);
for (MVT VT : MVT::integer_valuetypes())
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
// We don't accept any truncstore of integer registers.
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8 , Expand);
setTruncStoreAction(MVT::i32, MVT::i16, Expand);
setTruncStoreAction(MVT::i32, MVT::i8 , Expand);
setTruncStoreAction(MVT::i16, MVT::i8, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// SETOEQ and SETUNE require checking two conditions.
setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETOEQ, MVT::f80, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUNE, MVT::f80, Expand);
// Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this
// operation.
setOperationAction(ISD::UINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i8 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i16 , Promote);
if (Subtarget.is64Bit()) {
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512())
// f32/f64 are legal, f80 is custom.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
else
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Promote);
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
} else if (!Subtarget.useSoftFloat()) {
// We have an algorithm for SSE2->double, and we turn this into a
// 64-bit FILD followed by conditional FADD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i64 , Custom);
// We have an algorithm for SSE2, and we turn this into a 64-bit
// FILD or VCVTUSI2SS/SD for other targets.
setOperationAction(ISD::UINT_TO_FP , MVT::i32 , Custom);
}
// Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have
// this operation.
setOperationAction(ISD::SINT_TO_FP , MVT::i1 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i8 , Promote);
if (!Subtarget.useSoftFloat()) {
// SSE has no i16 to fp conversion, only i32
if (X86ScalarSSEf32) {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Custom);
}
} else {
setOperationAction(ISD::SINT_TO_FP , MVT::i16 , Promote);
setOperationAction(ISD::SINT_TO_FP , MVT::i32 , Promote);
}
// Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have
// this operation.
setOperationAction(ISD::FP_TO_SINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i8 , Promote);
if (!Subtarget.useSoftFloat()) {
// In 32-bit mode these are custom lowered. In 64-bit mode F32 and F64
// are Legal, f80 is custom lowered.
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Custom);
setOperationAction(ISD::SINT_TO_FP , MVT::i64 , Custom);
if (X86ScalarSSEf32) {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
// f32 and f64 cases are Legal, f80 case is not
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Custom);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Custom);
}
} else {
setOperationAction(ISD::FP_TO_SINT , MVT::i16 , Promote);
setOperationAction(ISD::FP_TO_SINT , MVT::i32 , Expand);
setOperationAction(ISD::FP_TO_SINT , MVT::i64 , Expand);
}
// Handle FP_TO_UINT by promoting the destination to a larger signed
// conversion.
setOperationAction(ISD::FP_TO_UINT , MVT::i1 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i8 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i16 , Promote);
if (Subtarget.is64Bit()) {
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
// FP_TO_UINT-i32/i64 is legal for f32/f64, but custom for f80.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
} else {
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Promote);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Expand);
}
} else if (!Subtarget.useSoftFloat()) {
// Since AVX is a superset of SSE3, only check for SSE here.
if (Subtarget.hasSSE1() && !Subtarget.hasSSE3())
// Expand FP_TO_UINT into a select.
// FIXME: We would like to use a Custom expander here eventually to do
// the optimal thing for SSE vs. the default expansion in the legalizer.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Expand);
else
// With AVX512 we can use vcvts[ds]2usi for f32/f64->i32, f80 is custom.
// With SSE3 we can use fisttpll to convert to a signed i64; without
// SSE, we're stuck with a fistpll.
setOperationAction(ISD::FP_TO_UINT , MVT::i32 , Custom);
setOperationAction(ISD::FP_TO_UINT , MVT::i64 , Custom);
}
// TODO: when we have SSE, these could be more efficient, by using movd/movq.
if (!X86ScalarSSEf64) {
setOperationAction(ISD::BITCAST , MVT::f32 , Expand);
setOperationAction(ISD::BITCAST , MVT::i32 , Expand);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::BITCAST , MVT::f64 , Expand);
// Without SSE, i64->f64 goes through memory.
setOperationAction(ISD::BITCAST , MVT::i64 , Expand);
}
} else if (!Subtarget.is64Bit())
setOperationAction(ISD::BITCAST , MVT::i64 , Custom);
// Scalar integer divide and remainder are lowered to use operations that
// produce two results, to match the available instructions. This exposes
// the two-result form to trivial CSE, which is able to combine x/y and x%y
// into a single instruction.
//
// Scalar integer multiply-high is also lowered to use two-result
// operations, to match the available instructions. However, plain multiply
// (low) operations are left as Legal, as there are single-result
// instructions for this in x86. Using the two-result multiply instructions
// when both high and low results are needed must be arranged by dagcombine.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
// Add/Sub overflow ops with MVT::Glues are lowered to EFLAGS dependences.
setOperationAction(ISD::ADDC, VT, Custom);
setOperationAction(ISD::ADDE, VT, Custom);
setOperationAction(ISD::SUBC, VT, Custom);
setOperationAction(ISD::SUBE, VT, Custom);
}
setOperationAction(ISD::BR_JT , MVT::Other, Expand);
setOperationAction(ISD::BRCOND , MVT::Other, Custom);
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128,
MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::BR_CC, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
}
if (Subtarget.is64Bit())
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
setOperationAction(ISD::FP_ROUND_INREG , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f32 , Expand);
setOperationAction(ISD::FREM , MVT::f64 , Expand);
setOperationAction(ISD::FREM , MVT::f80 , Expand);
setOperationAction(ISD::FLT_ROUNDS_ , MVT::i32 , Custom);
// Promote the i8 variants and force them on up to i32 which has a shorter
// encoding.
setOperationPromotedToType(ISD::CTTZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTTZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
if (!Subtarget.hasBMI()) {
setOperationAction(ISD::CTTZ , MVT::i16 , Custom);
setOperationAction(ISD::CTTZ , MVT::i32 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16 , Legal);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32 , Legal);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTTZ , MVT::i64 , Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Legal);
}
}
if (Subtarget.hasLZCNT()) {
// When promoting the i8 variants, force them to i32 for a shorter
// encoding.
setOperationPromotedToType(ISD::CTLZ , MVT::i8 , MVT::i32);
setOperationPromotedToType(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , MVT::i32);
} else {
setOperationAction(ISD::CTLZ , MVT::i8 , Custom);
setOperationAction(ISD::CTLZ , MVT::i16 , Custom);
setOperationAction(ISD::CTLZ , MVT::i32 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i8 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32 , Custom);
if (Subtarget.is64Bit()) {
setOperationAction(ISD::CTLZ , MVT::i64 , Custom);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
}
}
// Special handling for half-precision floating point conversions.
// If we don't have F16C support, then lower half float conversions
// into library calls.
if (Subtarget.useSoftFloat() || !Subtarget.hasF16C()) {
setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
}
// There's never any support for operations beyond MVT::f32.
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setOperationAction(ISD::FP16_TO_FP, MVT::f80, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
setOperationAction(ISD::FP_TO_FP16, MVT::f80, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f80, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
setTruncStoreAction(MVT::f80, MVT::f16, Expand);
if (Subtarget.hasPOPCNT()) {
setOperationAction(ISD::CTPOP , MVT::i8 , Promote);
} else {
setOperationAction(ISD::CTPOP , MVT::i8 , Expand);
setOperationAction(ISD::CTPOP , MVT::i16 , Expand);
setOperationAction(ISD::CTPOP , MVT::i32 , Expand);
if (Subtarget.is64Bit())
setOperationAction(ISD::CTPOP , MVT::i64 , Expand);
}
setOperationAction(ISD::READCYCLECOUNTER , MVT::i64 , Custom);
if (!Subtarget.hasMOVBE())
setOperationAction(ISD::BSWAP , MVT::i16 , Expand);
// These should be promoted to a larger select which is supported.
setOperationAction(ISD::SELECT , MVT::i1 , Promote);
// X86 wants to expand cmov itself.
for (auto VT : { MVT::f32, MVT::f64, MVT::f80, MVT::f128 }) {
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
}
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SELECT, VT, Custom);
setOperationAction(ISD::SETCC, VT, Custom);
setOperationAction(ISD::SETCCE, VT, Custom);
}
setOperationAction(ISD::EH_RETURN , MVT::Other, Custom);
// NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
// SjLj exception handling but a light-weight setjmp/longjmp replacement to
// support continuation, user-level threading, and etc.. As a result, no
// other SjLj exception interfaces are implemented and please don't build
// your own exception handling based on them.
// LLVM/Clang supports zero-cost DWARF exception handling.
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
// Darwin ABI issue.
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::ConstantPool , VT, Custom);
setOperationAction(ISD::JumpTable , VT, Custom);
setOperationAction(ISD::GlobalAddress , VT, Custom);
setOperationAction(ISD::GlobalTLSAddress, VT, Custom);
setOperationAction(ISD::ExternalSymbol , VT, Custom);
setOperationAction(ISD::BlockAddress , VT, Custom);
}
// 64-bit addm sub, shl, sra, srl (iff 32-bit x86)
for (auto VT : { MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::SHL_PARTS, VT, Custom);
setOperationAction(ISD::SRA_PARTS, VT, Custom);
setOperationAction(ISD::SRL_PARTS, VT, Custom);
}
if (Subtarget.hasSSE1())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
setOperationAction(ISD::ATOMIC_FENCE , MVT::Other, Custom);
// Expand certain atomics
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_SUB, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_ADD, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_OR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_XOR, VT, Custom);
setOperationAction(ISD::ATOMIC_LOAD_AND, VT, Custom);
setOperationAction(ISD::ATOMIC_STORE, VT, Custom);
}
if (Subtarget.hasCmpxchg16b()) {
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i128, Custom);
}
// FIXME - use subtarget debug flags
if (!Subtarget.isTargetDarwin() && !Subtarget.isTargetELF() &&
!Subtarget.isTargetCygMing() && !Subtarget.isTargetWin64()) {
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
}
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom);
setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i64, Custom);
setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
setOperationAction(ISD::TRAP, MVT::Other, Legal);
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Legal);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex
setOperationAction(ISD::VASTART , MVT::Other, Custom);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
bool Is64Bit = Subtarget.is64Bit();
setOperationAction(ISD::VAARG, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::VACOPY, MVT::Other, Is64Bit ? Custom : Expand);
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, PtrVT, Custom);
// GC_TRANSITION_START and GC_TRANSITION_END need custom lowering.
setOperationAction(ISD::GC_TRANSITION_START, MVT::Other, Custom);
setOperationAction(ISD::GC_TRANSITION_END, MVT::Other, Custom);
if (!Subtarget.useSoftFloat() && X86ScalarSSEf64) {
// f32 and f64 use SSE.
// Set up the FP register classes.
addRegisterClass(MVT::f32, &X86::FR32RegClass);
addRegisterClass(MVT::f64, &X86::FR64RegClass);
for (auto VT : { MVT::f32, MVT::f64 }) {
// Use ANDPD to simulate FABS.
setOperationAction(ISD::FABS, VT, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG, VT, Custom);
// Use ANDPD and ORPD to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, VT, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
// Lower this to MOVMSK plus an AND.
setOperationAction(ISD::FGETSIGN, MVT::i64, Custom);
setOperationAction(ISD::FGETSIGN, MVT::i32, Custom);
// Expand FP immediates into loads from the stack, except for the special
// cases we handle.
addLegalFPImmediate(APFloat(+0.0)); // xorpd
addLegalFPImmediate(APFloat(+0.0f)); // xorps
} else if (UseX87 && X86ScalarSSEf32) {
// Use SSE for f32, x87 for f64.
// Set up the FP register classes.
addRegisterClass(MVT::f32, &X86::FR32RegClass);
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
// Use ANDPS to simulate FABS.
setOperationAction(ISD::FABS , MVT::f32, Custom);
// Use XORP to simulate FNEG.
setOperationAction(ISD::FNEG , MVT::f32, Custom);
setOperationAction(ISD::UNDEF, MVT::f64, Expand);
// Use ANDPS and ORPS to simulate FCOPYSIGN.
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
// We don't support sin/cos/fmod
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
// Special cases we handle for FP constants.
addLegalFPImmediate(APFloat(+0.0f)); // xorps
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
}
} else if (UseX87) {
// f32 and f64 in x87.
// Set up the FP register classes.
addRegisterClass(MVT::f64, &X86::RFP64RegClass);
addRegisterClass(MVT::f32, &X86::RFP32RegClass);
for (auto VT : { MVT::f32, MVT::f64 }) {
setOperationAction(ISD::UNDEF, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , VT, Expand);
setOperationAction(ISD::FCOS , VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
}
}
addLegalFPImmediate(APFloat(+0.0)); // FLD0
addLegalFPImmediate(APFloat(+1.0)); // FLD1
addLegalFPImmediate(APFloat(-0.0)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0)); // FLD1/FCHS
addLegalFPImmediate(APFloat(+0.0f)); // FLD0
addLegalFPImmediate(APFloat(+1.0f)); // FLD1
addLegalFPImmediate(APFloat(-0.0f)); // FLD0/FCHS
addLegalFPImmediate(APFloat(-1.0f)); // FLD1/FCHS
}
// We don't support FMA.
setOperationAction(ISD::FMA, MVT::f64, Expand);
setOperationAction(ISD::FMA, MVT::f32, Expand);
// Long double always uses X87, except f128 in MMX.
if (UseX87) {
if (Subtarget.is64Bit() && Subtarget.hasMMX()) {
addRegisterClass(MVT::f128, &X86::FR128RegClass);
ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
setOperationAction(ISD::FABS , MVT::f128, Custom);
setOperationAction(ISD::FNEG , MVT::f128, Custom);
setOperationAction(ISD::FCOPYSIGN, MVT::f128, Custom);
}
addRegisterClass(MVT::f80, &X86::RFP80RegClass);
setOperationAction(ISD::UNDEF, MVT::f80, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f80, Expand);
{
APFloat TmpFlt = APFloat::getZero(APFloat::x87DoubleExtended);
addLegalFPImmediate(TmpFlt); // FLD0
TmpFlt.changeSign();
addLegalFPImmediate(TmpFlt); // FLD0/FCHS
bool ignored;
APFloat TmpFlt2(+1.0);
TmpFlt2.convert(APFloat::x87DoubleExtended, APFloat::rmNearestTiesToEven,
&ignored);
addLegalFPImmediate(TmpFlt2); // FLD1
TmpFlt2.changeSign();
addLegalFPImmediate(TmpFlt2); // FLD1/FCHS
}
if (!TM.Options.UnsafeFPMath) {
setOperationAction(ISD::FSIN , MVT::f80, Expand);
setOperationAction(ISD::FCOS , MVT::f80, Expand);
setOperationAction(ISD::FSINCOS, MVT::f80, Expand);
}
setOperationAction(ISD::FFLOOR, MVT::f80, Expand);
setOperationAction(ISD::FCEIL, MVT::f80, Expand);
setOperationAction(ISD::FTRUNC, MVT::f80, Expand);
setOperationAction(ISD::FRINT, MVT::f80, Expand);
setOperationAction(ISD::FNEARBYINT, MVT::f80, Expand);
setOperationAction(ISD::FMA, MVT::f80, Expand);
}
// Always use a library call for pow.
setOperationAction(ISD::FPOW , MVT::f32 , Expand);
setOperationAction(ISD::FPOW , MVT::f64 , Expand);
setOperationAction(ISD::FPOW , MVT::f80 , Expand);
setOperationAction(ISD::FLOG, MVT::f80, Expand);
setOperationAction(ISD::FLOG2, MVT::f80, Expand);
setOperationAction(ISD::FLOG10, MVT::f80, Expand);
setOperationAction(ISD::FEXP, MVT::f80, Expand);
setOperationAction(ISD::FEXP2, MVT::f80, Expand);
setOperationAction(ISD::FMINNUM, MVT::f80, Expand);
setOperationAction(ISD::FMAXNUM, MVT::f80, Expand);
// Some FP actions are always expanded for vector types.
for (auto VT : { MVT::v4f32, MVT::v8f32, MVT::v16f32,
MVT::v2f64, MVT::v4f64, MVT::v8f64 }) {
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSINCOS, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FREM, VT, Expand);
setOperationAction(ISD::FPOWI, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FLOG, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
}
// First set operation action for all vector types to either promote
// (for widening) or expand (for scalarization). Then we will selectively
// turn on ones that can be effectively codegen'd.
for (MVT VT : MVT::vector_valuetypes()) {
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT,Expand);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::INSERT_SUBVECTOR, VT,Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHS, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::MULHU, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Expand);
setOperationAction(ISD::UDIVREM, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::SETCC, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, VT,Expand);
setOperationAction(ISD::TRUNCATE, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND, VT, Expand);
setOperationAction(ISD::ZERO_EXTEND, VT, Expand);
setOperationAction(ISD::ANY_EXTEND, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
for (MVT InnerVT : MVT::vector_valuetypes()) {
setTruncStoreAction(InnerVT, VT, Expand);
setLoadExtAction(ISD::SEXTLOAD, InnerVT, VT, Expand);
setLoadExtAction(ISD::ZEXTLOAD, InnerVT, VT, Expand);
// N.b. ISD::EXTLOAD legality is basically ignored except for i1-like
// types, we have to deal with them whether we ask for Expansion or not.
// Setting Expand causes its own optimisation problems though, so leave
// them legal.
if (VT.getVectorElementType() == MVT::i1)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
// EXTLOAD for MVT::f16 vectors is not legal because f16 vectors are
// split/scalarized right now.
if (VT.getVectorElementType() == MVT::f16)
setLoadExtAction(ISD::EXTLOAD, InnerVT, VT, Expand);
}
}
// FIXME: In order to prevent SSE instructions being expanded to MMX ones
// with -msoft-float, disable use of MMX as well.
if (!Subtarget.useSoftFloat() && Subtarget.hasMMX()) {
addRegisterClass(MVT::x86mmx, &X86::VR64RegClass);
// No operations on x86mmx supported, everything uses intrinsics.
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE1()) {
addRegisterClass(MVT::v4f32, &X86::VR128RegClass);
setOperationAction(ISD::FNEG, MVT::v4f32, Custom);
setOperationAction(ISD::FABS, MVT::v4f32, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f32, Custom);
setOperationAction(ISD::VSELECT, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::SELECT, MVT::v4f32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE2()) {
addRegisterClass(MVT::v2f64, &X86::VR128RegClass);
// FIXME: Unfortunately, -soft-float and -no-implicit-float mean XMM
// registers cannot be used even for integer operations.
addRegisterClass(MVT::v16i8, &X86::VR128RegClass);
addRegisterClass(MVT::v8i16, &X86::VR128RegClass);
addRegisterClass(MVT::v4i32, &X86::VR128RegClass);
addRegisterClass(MVT::v2i64, &X86::VR128RegClass);
setOperationAction(ISD::MUL, MVT::v16i8, Custom);
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::v4i32, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::v4i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i8, Custom);
setOperationAction(ISD::MULHS, MVT::v16i8, Custom);
setOperationAction(ISD::MULHU, MVT::v8i16, Legal);
setOperationAction(ISD::MULHS, MVT::v8i16, Legal);
setOperationAction(ISD::MUL, MVT::v8i16, Legal);
setOperationAction(ISD::FNEG, MVT::v2f64, Custom);
setOperationAction(ISD::FABS, MVT::v2f64, Custom);
setOperationAction(ISD::SMAX, MVT::v8i16, Legal);
setOperationAction(ISD::UMAX, MVT::v16i8, Legal);
setOperationAction(ISD::SMIN, MVT::v8i16, Legal);
setOperationAction(ISD::UMIN, MVT::v16i8, Legal);
setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
setOperationAction(ISD::SETCC, MVT::v16i8, Custom);
setOperationAction(ISD::SETCC, MVT::v8i16, Custom);
setOperationAction(ISD::SETCC, MVT::v4i32, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
setOperationAction(ISD::CTPOP, MVT::v16i8, Custom);
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
setOperationAction(ISD::CTPOP, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
// ISD::CTTZ v2i64 - scalarization is faster.
// Custom lower build_vector, vector_shuffle, and extract_vector_elt.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
// We support custom legalizing of sext and anyext loads for specific
// memory vector types which we can load as a scalar (or sequence of
// scalars) and extend in-register to a legal 128-bit vector type. For sext
// loads these must work with a single scalar load.
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i32, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8i8, Custom);
}
for (auto VT : { MVT::v2f64, MVT::v2i64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
if (VT == MVT::v2i64 && !Subtarget.is64Bit())
continue;
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
}
// Promote v16i8, v8i16, v4i32 load, select, and, or, xor to v2i64.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
setOperationPromotedToType(ISD::AND, VT, MVT::v2i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v2i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v2i64);
setOperationPromotedToType(ISD::LOAD, VT, MVT::v2i64);
setOperationPromotedToType(ISD::SELECT, VT, MVT::v2i64);
}
// Custom lower v2i64 and v2f64 selects.
setOperationAction(ISD::SELECT, MVT::v2f64, Custom);
setOperationAction(ISD::SELECT, MVT::v2i64, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i32, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
// As there is no 64-bit GPR available, we need build a special custom
// sequence to convert from v2i32 to v2f32.
if (!Subtarget.is64Bit())
setOperationAction(ISD::UINT_TO_FP, MVT::v2f32, Custom);
setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Custom);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2f32, Legal);
setOperationAction(ISD::BITCAST, MVT::v2i32, Custom);
setOperationAction(ISD::BITCAST, MVT::v4i16, Custom);
setOperationAction(ISD::BITCAST, MVT::v8i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v2i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i16, Custom);
for (auto VT : { MVT::v8i16, MVT::v16i8 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
// In the customized shift lowering, the legal cases in AVX2 will be
// recognized.
for (auto VT : { MVT::v4i32, MVT::v2i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSSE3()) {
setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
// ISD::CTLZ v4i32 - scalarization is faster.
// ISD::CTLZ v2i64 - scalarization is faster.
}
if (!Subtarget.useSoftFloat() && Subtarget.hasSSE41()) {
for (MVT RoundedTy : {MVT::f32, MVT::f64, MVT::v4f32, MVT::v2f64}) {
setOperationAction(ISD::FFLOOR, RoundedTy, Legal);
setOperationAction(ISD::FCEIL, RoundedTy, Legal);
setOperationAction(ISD::FTRUNC, RoundedTy, Legal);
setOperationAction(ISD::FRINT, RoundedTy, Legal);
setOperationAction(ISD::FNEARBYINT, RoundedTy, Legal);
}
setOperationAction(ISD::SMAX, MVT::v16i8, Legal);
setOperationAction(ISD::SMAX, MVT::v4i32, Legal);
setOperationAction(ISD::UMAX, MVT::v8i16, Legal);
setOperationAction(ISD::UMAX, MVT::v4i32, Legal);
setOperationAction(ISD::SMIN, MVT::v16i8, Legal);
setOperationAction(ISD::SMIN, MVT::v4i32, Legal);
setOperationAction(ISD::UMIN, MVT::v8i16, Legal);
setOperationAction(ISD::UMIN, MVT::v4i32, Legal);
// FIXME: Do we need to handle scalar-to-vector here?
setOperationAction(ISD::MUL, MVT::v4i32, Legal);
// We directly match byte blends in the backend as they match the VSELECT
// condition form.
setOperationAction(ISD::VSELECT, MVT::v16i8, Legal);
// SSE41 brings specific instructions for doing vector sign extend even in
// cases where we don't have SRA.
for (MVT VT : MVT::integer_vector_valuetypes()) {
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i32, Custom);
}
// SSE41 also has vector sign/zero extending loads, PMOV[SZ]X
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, MVT::v8i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i16, MVT::v8i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
// i8 vectors are custom because the source register and source
// source memory operand types are not the same width.
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasXOP()) {
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::ROTL, VT, Custom);
// XOP can efficiently perform BITREVERSE with VPPERM.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::BITREVERSE, VT, Custom);
}
if (!Subtarget.useSoftFloat() && Subtarget.hasFp256()) {
bool HasInt256 = Subtarget.hasInt256();
addRegisterClass(MVT::v32i8, &X86::VR256RegClass);
addRegisterClass(MVT::v16i16, &X86::VR256RegClass);
addRegisterClass(MVT::v8i32, &X86::VR256RegClass);
addRegisterClass(MVT::v8f32, &X86::VR256RegClass);
addRegisterClass(MVT::v4i64, &X86::VR256RegClass);
addRegisterClass(MVT::v4f64, &X86::VR256RegClass);
for (auto VT : { MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
}
// (fp_to_int:v8i16 (v8f32 ..)) requires the result type to be promoted
// even though v8i16 is a legal type.
setOperationAction(ISD::FP_TO_SINT, MVT::v8i16, Promote);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i16, Promote);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i16, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::FP_ROUND, MVT::v4f32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i16, Custom);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4f32, Legal);
for (auto VT : { MVT::v32i8, MVT::v16i16 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
setOperationAction(ISD::SETCC, MVT::v32i8, Custom);
setOperationAction(ISD::SETCC, MVT::v16i16, Custom);
setOperationAction(ISD::SETCC, MVT::v8i32, Custom);
setOperationAction(ISD::SETCC, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v4f64, Custom);
setOperationAction(ISD::SELECT, MVT::v4i64, Custom);
setOperationAction(ISD::SELECT, MVT::v8f32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v4i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v8i32, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v16i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i16, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i32, Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
}
// ISD::CTLZ v8i32/v4i64 - scalarization is faster without AVX2
// as we end up splitting the 256-bit vectors.
for (auto VT : { MVT::v32i8, MVT::v16i16 })
setOperationAction(ISD::CTLZ, VT, Custom);
if (HasInt256)
for (auto VT : { MVT::v8i32, MVT::v4i64 })
setOperationAction(ISD::CTLZ, VT, Custom);
if (Subtarget.hasAnyFMA()) {
for (auto VT : { MVT::f32, MVT::f64, MVT::v4f32, MVT::v8f32,
MVT::v2f64, MVT::v4f64 })
setOperationAction(ISD::FMA, VT, Legal);
}
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::ADD, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SUB, VT, HasInt256 ? Legal : Custom);
}
setOperationAction(ISD::MUL, MVT::v4i64, Custom);
setOperationAction(ISD::MUL, MVT::v8i32, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MUL, MVT::v32i8, Custom);
setOperationAction(ISD::UMUL_LOHI, MVT::v8i32, Custom);
setOperationAction(ISD::SMUL_LOHI, MVT::v8i32, Custom);
setOperationAction(ISD::MULHU, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHS, MVT::v16i16, HasInt256 ? Legal : Custom);
setOperationAction(ISD::MULHU, MVT::v32i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i8, Custom);
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
setOperationAction(ISD::SMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMAX, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::SMIN, VT, HasInt256 ? Legal : Custom);
setOperationAction(ISD::UMIN, VT, HasInt256 ? Legal : Custom);
}
if (HasInt256) {
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v4i64, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v8i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, MVT::v16i16, Custom);
// The custom lowering for UINT_TO_FP for v8i32 becomes interesting
// when we have a 256bit-wide blend with immediate.
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Custom);
// AVX2 also has wider vector sign/zero extending loads, VPMOV[SZ]X
setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i8, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i8, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
}
// In the customized shift lowering, the legal cases in AVX2 will be
// recognized.
for (auto VT : { MVT::v8i32, MVT::v4i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
}
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
}
// Extract subvector is special because the value type
// (result) is 128-bit but the source is 256-bit wide.
for (auto VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32, MVT::v2i64,
MVT::v4f32, MVT::v2f64 }) {
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
}
// Custom lower several nodes for 256-bit types.
for (MVT VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::CONCAT_VECTORS, VT, Custom);
}
if (HasInt256)
setOperationAction(ISD::VSELECT, MVT::v32i8, Legal);
// Promote v32i8, v16i16, v8i32 select, and, or, xor to v4i64.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32 }) {
setOperationPromotedToType(ISD::AND, VT, MVT::v4i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v4i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v4i64);
setOperationPromotedToType(ISD::LOAD, VT, MVT::v4i64);
setOperationPromotedToType(ISD::SELECT, VT, MVT::v4i64);
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasAVX512()) {
addRegisterClass(MVT::v16i32, &X86::VR512RegClass);
addRegisterClass(MVT::v16f32, &X86::VR512RegClass);
addRegisterClass(MVT::v8i64, &X86::VR512RegClass);
addRegisterClass(MVT::v8f64, &X86::VR512RegClass);
addRegisterClass(MVT::i1, &X86::VK1RegClass);
addRegisterClass(MVT::v8i1, &X86::VK8RegClass);
addRegisterClass(MVT::v16i1, &X86::VK16RegClass);
for (MVT VT : MVT::fp_vector_valuetypes())
setLoadExtAction(ISD::EXTLOAD, VT, MVT::v8f32, Legal);
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i8, Legal);
setLoadExtAction(ExtType, MVT::v16i32, MVT::v16i16, Legal);
setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i8, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i16, Legal);
setLoadExtAction(ExtType, MVT::v8i64, MVT::v8i32, Legal);
}
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
setOperationAction(ISD::SETCC, MVT::i1, Custom);
setOperationAction(ISD::SETCCE, MVT::i1, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::XOR, MVT::i1, Legal);
setOperationAction(ISD::OR, MVT::i1, Legal);
setOperationAction(ISD::AND, MVT::i1, Legal);
setOperationAction(ISD::SUB, MVT::i1, Custom);
setOperationAction(ISD::ADD, MVT::i1, Custom);
setOperationAction(ISD::MUL, MVT::i1, Custom);
for (MVT VT : {MVT::v2i64, MVT::v4i32, MVT::v8i32, MVT::v4i64, MVT::v8i16,
MVT::v16i8, MVT::v16i16, MVT::v32i8, MVT::v16i32,
MVT::v8i64, MVT::v32i16, MVT::v64i8}) {
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
setLoadExtAction(ISD::SEXTLOAD, VT, MaskVT, Custom);
setLoadExtAction(ISD::ZEXTLOAD, VT, MaskVT, Custom);
setLoadExtAction(ISD::EXTLOAD, VT, MaskVT, Custom);
setTruncStoreAction(VT, MaskVT, Custom);
}
for (MVT VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FNEG, VT, Custom);
setOperationAction(ISD::FABS, VT, Custom);
setOperationAction(ISD::FMA, VT, Legal);
}
setOperationAction(ISD::FP_TO_SINT, MVT::v16i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v16i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v8i1, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i1, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i8, Promote);
setOperationAction(ISD::SINT_TO_FP, MVT::v16i16, Promote);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i8, Custom);
setOperationAction(ISD::UINT_TO_FP, MVT::v16i16, Custom);
setOperationAction(ISD::FP_ROUND, MVT::v8f32, Legal);
setOperationAction(ISD::FP_EXTEND, MVT::v8f32, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v8i64, MVT::v8i32, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Legal);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Legal);
if (Subtarget.hasVLX()){
setTruncStoreAction(MVT::v4i64, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i16, Legal);
setTruncStoreAction(MVT::v4i64, MVT::v4i32, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Legal);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i8, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i16, Legal);
setTruncStoreAction(MVT::v2i64, MVT::v2i32, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Legal);
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Legal);
} else {
setOperationAction(ISD::MLOAD, MVT::v8i32, Custom);
setOperationAction(ISD::MLOAD, MVT::v8f32, Custom);
setOperationAction(ISD::MSTORE, MVT::v8i32, Custom);
setOperationAction(ISD::MSTORE, MVT::v8f32, Custom);
}
setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i8, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v8i32, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i1, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i1, Custom);
setOperationAction(ISD::VSELECT, MVT::v8i1, Expand);
setOperationAction(ISD::VSELECT, MVT::v16i1, Expand);
if (Subtarget.hasDQI()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i64, Legal);
if (Subtarget.hasVLX()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v4i64, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i64, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i64, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i64, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
}
}
if (Subtarget.hasVLX()) {
setOperationAction(ISD::SINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v8i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v8i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v8i32, Legal);
setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v2i64, Custom);
// FIXME. This commands are available on SSE/AVX2, add relevant patterns.
setLoadExtAction(ISD::EXTLOAD, MVT::v8i32, MVT::v8i8, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v8i32, MVT::v8i16, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i8, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i16, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i8, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i16, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i64, MVT::v4i32, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i8, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i16, Legal);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i64, MVT::v2i32, Legal);
}
setOperationAction(ISD::TRUNCATE, MVT::v8i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v16i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i16, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i16, Custom);
if (Subtarget.hasDQI()) {
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v2i64, Custom);
}
for (auto VT : { MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::FFLOOR, VT, Legal);
setOperationAction(ISD::FCEIL, VT, Legal);
setOperationAction(ISD::FTRUNC, VT, Legal);
setOperationAction(ISD::FRINT, VT, Legal);
setOperationAction(ISD::FNEARBYINT, VT, Legal);
}
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i64, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v16i1, Custom);
setOperationAction(ISD::SETCC, MVT::v16i1, Custom);
setOperationAction(ISD::SETCC, MVT::v8i1, Custom);
setOperationAction(ISD::MUL, MVT::v8i64, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i1, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v16i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v8i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v16i1, Custom);
setOperationAction(ISD::SELECT, MVT::v8f64, Custom);
setOperationAction(ISD::SELECT, MVT::v8i64, Custom);
setOperationAction(ISD::SELECT, MVT::v16f32, Custom);
setOperationAction(ISD::SELECT, MVT::v16i1, Custom);
setOperationAction(ISD::SELECT, MVT::v8i1, Custom);
setOperationAction(ISD::SMAX, MVT::v16i32, Legal);
setOperationAction(ISD::SMAX, MVT::v8i64, Legal);
setOperationAction(ISD::UMAX, MVT::v16i32, Legal);
setOperationAction(ISD::UMAX, MVT::v8i64, Legal);
setOperationAction(ISD::SMIN, MVT::v16i32, Legal);
setOperationAction(ISD::SMIN, MVT::v8i64, Legal);
setOperationAction(ISD::UMIN, MVT::v16i32, Legal);
setOperationAction(ISD::UMIN, MVT::v8i64, Legal);
setOperationAction(ISD::ADD, MVT::v8i1, Expand);
setOperationAction(ISD::ADD, MVT::v16i1, Expand);
setOperationAction(ISD::SUB, MVT::v8i1, Expand);
setOperationAction(ISD::SUB, MVT::v16i1, Expand);
setOperationAction(ISD::MUL, MVT::v8i1, Expand);
setOperationAction(ISD::MUL, MVT::v16i1, Expand);
setOperationAction(ISD::MUL, MVT::v16i32, Legal);
for (auto VT : { MVT::v16i32, MVT::v8i64 }) {
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::AND, VT, Legal);
setOperationAction(ISD::OR, VT, Legal);
setOperationAction(ISD::XOR, VT, Legal);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
}
if (Subtarget.hasCDI()) {
setOperationAction(ISD::CTLZ, MVT::v8i64, Legal);
setOperationAction(ISD::CTLZ, MVT::v16i32, Legal);
setOperationAction(ISD::CTLZ, MVT::v8i16, Custom);
setOperationAction(ISD::CTLZ, MVT::v16i8, Custom);
setOperationAction(ISD::CTLZ, MVT::v16i16, Custom);
setOperationAction(ISD::CTLZ, MVT::v32i8, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i32, Custom);
if (Subtarget.hasVLX()) {
setOperationAction(ISD::CTLZ, MVT::v4i64, Legal);
setOperationAction(ISD::CTLZ, MVT::v8i32, Legal);
setOperationAction(ISD::CTLZ, MVT::v2i64, Legal);
setOperationAction(ISD::CTLZ, MVT::v4i32, Legal);
} else {
setOperationAction(ISD::CTLZ, MVT::v4i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v8i32, Custom);
setOperationAction(ISD::CTLZ, MVT::v2i64, Custom);
setOperationAction(ISD::CTLZ, MVT::v4i32, Custom);
}
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i32, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
} // Subtarget.hasCDI()
if (Subtarget.hasDQI()) {
if (Subtarget.hasVLX()) {
setOperationAction(ISD::MUL, MVT::v2i64, Legal);
setOperationAction(ISD::MUL, MVT::v4i64, Legal);
}
setOperationAction(ISD::MUL, MVT::v8i64, Legal);
}
// Custom lower several nodes.
for (auto VT : { MVT::v4i32, MVT::v8i32, MVT::v2i64, MVT::v4i64,
MVT::v4f32, MVT::v8f32, MVT::v2f64, MVT::v4f64 }) {
setOperationAction(ISD::MGATHER, VT, Custom);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
// Extract subvector is special because the value type
// (result) is 256-bit but the source is 512-bit wide.
// 128-bit was made Custom under AVX1.
for (auto VT : { MVT::v32i8, MVT::v16i16, MVT::v8i32, MVT::v4i64,
MVT::v8f32, MVT::v4f64 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Custom);
for (auto VT : { MVT::v2i1, MVT::v4i1, MVT::v8i1,
MVT::v16i1, MVT::v32i1, MVT::v64i1 })
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
for (auto VT : { MVT::v16i32, MVT::v8i64, MVT::v16f32, MVT::v8f64 }) {
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Legal);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::MGATHER, VT, Legal);
setOperationAction(ISD::MSCATTER, VT, Custom);
}
for (auto VT : { MVT::v64i8, MVT::v32i16, MVT::v16i32 }) {
setOperationPromotedToType(ISD::SELECT, VT, MVT::v8i64);
}
}// has AVX-512
if (!Subtarget.useSoftFloat() && Subtarget.hasBWI()) {
addRegisterClass(MVT::v32i16, &X86::VR512RegClass);
addRegisterClass(MVT::v64i8, &X86::VR512RegClass);
addRegisterClass(MVT::v32i1, &X86::VK32RegClass);
addRegisterClass(MVT::v64i1, &X86::VK64RegClass);
setOperationAction(ISD::ADD, MVT::v32i1, Expand);
setOperationAction(ISD::ADD, MVT::v64i1, Expand);
setOperationAction(ISD::SUB, MVT::v32i1, Expand);
setOperationAction(ISD::SUB, MVT::v64i1, Expand);
setOperationAction(ISD::MUL, MVT::v32i1, Expand);
setOperationAction(ISD::MUL, MVT::v64i1, Expand);
setOperationAction(ISD::SETCC, MVT::v32i1, Custom);
setOperationAction(ISD::SETCC, MVT::v64i1, Custom);
setOperationAction(ISD::MUL, MVT::v32i16, Legal);
setOperationAction(ISD::MUL, MVT::v64i8, Custom);
setOperationAction(ISD::MULHS, MVT::v32i16, Legal);
setOperationAction(ISD::MULHU, MVT::v32i16, Legal);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v32i16, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v32i16, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v64i8, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v32i16, Custom);
setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v64i8, Custom);
setOperationAction(ISD::SELECT, MVT::v32i1, Custom);
setOperationAction(ISD::SELECT, MVT::v64i1, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::ANY_EXTEND, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i16, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i8, Custom);
setOperationAction(ISD::SIGN_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::ZERO_EXTEND, MVT::v64i8, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i1, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v32i16, Custom);
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v64i8, Custom);
setOperationAction(ISD::VSELECT, MVT::v32i16, Legal);
setOperationAction(ISD::VSELECT, MVT::v64i8, Legal);
setOperationAction(ISD::TRUNCATE, MVT::v32i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v64i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v32i8, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v32i1, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v64i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v32i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v64i1, Custom);
setOperationAction(ISD::VSELECT, MVT::v32i1, Expand);
setOperationAction(ISD::VSELECT, MVT::v64i1, Expand);
setOperationAction(ISD::SMAX, MVT::v64i8, Legal);
setOperationAction(ISD::SMAX, MVT::v32i16, Legal);
setOperationAction(ISD::UMAX, MVT::v64i8, Legal);
setOperationAction(ISD::UMAX, MVT::v32i16, Legal);
setOperationAction(ISD::SMIN, MVT::v64i8, Legal);
setOperationAction(ISD::SMIN, MVT::v32i16, Legal);
setOperationAction(ISD::UMIN, MVT::v64i8, Legal);
setOperationAction(ISD::UMIN, MVT::v32i16, Legal);
setTruncStoreAction(MVT::v32i16, MVT::v32i8, Legal);
setTruncStoreAction(MVT::v16i16, MVT::v16i8, Legal);
if (Subtarget.hasVLX())
setTruncStoreAction(MVT::v8i16, MVT::v8i8, Legal);
LegalizeAction Action = Subtarget.hasVLX() ? Legal : Custom;
for (auto VT : { MVT::v32i8, MVT::v16i8, MVT::v16i16, MVT::v8i16 }) {
setOperationAction(ISD::MLOAD, VT, Action);
setOperationAction(ISD::MSTORE, VT, Action);
}
if (Subtarget.hasCDI()) {
setOperationAction(ISD::CTLZ, MVT::v32i16, Custom);
setOperationAction(ISD::CTLZ, MVT::v64i8, Custom);
}
for (auto VT : { MVT::v64i8, MVT::v32i16 }) {
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
setOperationAction(ISD::VSELECT, VT, Legal);
setOperationAction(ISD::SRL, VT, Custom);
setOperationAction(ISD::SHL, VT, Custom);
setOperationAction(ISD::SRA, VT, Custom);
setOperationAction(ISD::MLOAD, VT, Legal);
setOperationAction(ISD::MSTORE, VT, Legal);
setOperationAction(ISD::CTPOP, VT, Custom);
setOperationAction(ISD::CTTZ, VT, Custom);
setOperationPromotedToType(ISD::AND, VT, MVT::v8i64);
setOperationPromotedToType(ISD::OR, VT, MVT::v8i64);
setOperationPromotedToType(ISD::XOR, VT, MVT::v8i64);
}
for (auto ExtType : {ISD::ZEXTLOAD, ISD::SEXTLOAD, ISD::EXTLOAD}) {
setLoadExtAction(ExtType, MVT::v32i16, MVT::v32i8, Legal);
if (Subtarget.hasVLX()) {
// FIXME. This commands are available on SSE/AVX2, add relevant patterns.
setLoadExtAction(ExtType, MVT::v16i16, MVT::v16i8, Legal);
setLoadExtAction(ExtType, MVT::v8i16, MVT::v8i8, Legal);
}
}
}
if (!Subtarget.useSoftFloat() && Subtarget.hasVLX()) {
addRegisterClass(MVT::v4i1, &X86::VK4RegClass);
addRegisterClass(MVT::v2i1, &X86::VK2RegClass);
setOperationAction(ISD::ADD, MVT::v2i1, Expand);
setOperationAction(ISD::ADD, MVT::v4i1, Expand);
setOperationAction(ISD::SUB, MVT::v2i1, Expand);
setOperationAction(ISD::SUB, MVT::v4i1, Expand);
setOperationAction(ISD::MUL, MVT::v2i1, Expand);
setOperationAction(ISD::MUL, MVT::v4i1, Expand);
setOperationAction(ISD::TRUNCATE, MVT::v2i1, Custom);
setOperationAction(ISD::TRUNCATE, MVT::v4i1, Custom);
setOperationAction(ISD::SETCC, MVT::v4i1, Custom);
setOperationAction(ISD::SETCC, MVT::v2i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i1, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i1, Custom);
setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i1, Custom);
setOperationAction(ISD::SELECT, MVT::v4i1, Custom);
setOperationAction(ISD::SELECT, MVT::v2i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v4i1, Custom);
setOperationAction(ISD::BUILD_VECTOR, MVT::v2i1, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i1, Custom);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i1, Custom);
setOperationAction(ISD::VSELECT, MVT::v2i1, Expand);
setOperationAction(ISD::VSELECT, MVT::v4i1, Expand);
for (auto VT : { MVT::v4i32, MVT::v8i32 }) {
setOperationAction(ISD::AND, VT, Legal);
setOperationAction(ISD::OR, VT, Legal);
setOperationAction(ISD::XOR, VT, Legal);
}
for (auto VT : { MVT::v2i64, MVT::v4i64 }) {
setOperationAction(ISD::SMAX, VT, Legal);
setOperationAction(ISD::UMAX, VT, Legal);
setOperationAction(ISD::SMIN, VT, Legal);
setOperationAction(ISD::UMIN, VT, Legal);
}
}
// We want to custom lower some of our intrinsics.
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
if (!Subtarget.is64Bit()) {
setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i64, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i64, Custom);
}
// Only custom-lower 64-bit SADDO and friends on 64-bit because we don't
// handle type legalization for these operations here.
//
// FIXME: We really should do custom legalization for addition and
// subtraction on x86-32 once PR3203 is fixed. We really can't do much better
// than generic legalization for 64-bit multiplication-with-overflow, though.
for (auto VT : { MVT::i8, MVT::i16, MVT::i32, MVT::i64 }) {
if (VT == MVT::i64 && !Subtarget.is64Bit())
continue;
// Add/Sub/Mul with overflow operations are custom lowered.
setOperationAction(ISD::SADDO, VT, Custom);
setOperationAction(ISD::UADDO, VT, Custom);
setOperationAction(ISD::SSUBO, VT, Custom);
setOperationAction(ISD::USUBO, VT, Custom);
setOperationAction(ISD::SMULO, VT, Custom);
setOperationAction(ISD::UMULO, VT, Custom);
}
if (!Subtarget.is64Bit()) {
// These libcalls are not available in 32-bit.
setLibcallName(RTLIB::SHL_I128, nullptr);
setLibcallName(RTLIB::SRL_I128, nullptr);
setLibcallName(RTLIB::SRA_I128, nullptr);
}
// Combine sin / cos into one node or libcall if possible.
if (Subtarget.hasSinCos()) {
setLibcallName(RTLIB::SINCOS_F32, "sincosf");
setLibcallName(RTLIB::SINCOS_F64, "sincos");
if (Subtarget.isTargetDarwin()) {
// For MacOSX, we don't want the normal expansion of a libcall to sincos.
// We want to issue a libcall to __sincos_stret to avoid memory traffic.
setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
}
}
if (Subtarget.isTargetWin64()) {
setOperationAction(ISD::SDIV, MVT::i128, Custom);
setOperationAction(ISD::UDIV, MVT::i128, Custom);
setOperationAction(ISD::SREM, MVT::i128, Custom);
setOperationAction(ISD::UREM, MVT::i128, Custom);
setOperationAction(ISD::SDIVREM, MVT::i128, Custom);
setOperationAction(ISD::UDIVREM, MVT::i128, Custom);
}
// On 32 bit MSVC, `fmodf(f32)` is not defined - only `fmod(f64)`
// is. We should promote the value to 64-bits to solve this.
// This is what the CRT headers do - `fmodf` is an inline header
// function casting to f64 and calling `fmod`.
if (Subtarget.is32Bit() && Subtarget.isTargetKnownWindowsMSVC())
for (ISD::NodeType Op :
{ISD::FCEIL, ISD::FCOS, ISD::FEXP, ISD::FFLOOR, ISD::FREM, ISD::FLOG,
ISD::FLOG10, ISD::FPOW, ISD::FSIN})
if (isOperationExpand(Op, MVT::f32))
setOperationAction(Op, MVT::f32, Promote);
// We have target-specific dag combine patterns for the following nodes:
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
setTargetDAGCombine(ISD::BITCAST);
setTargetDAGCombine(ISD::VSELECT);
setTargetDAGCombine(ISD::SELECT);
setTargetDAGCombine(ISD::SHL);
setTargetDAGCombine(ISD::SRA);
setTargetDAGCombine(ISD::SRL);
setTargetDAGCombine(ISD::OR);
setTargetDAGCombine(ISD::AND);
setTargetDAGCombine(ISD::ADD);
setTargetDAGCombine(ISD::FADD);
setTargetDAGCombine(ISD::FSUB);
setTargetDAGCombine(ISD::FNEG);
setTargetDAGCombine(ISD::FMA);
setTargetDAGCombine(ISD::FMINNUM);
setTargetDAGCombine(ISD::FMAXNUM);
setTargetDAGCombine(ISD::SUB);
setTargetDAGCombine(ISD::LOAD);
setTargetDAGCombine(ISD::MLOAD);
setTargetDAGCombine(ISD::STORE);
setTargetDAGCombine(ISD::MSTORE);
setTargetDAGCombine(ISD::TRUNCATE);
setTargetDAGCombine(ISD::ZERO_EXTEND);
setTargetDAGCombine(ISD::ANY_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND);
setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
setTargetDAGCombine(ISD::SINT_TO_FP);
setTargetDAGCombine(ISD::UINT_TO_FP);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::XOR);
setTargetDAGCombine(ISD::MSCATTER);
setTargetDAGCombine(ISD::MGATHER);
computeRegisterProperties(Subtarget.getRegisterInfo());
MaxStoresPerMemset = 16; // For @llvm.memset -> sequence of stores
MaxStoresPerMemsetOptSize = 8;
MaxStoresPerMemcpy = 8; // For @llvm.memcpy -> sequence of stores
MaxStoresPerMemcpyOptSize = 4;
MaxStoresPerMemmove = 8; // For @llvm.memmove -> sequence of stores
MaxStoresPerMemmoveOptSize = 4;
setPrefLoopAlignment(4); // 2^4 bytes.
// An out-of-order CPU can speculatively execute past a predictable branch,
// but a conditional move could be stalled by an expensive earlier operation.
PredictableSelectIsExpensive = Subtarget.getSchedModel().isOutOfOrder();
EnableExtLdPromotion = true;
setPrefFunctionAlignment(4); // 2^4 bytes.
verifyIntrinsicTables();
}
// This has so far only been implemented for 64-bit MachO.
bool X86TargetLowering::useLoadStackGuardNode() const {
return Subtarget.isTargetMachO() && Subtarget.is64Bit();
}
TargetLoweringBase::LegalizeTypeAction
X86TargetLowering::getPreferredVectorAction(EVT VT) const {
if (ExperimentalVectorWideningLegalization &&
VT.getVectorNumElements() != 1 &&
VT.getVectorElementType().getSimpleVT() != MVT::i1)
return TypeWidenVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
EVT X86TargetLowering::getSetCCResultType(const DataLayout &DL,
LLVMContext& Context,
EVT VT) const {
if (!VT.isVector())
return Subtarget.hasAVX512() ? MVT::i1: MVT::i8;
if (VT.isSimple()) {
MVT VVT = VT.getSimpleVT();
const unsigned NumElts = VVT.getVectorNumElements();
MVT EltVT = VVT.getVectorElementType();
if (VVT.is512BitVector()) {
if (Subtarget.hasAVX512())
if (EltVT == MVT::i32 || EltVT == MVT::i64 ||
EltVT == MVT::f32 || EltVT == MVT::f64)
switch(NumElts) {
case 8: return MVT::v8i1;
case 16: return MVT::v16i1;
}
if (Subtarget.hasBWI())
if (EltVT == MVT::i8 || EltVT == MVT::i16)
switch(NumElts) {
case 32: return MVT::v32i1;
case 64: return MVT::v64i1;
}
}
if (Subtarget.hasBWI() && Subtarget.hasVLX())
return MVT::getVectorVT(MVT::i1, NumElts);
if (!isTypeLegal(VT) && getTypeAction(Context, VT) == TypePromoteInteger) {
EVT LegalVT = getTypeToTransformTo(Context, VT);
EltVT = LegalVT.getVectorElementType().getSimpleVT();
}
if (Subtarget.hasVLX() && EltVT.getSizeInBits() >= 32)
switch(NumElts) {
case 2: return MVT::v2i1;
case 4: return MVT::v4i1;
case 8: return MVT::v8i1;
}
}
return VT.changeVectorElementTypeToInteger();
}
/// Helper for getByValTypeAlignment to determine
/// the desired ByVal argument alignment.
static void getMaxByValAlign(Type *Ty, unsigned &MaxAlign) {
if (MaxAlign == 16)
return;
if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
if (VTy->getBitWidth() == 128)
MaxAlign = 16;
} else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
unsigned EltAlign = 0;
getMaxByValAlign(ATy->getElementType(), EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
for (auto *EltTy : STy->elements()) {
unsigned EltAlign = 0;
getMaxByValAlign(EltTy, EltAlign);
if (EltAlign > MaxAlign)
MaxAlign = EltAlign;
if (MaxAlign == 16)
break;
}
}
}
/// Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. For X86, aggregates
/// that contain SSE vectors are placed at 16-byte boundaries while the rest
/// are at 4-byte boundaries.
unsigned X86TargetLowering::getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const {
if (Subtarget.is64Bit()) {
// Max of 8 and alignment of type.
unsigned TyAlign = DL.getABITypeAlignment(Ty);
if (TyAlign > 8)
return TyAlign;
return 8;
}
unsigned Align = 4;
if (Subtarget.hasSSE1())
getMaxByValAlign(Ty, Align);
return Align;
}
/// Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
EVT
X86TargetLowering::getOptimalMemOpType(uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset,
bool MemcpyStrSrc,
MachineFunction &MF) const {
const Function *F = MF.getFunction();
if (!F->hasFnAttribute(Attribute::NoImplicitFloat)) {
if (Size >= 16 &&
(!Subtarget.isUnalignedMem16Slow() ||
((DstAlign == 0 || DstAlign >= 16) &&
(SrcAlign == 0 || SrcAlign >= 16)))) {
// FIXME: Check if unaligned 32-byte accesses are slow.
if (Size >= 32 && Subtarget.hasAVX()) {
// Although this isn't a well-supported type for AVX1, we'll let
// legalization and shuffle lowering produce the optimal codegen. If we
// choose an optimal type with a vector element larger than a byte,
// getMemsetStores() may create an intermediate splat (using an integer
// multiply) before we splat as a vector.
return MVT::v32i8;
}
if (Subtarget.hasSSE2())
return MVT::v16i8;
// TODO: Can SSE1 handle a byte vector?
if (Subtarget.hasSSE1())
return MVT::v4f32;
} else if ((!IsMemset || ZeroMemset) && !MemcpyStrSrc && Size >= 8 &&
!Subtarget.is64Bit() && Subtarget.hasSSE2()) {
// Do not use f64 to lower memcpy if source is string constant. It's
// better to use i32 to avoid the loads.
// Also, do not use f64 to lower memset unless this is a memset of zeros.
// The gymnastics of splatting a byte value into an XMM register and then
// only using 8-byte stores (because this is a CPU with slow unaligned
// 16-byte accesses) makes that a loser.
return MVT::f64;
}
}
// This is a compromise. If we reach here, unaligned accesses may be slow on
// this target. However, creating smaller, aligned accesses could be even
// slower and would certainly be a lot more code.
if (Subtarget.is64Bit() && Size >= 8)
return MVT::i64;
return MVT::i32;
}
bool X86TargetLowering::isSafeMemOpType(MVT VT) const {
if (VT == MVT::f32)
return X86ScalarSSEf32;
else if (VT == MVT::f64)
return X86ScalarSSEf64;
return true;
}
bool
X86TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
unsigned,
unsigned,
bool *Fast) const {
if (Fast) {
switch (VT.getSizeInBits()) {
default:
// 8-byte and under are always assumed to be fast.
*Fast = true;
break;
case 128:
*Fast = !Subtarget.isUnalignedMem16Slow();
break;
case 256:
*Fast = !Subtarget.isUnalignedMem32Slow();
break;
// TODO: What about AVX-512 (512-bit) accesses?
}
}
// Misaligned accesses of any size are always allowed.
return true;
}
/// Return the entry encoding for a jump table in the
/// current function. The returned value is a member of the
/// MachineJumpTableInfo::JTEntryKind enum.
unsigned X86TargetLowering::getJumpTableEncoding() const {
// In GOT pic mode, each entry in the jump table is emitted as a @GOTOFF
// symbol.
if (getTargetMachine().getRelocationModel() == Reloc::PIC_ &&
Subtarget.isPICStyleGOT())
return MachineJumpTableInfo::EK_Custom32;
// Otherwise, use the normal jump table encoding heuristics.
return TargetLowering::getJumpTableEncoding();
}
bool X86TargetLowering::useSoftFloat() const {
return Subtarget.useSoftFloat();
}
const MCExpr *
X86TargetLowering::LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid,MCContext &Ctx) const{
assert(MBB->getParent()->getTarget().getRelocationModel() == Reloc::PIC_ &&
Subtarget.isPICStyleGOT());
// In 32-bit ELF systems, our jump table entries are formed with @GOTOFF
// entries.
return MCSymbolRefExpr::create(MBB->getSymbol(),
MCSymbolRefExpr::VK_GOTOFF, Ctx);
}
/// Returns relocation base for the given PIC jumptable.
SDValue X86TargetLowering::getPICJumpTableRelocBase(SDValue Table,
SelectionDAG &DAG) const {
if (!Subtarget.is64Bit())
// This doesn't have SDLoc associated with it, but is not really the
// same as a Register.
return DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()));
return Table;
}
/// This returns the relocation base for the given PIC jumptable,
/// the same as getPICJumpTableRelocBase, but as an MCExpr.
const MCExpr *X86TargetLowering::
getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI,
MCContext &Ctx) const {
// X86-64 uses RIP relative addressing based on the jump table label.
if (Subtarget.isPICStyleRIPRel())
return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
// Otherwise, the reference is relative to the PIC base.
return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
}
std::pair<const TargetRegisterClass *, uint8_t>
X86TargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RRC = nullptr;
uint8_t Cost = 1;
switch (VT.SimpleTy) {
default:
return TargetLowering::findRepresentativeClass(TRI, VT);
case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64:
RRC = Subtarget.is64Bit() ? &X86::GR64RegClass : &X86::GR32RegClass;
break;
case MVT::x86mmx:
RRC = &X86::VR64RegClass;
break;
case MVT::f32: case MVT::f64:
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
case MVT::v4f32: case MVT::v2f64:
case MVT::v32i8: case MVT::v8i32: case MVT::v4i64: case MVT::v8f32:
case MVT::v4f64:
RRC = &X86::VR128RegClass;
break;
}
return std::make_pair(RRC, Cost);
}
unsigned X86TargetLowering::getAddressSpace() const {
if (Subtarget.is64Bit())
return (getTargetMachine().getCodeModel() == CodeModel::Kernel) ? 256 : 257;
return 256;
}
Value *X86TargetLowering::getIRStackGuard(IRBuilder<> &IRB) const {
// glibc has a special slot for the stack guard in tcbhead_t, use it instead
// of the usual global variable (see sysdeps/{i386,x86_64}/nptl/tls.h)
if (!Subtarget.isTargetGlibc())
return TargetLowering::getIRStackGuard(IRB);
// %fs:0x28, unless we're using a Kernel code model, in which case it's %gs:
// %gs:0x14 on i386
unsigned Offset = (Subtarget.is64Bit()) ? 0x28 : 0x14;
unsigned AddressSpace = getAddressSpace();
return ConstantExpr::getIntToPtr(
ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
}
void X86TargetLowering::insertSSPDeclarations(Module &M) const {
if (!Subtarget.isTargetGlibc())
TargetLowering::insertSSPDeclarations(M);
}
Value *X86TargetLowering::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
if (!Subtarget.isTargetAndroid())
return TargetLowering::getSafeStackPointerLocation(IRB);
// Android provides a fixed TLS slot for the SafeStack pointer. See the
// definition of TLS_SLOT_SAFESTACK in
// https://android.googlesource.com/platform/bionic/+/master/libc/private/bionic_tls.h
unsigned AddressSpace, Offset;
// %fs:0x48, unless we're using a Kernel code model, in which case it's %gs:
// %gs:0x24 on i386
Offset = (Subtarget.is64Bit()) ? 0x48 : 0x24;
AddressSpace = getAddressSpace();
return ConstantExpr::getIntToPtr(
ConstantInt::get(Type::getInt32Ty(IRB.getContext()), Offset),
Type::getInt8PtrTy(IRB.getContext())->getPointerTo(AddressSpace));
}
bool X86TargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
assert(SrcAS != DestAS && "Expected different address spaces!");
return SrcAS < 256 && DestAS < 256;
}
//===----------------------------------------------------------------------===//
// Return Value Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "X86GenCallingConv.inc"
bool X86TargetLowering::CanLowerReturn(
CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
return CCInfo.CheckReturn(Outs, RetCC_X86);
}
const MCPhysReg *X86TargetLowering::getScratchRegisters(CallingConv::ID) const {
static const MCPhysReg ScratchRegs[] = { X86::R11, 0 };
return ScratchRegs;
}
SDValue
X86TargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
if (CallConv == CallingConv::X86_INTR && !Outs.empty())
report_fatal_error("X86 interrupts may not return any value");
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, MF, RVLocs, *DAG.getContext());
CCInfo.AnalyzeReturn(Outs, RetCC_X86);
SDValue Flag;
SmallVector<SDValue, 6> RetOps;
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
// Operand #1 = Bytes To Pop
RetOps.push_back(DAG.getTargetConstant(FuncInfo->getBytesToPopOnReturn(), dl,
MVT::i32));
// Copy the result values into the output registers.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
SDValue ValToCopy = OutVals[i];
EVT ValVT = ValToCopy.getValueType();
// Promote values to the appropriate types.
if (VA.getLocInfo() == CCValAssign::SExt)
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::ZExt)
ValToCopy = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ValToCopy);
else if (VA.getLocInfo() == CCValAssign::AExt) {
if (ValVT.isVector() && ValVT.getVectorElementType() == MVT::i1)
ValToCopy = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ValToCopy);
else
ValToCopy = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ValToCopy);
}
else if (VA.getLocInfo() == CCValAssign::BCvt)
ValToCopy = DAG.getBitcast(VA.getLocVT(), ValToCopy);
assert(VA.getLocInfo() != CCValAssign::FPExt &&
"Unexpected FP-extend for return value.");
// If this is x86-64, and we disabled SSE, we can't return FP values,
// or SSE or MMX vectors.
if ((ValVT == MVT::f32 || ValVT == MVT::f64 ||
VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) &&
(Subtarget.is64Bit() && !Subtarget.hasSSE1())) {
report_fatal_error("SSE register return with SSE disabled");
}
// Likewise we can't return F64 values with SSE1 only. gcc does so, but
// llvm-gcc has never done it right and no one has noticed, so this
// should be OK for now.
if (ValVT == MVT::f64 &&
(Subtarget.is64Bit() && !Subtarget.hasSSE2()))
report_fatal_error("SSE2 register return with SSE2 disabled");
// Returns in ST0/ST1 are handled specially: these are pushed as operands to
// the RET instruction and handled by the FP Stackifier.
if (VA.getLocReg() == X86::FP0 ||
VA.getLocReg() == X86::FP1) {
// If this is a copy from an xmm register to ST(0), use an FPExtend to
// change the value to the FP stack register class.
if (isScalarFPTypeInSSEReg(VA.getValVT()))
ValToCopy = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f80, ValToCopy);
RetOps.push_back(ValToCopy);
// Don't emit a copytoreg.
continue;
}
// 64-bit vector (MMX) values are returned in XMM0 / XMM1 except for v1i64
// which is returned in RAX / RDX.
if (Subtarget.is64Bit()) {
if (ValVT == MVT::x86mmx) {
if (VA.getLocReg() == X86::XMM0 || VA.getLocReg() == X86::XMM1) {
ValToCopy = DAG.getBitcast(MVT::i64, ValToCopy);
ValToCopy = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
ValToCopy);
// If we don't have SSE2 available, convert to v4f32 so the generated
// register is legal.
if (!Subtarget.hasSSE2())
ValToCopy = DAG.getBitcast(MVT::v4f32, ValToCopy);
}
}
}
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ValToCopy, Flag);
Flag = Chain.getValue(1);
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
}
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return, and SRetReturnReg is not set for Swift.
// All x86 ABIs require that for returning structs by value we copy
// the sret argument into %rax/%eax (depending on ABI) for the return.
// We saved the argument into a virtual register in the entry block,
// so now we copy the value out and into %rax/%eax.
//
// Checking Function.hasStructRetAttr() here is insufficient because the IR
// may not have an explicit sret argument. If FuncInfo.CanLowerReturn is
// false, then an sret argument may be implicitly inserted in the SelDAG. In
// either case FuncInfo->setSRetReturnReg() will have been called.
if (unsigned SRetReg = FuncInfo->getSRetReturnReg()) {
// When we have both sret and another return value, we should use the
// original Chain stored in RetOps[0], instead of the current Chain updated
// in the above loop. If we only have sret, RetOps[0] equals to Chain.
// For the case of sret and another return value, we have
// Chain_0 at the function entry
// Chain_1 = getCopyToReg(Chain_0) in the above loop
// If we use Chain_1 in getCopyFromReg, we will have
// Val = getCopyFromReg(Chain_1)
// Chain_2 = getCopyToReg(Chain_1, Val) from below
// getCopyToReg(Chain_0) will be glued together with
// getCopyToReg(Chain_1, Val) into Unit A, getCopyFromReg(Chain_1) will be
// in Unit B, and we will have cyclic dependency between Unit A and Unit B:
// Data dependency from Unit B to Unit A due to usage of Val in
// getCopyToReg(Chain_1, Val)
// Chain dependency from Unit A to Unit B
// So here, we use RetOps[0] (i.e Chain_0) for getCopyFromReg.
SDValue Val = DAG.getCopyFromReg(RetOps[0], dl, SRetReg,
getPointerTy(MF.getDataLayout()));
unsigned RetValReg
= (Subtarget.is64Bit() && !Subtarget.isTarget64BitILP32()) ?
X86::RAX : X86::EAX;
Chain = DAG.getCopyToReg(Chain, dl, RetValReg, Val, Flag);
Flag = Chain.getValue(1);
// RAX/EAX now acts like a return value.
RetOps.push_back(
DAG.getRegister(RetValReg, getPointerTy(DAG.getDataLayout())));
}
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *I =
TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
if (I) {
for (; *I; ++I) {
if (X86::GR64RegClass.contains(*I))
RetOps.push_back(DAG.getRegister(*I, MVT::i64));
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
}
}
RetOps[0] = Chain; // Update chain.
// Add the flag if we have it.
if (Flag.getNode())
RetOps.push_back(Flag);
X86ISD::NodeType opcode = X86ISD::RET_FLAG;
if (CallConv == CallingConv::X86_INTR)
opcode = X86ISD::IRET;
return DAG.getNode(opcode, dl, MVT::Other, RetOps);
}
bool X86TargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
if (N->getNumValues() != 1 || !N->hasNUsesOfValue(1, 0))
return false;
SDValue TCChain = Chain;
SDNode *Copy = *N->use_begin();
if (Copy->getOpcode() == ISD::CopyToReg) {
// If the copy has a glue operand, we conservatively assume it isn't safe to
// perform a tail call.
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
return false;
TCChain = Copy->getOperand(0);
} else if (Copy->getOpcode() != ISD::FP_EXTEND)
return false;
bool HasRet = false;
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
UI != UE; ++UI) {
if (UI->getOpcode() != X86ISD::RET_FLAG)
return false;
// If we are returning more than one value, we can definitely
// not make a tail call see PR19530
if (UI->getNumOperands() > 4)
return false;
if (UI->getNumOperands() == 4 &&
UI->getOperand(UI->getNumOperands()-1).getValueType() != MVT::Glue)
return false;
HasRet = true;
}
if (!HasRet)
return false;
Chain = TCChain;
return true;
}
EVT X86TargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
ISD::NodeType ExtendKind) const {
MVT ReturnMVT = MVT::i32;
bool Darwin = Subtarget.getTargetTriple().isOSDarwin();
if (VT == MVT::i1 || (!Darwin && (VT == MVT::i8 || VT == MVT::i16))) {
// The ABI does not require i1, i8 or i16 to be extended.
//
// On Darwin, there is code in the wild relying on Clang's old behaviour of
// always extending i8/i16 return values, so keep doing that for now.
// (PR26665).
ReturnMVT = MVT::i8;
}
EVT MinVT = getRegisterType(Context, ReturnMVT);
return VT.bitsLT(MinVT) ? MinVT : VT;
}
/// Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue
X86TargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
bool Is64Bit = Subtarget.is64Bit();
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
EVT CopyVT = VA.getLocVT();
// If this is x86-64, and we disabled SSE, we can't return FP values
if ((CopyVT == MVT::f32 || CopyVT == MVT::f64 || CopyVT == MVT::f128) &&
((Is64Bit || Ins[i].Flags.isInReg()) && !Subtarget.hasSSE1())) {
report_fatal_error("SSE register return with SSE disabled");
}
// If we prefer to use the value in xmm registers, copy it out as f80 and
// use a truncate to move it from fp stack reg to xmm reg.
bool RoundAfterCopy = false;
if ((VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1) &&
isScalarFPTypeInSSEReg(VA.getValVT())) {
if (!Subtarget.hasX87())
report_fatal_error("X87 register return with X87 disabled");
CopyVT = MVT::f80;
RoundAfterCopy = (CopyVT != VA.getLocVT());
}
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
CopyVT, InFlag).getValue(1);
SDValue Val = Chain.getValue(0);
if (RoundAfterCopy)
Val = DAG.getNode(ISD::FP_ROUND, dl, VA.getValVT(), Val,
// This truncation won't change the value.
DAG.getIntPtrConstant(1, dl));
if (VA.isExtInLoc() && VA.getValVT().getScalarType() == MVT::i1)
Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
InFlag = Chain.getValue(2);
InVals.push_back(Val);
}
return Chain;
}
//===----------------------------------------------------------------------===//
// C & StdCall & Fast Calling Convention implementation
//===----------------------------------------------------------------------===//
// StdCall calling convention seems to be standard for many Windows' API
// routines and around. It differs from C calling convention just a little:
// callee should clean up the stack, not caller. Symbols should be also
// decorated in some fancy way :) It doesn't support any vector arguments.
// For info on fast calling convention see Fast Calling Convention (tail call)
// implementation LowerX86_32FastCCCallTo.
/// CallIsStructReturn - Determines whether a call uses struct return
/// semantics.
enum StructReturnType {
NotStructReturn,
RegStructReturn,
StackStructReturn
};
static StructReturnType
callIsStructReturn(const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsMCU) {
if (Outs.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Outs[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Determines whether a function uses struct return semantics.
static StructReturnType
argsAreStructReturn(const SmallVectorImpl<ISD::InputArg> &Ins, bool IsMCU) {
if (Ins.empty())
return NotStructReturn;
const ISD::ArgFlagsTy &Flags = Ins[0].Flags;
if (!Flags.isSRet())
return NotStructReturn;
if (Flags.isInReg() || IsMCU)
return RegStructReturn;
return StackStructReturn;
}
/// Make a copy of an aggregate at address specified by "Src" to address
/// "Dst" with size and alignment information specified by the specific
/// parameter attribute. The copy will be passed as a byval function parameter.
static SDValue
CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
SDLoc dl) {
SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
/*isVolatile*/false, /*AlwaysInline=*/true,
/*isTailCall*/false,
MachinePointerInfo(), MachinePointerInfo());
}
/// Return true if the calling convention is one that we can guarantee TCO for.
static bool canGuaranteeTCO(CallingConv::ID CC) {
return (CC == CallingConv::Fast || CC == CallingConv::GHC ||
CC == CallingConv::HiPE || CC == CallingConv::HHVM);
}
/// Return true if we might ever do TCO for calls with this calling convention.
static bool mayTailCallThisCC(CallingConv::ID CC) {
switch (CC) {
// C calling conventions:
case CallingConv::C:
case CallingConv::X86_64_Win64:
case CallingConv::X86_64_SysV:
// Callee pop conventions:
case CallingConv::X86_ThisCall:
case CallingConv::X86_StdCall:
case CallingConv::X86_VectorCall:
case CallingConv::X86_FastCall:
return true;
default:
return canGuaranteeTCO(CC);
}
}
/// Return true if the function is being made into a tailcall target by
/// changing its ABI.
static bool shouldGuaranteeTCO(CallingConv::ID CC, bool GuaranteedTailCallOpt) {
return GuaranteedTailCallOpt && canGuaranteeTCO(CC);
}
bool X86TargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
auto Attr =
CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
if (!CI->isTailCall() || Attr.getValueAsString() == "true")
return false;
CallSite CS(CI);
CallingConv::ID CalleeCC = CS.getCallingConv();
if (!mayTailCallThisCC(CalleeCC))
return false;
return true;
}
SDValue
X86TargetLowering::LowerMemArgument(SDValue Chain,
CallingConv::ID CallConv,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
MachineFrameInfo *MFI,
unsigned i) const {
// Create the nodes corresponding to a load from this parameter slot.
ISD::ArgFlagsTy Flags = Ins[i].Flags;
bool AlwaysUseMutable = shouldGuaranteeTCO(
CallConv, DAG.getTarget().Options.GuaranteedTailCallOpt);
bool isImmutable = !AlwaysUseMutable && !Flags.isByVal();
EVT ValVT;
// If value is passed by pointer we have address passed instead of the value
// itself.
bool ExtendedInMem = VA.isExtInLoc() &&
VA.getValVT().getScalarType() == MVT::i1;
if (VA.getLocInfo() == CCValAssign::Indirect || ExtendedInMem)
ValVT = VA.getLocVT();
else
ValVT = VA.getValVT();
// Calculate SP offset of interrupt parameter, re-arrange the slot normally
// taken by a return address.
int Offset = 0;
if (CallConv == CallingConv::X86_INTR) {
const X86Subtarget& Subtarget =
static_cast<const X86Subtarget&>(DAG.getSubtarget());
// X86 interrupts may take one or two arguments.
// On the stack there will be no return address as in regular call.
// Offset of last argument need to be set to -4/-8 bytes.
// Where offset of the first argument out of two, should be set to 0 bytes.
Offset = (Subtarget.is64Bit() ? 8 : 4) * ((i + 1) % Ins.size() - 1);
}
// FIXME: For now, all byval parameter objects are marked mutable. This can be
// changed with more analysis.
// In case of tail call optimization mark all arguments mutable. Since they
// could be overwritten by lowering of arguments in case of a tail call.
if (Flags.isByVal()) {
unsigned Bytes = Flags.getByValSize();
if (Bytes == 0) Bytes = 1; // Don't create zero-sized stack objects.
int FI = MFI->CreateFixedObject(Bytes, VA.getLocMemOffset(), isImmutable);
// Adjust SP offset of interrupt parameter.
if (CallConv == CallingConv::X86_INTR) {
MFI->setObjectOffset(FI, Offset);
}
return DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
} else {
int FI = MFI->CreateFixedObject(ValVT.getSizeInBits()/8,
VA.getLocMemOffset(), isImmutable);
// Set SExt or ZExt flag.
if (VA.getLocInfo() == CCValAssign::ZExt) {
MFI->setObjectZExt(FI, true);
} else if (VA.getLocInfo() == CCValAssign::SExt) {
MFI->setObjectSExt(FI, true);
}
// Adjust SP offset of interrupt parameter.
if (CallConv == CallingConv::X86_INTR) {
MFI->setObjectOffset(FI, Offset);
}
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
SDValue Val = DAG.getLoad(
ValVT, dl, Chain, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
false, false, 0);
return ExtendedInMem ?
DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val) : Val;
}
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentGPRs(CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
static const MCPhysReg GPR64ArgRegsWin64[] = {
X86::RCX, X86::RDX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegsWin64), std::end(GPR64ArgRegsWin64));
}
static const MCPhysReg GPR64ArgRegs64Bit[] = {
X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8, X86::R9
};
return makeArrayRef(std::begin(GPR64ArgRegs64Bit), std::end(GPR64ArgRegs64Bit));
}
// FIXME: Get this from tablegen.
static ArrayRef<MCPhysReg> get64BitArgumentXMMs(MachineFunction &MF,
CallingConv::ID CallConv,
const X86Subtarget &Subtarget) {
assert(Subtarget.is64Bit());
if (Subtarget.isCallingConvWin64(CallConv)) {
// The XMM registers which might contain var arg parameters are shadowed
// in their paired GPR. So we only need to save the GPR to their home
// slots.
// TODO: __vectorcall will change this.
return None;
}
const Function *Fn = MF.getFunction();
bool NoImplicitFloatOps = Fn->hasFnAttribute(Attribute::NoImplicitFloat);
bool isSoftFloat = Subtarget.useSoftFloat();
assert(!(isSoftFloat && NoImplicitFloatOps) &&
"SSE register cannot be used when SSE is disabled!");
if (isSoftFloat || NoImplicitFloatOps || !Subtarget.hasSSE1())
// Kernel mode asks for SSE to be disabled, so there are no XMM argument
// registers.
return None;
static const MCPhysReg XMMArgRegs64Bit[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
return makeArrayRef(std::begin(XMMArgRegs64Bit), std::end(XMMArgRegs64Bit));
}
SDValue X86TargetLowering::LowerFormalArguments(
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
MachineFunction &MF = DAG.getMachineFunction();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const Function* Fn = MF.getFunction();
if (Fn->hasExternalLinkage() &&
Subtarget.isTargetCygMing() &&
Fn->getName() == "main")
FuncInfo->setForceFramePointer(true);
MachineFrameInfo *MFI = MF.getFrameInfo();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling convention fastcc, ghc or hipe");
if (CallConv == CallingConv::X86_INTR) {
bool isLegal = Ins.size() == 1 ||
(Ins.size() == 2 && ((Is64Bit && Ins[1].VT == MVT::i64) ||
(!Is64Bit && Ins[1].VT == MVT::i32)));
if (!isLegal)
report_fatal_error("X86 interrupts may take one or two arguments");
}
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeFormalArguments(Ins, CC_X86);
unsigned LastVal = ~0U;
SDValue ArgValue;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
// TODO: If an arg is passed in two places (e.g. reg and stack), skip later
// places.
assert(VA.getValNo() != LastVal &&
"Don't support value assigned to multiple locs yet");
(void)LastVal;
LastVal = VA.getValNo();
if (VA.isRegLoc()) {
EVT RegVT = VA.getLocVT();
const TargetRegisterClass *RC;
if (RegVT == MVT::i32)
RC = &X86::GR32RegClass;
else if (Is64Bit && RegVT == MVT::i64)
RC = &X86::GR64RegClass;
else if (RegVT == MVT::f32)
RC = &X86::FR32RegClass;
else if (RegVT == MVT::f64)
RC = &X86::FR64RegClass;
else if (RegVT == MVT::f128)
RC = &X86::FR128RegClass;
else if (RegVT.is512BitVector())
RC = &X86::VR512RegClass;
else if (RegVT.is256BitVector())
RC = &X86::VR256RegClass;
else if (RegVT.is128BitVector())
RC = &X86::VR128RegClass;
else if (RegVT == MVT::x86mmx)
RC = &X86::VR64RegClass;
else if (RegVT == MVT::i1)
RC = &X86::VK1RegClass;
else if (RegVT == MVT::v8i1)
RC = &X86::VK8RegClass;
else if (RegVT == MVT::v16i1)
RC = &X86::VK16RegClass;
else if (RegVT == MVT::v32i1)
RC = &X86::VK32RegClass;
else if (RegVT == MVT::v64i1)
RC = &X86::VK64RegClass;
else
llvm_unreachable("Unknown argument type!");
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
// If this is an 8 or 16-bit value, it is really passed promoted to 32
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::BCvt)
ArgValue = DAG.getBitcast(VA.getValVT(), ArgValue);
if (VA.isExtInLoc()) {
// Handle MMX values passed in XMM regs.
if (RegVT.isVector() && VA.getValVT().getScalarType() != MVT::i1)
ArgValue = DAG.getNode(X86ISD::MOVDQ2Q, dl, VA.getValVT(), ArgValue);
else
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
}
} else {
assert(VA.isMemLoc());
ArgValue = LowerMemArgument(Chain, CallConv, Ins, dl, DAG, VA, MFI, i);
}
// If value is passed via pointer - do a load.
if (VA.getLocInfo() == CCValAssign::Indirect)
ArgValue = DAG.getLoad(VA.getValVT(), dl, Chain, ArgValue,
MachinePointerInfo(), false, false, false, 0);
InVals.push_back(ArgValue);
}
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
// Swift calling convention does not require we copy the sret argument
// into %rax/%eax for the return. We don't set SRetReturnReg for Swift.
if (CallConv == CallingConv::Swift)
continue;
// All x86 ABIs require that for returning structs by value we copy the
// sret argument into %rax/%eax (depending on ABI) for the return. Save
// the argument into a virtual register so that we can access it from the
// return points.
if (Ins[i].Flags.isSRet()) {
unsigned Reg = FuncInfo->getSRetReturnReg();
if (!Reg) {
MVT PtrTy = getPointerTy(DAG.getDataLayout());
Reg = MF.getRegInfo().createVirtualRegister(getRegClassFor(PtrTy));
FuncInfo->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[i]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
break;
}
}
unsigned StackSize = CCInfo.getNextStackOffset();
// Align stack specially for tail calls.
if (shouldGuaranteeTCO(CallConv,
MF.getTarget().Options.GuaranteedTailCallOpt))
StackSize = GetAlignedArgumentStackSize(StackSize, DAG);
// If the function takes variable number of arguments, make a frame index for
// the start of the first vararg value... for expansion of llvm.va_start. We
// can skip this if there are no va_start calls.
if (MFI->hasVAStart() &&
(Is64Bit || (CallConv != CallingConv::X86_FastCall &&
CallConv != CallingConv::X86_ThisCall))) {
FuncInfo->setVarArgsFrameIndex(
MFI->CreateFixedObject(1, StackSize, true));
}
// Figure out if XMM registers are in use.
assert(!(Subtarget.useSoftFloat() &&
Fn->hasFnAttribute(Attribute::NoImplicitFloat)) &&
"SSE register cannot be used when SSE is disabled!");
// 64-bit calling conventions support varargs and register parameters, so we
// have to do extra work to spill them in the prologue.
if (Is64Bit && isVarArg && MFI->hasVAStart()) {
// Find the first unallocated argument registers.
ArrayRef<MCPhysReg> ArgGPRs = get64BitArgumentGPRs(CallConv, Subtarget);
ArrayRef<MCPhysReg> ArgXMMs = get64BitArgumentXMMs(MF, CallConv, Subtarget);
unsigned NumIntRegs = CCInfo.getFirstUnallocated(ArgGPRs);
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(ArgXMMs);
assert(!(NumXMMRegs && !Subtarget.hasSSE1()) &&
"SSE register cannot be used when SSE is disabled!");
// Gather all the live in physical registers.
SmallVector<SDValue, 6> LiveGPRs;
SmallVector<SDValue, 8> LiveXMMRegs;
SDValue ALVal;
for (MCPhysReg Reg : ArgGPRs.slice(NumIntRegs)) {
unsigned GPR = MF.addLiveIn(Reg, &X86::GR64RegClass);
LiveGPRs.push_back(
DAG.getCopyFromReg(Chain, dl, GPR, MVT::i64));
}
if (!ArgXMMs.empty()) {
unsigned AL = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
ALVal = DAG.getCopyFromReg(Chain, dl, AL, MVT::i8);
for (MCPhysReg Reg : ArgXMMs.slice(NumXMMRegs)) {
unsigned XMMReg = MF.addLiveIn(Reg, &X86::VR128RegClass);
LiveXMMRegs.push_back(
DAG.getCopyFromReg(Chain, dl, XMMReg, MVT::v4f32));
}
}
if (IsWin64) {
// Get to the caller-allocated home save location. Add 8 to account
// for the return address.
int HomeOffset = TFI.getOffsetOfLocalArea() + 8;
FuncInfo->setRegSaveFrameIndex(
MFI->CreateFixedObject(1, NumIntRegs * 8 + HomeOffset, false));
// Fixup to set vararg frame on shadow area (4 x i64).
if (NumIntRegs < 4)
FuncInfo->setVarArgsFrameIndex(FuncInfo->getRegSaveFrameIndex());
} else {
// For X86-64, if there are vararg parameters that are passed via
// registers, then we must store them to their spots on the stack so
// they may be loaded by deferencing the result of va_next.
FuncInfo->setVarArgsGPOffset(NumIntRegs * 8);
FuncInfo->setVarArgsFPOffset(ArgGPRs.size() * 8 + NumXMMRegs * 16);
FuncInfo->setRegSaveFrameIndex(MFI->CreateStackObject(
ArgGPRs.size() * 8 + ArgXMMs.size() * 16, 16, false));
}
// Store the integer parameter registers.
SmallVector<SDValue, 8> MemOps;
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(),
getPointerTy(DAG.getDataLayout()));
unsigned Offset = FuncInfo->getVarArgsGPOffset();
for (SDValue Val : LiveGPRs) {
SDValue FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
RSFIN, DAG.getIntPtrConstant(Offset, dl));
SDValue Store =
DAG.getStore(Val.getValue(1), dl, Val, FIN,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(),
FuncInfo->getRegSaveFrameIndex(), Offset),
false, false, 0);
MemOps.push_back(Store);
Offset += 8;
}
if (!ArgXMMs.empty() && NumXMMRegs != ArgXMMs.size()) {
// Now store the XMM (fp + vector) parameter registers.
SmallVector<SDValue, 12> SaveXMMOps;
SaveXMMOps.push_back(Chain);
SaveXMMOps.push_back(ALVal);
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getRegSaveFrameIndex(), dl));
SaveXMMOps.push_back(DAG.getIntPtrConstant(
FuncInfo->getVarArgsFPOffset(), dl));
SaveXMMOps.insert(SaveXMMOps.end(), LiveXMMRegs.begin(),
LiveXMMRegs.end());
MemOps.push_back(DAG.getNode(X86ISD::VASTART_SAVE_XMM_REGS, dl,
MVT::Other, SaveXMMOps));
}
if (!MemOps.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
}
if (isVarArg && MFI->hasMustTailInVarArgFunc()) {
// Find the largest legal vector type.
MVT VecVT = MVT::Other;
// FIXME: Only some x86_32 calling conventions support AVX512.
if (Subtarget.hasAVX512() &&
(Is64Bit || (CallConv == CallingConv::X86_VectorCall ||
CallConv == CallingConv::Intel_OCL_BI)))
VecVT = MVT::v16f32;
else if (Subtarget.hasAVX())
VecVT = MVT::v8f32;
else if (Subtarget.hasSSE2())
VecVT = MVT::v4f32;
// We forward some GPRs and some vector types.
SmallVector<MVT, 2> RegParmTypes;
MVT IntVT = Is64Bit ? MVT::i64 : MVT::i32;
RegParmTypes.push_back(IntVT);
if (VecVT != MVT::Other)
RegParmTypes.push_back(VecVT);
// Compute the set of forwarded registers. The rest are scratch.
SmallVectorImpl<ForwardedRegister> &Forwards =
FuncInfo->getForwardedMustTailRegParms();
CCInfo.analyzeMustTailForwardedRegisters(Forwards, RegParmTypes, CC_X86);
// Conservatively forward AL on x86_64, since it might be used for varargs.
if (Is64Bit && !CCInfo.isAllocated(X86::AL)) {
unsigned ALVReg = MF.addLiveIn(X86::AL, &X86::GR8RegClass);
Forwards.push_back(ForwardedRegister(ALVReg, X86::AL, MVT::i8));
}
// Copy all forwards from physical to virtual registers.
for (ForwardedRegister &F : Forwards) {
// FIXME: Can we use a less constrained schedule?
SDValue RegVal = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
F.VReg = MF.getRegInfo().createVirtualRegister(getRegClassFor(F.VT));
Chain = DAG.getCopyToReg(Chain, dl, F.VReg, RegVal);
}
}
// Some CCs need callee pop.
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt)) {
FuncInfo->setBytesToPopOnReturn(StackSize); // Callee pops everything.
} else if (CallConv == CallingConv::X86_INTR && Ins.size() == 2) {
// X86 interrupts must pop the error code if present
FuncInfo->setBytesToPopOnReturn(Is64Bit ? 8 : 4);
} else {
FuncInfo->setBytesToPopOnReturn(0); // Callee pops nothing.
// If this is an sret function, the return should pop the hidden pointer.
if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
argsAreStructReturn(Ins, Subtarget.isTargetMCU()) == StackStructReturn)
FuncInfo->setBytesToPopOnReturn(4);
}
if (!Is64Bit) {
// RegSaveFrameIndex is X86-64 only.
FuncInfo->setRegSaveFrameIndex(0xAAAAAAA);
if (CallConv == CallingConv::X86_FastCall ||
CallConv == CallingConv::X86_ThisCall)
// fastcc functions can't have varargs.
FuncInfo->setVarArgsFrameIndex(0xAAAAAAA);
}
FuncInfo->setArgumentStackSize(StackSize);
if (WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo()) {
EHPersonality Personality = classifyEHPersonality(Fn->getPersonalityFn());
if (Personality == EHPersonality::CoreCLR) {
assert(Is64Bit);
// TODO: Add a mechanism to frame lowering that will allow us to indicate
// that we'd prefer this slot be allocated towards the bottom of the frame
// (i.e. near the stack pointer after allocating the frame). Every
// funclet needs a copy of this slot in its (mostly empty) frame, and the
// offset from the bottom of this and each funclet's frame must be the
// same, so the size of funclets' (mostly empty) frames is dictated by
// how far this slot is from the bottom (since they allocate just enough
// space to accommodate holding this slot at the correct offset).
int PSPSymFI = MFI->CreateStackObject(8, 8, /*isSS=*/false);
EHInfo->PSPSymFrameIdx = PSPSymFI;
}
}
return Chain;
}
SDValue
X86TargetLowering::LowerMemOpCallTo(SDValue Chain,
SDValue StackPtr, SDValue Arg,
SDLoc dl, SelectionDAG &DAG,
const CCValAssign &VA,
ISD::ArgFlagsTy Flags) const {
unsigned LocMemOffset = VA.getLocMemOffset();
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, PtrOff);
if (Flags.isByVal())
return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl);
return DAG.getStore(
Chain, dl, Arg, PtrOff,
MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
false, false, 0);
}
/// Emit a load of return address if tail call
/// optimization is performed and it is required.
SDValue
X86TargetLowering::EmitTailCallLoadRetAddr(SelectionDAG &DAG,
SDValue &OutRetAddr, SDValue Chain,
bool IsTailCall, bool Is64Bit,
int FPDiff, SDLoc dl) const {
// Adjust the Return address stack slot.
EVT VT = getPointerTy(DAG.getDataLayout());
OutRetAddr = getReturnAddressFrameIndex(DAG);
// Load the "old" Return address.
OutRetAddr = DAG.getLoad(VT, dl, Chain, OutRetAddr, MachinePointerInfo(),
false, false, false, 0);
return SDValue(OutRetAddr.getNode(), 1);
}
/// Emit a store of the return address if tail call
/// optimization is performed and it is required (FPDiff!=0).
static SDValue EmitTailCallStoreRetAddr(SelectionDAG &DAG, MachineFunction &MF,
SDValue Chain, SDValue RetAddrFrIdx,
EVT PtrVT, unsigned SlotSize,
int FPDiff, SDLoc dl) {
// Store the return address to the appropriate stack slot.
if (!FPDiff) return Chain;
// Calculate the new stack slot for the return address.
int NewReturnAddrFI =
MF.getFrameInfo()->CreateFixedObject(SlotSize, (int64_t)FPDiff - SlotSize,
false);
SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewReturnAddrFI, PtrVT);
Chain = DAG.getStore(Chain, dl, RetAddrFrIdx, NewRetAddrFrIdx,
MachinePointerInfo::getFixedStack(
DAG.getMachineFunction(), NewReturnAddrFI),
false, false, 0);
return Chain;
}
/// Returns a vector_shuffle mask for an movs{s|d}, movd
/// operation of specified width.
static SDValue getMOVL(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
Mask.push_back(NumElems);
for (unsigned i = 1; i != NumElems; ++i)
Mask.push_back(i);
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
SDValue
X86TargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SelectionDAG &DAG = CLI.DAG;
SDLoc &dl = CLI.DL;
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
SDValue Chain = CLI.Chain;
SDValue Callee = CLI.Callee;
CallingConv::ID CallConv = CLI.CallConv;
bool &isTailCall = CLI.IsTailCall;
bool isVarArg = CLI.IsVarArg;
MachineFunction &MF = DAG.getMachineFunction();
bool Is64Bit = Subtarget.is64Bit();
bool IsWin64 = Subtarget.isCallingConvWin64(CallConv);
StructReturnType SR = callIsStructReturn(Outs, Subtarget.isTargetMCU());
bool IsSibcall = false;
X86MachineFunctionInfo *X86Info = MF.getInfo<X86MachineFunctionInfo>();
auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
if (CallConv == CallingConv::X86_INTR)
report_fatal_error("X86 interrupts may not be called directly");
if (Attr.getValueAsString() == "true")
isTailCall = false;
if (Subtarget.isPICStyleGOT() &&
!MF.getTarget().Options.GuaranteedTailCallOpt) {
// If we are using a GOT, disable tail calls to external symbols with
// default visibility. Tail calling such a symbol requires using a GOT
// relocation, which forces early binding of the symbol. This breaks code
// that require lazy function symbol resolution. Using musttail or
// GuaranteedTailCallOpt will override this.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (!G || (!G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility()))
isTailCall = false;
}
bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
if (IsMustTail) {
// Force this to be a tail call. The verifier rules are enough to ensure
// that we can lower this successfully without moving the return address
// around.
isTailCall = true;
} else if (isTailCall) {
// Check if it's really possible to do a tail call.
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
isVarArg, SR != NotStructReturn,
MF.getFunction()->hasStructRetAttr(), CLI.RetTy,
Outs, OutVals, Ins, DAG);
// Sibcalls are automatically detected tailcalls which do not require
// ABI changes.
if (!MF.getTarget().Options.GuaranteedTailCallOpt && isTailCall)
IsSibcall = true;
if (isTailCall)
++NumTailCalls;
}
assert(!(isVarArg && canGuaranteeTCO(CallConv)) &&
"Var args not supported with calling convention fastcc, ghc or hipe");
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
// Allocate shadow area for Win64
if (IsWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getAlignedCallFrameSize();
if (IsSibcall)
// This is a sibcall. The memory operands are available in caller's
// own caller's stack.
NumBytes = 0;
else if (MF.getTarget().Options.GuaranteedTailCallOpt &&
canGuaranteeTCO(CallConv))
NumBytes = GetAlignedArgumentStackSize(NumBytes, DAG);
int FPDiff = 0;
if (isTailCall && !IsSibcall && !IsMustTail) {
// Lower arguments at fp - stackoffset + fpdiff.
unsigned NumBytesCallerPushed = X86Info->getBytesToPopOnReturn();
FPDiff = NumBytesCallerPushed - NumBytes;
// Set the delta of movement of the returnaddr stackslot.
// But only set if delta is greater than previous delta.
if (FPDiff < X86Info->getTCReturnAddrDelta())
X86Info->setTCReturnAddrDelta(FPDiff);
}
unsigned NumBytesToPush = NumBytes;
unsigned NumBytesToPop = NumBytes;
// If we have an inalloca argument, all stack space has already been allocated
// for us and be right at the top of the stack. We don't support multiple
// arguments passed in memory when using inalloca.
if (!Outs.empty() && Outs.back().Flags.isInAlloca()) {
NumBytesToPush = 0;
if (!ArgLocs.back().isMemLoc())
report_fatal_error("cannot use inalloca attribute on a register "
"parameter");
if (ArgLocs.back().getLocMemOffset() != 0)
report_fatal_error("any parameter with the inalloca attribute must be "
"the only memory argument");
}
if (!IsSibcall)
Chain = DAG.getCALLSEQ_START(
Chain, DAG.getIntPtrConstant(NumBytesToPush, dl, true), dl);
SDValue RetAddrFrIdx;
// Load return address for tail calls.
if (isTailCall && FPDiff)
Chain = EmitTailCallLoadRetAddr(DAG, RetAddrFrIdx, Chain, isTailCall,
Is64Bit, FPDiff, dl);
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads. In the case
// of tail call optimization arguments are handle later.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
// Skip inalloca arguments, they have already been written.
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (Flags.isInAlloca())
continue;
CCValAssign &VA = ArgLocs[i];
EVT RegVT = VA.getLocVT();
SDValue Arg = OutVals[i];
bool isByVal = Flags.isByVal();
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::AExt:
if (Arg.getValueType().isVector() &&
Arg.getValueType().getVectorElementType() == MVT::i1)
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, RegVT, Arg);
else if (RegVT.is128BitVector()) {
// Special case: passing MMX values in XMM registers.
Arg = DAG.getBitcast(MVT::i64, Arg);
Arg = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64, Arg);
Arg = getMOVL(DAG, dl, MVT::v2i64, DAG.getUNDEF(MVT::v2i64), Arg);
} else
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, RegVT, Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getBitcast(RegVT, Arg);
break;
case CCValAssign::Indirect: {
// Store the argument.
SDValue SpillSlot = DAG.CreateStackTemporary(VA.getValVT());
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
Chain = DAG.getStore(
Chain, dl, Arg, SpillSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
false, false, 0);
Arg = SpillSlot;
break;
}
}
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
if (isVarArg && IsWin64) {
// Win64 ABI requires argument XMM reg to be copied to the corresponding
// shadow reg if callee is a varargs function.
unsigned ShadowReg = 0;
switch (VA.getLocReg()) {
case X86::XMM0: ShadowReg = X86::RCX; break;
case X86::XMM1: ShadowReg = X86::RDX; break;
case X86::XMM2: ShadowReg = X86::R8; break;
case X86::XMM3: ShadowReg = X86::R9; break;
}
if (ShadowReg)
RegsToPass.push_back(std::make_pair(ShadowReg, Arg));
}
} else if (!IsSibcall && (!isTailCall || isByVal)) {
assert(VA.isMemLoc());
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
dl, DAG, VA, Flags));
}
}
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
if (Subtarget.isPICStyleGOT()) {
// ELF / PIC requires GOT in the EBX register before function calls via PLT
// GOT pointer.
if (!isTailCall) {
RegsToPass.push_back(std::make_pair(
unsigned(X86::EBX), DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(),
getPointerTy(DAG.getDataLayout()))));
} else {
// If we are tail calling and generating PIC/GOT style code load the
// address of the callee into ECX. The value in ecx is used as target of
// the tail jump. This is done to circumvent the ebx/callee-saved problem
// for tail calls on PIC/GOT architectures. Normally we would just put the
// address of GOT into ebx and then call target@PLT. But for tail calls
// ebx would be restored (since ebx is callee saved) before jumping to the
// target@PLT.
// Note: The actual moving to ECX is done further down.
GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
if (G && !G->getGlobal()->hasLocalLinkage() &&
G->getGlobal()->hasDefaultVisibility())
Callee = LowerGlobalAddress(Callee, DAG);
else if (isa<ExternalSymbolSDNode>(Callee))
Callee = LowerExternalSymbol(Callee, DAG);
}
}
if (Is64Bit && isVarArg && !IsWin64 && !IsMustTail) {
// From AMD64 ABI document:
// For calls that may call functions that use varargs or stdargs
// (prototype-less calls or calls to functions containing ellipsis (...) in
// the declaration) %al is used as hidden argument to specify the number
// of SSE registers used. The contents of %al do not need to match exactly
// the number of registers, but must be an ubound on the number of SSE
// registers used and is in the range 0 - 8 inclusive.
// Count the number of XMM registers allocated.
static const MCPhysReg XMMArgRegs[] = {
X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3,
X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7
};
unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs);
assert((Subtarget.hasSSE1() || !NumXMMRegs)
&& "SSE registers cannot be used when SSE is disabled");
RegsToPass.push_back(std::make_pair(unsigned(X86::AL),
DAG.getConstant(NumXMMRegs, dl,
MVT::i8)));
}
if (isVarArg && IsMustTail) {
const auto &Forwards = X86Info->getForwardedMustTailRegParms();
for (const auto &F : Forwards) {
SDValue Val = DAG.getCopyFromReg(Chain, dl, F.VReg, F.VT);
RegsToPass.push_back(std::make_pair(unsigned(F.PReg), Val));
}
}
// For tail calls lower the arguments to the 'real' stack slots. Sibcalls
// don't need this because the eligibility check rejects calls that require
// shuffling arguments passed in memory.
if (!IsSibcall && isTailCall) {
// Force all the incoming stack arguments to be loaded from the stack
// before any new outgoing arguments are stored to the stack, because the
// outgoing stack slots may alias the incoming argument stack slots, and
// the alias isn't otherwise explicit. This is slightly more conservative
// than necessary, because it means that each store effectively depends
// on every argument instead of just those arguments it would clobber.
SDValue ArgChain = DAG.getStackArgumentTokenFactor(Chain);
SmallVector<SDValue, 8> MemOpChains2;
SDValue FIN;
int FI = 0;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (VA.isRegLoc())
continue;
assert(VA.isMemLoc());
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
// Skip inalloca arguments. They don't require any work.
if (Flags.isInAlloca())
continue;
// Create frame index.
int32_t Offset = VA.getLocMemOffset()+FPDiff;
uint32_t OpSize = (VA.getLocVT().getSizeInBits()+7)/8;
FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
if (Flags.isByVal()) {
// Copy relative to framepointer.
SDValue Source = DAG.getIntPtrConstant(VA.getLocMemOffset(), dl);
if (!StackPtr.getNode())
StackPtr = DAG.getCopyFromReg(Chain, dl, RegInfo->getStackRegister(),
getPointerTy(DAG.getDataLayout()));
Source = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
StackPtr, Source);
MemOpChains2.push_back(CreateCopyOfByValArgument(Source, FIN,
ArgChain,
Flags, DAG, dl));
} else {
// Store relative to framepointer.
MemOpChains2.push_back(DAG.getStore(
ArgChain, dl, Arg, FIN,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
false, false, 0));
}
}
if (!MemOpChains2.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
// Store the return address to the appropriate stack slot.
Chain = EmitTailCallStoreRetAddr(DAG, MF, Chain, RetAddrFrIdx,
getPointerTy(DAG.getDataLayout()),
RegInfo->getSlotSize(), FPDiff, dl);
}
// Build a sequence of copy-to-reg nodes chained together with token chain
// and flag operands which copy the outgoing args into registers.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
if (DAG.getTarget().getCodeModel() == CodeModel::Large) {
assert(Is64Bit && "Large code model is only legal in 64-bit mode.");
// In the 64-bit large code model, we have to make all calls
// through a register, since the call instruction's 32-bit
// pc-relative offset may not be large enough to hold the whole
// address.
} else if (Callee->getOpcode() == ISD::GlobalAddress) {
// If the callee is a GlobalAddress node (quite common, every direct call
// is) turn it into a TargetGlobalAddress node so that legalize doesn't hack
// it.
GlobalAddressSDNode* G = cast<GlobalAddressSDNode>(Callee);
// We should use extra load for direct calls to dllimported functions in
// non-JIT mode.
const GlobalValue *GV = G->getGlobal();
if (!GV->hasDLLImportStorageClass()) {
unsigned char OpFlags = Subtarget.classifyGlobalFunctionReference(GV);
Callee = DAG.getTargetGlobalAddress(
GV, dl, getPointerTy(DAG.getDataLayout()), G->getOffset(), OpFlags);
if (OpFlags == X86II::MO_GOTPCREL) {
// Add a wrapper.
Callee = DAG.getNode(X86ISD::WrapperRIP, dl,
getPointerTy(DAG.getDataLayout()), Callee);
// Add extra indirection
Callee = DAG.getLoad(
getPointerTy(DAG.getDataLayout()), dl, DAG.getEntryNode(), Callee,
MachinePointerInfo::getGOT(DAG.getMachineFunction()), false, false,
false, 0);
}
}
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
unsigned char OpFlags =
Subtarget.classifyGlobalFunctionReference(nullptr, *Mod);
Callee = DAG.getTargetExternalSymbol(
S->getSymbol(), getPointerTy(DAG.getDataLayout()), OpFlags);
} else if (Subtarget.isTarget64BitILP32() &&
Callee->getValueType(0) == MVT::i32) {
// Zero-extend the 32-bit Callee address into a 64-bit according to x32 ABI
Callee = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, Callee);
}
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
if (!IsSibcall && isTailCall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
InFlag = Chain.getValue(1);
}
Ops.push_back(Chain);
Ops.push_back(Callee);
if (isTailCall)
Ops.push_back(DAG.getConstant(FPDiff, dl, MVT::i32));
// Add argument registers to the end of the list so that they are known live
// into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
// Add a register mask operand representing the call-preserved registers.
const uint32_t *Mask = RegInfo->getCallPreservedMask(MF, CallConv);
assert(Mask && "Missing call preserved mask for calling convention");
// If this is an invoke in a 32-bit function using a funclet-based
// personality, assume the function clobbers all registers. If an exception
// is thrown, the runtime will not restore CSRs.
// FIXME: Model this more precisely so that we can register allocate across
// the normal edge and spill and fill across the exceptional edge.
if (!Is64Bit && CLI.CS && CLI.CS->isInvoke()) {
const Function *CallerFn = MF.getFunction();
EHPersonality Pers =
CallerFn->hasPersonalityFn()
? classifyEHPersonality(CallerFn->getPersonalityFn())
: EHPersonality::Unknown;
if (isFuncletEHPersonality(Pers))
Mask = RegInfo->getNoPreservedMask();
}
Ops.push_back(DAG.getRegisterMask(Mask));
if (InFlag.getNode())
Ops.push_back(InFlag);
if (isTailCall) {
// We used to do:
//// If this is the first return lowered for this function, add the regs
//// to the liveout set for the function.
// This isn't right, although it's probably harmless on x86; liveouts
// should be computed from returns not tail calls. Consider a void
// function making a tail call to a function returning int.
MF.getFrameInfo()->setHasTailCall();
return DAG.getNode(X86ISD::TC_RETURN, dl, NodeTys, Ops);
}
Chain = DAG.getNode(X86ISD::CALL, dl, NodeTys, Ops);
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
unsigned NumBytesForCalleeToPop;
if (X86::isCalleePop(CallConv, Is64Bit, isVarArg,
DAG.getTarget().Options.GuaranteedTailCallOpt))
NumBytesForCalleeToPop = NumBytes; // Callee pops everything
else if (!Is64Bit && !canGuaranteeTCO(CallConv) &&
!Subtarget.getTargetTriple().isOSMSVCRT() &&
SR == StackStructReturn)
// If this is a call to a struct-return function, the callee
// pops the hidden struct pointer, so we have to push it back.
// This is common for Darwin/X86, Linux & Mingw32 targets.
// For MSVC Win32 targets, the caller pops the hidden struct pointer.
NumBytesForCalleeToPop = 4;
else
NumBytesForCalleeToPop = 0; // Callee pops nothing.
if (CLI.DoesNotReturn && !getTargetMachine().Options.TrapUnreachable) {
// No need to reset the stack after the call if the call doesn't return. To
// make the MI verify, we'll pretend the callee does it for us.
NumBytesForCalleeToPop = NumBytes;
}
// Returns a flag for retval copy to use.
if (!IsSibcall) {
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getIntPtrConstant(NumBytesToPop, dl, true),
DAG.getIntPtrConstant(NumBytesForCalleeToPop, dl,
true),
InFlag, dl);
InFlag = Chain.getValue(1);
}
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
Ins, dl, DAG, InVals);
}
//===----------------------------------------------------------------------===//
// Fast Calling Convention (tail call) implementation
//===----------------------------------------------------------------------===//
// Like std call, callee cleans arguments, convention except that ECX is
// reserved for storing the tail called function address. Only 2 registers are
// free for argument passing (inreg). Tail call optimization is performed
// provided:
// * tailcallopt is enabled
// * caller/callee are fastcc
// On X86_64 architecture with GOT-style position independent code only local
// (within module) calls are supported at the moment.
// To keep the stack aligned according to platform abi the function
// GetAlignedArgumentStackSize ensures that argument delta is always multiples
// of stack alignment. (Dynamic linkers need this - darwin's dyld for example)
// If a tail called function callee has more arguments than the caller the
// caller needs to make sure that there is room to move the RETADDR to. This is
// achieved by reserving an area the size of the argument delta right after the
// original RETADDR, but before the saved framepointer or the spilled registers
// e.g. caller(arg1, arg2) calls callee(arg1, arg2,arg3,arg4)
// stack layout:
// arg1
// arg2
// RETADDR
// [ new RETADDR
// move area ]
// (possible EBP)
// ESI
// EDI
// local1 ..
/// Make the stack size align e.g 16n + 12 aligned for a 16-byte align
/// requirement.
unsigned
X86TargetLowering::GetAlignedArgumentStackSize(unsigned StackSize,
SelectionDAG& DAG) const {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
uint64_t AlignMask = StackAlignment - 1;
int64_t Offset = StackSize;
unsigned SlotSize = RegInfo->getSlotSize();
if ( (Offset & AlignMask) <= (StackAlignment - SlotSize) ) {
// Number smaller than 12 so just add the difference.
Offset += ((StackAlignment - SlotSize) - (Offset & AlignMask));
} else {
// Mask out lower bits, add stackalignment once plus the 12 bytes.
Offset = ((~AlignMask) & Offset) + StackAlignment +
(StackAlignment-SlotSize);
}
return Offset;
}
/// Return true if the given stack call argument is already available in the
/// same position (relatively) of the caller's incoming argument stack.
static
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
const X86InstrInfo *TII, const CCValAssign &VA) {
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
for (;;) {
// Look through nodes that don't alter the bits of the incoming value.
unsigned Op = Arg.getOpcode();
if (Op == ISD::ZERO_EXTEND || Op == ISD::ANY_EXTEND || Op == ISD::BITCAST) {
Arg = Arg.getOperand(0);
continue;
}
if (Op == ISD::TRUNCATE) {
const SDValue &TruncInput = Arg.getOperand(0);
if (TruncInput.getOpcode() == ISD::AssertZext &&
cast<VTSDNode>(TruncInput.getOperand(1))->getVT() ==
Arg.getValueType()) {
Arg = TruncInput.getOperand(0);
continue;
}
}
break;
}
int FI = INT_MAX;
if (Arg.getOpcode() == ISD::CopyFromReg) {
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
if (!TargetRegisterInfo::isVirtualRegister(VR))
return false;
MachineInstr *Def = MRI->getVRegDef(VR);
if (!Def)
return false;
if (!Flags.isByVal()) {
if (!TII->isLoadFromStackSlot(Def, FI))
return false;
} else {
unsigned Opcode = Def->getOpcode();
if ((Opcode == X86::LEA32r || Opcode == X86::LEA64r ||
Opcode == X86::LEA64_32r) &&
Def->getOperand(1).isFI()) {
FI = Def->getOperand(1).getIndex();
Bytes = Flags.getByValSize();
} else
return false;
}
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
if (Flags.isByVal())
// ByVal argument is passed in as a pointer but it's now being
// dereferenced. e.g.
// define @foo(%struct.X* %A) {
// tail call @bar(%struct.X* byval %A)
// }
return false;
SDValue Ptr = Ld->getBasePtr();
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
if (!FINode)
return false;
FI = FINode->getIndex();
} else if (Arg.getOpcode() == ISD::FrameIndex && Flags.isByVal()) {
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Arg);
FI = FINode->getIndex();
Bytes = Flags.getByValSize();
} else
return false;
assert(FI != INT_MAX);
if (!MFI->isFixedObjectIndex(FI))
return false;
if (Offset != MFI->getObjectOffset(FI))
return false;
if (VA.getLocVT().getSizeInBits() > Arg.getValueType().getSizeInBits()) {
// If the argument location is wider than the argument type, check that any
// extension flags match.
if (Flags.isZExt() != MFI->isObjectZExt(FI) ||
Flags.isSExt() != MFI->isObjectSExt(FI)) {
return false;
}
}
return Bytes == MFI->getObjectSize(FI);
}
/// Check whether the call is eligible for tail call optimization. Targets
/// that want to do tail call optimization should implement this function.
bool X86TargetLowering::IsEligibleForTailCallOptimization(
SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg,
bool isCalleeStructRet, bool isCallerStructRet, Type *RetTy,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
if (!mayTailCallThisCC(CalleeCC))
return false;
// If -tailcallopt is specified, make fastcc functions tail-callable.
MachineFunction &MF = DAG.getMachineFunction();
const Function *CallerF = MF.getFunction();
// If the function return type is x86_fp80 and the callee return type is not,
// then the FP_EXTEND of the call result is not a nop. It's not safe to
// perform a tailcall optimization here.
if (CallerF->getReturnType()->isX86_FP80Ty() && !RetTy->isX86_FP80Ty())
return false;
CallingConv::ID CallerCC = CallerF->getCallingConv();
bool CCMatch = CallerCC == CalleeCC;
bool IsCalleeWin64 = Subtarget.isCallingConvWin64(CalleeCC);
bool IsCallerWin64 = Subtarget.isCallingConvWin64(CallerCC);
// Win64 functions have extra shadow space for argument homing. Don't do the
// sibcall if the caller and callee have mismatched expectations for this
// space.
if (IsCalleeWin64 != IsCallerWin64)
return false;
if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
if (canGuaranteeTCO(CalleeCC) && CCMatch)
return true;
return false;
}
// Look for obvious safe cases to perform tail call optimization that do not
// require ABI changes. This is what gcc calls sibcall.
// Can't do sibcall if stack needs to be dynamically re-aligned. PEI needs to
// emit a special epilogue.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
if (RegInfo->needsStackRealignment(MF))
return false;
// Also avoid sibcall optimization if either caller or callee uses struct
// return semantics.
if (isCalleeStructRet || isCallerStructRet)
return false;
// Do not sibcall optimize vararg calls unless all arguments are passed via
// registers.
LLVMContext &C = *DAG.getContext();
if (isVarArg && !Outs.empty()) {
// Optimizing for varargs on Win64 is unlikely to be safe without
// additional testing.
if (IsCalleeWin64 || IsCallerWin64)
return false;
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i)
if (!ArgLocs[i].isRegLoc())
return false;
}
// If the call result is in ST0 / ST1, it needs to be popped off the x87
// stack. Therefore, if it's not used by the call it is not safe to optimize
// this into a sibcall.
bool Unused = false;
for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
if (!Ins[i].Used) {
Unused = true;
break;
}
}
if (Unused) {
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CalleeCC, false, MF, RVLocs, C);
CCInfo.AnalyzeCallResult(Ins, RetCC_X86);
for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
CCValAssign &VA = RVLocs[i];
if (VA.getLocReg() == X86::FP0 || VA.getLocReg() == X86::FP1)
return false;
}
}
// Check that the call results are passed in the same way.
if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, C, Ins,
RetCC_X86, RetCC_X86))
return false;
// The callee has to preserve all registers the caller needs to preserve.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
if (!CCMatch) {
const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
return false;
}
unsigned StackArgsSize = 0;
// If the callee takes no arguments then go on to check the results of the
// call.
if (!Outs.empty()) {
// Check if stack adjustment is needed. For now, do not do this if any
// argument is passed on the stack.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CalleeCC, isVarArg, MF, ArgLocs, C);
// Allocate shadow area for Win64
if (IsCalleeWin64)
CCInfo.AllocateStack(32, 8);
CCInfo.AnalyzeCallOperands(Outs, CC_X86);
StackArgsSize = CCInfo.getNextStackOffset();
if (CCInfo.getNextStackOffset()) {
// Check if the arguments are already laid out in the right way as
// the caller's fixed stack objects.
MachineFrameInfo *MFI = MF.getFrameInfo();
const MachineRegisterInfo *MRI = &MF.getRegInfo();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[i];
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (VA.getLocInfo() == CCValAssign::Indirect)
return false;
if (!VA.isRegLoc()) {
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
MFI, MRI, TII, VA))
return false;
}
}
}
// If the tailcall address may be in a register, then make sure it's
// possible to register allocate for it. In 32-bit, the call address can
// only target EAX, EDX, or ECX since the tail call must be scheduled after
// callee-saved registers are restored. These happen to be the same
// registers used to pass 'inreg' arguments so watch out for those.
if (!Subtarget.is64Bit() &&
((!isa<GlobalAddressSDNode>(Callee) &&
!isa<ExternalSymbolSDNode>(Callee)) ||
DAG.getTarget().getRelocationModel() == Reloc::PIC_)) {
unsigned NumInRegs = 0;
// In PIC we need an extra register to formulate the address computation
// for the callee.
unsigned MaxInRegs =
(DAG.getTarget().getRelocationModel() == Reloc::PIC_) ? 2 : 3;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (!VA.isRegLoc())
continue;
unsigned Reg = VA.getLocReg();
switch (Reg) {
default: break;
case X86::EAX: case X86::EDX: case X86::ECX:
if (++NumInRegs == MaxInRegs)
return false;
break;
}
}
}
const MachineRegisterInfo &MRI = MF.getRegInfo();
if (!parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals))
return false;
}
bool CalleeWillPop =
X86::isCalleePop(CalleeCC, Subtarget.is64Bit(), isVarArg,
MF.getTarget().Options.GuaranteedTailCallOpt);
if (unsigned BytesToPop =
MF.getInfo<X86MachineFunctionInfo>()->getBytesToPopOnReturn()) {
// If we have bytes to pop, the callee must pop them.
bool CalleePopMatches = CalleeWillPop && BytesToPop == StackArgsSize;
if (!CalleePopMatches)
return false;
} else if (CalleeWillPop && StackArgsSize > 0) {
// If we don't have bytes to pop, make sure the callee doesn't pop any.
return false;
}
return true;
}
FastISel *
X86TargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
const TargetLibraryInfo *libInfo) const {
return X86::createFastISel(funcInfo, libInfo);
}
//===----------------------------------------------------------------------===//
// Other Lowering Hooks
//===----------------------------------------------------------------------===//
static bool MayFoldLoad(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalLoad(Op.getNode());
}
static bool MayFoldIntoStore(SDValue Op) {
return Op.hasOneUse() && ISD::isNormalStore(*Op.getNode()->use_begin());
}
static bool isTargetShuffle(unsigned Opcode) {
switch(Opcode) {
default: return false;
case X86ISD::BLENDI:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::SHUFP:
case X86ISD::INSERTPS:
case X86ISD::PALIGNR:
case X86ISD::MOVLHPS:
case X86ISD::MOVLHPD:
case X86ISD::MOVHLPS:
case X86ISD::MOVLPS:
case X86ISD::MOVLPD:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case X86ISD::VPERMI:
case X86ISD::VPPERM:
case X86ISD::VPERMV:
case X86ISD::VPERMV3:
case X86ISD::VZEXT_MOVL:
return true;
}
}
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
SDValue V1, unsigned TargetMask,
SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::VPERMILPI:
case X86ISD::VPERMI:
return DAG.getNode(Opc, dl, VT, V1,
DAG.getConstant(TargetMask, dl, MVT::i8));
}
}
static SDValue getTargetShuffleNode(unsigned Opc, SDLoc dl, MVT VT,
SDValue V1, SDValue V2, SelectionDAG &DAG) {
switch(Opc) {
default: llvm_unreachable("Unknown x86 shuffle node");
case X86ISD::MOVLHPS:
case X86ISD::MOVLHPD:
case X86ISD::MOVHLPS:
case X86ISD::MOVLPS:
case X86ISD::MOVLPD:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
return DAG.getNode(Opc, dl, VT, V1, V2);
}
}
SDValue X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
int ReturnAddrIndex = FuncInfo->getRAIndex();
if (ReturnAddrIndex == 0) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(SlotSize,
-(int64_t)SlotSize,
false);
FuncInfo->setRAIndex(ReturnAddrIndex);
}
return DAG.getFrameIndex(ReturnAddrIndex, getPointerTy(DAG.getDataLayout()));
}
bool X86::isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
bool hasSymbolicDisplacement) {
// Offset should fit into 32 bit immediate field.
if (!isInt<32>(Offset))
return false;
// If we don't have a symbolic displacement - we don't have any extra
// restrictions.
if (!hasSymbolicDisplacement)
return true;
// FIXME: Some tweaks might be needed for medium code model.
if (M != CodeModel::Small && M != CodeModel::Kernel)
return false;
// For small code model we assume that latest object is 16MB before end of 31
// bits boundary. We may also accept pretty large negative constants knowing
// that all objects are in the positive half of address space.
if (M == CodeModel::Small && Offset < 16*1024*1024)
return true;
// For kernel code model we know that all object resist in the negative half
// of 32bits address space. We may not accept negative offsets, since they may
// be just off and we may accept pretty large positive ones.
if (M == CodeModel::Kernel && Offset >= 0)
return true;
return false;
}
/// Determines whether the callee is required to pop its own arguments.
/// Callee pop is necessary to support tail calls.
bool X86::isCalleePop(CallingConv::ID CallingConv,
bool is64Bit, bool IsVarArg, bool GuaranteeTCO) {
// If GuaranteeTCO is true, we force some calls to be callee pop so that we
// can guarantee TCO.
if (!IsVarArg && shouldGuaranteeTCO(CallingConv, GuaranteeTCO))
return true;
switch (CallingConv) {
default:
return false;
case CallingConv::X86_StdCall:
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::X86_VectorCall:
return !is64Bit;
}
}
/// \brief Return true if the condition is an unsigned comparison operation.
static bool isX86CCUnsigned(unsigned X86CC) {
switch (X86CC) {
default:
llvm_unreachable("Invalid integer condition!");
case X86::COND_E:
case X86::COND_NE:
case X86::COND_B:
case X86::COND_A:
case X86::COND_BE:
case X86::COND_AE:
return true;
case X86::COND_G:
case X86::COND_GE:
case X86::COND_L:
case X86::COND_LE:
return false;
}
}
static X86::CondCode TranslateIntegerX86CC(ISD::CondCode SetCCOpcode) {
switch (SetCCOpcode) {
default: llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ: return X86::COND_E;
case ISD::SETGT: return X86::COND_G;
case ISD::SETGE: return X86::COND_GE;
case ISD::SETLT: return X86::COND_L;
case ISD::SETLE: return X86::COND_LE;
case ISD::SETNE: return X86::COND_NE;
case ISD::SETULT: return X86::COND_B;
case ISD::SETUGT: return X86::COND_A;
case ISD::SETULE: return X86::COND_BE;
case ISD::SETUGE: return X86::COND_AE;
}
}
/// Do a one-to-one translation of a ISD::CondCode to the X86-specific
/// condition code, returning the condition code and the LHS/RHS of the
/// comparison to make.
static unsigned TranslateX86CC(ISD::CondCode SetCCOpcode, SDLoc DL, bool isFP,
SDValue &LHS, SDValue &RHS, SelectionDAG &DAG) {
if (!isFP) {
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
if (SetCCOpcode == ISD::SETGT && RHSC->isAllOnesValue()) {
// X > -1 -> X == 0, jump !sign.
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_NS;
}
if (SetCCOpcode == ISD::SETLT && RHSC->isNullValue()) {
// X < 0 -> X == 0, jump on sign.
return X86::COND_S;
}
if (SetCCOpcode == ISD::SETLT && RHSC->getZExtValue() == 1) {
// X < 1 -> X <= 0
RHS = DAG.getConstant(0, DL, RHS.getValueType());
return X86::COND_LE;
}
}
return TranslateIntegerX86CC(SetCCOpcode);
}
// First determine if it is required or is profitable to flip the operands.
// If LHS is a foldable load, but RHS is not, flip the condition.
if (ISD::isNON_EXTLoad(LHS.getNode()) &&
!ISD::isNON_EXTLoad(RHS.getNode())) {
SetCCOpcode = getSetCCSwappedOperands(SetCCOpcode);
std::swap(LHS, RHS);
}
switch (SetCCOpcode) {
default: break;
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETUGT:
case ISD::SETUGE:
std::swap(LHS, RHS);
break;
}
// On a floating point condition, the flags are set as follows:
// ZF PF CF op
// 0 | 0 | 0 | X > Y
// 0 | 0 | 1 | X < Y
// 1 | 0 | 0 | X == Y
// 1 | 1 | 1 | unordered
switch (SetCCOpcode) {
default: llvm_unreachable("Condcode should be pre-legalized away");
case ISD::SETUEQ:
case ISD::SETEQ: return X86::COND_E;
case ISD::SETOLT: // flipped
case ISD::SETOGT:
case ISD::SETGT: return X86::COND_A;
case ISD::SETOLE: // flipped
case ISD::SETOGE:
case ISD::SETGE: return X86::COND_AE;
case ISD::SETUGT: // flipped
case ISD::SETULT:
case ISD::SETLT: return X86::COND_B;
case ISD::SETUGE: // flipped
case ISD::SETULE:
case ISD::SETLE: return X86::COND_BE;
case ISD::SETONE:
case ISD::SETNE: return X86::COND_NE;
case ISD::SETUO: return X86::COND_P;
case ISD::SETO: return X86::COND_NP;
case ISD::SETOEQ:
case ISD::SETUNE: return X86::COND_INVALID;
}
}
/// Is there a floating point cmov for the specific X86 condition code?
/// Current x86 isa includes the following FP cmov instructions:
/// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu.
static bool hasFPCMov(unsigned X86CC) {
switch (X86CC) {
default:
return false;
case X86::COND_B:
case X86::COND_BE:
case X86::COND_E:
case X86::COND_P:
case X86::COND_A:
case X86::COND_AE:
case X86::COND_NE:
case X86::COND_NP:
return true;
}
}
bool X86TargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
const CallInst &I,
unsigned Intrinsic) const {
const IntrinsicData* IntrData = getIntrinsicWithChain(Intrinsic);
if (!IntrData)
return false;
Info.opc = ISD::INTRINSIC_W_CHAIN;
Info.readMem = false;
Info.writeMem = false;
Info.vol = false;
Info.offset = 0;
switch (IntrData->Type) {
case LOADA:
case LOADU: {
Info.ptrVal = I.getArgOperand(0);
Info.memVT = MVT::getVT(I.getType());
Info.align = (IntrData->Type == LOADA ? Info.memVT.getSizeInBits()/8 : 1);
Info.readMem = true;
break;
}
case EXPAND_FROM_MEM: {
Info.ptrVal = I.getArgOperand(0);
Info.memVT = MVT::getVT(I.getType());
Info.align = 1;
Info.readMem = true;
break;
}
case COMPRESS_TO_MEM: {
Info.ptrVal = I.getArgOperand(0);
Info.memVT = MVT::getVT(I.getArgOperand(1)->getType());
Info.align = 1;
Info.writeMem = true;
break;
}
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
Info.ptrVal = I.getArgOperand(0);
MVT VT = MVT::getVT(I.getArgOperand(1)->getType());
MVT ScalarVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
if (IntrData->Type == TRUNCATE_TO_MEM_VI8)
ScalarVT = MVT::i8;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI16)
ScalarVT = MVT::i16;
else if (IntrData->Type == TRUNCATE_TO_MEM_VI32)
ScalarVT = MVT::i32;
Info.memVT = MVT::getVectorVT(ScalarVT, VT.getVectorNumElements());
Info.align = 1;
Info.writeMem = true;
break;
}
case STOREA:
case STOREANT:
case STOREU: {
Info.ptrVal = I.getArgOperand(0);
Info.memVT = MVT::getVT(I.getArgOperand(1)->getType());
Info.align = (IntrData->Type == STOREU ? 1 : Info.memVT.getSizeInBits()/8);
Info.writeMem = true;
break;
}
default:
return false;
}
return true;
}
/// Returns true if the target can instruction select the
/// specified FP immediate natively. If false, the legalizer will
/// materialize the FP immediate as a load from a constant pool.
bool X86TargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
for (unsigned i = 0, e = LegalFPImmediates.size(); i != e; ++i) {
if (Imm.bitwiseIsEqual(LegalFPImmediates[i]))
return true;
}
return false;
}
bool X86TargetLowering::shouldReduceLoadWidth(SDNode *Load,
ISD::LoadExtType ExtTy,
EVT NewVT) const {
// "ELF Handling for Thread-Local Storage" specifies that R_X86_64_GOTTPOFF
// relocation target a movq or addq instruction: don't let the load shrink.
SDValue BasePtr = cast<LoadSDNode>(Load)->getBasePtr();
if (BasePtr.getOpcode() == X86ISD::WrapperRIP)
if (const auto *GA = dyn_cast<GlobalAddressSDNode>(BasePtr.getOperand(0)))
return GA->getTargetFlags() != X86II::MO_GOTTPOFF;
return true;
}
/// \brief Returns true if it is beneficial to convert a load of a constant
/// to just the constant itself.
bool X86TargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
assert(Ty->isIntegerTy());
unsigned BitSize = Ty->getPrimitiveSizeInBits();
if (BitSize == 0 || BitSize > 64)
return false;
return true;
}
bool X86TargetLowering::isExtractSubvectorCheap(EVT ResVT,
unsigned Index) const {
if (!isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, ResVT))
return false;
return (Index == 0 || Index == ResVT.getVectorNumElements());
}
bool X86TargetLowering::isCheapToSpeculateCttz() const {
// Speculate cttz only if we can directly use TZCNT.
return Subtarget.hasBMI();
}
bool X86TargetLowering::isCheapToSpeculateCtlz() const {
// Speculate ctlz only if we can directly use LZCNT.
return Subtarget.hasLZCNT();
}
bool X86TargetLowering::hasAndNotCompare(SDValue Y) const {
if (!Subtarget.hasBMI())
return false;
// There are only 32-bit and 64-bit forms for 'andn'.
EVT VT = Y.getValueType();
if (VT != MVT::i32 && VT != MVT::i64)
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size is undef.
static bool isUndefInRange(ArrayRef<int> Mask, unsigned Pos, unsigned Size) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i)
if (0 <= Mask[i])
return false;
return true;
}
/// Return true if Val is undef or if its value falls within the
/// specified range (L, H].
static bool isUndefOrInRange(int Val, int Low, int Hi) {
return (Val < 0) || (Val >= Low && Val < Hi);
}
/// Val is either less than zero (undef) or equal to the specified value.
static bool isUndefOrEqual(int Val, int CmpVal) {
return (Val < 0 || Val == CmpVal);
}
/// Val is either the undef or zero sentinel value.
static bool isUndefOrZero(int Val) {
return (Val == SM_SentinelUndef || Val == SM_SentinelZero);
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size, falls within the specified
/// sequential range (Low, Low+Size]. or is undef.
static bool isSequentialOrUndefInRange(ArrayRef<int> Mask,
unsigned Pos, unsigned Size, int Low) {
for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
if (!isUndefOrEqual(Mask[i], Low))
return false;
return true;
}
/// Return true if every element in Mask, beginning
/// from position Pos and ending in Pos+Size, falls within the specified
/// sequential range (Low, Low+Size], or is undef or is zero.
static bool isSequentialOrUndefOrZeroInRange(ArrayRef<int> Mask, unsigned Pos,
unsigned Size, int Low) {
for (unsigned i = Pos, e = Pos + Size; i != e; ++i, ++Low)
if (!isUndefOrZero(Mask[i]) && Mask[i] != Low)
return false;
return true;
}
/// Return true if the specified EXTRACT_SUBVECTOR operand specifies a vector
/// extract that is suitable for instruction that extract 128 or 256 bit vectors
static bool isVEXTRACTIndex(SDNode *N, unsigned vecWidth) {
assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
if (!isa<ConstantSDNode>(N->getOperand(1).getNode()))
return false;
// The index should be aligned on a vecWidth-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
MVT VT = N->getSimpleValueType(0);
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
bool Result = (Index * ElSize) % vecWidth == 0;
return Result;
}
/// Return true if the specified INSERT_SUBVECTOR
/// operand specifies a subvector insert that is suitable for input to
/// insertion of 128 or 256-bit subvectors
static bool isVINSERTIndex(SDNode *N, unsigned vecWidth) {
assert((vecWidth == 128 || vecWidth == 256) && "Unexpected vector width");
if (!isa<ConstantSDNode>(N->getOperand(2).getNode()))
return false;
// The index should be aligned on a vecWidth-bit boundary.
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
MVT VT = N->getSimpleValueType(0);
unsigned ElSize = VT.getVectorElementType().getSizeInBits();
bool Result = (Index * ElSize) % vecWidth == 0;
return Result;
}
bool X86::isVINSERT128Index(SDNode *N) {
return isVINSERTIndex(N, 128);
}
bool X86::isVINSERT256Index(SDNode *N) {
return isVINSERTIndex(N, 256);
}
bool X86::isVEXTRACT128Index(SDNode *N) {
return isVEXTRACTIndex(N, 128);
}
bool X86::isVEXTRACT256Index(SDNode *N) {
return isVEXTRACTIndex(N, 256);
}
static unsigned getExtractVEXTRACTImmediate(SDNode *N, unsigned vecWidth) {
assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
assert(isa<ConstantSDNode>(N->getOperand(1).getNode()) &&
"Illegal extract subvector for VEXTRACT");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(1).getNode())->getZExtValue();
MVT VecVT = N->getOperand(0).getSimpleValueType();
MVT ElVT = VecVT.getVectorElementType();
unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
static unsigned getInsertVINSERTImmediate(SDNode *N, unsigned vecWidth) {
assert((vecWidth == 128 || vecWidth == 256) && "Unsupported vector width");
assert(isa<ConstantSDNode>(N->getOperand(2).getNode()) &&
"Illegal insert subvector for VINSERT");
uint64_t Index =
cast<ConstantSDNode>(N->getOperand(2).getNode())->getZExtValue();
MVT VecVT = N->getSimpleValueType(0);
MVT ElVT = VecVT.getVectorElementType();
unsigned NumElemsPerChunk = vecWidth / ElVT.getSizeInBits();
return Index / NumElemsPerChunk;
}
/// Return the appropriate immediate to extract the specified
/// EXTRACT_SUBVECTOR index with VEXTRACTF128 and VINSERTI128 instructions.
unsigned X86::getExtractVEXTRACT128Immediate(SDNode *N) {
return getExtractVEXTRACTImmediate(N, 128);
}
/// Return the appropriate immediate to extract the specified
/// EXTRACT_SUBVECTOR index with VEXTRACTF64x4 and VINSERTI64x4 instructions.
unsigned X86::getExtractVEXTRACT256Immediate(SDNode *N) {
return getExtractVEXTRACTImmediate(N, 256);
}
/// Return the appropriate immediate to insert at the specified
/// INSERT_SUBVECTOR index with VINSERTF128 and VINSERTI128 instructions.
unsigned X86::getInsertVINSERT128Immediate(SDNode *N) {
return getInsertVINSERTImmediate(N, 128);
}
/// Return the appropriate immediate to insert at the specified
/// INSERT_SUBVECTOR index with VINSERTF46x4 and VINSERTI64x4 instructions.
unsigned X86::getInsertVINSERT256Immediate(SDNode *N) {
return getInsertVINSERTImmediate(N, 256);
}
/// Returns true if Elt is a constant zero or a floating point constant +0.0.
bool X86::isZeroNode(SDValue Elt) {
return isNullConstant(Elt) || isNullFPConstant(Elt);
}
// Build a vector of constants
// Use an UNDEF node if MaskElt == -1.
// Spilt 64-bit constants in the 32-bit mode.
static SDValue getConstVector(ArrayRef<int> Values, MVT VT,
SelectionDAG &DAG,
SDLoc dl, bool IsMask = false) {
SmallVector<SDValue, 32> Ops;
bool Split = false;
MVT ConstVecVT = VT;
unsigned NumElts = VT.getVectorNumElements();
bool In64BitMode = DAG.getTargetLoweringInfo().isTypeLegal(MVT::i64);
if (!In64BitMode && VT.getVectorElementType() == MVT::i64) {
ConstVecVT = MVT::getVectorVT(MVT::i32, NumElts * 2);
Split = true;
}
MVT EltVT = ConstVecVT.getVectorElementType();
for (unsigned i = 0; i < NumElts; ++i) {
bool IsUndef = Values[i] < 0 && IsMask;
SDValue OpNode = IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(Values[i], dl, EltVT);
Ops.push_back(OpNode);
if (Split)
Ops.push_back(IsUndef ? DAG.getUNDEF(EltVT) :
DAG.getConstant(0, dl, EltVT));
}
SDValue ConstsNode = DAG.getBuildVector(ConstVecVT, dl, Ops);
if (Split)
ConstsNode = DAG.getBitcast(VT, ConstsNode);
return ConstsNode;
}
/// Returns a vector of specified type with all zero elements.
static SDValue getZeroVector(MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDLoc dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector() ||
VT.getVectorElementType() == MVT::i1) &&
"Unexpected vector type");
// Try to build SSE/AVX zero vectors as <N x i32> bitcasted to their dest
// type. This ensures they get CSE'd. But if the integer type is not
// available, use a floating-point +0.0 instead.
SDValue Vec;
if (!Subtarget.hasSSE2() && VT.is128BitVector()) {
Vec = DAG.getConstantFP(+0.0, dl, MVT::v4f32);
} else if (VT.getVectorElementType() == MVT::i1) {
assert((Subtarget.hasBWI() || VT.getVectorNumElements() <= 16) &&
"Unexpected vector type");
assert((Subtarget.hasVLX() || VT.getVectorNumElements() >= 8) &&
"Unexpected vector type");
Vec = DAG.getConstant(0, dl, VT);
} else {
unsigned Num32BitElts = VT.getSizeInBits() / 32;
Vec = DAG.getConstant(0, dl, MVT::getVectorVT(MVT::i32, Num32BitElts));
}
return DAG.getBitcast(VT, Vec);
}
static SDValue extractSubVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl,
unsigned vectorWidth) {
assert((vectorWidth == 128 || vectorWidth == 256) &&
"Unsupported vector width");
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
unsigned Factor = VT.getSizeInBits()/vectorWidth;
EVT ResultVT = EVT::getVectorVT(*DAG.getContext(), ElVT,
VT.getVectorNumElements()/Factor);
// Extract from UNDEF is UNDEF.
if (Vec.isUndef())
return DAG.getUNDEF(ResultVT);
// Extract the relevant vectorWidth bits. Generate an EXTRACT_SUBVECTOR
unsigned ElemsPerChunk = vectorWidth / ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
// If the input is a buildvector just emit a smaller one.
if (Vec.getOpcode() == ISD::BUILD_VECTOR)
return DAG.getNode(ISD::BUILD_VECTOR,
dl, ResultVT, makeArrayRef(Vec->op_begin() + IdxVal, ElemsPerChunk));
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, ResultVT, Vec, VecIdx);
}
/// Generate a DAG to grab 128-bits from a vector > 128 bits. This
/// sets things up to match to an AVX VEXTRACTF128 / VEXTRACTI128
/// or AVX-512 VEXTRACTF32x4 / VEXTRACTI32x4
/// instructions or a simple subregister reference. Idx is an index in the
/// 128 bits we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering EXTRACT_VECTOR_ELT operations easier.
static SDValue extract128BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl) {
assert((Vec.getValueType().is256BitVector() ||
Vec.getValueType().is512BitVector()) && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 128);
}
/// Generate a DAG to grab 256-bits from a 512-bit vector.
static SDValue extract256BitVector(SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl) {
assert(Vec.getValueType().is512BitVector() && "Unexpected vector size!");
return extractSubVector(Vec, IdxVal, DAG, dl, 256);
}
static SDValue insertSubVector(SDValue Result, SDValue Vec,
unsigned IdxVal, SelectionDAG &DAG,
SDLoc dl, unsigned vectorWidth) {
assert((vectorWidth == 128 || vectorWidth == 256) &&
"Unsupported vector width");
// Inserting UNDEF is Result
if (Vec.isUndef())
return Result;
EVT VT = Vec.getValueType();
EVT ElVT = VT.getVectorElementType();
EVT ResultVT = Result.getValueType();
// Insert the relevant vectorWidth bits.
unsigned ElemsPerChunk = vectorWidth/ElVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// This is the index of the first element of the vectorWidth-bit chunk
// we want. Since ElemsPerChunk is a power of 2 just need to clear bits.
IdxVal &= ~(ElemsPerChunk - 1);
SDValue VecIdx = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Result, Vec, VecIdx);
}
/// Generate a DAG to put 128-bits into a vector > 128 bits. This
/// sets things up to match to an AVX VINSERTF128/VINSERTI128 or
/// AVX-512 VINSERTF32x4/VINSERTI32x4 instructions or a
/// simple superregister reference. Idx is an index in the 128 bits
/// we want. It need not be aligned to a 128-bit boundary. That makes
/// lowering INSERT_VECTOR_ELT operations easier.
static SDValue insert128BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl) {
assert(Vec.getValueType().is128BitVector() && "Unexpected vector size!");
// For insertion into the zero index (low half) of a 256-bit vector, it is
// more efficient to generate a blend with immediate instead of an insert*128.
// We are still creating an INSERT_SUBVECTOR below with an undef node to
// extend the subvector to the size of the result vector. Make sure that
// we are not recursing on that node by checking for undef here.
if (IdxVal == 0 && Result.getValueType().is256BitVector() &&
!Result.isUndef()) {
EVT ResultVT = Result.getValueType();
SDValue ZeroIndex = DAG.getIntPtrConstant(0, dl);
SDValue Undef = DAG.getUNDEF(ResultVT);
SDValue Vec256 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResultVT, Undef,
Vec, ZeroIndex);
// The blend instruction, and therefore its mask, depend on the data type.
MVT ScalarType = ResultVT.getVectorElementType().getSimpleVT();
if (ScalarType.isFloatingPoint()) {
// Choose either vblendps (float) or vblendpd (double).
unsigned ScalarSize = ScalarType.getSizeInBits();
assert((ScalarSize == 64 || ScalarSize == 32) && "Unknown float type");
unsigned MaskVal = (ScalarSize == 64) ? 0x03 : 0x0f;
SDValue Mask = DAG.getConstant(MaskVal, dl, MVT::i8);
return DAG.getNode(X86ISD::BLENDI, dl, ResultVT, Result, Vec256, Mask);
}
const X86Subtarget &Subtarget =
static_cast<const X86Subtarget &>(DAG.getSubtarget());
// AVX2 is needed for 256-bit integer blend support.
// Integers must be cast to 32-bit because there is only vpblendd;
// vpblendw can't be used for this because it has a handicapped mask.
// If we don't have AVX2, then cast to float. Using a wrong domain blend
// is still more efficient than using the wrong domain vinsertf128 that
// will be created by InsertSubVector().
MVT CastVT = Subtarget.hasAVX2() ? MVT::v8i32 : MVT::v8f32;
SDValue Mask = DAG.getConstant(0x0f, dl, MVT::i8);
Result = DAG.getBitcast(CastVT, Result);
Vec256 = DAG.getBitcast(CastVT, Vec256);
Vec256 = DAG.getNode(X86ISD::BLENDI, dl, CastVT, Result, Vec256, Mask);
return DAG.getBitcast(ResultVT, Vec256);
}
return insertSubVector(Result, Vec, IdxVal, DAG, dl, 128);
}
static SDValue insert256BitVector(SDValue Result, SDValue Vec, unsigned IdxVal,
SelectionDAG &DAG, SDLoc dl) {
assert(Vec.getValueType().is256BitVector() && "Unexpected vector size!");
return insertSubVector(Result, Vec, IdxVal, DAG, dl, 256);
}
/// Insert i1-subvector to i1-vector.
static SDValue insert1BitVector(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue SubVec = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (IdxVal == 0 && Vec.isUndef()) // the operation is legal
return Op;
MVT OpVT = Op.getSimpleValueType();
MVT SubVecVT = SubVec.getSimpleValueType();
unsigned NumElems = OpVT.getVectorNumElements();
unsigned SubVecNumElems = SubVecVT.getVectorNumElements();
assert(IdxVal + SubVecNumElems <= NumElems &&
IdxVal % SubVecVT.getSizeInBits() == 0 &&
"Unexpected index value in INSERT_SUBVECTOR");
// There are 3 possible cases:
// 1. Subvector should be inserted in the lower part (IdxVal == 0)
// 2. Subvector should be inserted in the upper part
// (IdxVal + SubVecNumElems == NumElems)
// 3. Subvector should be inserted in the middle (for example v2i1
// to v16i1, index 2)
// extend to natively supported kshift
MVT MinVT = Subtarget.hasDQI() ? MVT::v8i1 : MVT::v16i1;
MVT WideOpVT = OpVT;
if (OpVT.getSizeInBits() < MinVT.getStoreSizeInBits())
WideOpVT = MinVT;
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
SDValue Undef = DAG.getUNDEF(WideOpVT);
SDValue WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
Undef, SubVec, ZeroIdx);
// Extract sub-vector if require.
auto ExtractSubVec = [&](SDValue V) {
return (WideOpVT == OpVT) ? V : DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
OpVT, V, ZeroIdx);
};
if (Vec.isUndef()) {
if (IdxVal != 0) {
SDValue ShiftBits = DAG.getConstant(IdxVal, dl, MVT::i8);
WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec, ShiftBits);
}
return ExtractSubVec(WideSubVec);
}
if (ISD::isBuildVectorAllZeros(Vec.getNode())) {
NumElems = WideOpVT.getVectorNumElements();
unsigned ShiftLeft = NumElems - SubVecNumElems;
unsigned ShiftRight = NumElems - SubVecNumElems - IdxVal;
Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec,
DAG.getConstant(ShiftLeft, dl, MVT::i8));
Vec = ShiftRight ? DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec,
DAG.getConstant(ShiftRight, dl, MVT::i8)) : Vec;
return ExtractSubVec(Vec);
}
if (IdxVal == 0) {
// Zero lower bits of the Vec
SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
Vec = DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, Vec, ShiftBits);
// Merge them together, SubVec should be zero extended.
WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT,
getZeroVector(WideOpVT, Subtarget, DAG, dl),
SubVec, ZeroIdx);
Vec = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, WideSubVec);
return ExtractSubVec(Vec);
}
// Simple case when we put subvector in the upper part
if (IdxVal + SubVecNumElems == NumElems) {
// Zero upper bits of the Vec
WideSubVec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, WideSubVec,
DAG.getConstant(IdxVal, dl, MVT::i8));
SDValue ShiftBits = DAG.getConstant(SubVecNumElems, dl, MVT::i8);
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, WideOpVT, Undef, Vec, ZeroIdx);
Vec = DAG.getNode(X86ISD::VSHLI, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(X86ISD::VSRLI, dl, WideOpVT, Vec, ShiftBits);
Vec = DAG.getNode(ISD::OR, dl, WideOpVT, Vec, WideSubVec);
return ExtractSubVec(Vec);
}
// Subvector should be inserted in the middle - use shuffle
WideSubVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, OpVT, Undef,
SubVec, ZeroIdx);
SmallVector<int, 64> Mask;
for (unsigned i = 0; i < NumElems; ++i)
Mask.push_back(i >= IdxVal && i < IdxVal + SubVecNumElems ?
i : i + NumElems);
return DAG.getVectorShuffle(OpVT, dl, WideSubVec, Vec, Mask);
}
/// Concat two 128-bit vectors into a 256 bit vector using VINSERTF128
/// instructions. This is used because creating CONCAT_VECTOR nodes of
/// BUILD_VECTORS returns a larger BUILD_VECTOR while we're trying to lower
/// large BUILD_VECTORS.
static SDValue concat128BitVectors(SDValue V1, SDValue V2, EVT VT,
unsigned NumElems, SelectionDAG &DAG,
SDLoc dl) {
SDValue V = insert128BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
return insert128BitVector(V, V2, NumElems / 2, DAG, dl);
}
static SDValue concat256BitVectors(SDValue V1, SDValue V2, EVT VT,
unsigned NumElems, SelectionDAG &DAG,
SDLoc dl) {
SDValue V = insert256BitVector(DAG.getUNDEF(VT), V1, 0, DAG, dl);
return insert256BitVector(V, V2, NumElems / 2, DAG, dl);
}
/// Returns a vector of specified type with all bits set.
/// Always build ones vectors as <4 x i32> or <8 x i32>. For 256-bit types with
/// no AVX2 support, use two <4 x i32> inserted in a <8 x i32> appropriately.
/// Then bitcast to their original type, ensuring they get CSE'd.
static SDValue getOnesVector(EVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDLoc dl) {
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Expected a 128/256/512-bit vector type");
APInt Ones = APInt::getAllOnesValue(32);
unsigned NumElts = VT.getSizeInBits() / 32;
SDValue Vec;
if (!Subtarget.hasInt256() && NumElts == 8) {
Vec = DAG.getConstant(Ones, dl, MVT::v4i32);
Vec = concat128BitVectors(Vec, Vec, MVT::v8i32, 8, DAG, dl);
} else {
Vec = DAG.getConstant(Ones, dl, MVT::getVectorVT(MVT::i32, NumElts));
}
return DAG.getBitcast(VT, Vec);
}
/// Returns a vector_shuffle node for an unpackl operation.
static SDValue getUnpackl(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0, e = NumElems/2; i != e; ++i) {
Mask.push_back(i);
Mask.push_back(i + NumElems);
}
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
/// Returns a vector_shuffle node for an unpackh operation.
static SDValue getUnpackh(SelectionDAG &DAG, SDLoc dl, MVT VT, SDValue V1,
SDValue V2) {
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 8> Mask;
for (unsigned i = 0, Half = NumElems/2; i != Half; ++i) {
Mask.push_back(i + Half);
Mask.push_back(i + NumElems + Half);
}
return DAG.getVectorShuffle(VT, dl, V1, V2, &Mask[0]);
}
/// Return a vector_shuffle of the specified vector of zero or undef vector.
/// This produces a shuffle where the low element of V2 is swizzled into the
/// zero/undef vector, landing at element Idx.
/// This produces a shuffle mask like 4,1,2,3 (idx=0) or 0,1,2,4 (idx=3).
static SDValue getShuffleVectorZeroOrUndef(SDValue V2, unsigned Idx,
bool IsZero,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = V2.getSimpleValueType();
SDValue V1 = IsZero
? getZeroVector(VT, Subtarget, DAG, SDLoc(V2)) : DAG.getUNDEF(VT);
unsigned NumElems = VT.getVectorNumElements();
SmallVector<int, 16> MaskVec;
for (unsigned i = 0; i != NumElems; ++i)
// If this is the insertion idx, put the low elt of V2 here.
MaskVec.push_back(i == Idx ? NumElems : i);
return DAG.getVectorShuffle(VT, SDLoc(V2), V1, V2, &MaskVec[0]);
}
static SDValue peekThroughBitcasts(SDValue V) {
while (V.getNode() && V.getOpcode() == ISD::BITCAST)
V = V.getOperand(0);
return V;
}
static bool getTargetShuffleMaskIndices(SDValue MaskNode,
unsigned MaskEltSizeInBits,
SmallVectorImpl<uint64_t> &RawMask) {
MaskNode = peekThroughBitcasts(MaskNode);
MVT VT = MaskNode.getSimpleValueType();
assert(VT.isVector() && "Can't produce a non-vector with a build_vector!");
// Split an APInt element into MaskEltSizeInBits sized pieces and
// insert into the shuffle mask.
auto SplitElementToMask = [&](APInt Element) {
// Note that this is x86 and so always little endian: the low byte is
// the first byte of the mask.
int Split = VT.getScalarSizeInBits() / MaskEltSizeInBits;
for (int i = 0; i < Split; ++i) {
APInt RawElt = Element.getLoBits(MaskEltSizeInBits);
Element = Element.lshr(MaskEltSizeInBits);
RawMask.push_back(RawElt.getZExtValue());
}
};
if (MaskNode.getOpcode() == X86ISD::VBROADCAST) {
// TODO: Handle (MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0
// TODO: Handle (VT.getScalarSizeInBits() % MaskEltSizeInBits) == 0
if (VT.getScalarSizeInBits() != MaskEltSizeInBits)
return false;
if (auto *CN = dyn_cast<ConstantSDNode>(MaskNode.getOperand(0))) {
APInt MaskElement = CN->getAPIntValue();
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
APInt RawElt = MaskElement.getLoBits(MaskEltSizeInBits);
RawMask.push_back(RawElt.getZExtValue());
}
}
return false;
}
if (MaskNode.getOpcode() == X86ISD::VZEXT_MOVL &&
MaskNode.getOperand(0).getOpcode() == ISD::SCALAR_TO_VECTOR) {
// TODO: Handle (MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0
if ((VT.getScalarSizeInBits() % MaskEltSizeInBits) != 0)
return false;
unsigned ElementSplit = VT.getScalarSizeInBits() / MaskEltSizeInBits;
SDValue MaskOp = MaskNode.getOperand(0).getOperand(0);
if (auto *CN = dyn_cast<ConstantSDNode>(MaskOp)) {
SplitElementToMask(CN->getAPIntValue());
RawMask.append((VT.getVectorNumElements() - 1) * ElementSplit, 0);
return true;
}
return false;
}
if (MaskNode.getOpcode() != ISD::BUILD_VECTOR)
return false;
// TODO: Handle (MaskEltSizeInBits % VT.getScalarSizeInBits()) == 0
if ((VT.getScalarSizeInBits() % MaskEltSizeInBits) != 0)
return false;
for (SDValue Op : MaskNode->ops()) {
if (auto *CN = dyn_cast<ConstantSDNode>(Op.getNode()))
SplitElementToMask(CN->getAPIntValue());
else if (auto *CFN = dyn_cast<ConstantFPSDNode>(Op.getNode()))
SplitElementToMask(CFN->getValueAPF().bitcastToAPInt());
else
return false;
}
return true;
}
static const Constant *getTargetShuffleMaskConstant(SDValue MaskNode) {
MaskNode = peekThroughBitcasts(MaskNode);
auto *MaskLoad = dyn_cast<LoadSDNode>(MaskNode);
if (!MaskLoad)
return nullptr;
SDValue Ptr = MaskLoad->getBasePtr();
if (Ptr->getOpcode() == X86ISD::Wrapper ||
Ptr->getOpcode() == X86ISD::WrapperRIP)
Ptr = Ptr->getOperand(0);
auto *MaskCP = dyn_cast<ConstantPoolSDNode>(Ptr);
if (!MaskCP || MaskCP->isMachineConstantPoolEntry())
return nullptr;
return dyn_cast<Constant>(MaskCP->getConstVal());
}
/// Calculates the shuffle mask corresponding to the target-specific opcode.
/// If the mask could be calculated, returns it in \p Mask, returns the shuffle
/// operands in \p Ops, and returns true.
/// Sets \p IsUnary to true if only one source is used. Note that this will set
/// IsUnary for shuffles which use a single input multiple times, and in those
/// cases it will adjust the mask to only have indices within that single input.
/// It is an error to call this with non-empty Mask/Ops vectors.
static bool getTargetShuffleMask(SDNode *N, MVT VT, bool AllowSentinelZero,
SmallVectorImpl<SDValue> &Ops,
SmallVectorImpl<int> &Mask, bool &IsUnary) {
unsigned NumElems = VT.getVectorNumElements();
SDValue ImmN;
assert(Mask.empty() && "getTargetShuffleMask expects an empty Mask vector");
assert(Ops.empty() && "getTargetShuffleMask expects an empty Ops vector");
IsUnary = false;
bool IsFakeUnary = false;
switch(N->getOpcode()) {
case X86ISD::BLENDI:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeBLENDMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
break;
case X86ISD::SHUFP:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeSHUFPMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::INSERTPS:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeINSERTPSMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKH:
DecodeUNPCKHMask(VT, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::UNPCKL:
DecodeUNPCKLMask(VT, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVHLPS:
DecodeMOVHLPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVLHPS:
DecodeMOVLHPSMask(NumElems, Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::PALIGNR:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePALIGNRMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
break;
case X86ISD::PSHUFD:
case X86ISD::VPERMILPI:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFHW:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFHWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::PSHUFLW:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodePSHUFLWMask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::VZEXT_MOVL:
DecodeZeroMoveLowMask(VT, Mask);
IsUnary = true;
break;
case X86ISD::VPERMILPV: {
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
unsigned MaskEltSize = VT.getScalarSizeInBits();
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, MaskEltSize, RawMask)) {
DecodeVPERMILPMask(VT, RawMask, Mask);
break;
}
if (auto *C = getTargetShuffleMaskConstant(MaskNode)) {
DecodeVPERMILPMask(C, MaskEltSize, Mask);
break;
}
return false;
}
case X86ISD::PSHUFB: {
IsUnary = true;
SDValue MaskNode = N->getOperand(1);
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
DecodePSHUFBMask(RawMask, Mask);
break;
}
if (auto *C = getTargetShuffleMaskConstant(MaskNode)) {
DecodePSHUFBMask(C, Mask);
break;
}
return false;
}
case X86ISD::VPERMI:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERMMask(cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = true;
break;
case X86ISD::MOVSS:
case X86ISD::MOVSD:
DecodeScalarMoveMask(VT, /* IsLoad */ false, Mask);
break;
case X86ISD::VPERM2X128:
ImmN = N->getOperand(N->getNumOperands()-1);
DecodeVPERM2X128Mask(VT, cast<ConstantSDNode>(ImmN)->getZExtValue(), Mask);
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
break;
case X86ISD::MOVSLDUP:
DecodeMOVSLDUPMask(VT, Mask);
IsUnary = true;
break;
case X86ISD::MOVSHDUP:
DecodeMOVSHDUPMask(VT, Mask);
IsUnary = true;
break;
case X86ISD::MOVDDUP:
DecodeMOVDDUPMask(VT, Mask);
IsUnary = true;
break;
case X86ISD::MOVLHPD:
case X86ISD::MOVLPD:
case X86ISD::MOVLPS:
// Not yet implemented
return false;
case X86ISD::VPPERM: {
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(1);
SDValue MaskNode = N->getOperand(2);
SmallVector<uint64_t, 32> RawMask;
if (getTargetShuffleMaskIndices(MaskNode, 8, RawMask)) {
DecodeVPPERMMask(RawMask, Mask);
break;
}
if (auto *C = getTargetShuffleMaskConstant(MaskNode)) {
DecodeVPPERMMask(C, Mask);
break;
}
return false;
}
case X86ISD::VPERMV: {
IsUnary = true;
// Unlike most shuffle nodes, VPERMV's mask operand is operand 0.
Ops.push_back(N->getOperand(1));
SDValue MaskNode = N->getOperand(0);
SmallVector<uint64_t, 32> RawMask;
unsigned MaskLoBits = Log2_64(VT.getVectorNumElements());
if (getTargetShuffleMaskIndices(MaskNode, MaskLoBits, RawMask)) {
DecodeVPERMVMask(RawMask, Mask);
break;
}
if (auto *C = getTargetShuffleMaskConstant(MaskNode)) {
DecodeVPERMVMask(C, VT, Mask);
break;
}
return false;
}
case X86ISD::VPERMV3: {
IsUnary = IsFakeUnary = N->getOperand(0) == N->getOperand(2);
// Unlike most shuffle nodes, VPERMV3's mask operand is the middle one.
Ops.push_back(N->getOperand(0));
Ops.push_back(N->getOperand(2));
SDValue MaskNode = N->getOperand(1);
if (auto *C = getTargetShuffleMaskConstant(MaskNode)) {
DecodeVPERMV3Mask(C, VT, Mask);
break;
}
return false;
}
default: llvm_unreachable("unknown target shuffle node");
}
// Empty mask indicates the decode failed.
if (Mask.empty())
return false;
// Check if we're getting a shuffle mask with zero'd elements.
if (!AllowSentinelZero)
if (llvm::any_of(Mask, [](int M) { return M == SM_SentinelZero; }))
return false;
// If we have a fake unary shuffle, the shuffle mask is spread across two
// inputs that are actually the same node. Re-map the mask to always point
// into the first input.
if (IsFakeUnary)
for (int &M : Mask)
if (M >= (int)Mask.size())
M -= Mask.size();
// If we didn't already add operands in the opcode-specific code, default to
// adding 1 or 2 operands starting at 0.
if (Ops.empty()) {
Ops.push_back(N->getOperand(0));
if (!IsUnary || IsFakeUnary)
Ops.push_back(N->getOperand(1));
}
return true;
}
/// Check a target shuffle mask's inputs to see if we can set any values to
/// SM_SentinelZero - this is for elements that are known to be zero
/// (not just zeroable) from their inputs.
/// Returns true if the target shuffle mask was decoded.
static bool setTargetShuffleZeroElements(SDValue N,
SmallVectorImpl<int> &Mask,
SmallVectorImpl<SDValue> &Ops) {
bool IsUnary;
if (!isTargetShuffle(N.getOpcode()))
return false;
if (!getTargetShuffleMask(N.getNode(), N.getSimpleValueType(), true, Ops,
Mask, IsUnary))
return false;
SDValue V1 = Ops[0];
SDValue V2 = IsUnary ? V1 : Ops[1];
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
// Already decoded as SM_SentinelZero / SM_SentinelUndef.
if (M < 0)
continue;
// Determine shuffle input and normalize the mask.
SDValue V = M < Size ? V1 : V2;
M %= Size;
// We are referencing an UNDEF input.
if (V.isUndef()) {
Mask[i] = SM_SentinelUndef;
continue;
}
// Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
if (V.getOpcode() != ISD::BUILD_VECTOR)
continue;
// If the BUILD_VECTOR has fewer elements then the (larger) source
// element must be UNDEF/ZERO.
// TODO: Is it worth testing the individual bits of a constant?
if ((Size % V.getNumOperands()) == 0) {
int Scale = Size / V->getNumOperands();
SDValue Op = V.getOperand(M / Scale);
if (Op.isUndef())
Mask[i] = SM_SentinelUndef;
else if (X86::isZeroNode(Op))
Mask[i] = SM_SentinelZero;
continue;
}
// If the BUILD_VECTOR has more elements then all the (smaller) source
// elements must be all UNDEF or all ZERO.
if ((V.getNumOperands() % Size) == 0) {
int Scale = V->getNumOperands() / Size;
bool AllUndef = true;
bool AllZero = true;
for (int j = 0; j < Scale; ++j) {
SDValue Op = V.getOperand((M * Scale) + j);
AllUndef &= Op.isUndef();
AllZero &= X86::isZeroNode(Op);
}
if (AllUndef)
Mask[i] = SM_SentinelUndef;
else if (AllZero)
Mask[i] = SM_SentinelZero;
continue;
}
}
return true;
}
/// Calls setTargetShuffleZeroElements to resolve a target shuffle mask's inputs
/// and set the SM_SentinelUndef and SM_SentinelZero values. Then check the
/// remaining input indices in case we now have a unary shuffle and adjust the
/// Op0/Op1 inputs accordingly.
/// Returns true if the target shuffle mask was decoded.
static bool resolveTargetShuffleInputs(SDValue Op, SDValue &Op0, SDValue &Op1,
SmallVectorImpl<int> &Mask) {
SmallVector<SDValue, 2> Ops;
if (!setTargetShuffleZeroElements(Op, Mask, Ops))
return false;
int NumElts = Mask.size();
bool Op0InUse = std::any_of(Mask.begin(), Mask.end(), [NumElts](int Idx) {
return 0 <= Idx && Idx < NumElts;
});
bool Op1InUse = std::any_of(Mask.begin(), Mask.end(),
[NumElts](int Idx) { return NumElts <= Idx; });
Op0 = Op0InUse ? Ops[0] : SDValue();
Op1 = Op1InUse ? Ops[1] : SDValue();
// We're only using Op1 - commute the mask and inputs.
if (!Op0InUse && Op1InUse) {
for (int &M : Mask)
if (NumElts <= M)
M -= NumElts;
Op0 = Op1;
Op1 = SDValue();
}
return true;
}
/// Returns the scalar element that will make up the ith
/// element of the result of the vector shuffle.
static SDValue getShuffleScalarElt(SDNode *N, unsigned Index, SelectionDAG &DAG,
unsigned Depth) {
if (Depth == 6)
return SDValue(); // Limit search depth.
SDValue V = SDValue(N, 0);
EVT VT = V.getValueType();
unsigned Opcode = V.getOpcode();
// Recurse into ISD::VECTOR_SHUFFLE node to find scalars.
if (const ShuffleVectorSDNode *SV = dyn_cast<ShuffleVectorSDNode>(N)) {
int Elt = SV->getMaskElt(Index);
if (Elt < 0)
return DAG.getUNDEF(VT.getVectorElementType());
unsigned NumElems = VT.getVectorNumElements();
SDValue NewV = (Elt < (int)NumElems) ? SV->getOperand(0)
: SV->getOperand(1);
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG, Depth+1);
}
// Recurse into target specific vector shuffles to find scalars.
if (isTargetShuffle(Opcode)) {
MVT ShufVT = V.getSimpleValueType();
MVT ShufSVT = ShufVT.getVectorElementType();
int NumElems = (int)ShufVT.getVectorNumElements();
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 16> ShuffleOps;
bool IsUnary;
if (!getTargetShuffleMask(N, ShufVT, true, ShuffleOps, ShuffleMask, IsUnary))
return SDValue();
int Elt = ShuffleMask[Index];
if (Elt == SM_SentinelZero)
return ShufSVT.isInteger() ? DAG.getConstant(0, SDLoc(N), ShufSVT)
: DAG.getConstantFP(+0.0, SDLoc(N), ShufSVT);
if (Elt == SM_SentinelUndef)
return DAG.getUNDEF(ShufSVT);
assert(0 <= Elt && Elt < (2*NumElems) && "Shuffle index out of range");
SDValue NewV = (Elt < NumElems) ? ShuffleOps[0] : ShuffleOps[1];
return getShuffleScalarElt(NewV.getNode(), Elt % NumElems, DAG,
Depth+1);
}
// Actual nodes that may contain scalar elements
if (Opcode == ISD::BITCAST) {
V = V.getOperand(0);
EVT SrcVT = V.getValueType();
unsigned NumElems = VT.getVectorNumElements();
if (!SrcVT.isVector() || SrcVT.getVectorNumElements() != NumElems)
return SDValue();
}
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR)
return (Index == 0) ? V.getOperand(0)
: DAG.getUNDEF(VT.getVectorElementType());
if (V.getOpcode() == ISD::BUILD_VECTOR)
return V.getOperand(Index);
return SDValue();
}
/// Custom lower build_vector of v16i8.
static SDValue LowerBuildVectorv16i8(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const TargetLowering &TLI) {
if (NumNonZero > 8)
return SDValue();
SDLoc dl(Op);
SDValue V;
bool First = true;
// SSE4.1 - use PINSRB to insert each byte directly.
if (Subtarget.hasSSE41()) {
for (unsigned i = 0; i < 16; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v16i8, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v16i8);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
MVT::v16i8, V, Op.getOperand(i),
DAG.getIntPtrConstant(i, dl));
}
}
return V;
}
// Pre-SSE4.1 - merge byte pairs and insert with PINSRW.
for (unsigned i = 0; i < 16; ++i) {
bool ThisIsNonZero = (NonZeros & (1 << i)) != 0;
if (ThisIsNonZero && First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
if ((i & 1) != 0) {
SDValue ThisElt, LastElt;
bool LastIsNonZero = (NonZeros & (1 << (i-1))) != 0;
if (LastIsNonZero) {
LastElt = DAG.getNode(ISD::ZERO_EXTEND, dl,
MVT::i16, Op.getOperand(i-1));
}
if (ThisIsNonZero) {
ThisElt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Op.getOperand(i));
ThisElt = DAG.getNode(ISD::SHL, dl, MVT::i16,
ThisElt, DAG.getConstant(8, dl, MVT::i8));
if (LastIsNonZero)
ThisElt = DAG.getNode(ISD::OR, dl, MVT::i16, ThisElt, LastElt);
} else
ThisElt = LastElt;
if (ThisElt.getNode())
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v8i16, V, ThisElt,
DAG.getIntPtrConstant(i/2, dl));
}
}
return DAG.getBitcast(MVT::v16i8, V);
}
/// Custom lower build_vector of v8i16.
static SDValue LowerBuildVectorv8i16(SDValue Op, unsigned NonZeros,
unsigned NumNonZero, unsigned NumZero,
SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const TargetLowering &TLI) {
if (NumNonZero > 4)
return SDValue();
SDLoc dl(Op);
SDValue V;
bool First = true;
for (unsigned i = 0; i < 8; ++i) {
bool isNonZero = (NonZeros & (1 << i)) != 0;
if (isNonZero) {
if (First) {
if (NumZero)
V = getZeroVector(MVT::v8i16, Subtarget, DAG, dl);
else
V = DAG.getUNDEF(MVT::v8i16);
First = false;
}
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl,
MVT::v8i16, V, Op.getOperand(i),
DAG.getIntPtrConstant(i, dl));
}
}
return V;
}
/// Custom lower build_vector of v4i32 or v4f32.
static SDValue LowerBuildVectorv4x32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget,
const TargetLowering &TLI) {
// Find all zeroable elements.
std::bitset<4> Zeroable;
for (int i=0; i < 4; ++i) {
SDValue Elt = Op->getOperand(i);
Zeroable[i] = (Elt.isUndef() || X86::isZeroNode(Elt));
}
assert(Zeroable.size() - Zeroable.count() > 1 &&
"We expect at least two non-zero elements!");
// We only know how to deal with build_vector nodes where elements are either
// zeroable or extract_vector_elt with constant index.
SDValue FirstNonZero;
unsigned FirstNonZeroIdx;
for (unsigned i=0; i < 4; ++i) {
if (Zeroable[i])
continue;
SDValue Elt = Op->getOperand(i);
if (Elt.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Elt.getOperand(1)))
return SDValue();
// Make sure that this node is extracting from a 128-bit vector.
MVT VT = Elt.getOperand(0).getSimpleValueType();
if (!VT.is128BitVector())
return SDValue();
if (!FirstNonZero.getNode()) {
FirstNonZero = Elt;
FirstNonZeroIdx = i;
}
}
assert(FirstNonZero.getNode() && "Unexpected build vector of all zeros!");
SDValue V1 = FirstNonZero.getOperand(0);
MVT VT = V1.getSimpleValueType();
// See if this build_vector can be lowered as a blend with zero.
SDValue Elt;
unsigned EltMaskIdx, EltIdx;
int Mask[4];
for (EltIdx = 0; EltIdx < 4; ++EltIdx) {
if (Zeroable[EltIdx]) {
// The zero vector will be on the right hand side.
Mask[EltIdx] = EltIdx+4;
continue;
}
Elt = Op->getOperand(EltIdx);
// By construction, Elt is a EXTRACT_VECTOR_ELT with constant index.
EltMaskIdx = cast<ConstantSDNode>(Elt.getOperand(1))->getZExtValue();
if (Elt.getOperand(0) != V1 || EltMaskIdx != EltIdx)
break;
Mask[EltIdx] = EltIdx;
}
if (EltIdx == 4) {
// Let the shuffle legalizer deal with blend operations.
SDValue VZero = getZeroVector(VT, Subtarget, DAG, SDLoc(Op));
if (V1.getSimpleValueType() != VT)
V1 = DAG.getBitcast(VT, V1);
return DAG.getVectorShuffle(VT, SDLoc(V1), V1, VZero, &Mask[0]);
}
// See if we can lower this build_vector to a INSERTPS.
if (!Subtarget.hasSSE41())
return SDValue();
SDValue V2 = Elt.getOperand(0);
if (Elt == FirstNonZero && EltIdx == FirstNonZeroIdx)
V1 = SDValue();
bool CanFold = true;
for (unsigned i = EltIdx + 1; i < 4 && CanFold; ++i) {
if (Zeroable[i])
continue;
SDValue Current = Op->getOperand(i);
SDValue SrcVector = Current->getOperand(0);
if (!V1.getNode())
V1 = SrcVector;
CanFold = SrcVector == V1 &&
cast<ConstantSDNode>(Current.getOperand(1))->getZExtValue() == i;
}
if (!CanFold)
return SDValue();
assert(V1.getNode() && "Expected at least two non-zero elements!");
if (V1.getSimpleValueType() != MVT::v4f32)
V1 = DAG.getBitcast(MVT::v4f32, V1);
if (V2.getSimpleValueType() != MVT::v4f32)
V2 = DAG.getBitcast(MVT::v4f32, V2);
// Ok, we can emit an INSERTPS instruction.
unsigned ZMask = Zeroable.to_ulong();
unsigned InsertPSMask = EltMaskIdx << 6 | EltIdx << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
SDLoc DL(Op);
SDValue Result = DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getIntPtrConstant(InsertPSMask, DL));
return DAG.getBitcast(VT, Result);
}
/// Return a vector logical shift node.
static SDValue getVShift(bool isLeft, EVT VT, SDValue SrcOp,
unsigned NumBits, SelectionDAG &DAG,
const TargetLowering &TLI, SDLoc dl) {
assert(VT.is128BitVector() && "Unknown type for VShift");
MVT ShVT = MVT::v2i64;
unsigned Opc = isLeft ? X86ISD::VSHLDQ : X86ISD::VSRLDQ;
SrcOp = DAG.getBitcast(ShVT, SrcOp);
MVT ScalarShiftTy = TLI.getScalarShiftAmountTy(DAG.getDataLayout(), VT);
assert(NumBits % 8 == 0 && "Only support byte sized shifts");
SDValue ShiftVal = DAG.getConstant(NumBits/8, dl, ScalarShiftTy);
return DAG.getBitcast(VT, DAG.getNode(Opc, dl, ShVT, SrcOp, ShiftVal));
}
static SDValue
LowerAsSplatVectorLoad(SDValue SrcOp, MVT VT, SDLoc dl, SelectionDAG &DAG) {
// Check if the scalar load can be widened into a vector load. And if
// the address is "base + cst" see if the cst can be "absorbed" into
// the shuffle mask.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(SrcOp)) {
SDValue Ptr = LD->getBasePtr();
if (!ISD::isNormalLoad(LD) || LD->isVolatile())
return SDValue();
EVT PVT = LD->getValueType(0);
if (PVT != MVT::i32 && PVT != MVT::f32)
return SDValue();
int FI = -1;
int64_t Offset = 0;
if (FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr)) {
FI = FINode->getIndex();
Offset = 0;
} else if (DAG.isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
Offset = Ptr.getConstantOperandVal(1);
Ptr = Ptr.getOperand(0);
} else {
return SDValue();
}
// FIXME: 256-bit vector instructions don't require a strict alignment,
// improve this code to support it better.
unsigned RequiredAlign = VT.getSizeInBits()/8;
SDValue Chain = LD->getChain();
// Make sure the stack object alignment is at least 16 or 32.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
if (DAG.InferPtrAlignment(Ptr) < RequiredAlign) {
if (MFI->isFixedObjectIndex(FI)) {
// Can't change the alignment. FIXME: It's possible to compute
// the exact stack offset and reference FI + adjust offset instead.
// If someone *really* cares about this. That's the way to implement it.
return SDValue();
} else {
MFI->setObjectAlignment(FI, RequiredAlign);
}
}
// (Offset % 16 or 32) must be multiple of 4. Then address is then
// Ptr + (Offset & ~15).
if (Offset < 0)
return SDValue();
if ((Offset % RequiredAlign) & 3)
return SDValue();
int64_t StartOffset = Offset & ~int64_t(RequiredAlign - 1);
if (StartOffset) {
SDLoc DL(Ptr);
Ptr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
DAG.getConstant(StartOffset, DL, Ptr.getValueType()));
}
int EltNo = (Offset - StartOffset) >> 2;
unsigned NumElems = VT.getVectorNumElements();
EVT NVT = EVT::getVectorVT(*DAG.getContext(), PVT, NumElems);
SDValue V1 = DAG.getLoad(NVT, dl, Chain, Ptr,
LD->getPointerInfo().getWithOffset(StartOffset),
false, false, false, 0);
SmallVector<int, 8> Mask(NumElems, EltNo);
return DAG.getVectorShuffle(NVT, dl, V1, DAG.getUNDEF(NVT), &Mask[0]);
}
return SDValue();
}
/// Given the initializing elements 'Elts' of a vector of type 'VT', see if the
/// elements can be replaced by a single large load which has the same value as
/// a build_vector or insert_subvector whose loaded operands are 'Elts'.
///
/// Example: <load i32 *a, load i32 *a+4, zero, undef> -> zextload a
static SDValue EltsFromConsecutiveLoads(EVT VT, ArrayRef<SDValue> Elts,
SDLoc &DL, SelectionDAG &DAG,
bool isAfterLegalize) {
unsigned NumElems = Elts.size();
int LastLoadedElt = -1;
SmallBitVector LoadMask(NumElems, false);
SmallBitVector ZeroMask(NumElems, false);
SmallBitVector UndefMask(NumElems, false);
// For each element in the initializer, see if we've found a load, zero or an
// undef.
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = peekThroughBitcasts(Elts[i]);
if (!Elt.getNode())
return SDValue();
if (Elt.isUndef())
UndefMask[i] = true;
else if (X86::isZeroNode(Elt) || ISD::isBuildVectorAllZeros(Elt.getNode()))
ZeroMask[i] = true;
else if (ISD::isNON_EXTLoad(Elt.getNode())) {
LoadMask[i] = true;
LastLoadedElt = i;
// Each loaded element must be the correct fractional portion of the
// requested vector load.
if ((NumElems * Elt.getValueSizeInBits()) != VT.getSizeInBits())
return SDValue();
} else
return SDValue();
}
assert((ZeroMask | UndefMask | LoadMask).count() == NumElems &&
"Incomplete element masks");
// Handle Special Cases - all undef or undef/zero.
if (UndefMask.count() == NumElems)
return DAG.getUNDEF(VT);
// FIXME: Should we return this as a BUILD_VECTOR instead?
if ((ZeroMask | UndefMask).count() == NumElems)
return VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
int FirstLoadedElt = LoadMask.find_first();
SDValue EltBase = peekThroughBitcasts(Elts[FirstLoadedElt]);
LoadSDNode *LDBase = cast<LoadSDNode>(EltBase);
EVT LDBaseVT = EltBase.getValueType();
// Consecutive loads can contain UNDEFS but not ZERO elements.
// Consecutive loads with UNDEFs and ZEROs elements require a
// an additional shuffle stage to clear the ZERO elements.
bool IsConsecutiveLoad = true;
bool IsConsecutiveLoadWithZeros = true;
for (int i = FirstLoadedElt + 1; i <= LastLoadedElt; ++i) {
if (LoadMask[i]) {
SDValue Elt = peekThroughBitcasts(Elts[i]);
LoadSDNode *LD = cast<LoadSDNode>(Elt);
if (!DAG.areNonVolatileConsecutiveLoads(
LD, LDBase, Elt.getValueType().getStoreSizeInBits() / 8,
i - FirstLoadedElt)) {
IsConsecutiveLoad = false;
IsConsecutiveLoadWithZeros = false;
break;
}
} else if (ZeroMask[i]) {
IsConsecutiveLoad = false;
}
}
auto CreateLoad = [&DAG, &DL](EVT VT, LoadSDNode *LDBase) {
SDValue NewLd = DAG.getLoad(
VT, DL, LDBase->getChain(), LDBase->getBasePtr(),
LDBase->getPointerInfo(), false /*LDBase->isVolatile()*/,
LDBase->isNonTemporal(), LDBase->isInvariant(), LDBase->getAlignment());
if (LDBase->hasAnyUseOfValue(1)) {
SDValue NewChain =
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1),
SDValue(NewLd.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
SDValue(NewLd.getNode(), 1));
}
return NewLd;
};
// LOAD - all consecutive load/undefs (must start/end with a load).
// If we have found an entire vector of loads and undefs, then return a large
// load of the entire vector width starting at the base pointer.
// If the vector contains zeros, then attempt to shuffle those elements.
if (FirstLoadedElt == 0 && LastLoadedElt == (int)(NumElems - 1) &&
(IsConsecutiveLoad || IsConsecutiveLoadWithZeros)) {
assert(LDBase && "Did not find base load for merging consecutive loads");
EVT EltVT = LDBase->getValueType(0);
// Ensure that the input vector size for the merged loads matches the
// cumulative size of the input elements.
if (VT.getSizeInBits() != EltVT.getSizeInBits() * NumElems)
return SDValue();
if (isAfterLegalize && !TLI.isOperationLegal(ISD::LOAD, VT))
return SDValue();
if (IsConsecutiveLoad)
return CreateLoad(VT, LDBase);
// IsConsecutiveLoadWithZeros - we need to create a shuffle of the loaded
// vector and a zero vector to clear out the zero elements.
if (!isAfterLegalize && NumElems == VT.getVectorNumElements()) {
SmallVector<int, 4> ClearMask(NumElems, -1);
for (unsigned i = 0; i < NumElems; ++i) {
if (ZeroMask[i])
ClearMask[i] = i + NumElems;
else if (LoadMask[i])
ClearMask[i] = i;
}
SDValue V = CreateLoad(VT, LDBase);
SDValue Z = VT.isInteger() ? DAG.getConstant(0, DL, VT)
: DAG.getConstantFP(0.0, DL, VT);
return DAG.getVectorShuffle(VT, DL, V, Z, ClearMask);
}
}
int LoadSize =
(1 + LastLoadedElt - FirstLoadedElt) * LDBaseVT.getStoreSizeInBits();
// VZEXT_LOAD - consecutive load/undefs followed by zeros/undefs.
if (IsConsecutiveLoad && FirstLoadedElt == 0 && LoadSize == 64 &&
((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
MVT VecSVT = VT.isFloatingPoint() ? MVT::f64 : MVT::i64;
MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / 64);
if (TLI.isTypeLegal(VecVT)) {
SDVTList Tys = DAG.getVTList(VecVT, MVT::Other);
SDValue Ops[] = { LDBase->getChain(), LDBase->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, DL, Tys, Ops, VecSVT,
LDBase->getPointerInfo(),
LDBase->getAlignment(),
false/*isVolatile*/, true/*ReadMem*/,
false/*WriteMem*/);
// Make sure the newly-created LOAD is in the same position as LDBase in
// terms of dependency. We create a TokenFactor for LDBase and ResNode,
// and update uses of LDBase's output chain to use the TokenFactor.
if (LDBase->hasAnyUseOfValue(1)) {
SDValue NewChain =
DAG.getNode(ISD::TokenFactor, DL, MVT::Other, SDValue(LDBase, 1),
SDValue(ResNode.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(LDBase, 1), NewChain);
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(LDBase, 1),
SDValue(ResNode.getNode(), 1));
}
return DAG.getBitcast(VT, ResNode);
}
}
// VZEXT_MOVL - consecutive 32-bit load/undefs followed by zeros/undefs.
if (IsConsecutiveLoad && FirstLoadedElt == 0 && LoadSize == 32 &&
((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()))) {
MVT VecSVT = VT.isFloatingPoint() ? MVT::f32 : MVT::i32;
MVT VecVT = MVT::getVectorVT(VecSVT, VT.getSizeInBits() / 32);
if (TLI.isTypeLegal(VecVT)) {
SDValue V = LastLoadedElt != 0 ? CreateLoad(VecSVT, LDBase)
: DAG.getBitcast(VecSVT, EltBase);
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, VecVT, V);
return DAG.getBitcast(VT, V);
}
}
return SDValue();
}
/// Attempt to use the vbroadcast instruction to generate a splat value for the
/// following cases:
/// 1. A splat BUILD_VECTOR which uses a single scalar load, or a constant.
/// 2. A splat shuffle which uses a scalar_to_vector node which comes from
/// a scalar load, or a constant.
/// The VBROADCAST node is returned when a pattern is found,
/// or SDValue() otherwise.
static SDValue LowerVectorBroadcast(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// VBROADCAST requires AVX.
// TODO: Splats could be generated for non-AVX CPUs using SSE
// instructions, but there's less potential gain for only 128-bit vectors.
if (!Subtarget.hasAVX())
return SDValue();
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert((VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) &&
"Unsupported vector type for broadcast.");
SDValue Ld;
bool ConstSplatVal;
switch (Op.getOpcode()) {
default:
// Unknown pattern found.
return SDValue();
case ISD::BUILD_VECTOR: {
auto *BVOp = cast<BuildVectorSDNode>(Op.getNode());
BitVector UndefElements;
SDValue Splat = BVOp->getSplatValue(&UndefElements);
// We need a splat of a single value to use broadcast, and it doesn't
// make any sense if the value is only in one element of the vector.
if (!Splat || (VT.getVectorNumElements() - UndefElements.count()) <= 1)
return SDValue();
Ld = Splat;
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
Ld.getOpcode() == ISD::ConstantFP);
// Make sure that all of the users of a non-constant load are from the
// BUILD_VECTOR node.
if (!ConstSplatVal && !BVOp->isOnlyUserOf(Ld.getNode()))
return SDValue();
break;
}
case ISD::VECTOR_SHUFFLE: {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
// Shuffles must have a splat mask where the first element is
// broadcasted.
if ((!SVOp->isSplat()) || SVOp->getMaskElt(0) != 0)
return SDValue();
SDValue Sc = Op.getOperand(0);
if (Sc.getOpcode() != ISD::SCALAR_TO_VECTOR &&
Sc.getOpcode() != ISD::BUILD_VECTOR) {
if (!Subtarget.hasInt256())
return SDValue();
// Use the register form of the broadcast instruction available on AVX2.
if (VT.getSizeInBits() >= 256)
Sc = extract128BitVector(Sc, 0, DAG, dl);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Sc);
}
Ld = Sc.getOperand(0);
ConstSplatVal = (Ld.getOpcode() == ISD::Constant ||
Ld.getOpcode() == ISD::ConstantFP);
// The scalar_to_vector node and the suspected
// load node must have exactly one user.
// Constants may have multiple users.
// AVX-512 has register version of the broadcast
bool hasRegVer = Subtarget.hasAVX512() && VT.is512BitVector() &&
Ld.getValueType().getSizeInBits() >= 32;
if (!ConstSplatVal && ((!Sc.hasOneUse() || !Ld.hasOneUse()) &&
!hasRegVer))
return SDValue();
break;
}
}
unsigned ScalarSize = Ld.getValueType().getSizeInBits();
bool IsGE256 = (VT.getSizeInBits() >= 256);
// When optimizing for size, generate up to 5 extra bytes for a broadcast
// instruction to save 8 or more bytes of constant pool data.
// TODO: If multiple splats are generated to load the same constant,
// it may be detrimental to overall size. There needs to be a way to detect
// that condition to know if this is truly a size win.
bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
// Handle broadcasting a single constant scalar from the constant pool
// into a vector.
// On Sandybridge (no AVX2), it is still better to load a constant vector
// from the constant pool and not to broadcast it from a scalar.
// But override that restriction when optimizing for size.
// TODO: Check if splatting is recommended for other AVX-capable CPUs.
if (ConstSplatVal && (Subtarget.hasAVX2() || OptForSize)) {
EVT CVT = Ld.getValueType();
assert(!CVT.isVector() && "Must not broadcast a vector type");
// Splat f32, i32, v4f64, v4i64 in all cases with AVX2.
// For size optimization, also splat v2f64 and v2i64, and for size opt
// with AVX2, also splat i8 and i16.
// With pattern matching, the VBROADCAST node may become a VMOVDDUP.
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(OptForSize && (ScalarSize == 64 || Subtarget.hasAVX2()))) {
const Constant *C = nullptr;
if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(Ld))
C = CI->getConstantIntValue();
else if (ConstantFPSDNode *CF = dyn_cast<ConstantFPSDNode>(Ld))
C = CF->getConstantFPValue();
assert(C && "Invalid constant type");
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue CP =
DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
unsigned Alignment = cast<ConstantPoolSDNode>(CP)->getAlignment();
Ld = DAG.getLoad(
CVT, dl, DAG.getEntryNode(), CP,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
false, false, Alignment);
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
}
bool IsLoad = ISD::isNormalLoad(Ld.getNode());
// Handle AVX2 in-register broadcasts.
if (!IsLoad && Subtarget.hasInt256() &&
(ScalarSize == 32 || (IsGE256 && ScalarSize == 64)))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The scalar source must be a normal load.
if (!IsLoad)
return SDValue();
if (ScalarSize == 32 || (IsGE256 && ScalarSize == 64) ||
(Subtarget.hasVLX() && ScalarSize == 64))
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
// The integer check is needed for the 64-bit into 128-bit so it doesn't match
// double since there is no vbroadcastsd xmm
if (Subtarget.hasInt256() && Ld.getValueType().isInteger()) {
if (ScalarSize == 8 || ScalarSize == 16 || ScalarSize == 64)
return DAG.getNode(X86ISD::VBROADCAST, dl, VT, Ld);
}
// Unsupported broadcast.
return SDValue();
}
/// \brief For an EXTRACT_VECTOR_ELT with a constant index return the real
/// underlying vector and index.
///
/// Modifies \p ExtractedFromVec to the real vector and returns the real
/// index.
static int getUnderlyingExtractedFromVec(SDValue &ExtractedFromVec,
SDValue ExtIdx) {
int Idx = cast<ConstantSDNode>(ExtIdx)->getZExtValue();
if (!isa<ShuffleVectorSDNode>(ExtractedFromVec))
return Idx;
// For 256-bit vectors, LowerEXTRACT_VECTOR_ELT_SSE4 may have already
// lowered this:
// (extract_vector_elt (v8f32 %vreg1), Constant<6>)
// to:
// (extract_vector_elt (vector_shuffle<2,u,u,u>
// (extract_subvector (v8f32 %vreg0), Constant<4>),
// undef)
// Constant<0>)
// In this case the vector is the extract_subvector expression and the index
// is 2, as specified by the shuffle.
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(ExtractedFromVec);
SDValue ShuffleVec = SVOp->getOperand(0);
MVT ShuffleVecVT = ShuffleVec.getSimpleValueType();
assert(ShuffleVecVT.getVectorElementType() ==
ExtractedFromVec.getSimpleValueType().getVectorElementType());
int ShuffleIdx = SVOp->getMaskElt(Idx);
if (isUndefOrInRange(ShuffleIdx, 0, ShuffleVecVT.getVectorNumElements())) {
ExtractedFromVec = ShuffleVec;
return ShuffleIdx;
}
return Idx;
}
static SDValue buildFromShuffleMostly(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
// Skip if insert_vec_elt is not supported.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrCustom(ISD::INSERT_VECTOR_ELT, VT))
return SDValue();
SDLoc DL(Op);
unsigned NumElems = Op.getNumOperands();
SDValue VecIn1;
SDValue VecIn2;
SmallVector<unsigned, 4> InsertIndices;
SmallVector<int, 8> Mask(NumElems, -1);
for (unsigned i = 0; i != NumElems; ++i) {
unsigned Opc = Op.getOperand(i).getOpcode();
if (Opc == ISD::UNDEF)
continue;
if (Opc != ISD::EXTRACT_VECTOR_ELT) {
// Quit if more than 1 elements need inserting.
if (InsertIndices.size() > 1)
return SDValue();
InsertIndices.push_back(i);
continue;
}
SDValue ExtractedFromVec = Op.getOperand(i).getOperand(0);
SDValue ExtIdx = Op.getOperand(i).getOperand(1);
// Quit if non-constant index.
if (!isa<ConstantSDNode>(ExtIdx))
return SDValue();
int Idx = getUnderlyingExtractedFromVec(ExtractedFromVec, ExtIdx);
// Quit if extracted from vector of different type.
if (ExtractedFromVec.getValueType() != VT)
return SDValue();
if (!VecIn1.getNode())
VecIn1 = ExtractedFromVec;
else if (VecIn1 != ExtractedFromVec) {
if (!VecIn2.getNode())
VecIn2 = ExtractedFromVec;
else if (VecIn2 != ExtractedFromVec)
// Quit if more than 2 vectors to shuffle
return SDValue();
}
if (ExtractedFromVec == VecIn1)
Mask[i] = Idx;
else if (ExtractedFromVec == VecIn2)
Mask[i] = Idx + NumElems;
}
if (!VecIn1.getNode())
return SDValue();
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(VT);
SDValue NV = DAG.getVectorShuffle(VT, DL, VecIn1, VecIn2, &Mask[0]);
for (unsigned i = 0, e = InsertIndices.size(); i != e; ++i) {
unsigned Idx = InsertIndices[i];
NV = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, NV, Op.getOperand(Idx),
DAG.getIntPtrConstant(Idx, DL));
}
return NV;
}
static SDValue ConvertI1VectorToInteger(SDValue Op, SelectionDAG &DAG) {
assert(ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) &&
Op.getScalarValueSizeInBits() == 1 &&
"Can not convert non-constant vector");
uint64_t Immediate = 0;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (!In.isUndef())
Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
}
SDLoc dl(Op);
MVT VT =
MVT::getIntegerVT(std::max((int)Op.getValueType().getSizeInBits(), 8));
return DAG.getConstant(Immediate, dl, VT);
}
// Lower BUILD_VECTOR operation for v8i1 and v16i1 types.
SDValue
X86TargetLowering::LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
assert((VT.getVectorElementType() == MVT::i1) &&
"Unexpected type in LowerBUILD_VECTORvXi1!");
SDLoc dl(Op);
if (ISD::isBuildVectorAllZeros(Op.getNode()))
return DAG.getTargetConstant(0, dl, VT);
if (ISD::isBuildVectorAllOnes(Op.getNode()))
return DAG.getTargetConstant(1, dl, VT);
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
SDValue Imm = ConvertI1VectorToInteger(Op, DAG);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, Imm);
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
// Vector has one or more non-const elements
uint64_t Immediate = 0;
SmallVector<unsigned, 16> NonConstIdx;
bool IsSplat = true;
bool HasConstElts = false;
int SplatIdx = -1;
for (unsigned idx = 0, e = Op.getNumOperands(); idx < e; ++idx) {
SDValue In = Op.getOperand(idx);
if (In.isUndef())
continue;
if (!isa<ConstantSDNode>(In))
NonConstIdx.push_back(idx);
else {
Immediate |= cast<ConstantSDNode>(In)->getZExtValue() << idx;
HasConstElts = true;
}
if (SplatIdx == -1)
SplatIdx = idx;
else if (In != Op.getOperand(SplatIdx))
IsSplat = false;
}
// for splat use " (select i1 splat_elt, all-ones, all-zeroes)"
if (IsSplat)
return DAG.getNode(ISD::SELECT, dl, VT, Op.getOperand(SplatIdx),
DAG.getConstant(1, dl, VT),
DAG.getConstant(0, dl, VT));
// insert elements one by one
SDValue DstVec;
SDValue Imm;
if (Immediate) {
MVT ImmVT = MVT::getIntegerVT(std::max((int)VT.getSizeInBits(), 8));
Imm = DAG.getConstant(Immediate, dl, ImmVT);
}
else if (HasConstElts)
Imm = DAG.getConstant(0, dl, VT);
else
Imm = DAG.getUNDEF(VT);
if (Imm.getValueSizeInBits() == VT.getSizeInBits())
DstVec = DAG.getBitcast(VT, Imm);
else {
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, Imm);
DstVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
for (unsigned i = 0, e = NonConstIdx.size(); i != e; ++i) {
unsigned InsertIdx = NonConstIdx[i];
DstVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DstVec,
Op.getOperand(InsertIdx),
DAG.getIntPtrConstant(InsertIdx, dl));
}
return DstVec;
}
/// \brief Return true if \p N implements a horizontal binop and return the
/// operands for the horizontal binop into V0 and V1.
///
/// This is a helper function of LowerToHorizontalOp().
/// This function checks that the build_vector \p N in input implements a
/// horizontal operation. Parameter \p Opcode defines the kind of horizontal
/// operation to match.
/// For example, if \p Opcode is equal to ISD::ADD, then this function
/// checks if \p N implements a horizontal arithmetic add; if instead \p Opcode
/// is equal to ISD::SUB, then this function checks if this is a horizontal
/// arithmetic sub.
///
/// This function only analyzes elements of \p N whose indices are
/// in range [BaseIdx, LastIdx).
static bool isHorizontalBinOp(const BuildVectorSDNode *N, unsigned Opcode,
SelectionDAG &DAG,
unsigned BaseIdx, unsigned LastIdx,
SDValue &V0, SDValue &V1) {
EVT VT = N->getValueType(0);
assert(BaseIdx * 2 <= LastIdx && "Invalid Indices in input!");
assert(VT.isVector() && VT.getVectorNumElements() >= LastIdx &&
"Invalid Vector in input!");
bool IsCommutable = (Opcode == ISD::ADD || Opcode == ISD::FADD);
bool CanFold = true;
unsigned ExpectedVExtractIdx = BaseIdx;
unsigned NumElts = LastIdx - BaseIdx;
V0 = DAG.getUNDEF(VT);
V1 = DAG.getUNDEF(VT);
// Check if N implements a horizontal binop.
for (unsigned i = 0, e = NumElts; i != e && CanFold; ++i) {
SDValue Op = N->getOperand(i + BaseIdx);
// Skip UNDEFs.
if (Op->isUndef()) {
// Update the expected vector extract index.
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
ExpectedVExtractIdx += 2;
continue;
}
CanFold = Op->getOpcode() == Opcode && Op->hasOneUse();
if (!CanFold)
break;
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, I), (extract_vector_elt A, I+1))
CanFold = (Op0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op1.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
Op0.getOperand(0) == Op1.getOperand(0) &&
isa<ConstantSDNode>(Op0.getOperand(1)) &&
isa<ConstantSDNode>(Op1.getOperand(1)));
if (!CanFold)
break;
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
unsigned I1 = cast<ConstantSDNode>(Op1.getOperand(1))->getZExtValue();
if (i * 2 < NumElts) {
if (V0.isUndef()) {
V0 = Op0.getOperand(0);
if (V0.getValueType() != VT)
return false;
}
} else {
if (V1.isUndef()) {
V1 = Op0.getOperand(0);
if (V1.getValueType() != VT)
return false;
}
if (i * 2 == NumElts)
ExpectedVExtractIdx = BaseIdx;
}
SDValue Expected = (i * 2 < NumElts) ? V0 : V1;
if (I0 == ExpectedVExtractIdx)
CanFold = I1 == I0 + 1 && Op0.getOperand(0) == Expected;
else if (IsCommutable && I1 == ExpectedVExtractIdx) {
// Try to match the following dag sequence:
// (BINOP (extract_vector_elt A, I+1), (extract_vector_elt A, I))
CanFold = I0 == I1 + 1 && Op1.getOperand(0) == Expected;
} else
CanFold = false;
ExpectedVExtractIdx += 2;
}
return CanFold;
}
/// \brief Emit a sequence of two 128-bit horizontal add/sub followed by
/// a concat_vector.
///
/// This is a helper function of LowerToHorizontalOp().
/// This function expects two 256-bit vectors called V0 and V1.
/// At first, each vector is split into two separate 128-bit vectors.
/// Then, the resulting 128-bit vectors are used to implement two
/// horizontal binary operations.
///
/// The kind of horizontal binary operation is defined by \p X86Opcode.
///
/// \p Mode specifies how the 128-bit parts of V0 and V1 are passed in input to
/// the two new horizontal binop.
/// When Mode is set, the first horizontal binop dag node would take as input
/// the lower 128-bit of V0 and the upper 128-bit of V0. The second
/// horizontal binop dag node would take as input the lower 128-bit of V1
/// and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V0_HI
/// HADD V1_LO, V1_HI
///
/// Otherwise, the first horizontal binop dag node takes as input the lower
/// 128-bit of V0 and the lower 128-bit of V1, and the second horizontal binop
/// dag node takes the upper 128-bit of V0 and the upper 128-bit of V1.
/// Example:
/// HADD V0_LO, V1_LO
/// HADD V0_HI, V1_HI
///
/// If \p isUndefLO is set, then the algorithm propagates UNDEF to the lower
/// 128-bits of the result. If \p isUndefHI is set, then UNDEF is propagated to
/// the upper 128-bits of the result.
static SDValue ExpandHorizontalBinOp(const SDValue &V0, const SDValue &V1,
SDLoc DL, SelectionDAG &DAG,
unsigned X86Opcode, bool Mode,
bool isUndefLO, bool isUndefHI) {
MVT VT = V0.getSimpleValueType();
assert(VT.is256BitVector() && VT == V1.getSimpleValueType() &&
"Invalid nodes in input!");
unsigned NumElts = VT.getVectorNumElements();
SDValue V0_LO = extract128BitVector(V0, 0, DAG, DL);
SDValue V0_HI = extract128BitVector(V0, NumElts/2, DAG, DL);
SDValue V1_LO = extract128BitVector(V1, 0, DAG, DL);
SDValue V1_HI = extract128BitVector(V1, NumElts/2, DAG, DL);
MVT NewVT = V0_LO.getSimpleValueType();
SDValue LO = DAG.getUNDEF(NewVT);
SDValue HI = DAG.getUNDEF(NewVT);
if (Mode) {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && !V0->isUndef())
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V0_HI);
if (!isUndefHI && !V1->isUndef())
HI = DAG.getNode(X86Opcode, DL, NewVT, V1_LO, V1_HI);
} else {
// Don't emit a horizontal binop if the result is expected to be UNDEF.
if (!isUndefLO && (!V0_LO->isUndef() || !V1_LO->isUndef()))
LO = DAG.getNode(X86Opcode, DL, NewVT, V0_LO, V1_LO);
if (!isUndefHI && (!V0_HI->isUndef() || !V1_HI->isUndef()))
HI = DAG.getNode(X86Opcode, DL, NewVT, V0_HI, V1_HI);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LO, HI);
}
/// Try to fold a build_vector that performs an 'addsub' to an X86ISD::ADDSUB
/// node.
static SDValue LowerToAddSub(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
MVT VT = BV->getSimpleValueType(0);
if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
(!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)))
return SDValue();
SDLoc DL(BV);
unsigned NumElts = VT.getVectorNumElements();
SDValue InVec0 = DAG.getUNDEF(VT);
SDValue InVec1 = DAG.getUNDEF(VT);
assert((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v4f32 ||
VT == MVT::v2f64) && "build_vector with an invalid type found!");
// Odd-numbered elements in the input build vector are obtained from
// adding two integer/float elements.
// Even-numbered elements in the input build vector are obtained from
// subtracting two integer/float elements.
unsigned ExpectedOpcode = ISD::FSUB;
unsigned NextExpectedOpcode = ISD::FADD;
bool AddFound = false;
bool SubFound = false;
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Op = BV->getOperand(i);
// Skip 'undef' values.
unsigned Opcode = Op.getOpcode();
if (Opcode == ISD::UNDEF) {
std::swap(ExpectedOpcode, NextExpectedOpcode);
continue;
}
// Early exit if we found an unexpected opcode.
if (Opcode != ExpectedOpcode)
return SDValue();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
// Try to match the following pattern:
// (BINOP (extract_vector_elt A, i), (extract_vector_elt B, i))
// Early exit if we cannot match that sequence.
if (Op0.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
Op1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
!isa<ConstantSDNode>(Op0.getOperand(1)) ||
!isa<ConstantSDNode>(Op1.getOperand(1)) ||
Op0.getOperand(1) != Op1.getOperand(1))
return SDValue();
unsigned I0 = cast<ConstantSDNode>(Op0.getOperand(1))->getZExtValue();
if (I0 != i)
return SDValue();
// We found a valid add/sub node. Update the information accordingly.
if (i & 1)
AddFound = true;
else
SubFound = true;
// Update InVec0 and InVec1.
if (InVec0.isUndef()) {
InVec0 = Op0.getOperand(0);
if (InVec0.getSimpleValueType() != VT)
return SDValue();
}
if (InVec1.isUndef()) {
InVec1 = Op1.getOperand(0);
if (InVec1.getSimpleValueType() != VT)
return SDValue();
}
// Make sure that operands in input to each add/sub node always
// come from a same pair of vectors.
if (InVec0 != Op0.getOperand(0)) {
if (ExpectedOpcode == ISD::FSUB)
return SDValue();
// FADD is commutable. Try to commute the operands
// and then test again.
std::swap(Op0, Op1);
if (InVec0 != Op0.getOperand(0))
return SDValue();
}
if (InVec1 != Op1.getOperand(0))
return SDValue();
// Update the pair of expected opcodes.
std::swap(ExpectedOpcode, NextExpectedOpcode);
}
// Don't try to fold this build_vector into an ADDSUB if the inputs are undef.
if (AddFound && SubFound && !InVec0.isUndef() && !InVec1.isUndef())
return DAG.getNode(X86ISD::ADDSUB, DL, VT, InVec0, InVec1);
return SDValue();
}
/// Lower BUILD_VECTOR to a horizontal add/sub operation if possible.
static SDValue LowerToHorizontalOp(const BuildVectorSDNode *BV,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = BV->getSimpleValueType(0);
unsigned NumElts = VT.getVectorNumElements();
unsigned NumUndefsLO = 0;
unsigned NumUndefsHI = 0;
unsigned Half = NumElts/2;
// Count the number of UNDEF operands in the build_vector in input.
for (unsigned i = 0, e = Half; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsLO++;
for (unsigned i = Half, e = NumElts; i != e; ++i)
if (BV->getOperand(i)->isUndef())
NumUndefsHI++;
// Early exit if this is either a build_vector of all UNDEFs or all the
// operands but one are UNDEF.
if (NumUndefsLO + NumUndefsHI + 1 >= NumElts)
return SDValue();
SDLoc DL(BV);
SDValue InVec0, InVec1;
if ((VT == MVT::v4f32 || VT == MVT::v2f64) && Subtarget.hasSSE3()) {
// Try to match an SSE3 float HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
} else if ((VT == MVT::v4i32 || VT == MVT::v8i16) && Subtarget.hasSSSE3()) {
// Try to match an SSSE3 integer HADD/HSUB.
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
return DAG.getNode(X86ISD::HSUB, DL, VT, InVec0, InVec1);
}
if (!Subtarget.hasAVX())
return SDValue();
if ((VT == MVT::v8f32 || VT == MVT::v4f64)) {
// Try to match an AVX horizontal add/sub of packed single/double
// precision floating point values from 256-bit vectors.
SDValue InVec2, InVec3;
if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::FADD, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
return DAG.getNode(X86ISD::FHADD, DL, VT, InVec0, InVec1);
if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::FSUB, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
return DAG.getNode(X86ISD::FHSUB, DL, VT, InVec0, InVec1);
} else if (VT == MVT::v8i32 || VT == MVT::v16i16) {
// Try to match an AVX2 horizontal add/sub of signed integers.
SDValue InVec2, InVec3;
unsigned X86Opcode;
bool CanFold = true;
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::ADD, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, Half, InVec0, InVec1) &&
isHorizontalBinOp(BV, ISD::SUB, DAG, Half, NumElts, InVec2, InVec3) &&
((InVec0.isUndef() || InVec2.isUndef()) || InVec0 == InVec2) &&
((InVec1.isUndef() || InVec3.isUndef()) || InVec1 == InVec3))
X86Opcode = X86ISD::HSUB;
else
CanFold = false;
if (CanFold) {
// Fold this build_vector into a single horizontal add/sub.
// Do this only if the target has AVX2.
if (Subtarget.hasAVX2())
return DAG.getNode(X86Opcode, DL, VT, InVec0, InVec1);
// Do not try to expand this build_vector into a pair of horizontal
// add/sub if we can emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into a pair of horizontal binop followed by
// a concat vector.
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, false,
isUndefLO, isUndefHI);
}
}
if ((VT == MVT::v8f32 || VT == MVT::v4f64 || VT == MVT::v8i32 ||
VT == MVT::v16i16) && Subtarget.hasAVX()) {
unsigned X86Opcode;
if (isHorizontalBinOp(BV, ISD::ADD, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::HADD;
else if (isHorizontalBinOp(BV, ISD::SUB, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::HSUB;
else if (isHorizontalBinOp(BV, ISD::FADD, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::FHADD;
else if (isHorizontalBinOp(BV, ISD::FSUB, DAG, 0, NumElts, InVec0, InVec1))
X86Opcode = X86ISD::FHSUB;
else
return SDValue();
// Don't try to expand this build_vector into a pair of horizontal add/sub
// if we can simply emit a pair of scalar add/sub.
if (NumUndefsLO + 1 == Half || NumUndefsHI + 1 == Half)
return SDValue();
// Convert this build_vector into two horizontal add/sub followed by
// a concat vector.
bool isUndefLO = NumUndefsLO == Half;
bool isUndefHI = NumUndefsHI == Half;
return ExpandHorizontalBinOp(InVec0, InVec1, DL, DAG, X86Opcode, true,
isUndefLO, isUndefHI);
}
return SDValue();
}
/// If a BUILD_VECTOR's source elements all apply the same bit operation and
/// one of their operands is constant, lower to a pair of BUILD_VECTOR and
/// just apply the bit to the vectors.
/// NOTE: Its not in our interest to start make a general purpose vectorizer
/// from this, but enough scalar bit operations are created from the later
/// legalization + scalarization stages to need basic support.
static SDValue lowerBuildVectorToBitOp(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
unsigned NumElems = VT.getVectorNumElements();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// Check that all elements have the same opcode.
// TODO: Should we allow UNDEFS and if so how many?
unsigned Opcode = Op.getOperand(0).getOpcode();
for (unsigned i = 1; i < NumElems; ++i)
if (Opcode != Op.getOperand(i).getOpcode())
return SDValue();
// TODO: We may be able to add support for other Ops (ADD/SUB + shifts).
switch (Opcode) {
default:
return SDValue();
case ISD::AND:
case ISD::XOR:
case ISD::OR:
if (!TLI.isOperationLegalOrPromote(Opcode, VT))
return SDValue();
break;
}
SmallVector<SDValue, 4> LHSElts, RHSElts;
for (SDValue Elt : Op->ops()) {
SDValue LHS = Elt.getOperand(0);
SDValue RHS = Elt.getOperand(1);
// We expect the canonicalized RHS operand to be the constant.
if (!isa<ConstantSDNode>(RHS))
return SDValue();
LHSElts.push_back(LHS);
RHSElts.push_back(RHS);
}
SDValue LHS = DAG.getBuildVector(VT, DL, LHSElts);
SDValue RHS = DAG.getBuildVector(VT, DL, RHSElts);
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
}
/// Create a vector constant without a load. SSE/AVX provide the bare minimum
/// functionality to do this, so it's all zeros, all ones, or some derivation
/// that is cheap to calculate.
static SDValue materializeVectorConstant(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
// Vectors containing all zeros can be matched by pxor and xorps.
if (ISD::isBuildVectorAllZeros(Op.getNode())) {
// Canonicalize this to <4 x i32> to 1) ensure the zero vectors are CSE'd
// and 2) ensure that i64 scalars are eliminated on x86-32 hosts.
if (VT == MVT::v4i32 || VT == MVT::v8i32 || VT == MVT::v16i32)
return Op;
return getZeroVector(VT, Subtarget, DAG, DL);
}
// Vectors containing all ones can be matched by pcmpeqd on 128-bit width
// vectors or broken into v4i32 operations on 256-bit vectors. AVX2 can use
// vpcmpeqd on 256-bit vectors.
if (Subtarget.hasSSE2() && ISD::isBuildVectorAllOnes(Op.getNode())) {
if (VT == MVT::v4i32 || (VT == MVT::v8i32 && Subtarget.hasInt256()))
return Op;
if (!VT.is512BitVector())
return getOnesVector(VT, Subtarget, DAG, DL);
}
return SDValue();
}
SDValue
X86TargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT ExtVT = VT.getVectorElementType();
unsigned NumElems = Op.getNumOperands();
// Generate vectors for predicate vectors.
if (VT.getVectorElementType() == MVT::i1 && Subtarget.hasAVX512())
return LowerBUILD_VECTORvXi1(Op, DAG);
if (SDValue VectorConstant = materializeVectorConstant(Op, DAG, Subtarget))
return VectorConstant;
BuildVectorSDNode *BV = cast<BuildVectorSDNode>(Op.getNode());
if (SDValue AddSub = LowerToAddSub(BV, Subtarget, DAG))
return AddSub;
if (SDValue HorizontalOp = LowerToHorizontalOp(BV, Subtarget, DAG))
return HorizontalOp;
if (SDValue Broadcast = LowerVectorBroadcast(Op, Subtarget, DAG))
return Broadcast;
if (SDValue BitOp = lowerBuildVectorToBitOp(Op, DAG))
return BitOp;
unsigned EVTBits = ExtVT.getSizeInBits();
unsigned NumZero = 0;
unsigned NumNonZero = 0;
uint64_t NonZeros = 0;
bool IsAllConstants = true;
SmallSet<SDValue, 8> Values;
for (unsigned i = 0; i < NumElems; ++i) {
SDValue Elt = Op.getOperand(i);
if (Elt.isUndef())
continue;
Values.insert(Elt);
if (Elt.getOpcode() != ISD::Constant &&
Elt.getOpcode() != ISD::ConstantFP)
IsAllConstants = false;
if (X86::isZeroNode(Elt))
NumZero++;
else {
assert(i < sizeof(NonZeros) * 8); // Make sure the shift is within range.
NonZeros |= ((uint64_t)1 << i);
NumNonZero++;
}
}
// All undef vector. Return an UNDEF. All zero vectors were handled above.
if (NumNonZero == 0)
return DAG.getUNDEF(VT);
// Special case for single non-zero, non-undef, element.
if (NumNonZero == 1) {
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
// If this is an insertion of an i64 value on x86-32, and if the top bits of
// the value are obviously zero, truncate the value to i32 and do the
// insertion that way. Only do this if the value is non-constant or if the
// value is a constant being inserted into element 0. It is cheaper to do
// a constant pool load than it is to do a movd + shuffle.
if (ExtVT == MVT::i64 && !Subtarget.is64Bit() &&
(!IsAllConstants || Idx == 0)) {
if (DAG.MaskedValueIsZero(Item, APInt::getBitsSet(64, 32, 64))) {
// Handle SSE only.
assert(VT == MVT::v2i64 && "Expected an SSE value type!");
MVT VecVT = MVT::v4i32;
// Truncate the value (which may itself be a constant) to i32, and
// convert it to a vector with movd (S2V+shuffle to zero extend).
Item = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Item);
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Item);
return DAG.getBitcast(VT, getShuffleVectorZeroOrUndef(
Item, Idx * 2, true, Subtarget, DAG));
}
}
// If we have a constant or non-constant insertion into the low element of
// a vector, we can do this with SCALAR_TO_VECTOR + shuffle of zero into
// the rest of the elements. This will be matched as movd/movq/movss/movsd
// depending on what the source datatype is.
if (Idx == 0) {
if (NumZero == 0)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
if (ExtVT == MVT::i32 || ExtVT == MVT::f32 || ExtVT == MVT::f64 ||
(ExtVT == MVT::i64 && Subtarget.is64Bit())) {
if (VT.is512BitVector()) {
SDValue ZeroVec = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, ZeroVec,
Item, DAG.getIntPtrConstant(0, dl));
}
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
// Turn it into a MOVL (i.e. movss, movsd, or movd) to a zero vector.
return getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
// We can't directly insert an i8 or i16 into a vector, so zero extend
// it to i32 first.
if (ExtVT == MVT::i16 || ExtVT == MVT::i8) {
Item = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Item);
if (VT.getSizeInBits() >= 256) {
MVT ShufVT = MVT::getVectorVT(MVT::i32, VT.getSizeInBits()/32);
if (Subtarget.hasAVX()) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, ShufVT, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
} else {
// Without AVX, we need to extend to a 128-bit vector and then
// insert into the 256-bit vector.
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
SDValue ZeroVec = getZeroVector(ShufVT, Subtarget, DAG, dl);
Item = insert128BitVector(ZeroVec, Item, 0, DAG, dl);
}
} else {
assert(VT.is128BitVector() && "Expected an SSE value type!");
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, Item);
Item = getShuffleVectorZeroOrUndef(Item, 0, true, Subtarget, DAG);
}
return DAG.getBitcast(VT, Item);
}
}
// Is it a vector logical left shift?
if (NumElems == 2 && Idx == 1 &&
X86::isZeroNode(Op.getOperand(0)) &&
!X86::isZeroNode(Op.getOperand(1))) {
unsigned NumBits = VT.getSizeInBits();
return getVShift(true, VT,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
VT, Op.getOperand(1)),
NumBits/2, DAG, *this, dl);
}
if (IsAllConstants) // Otherwise, it's better to do a constpool load.
return SDValue();
// Otherwise, if this is a vector with i32 or f32 elements, and the element
// is a non-constant being inserted into an element other than the low one,
// we can't use a constant pool load. Instead, use SCALAR_TO_VECTOR (aka
// movd/movss) to move this into the low element, then shuffle it into
// place.
if (EVTBits == 32) {
Item = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Item);
return getShuffleVectorZeroOrUndef(Item, Idx, NumZero > 0, Subtarget, DAG);
}
}
// Splat is obviously ok. Let legalizer expand it to a shuffle.
if (Values.size() == 1) {
if (EVTBits == 32) {
// Instead of a shuffle like this:
// shuffle (scalar_to_vector (load (ptr + 4))), undef, <0, 0, 0, 0>
// Check if it's possible to issue this instead.
// shuffle (vload ptr)), undef, <1, 1, 1, 1>
unsigned Idx = countTrailingZeros(NonZeros);
SDValue Item = Op.getOperand(Idx);
if (Op.getNode()->isOnlyUserOf(Item.getNode()))
return LowerAsSplatVectorLoad(Item, VT, dl, DAG);
}
return SDValue();
}
// A vector full of immediates; various special cases are already
// handled, so this is best done with a single constant-pool load.
if (IsAllConstants)
return SDValue();
// See if we can use a vector load to get all of the elements.
if (VT.is128BitVector() || VT.is256BitVector() || VT.is512BitVector()) {
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
if (SDValue LD = EltsFromConsecutiveLoads(VT, Ops, dl, DAG, false))
return LD;
}
// For AVX-length vectors, build the individual 128-bit pieces and use
// shuffles to put them in place.
if (VT.is256BitVector() || VT.is512BitVector()) {
SmallVector<SDValue, 64> Ops(Op->op_begin(), Op->op_begin() + NumElems);
EVT HVT = EVT::getVectorVT(*DAG.getContext(), ExtVT, NumElems/2);
// Build both the lower and upper subvector.
SDValue Lower =
DAG.getBuildVector(HVT, dl, makeArrayRef(&Ops[0], NumElems / 2));
SDValue Upper = DAG.getBuildVector(
HVT, dl, makeArrayRef(&Ops[NumElems / 2], NumElems / 2));
// Recreate the wider vector with the lower and upper part.
if (VT.is256BitVector())
return concat128BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
return concat256BitVectors(Lower, Upper, VT, NumElems, DAG, dl);
}
// Let legalizer expand 2-wide build_vectors.
if (EVTBits == 64) {
if (NumNonZero == 1) {
// One half is zero or undef.
unsigned Idx = countTrailingZeros(NonZeros);
SDValue V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT,
Op.getOperand(Idx));
return getShuffleVectorZeroOrUndef(V2, Idx, true, Subtarget, DAG);
}
return SDValue();
}
// If element VT is < 32 bits, convert it to inserts into a zero vector.
if (EVTBits == 8 && NumElems == 16)
if (SDValue V = LowerBuildVectorv16i8(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget, *this))
return V;
if (EVTBits == 16 && NumElems == 8)
if (SDValue V = LowerBuildVectorv8i16(Op, NonZeros, NumNonZero, NumZero,
DAG, Subtarget, *this))
return V;
// If element VT is == 32 bits and has 4 elems, try to generate an INSERTPS
if (EVTBits == 32 && NumElems == 4)
if (SDValue V = LowerBuildVectorv4x32(Op, DAG, Subtarget, *this))
return V;
// If element VT is == 32 bits, turn it into a number of shuffles.
if (NumElems == 4 && NumZero > 0) {
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < 4; ++i) {
bool isZero = !(NonZeros & (1ULL << i));
if (isZero)
Ops[i] = getZeroVector(VT, Subtarget, DAG, dl);
else
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
}
for (unsigned i = 0; i < 2; ++i) {
switch ((NonZeros & (0x3 << i*2)) >> (i*2)) {
default: break;
case 0:
Ops[i] = Ops[i*2]; // Must be a zero vector.
break;
case 1:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2+1], Ops[i*2]);
break;
case 2:
Ops[i] = getMOVL(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
case 3:
Ops[i] = getUnpackl(DAG, dl, VT, Ops[i*2], Ops[i*2+1]);
break;
}
}
bool Reverse1 = (NonZeros & 0x3) == 2;
bool Reverse2 = ((NonZeros & (0x3 << 2)) >> 2) == 2;
int MaskVec[] = {
Reverse1 ? 1 : 0,
Reverse1 ? 0 : 1,
static_cast<int>(Reverse2 ? NumElems+1 : NumElems),
static_cast<int>(Reverse2 ? NumElems : NumElems+1)
};
return DAG.getVectorShuffle(VT, dl, Ops[0], Ops[1], &MaskVec[0]);
}
if (Values.size() > 1 && VT.is128BitVector()) {
// Check for a build vector from mostly shuffle plus few inserting.
if (SDValue Sh = buildFromShuffleMostly(Op, DAG))
return Sh;
// For SSE 4.1, use insertps to put the high elements into the low element.
if (Subtarget.hasSSE41()) {
SDValue Result;
if (!Op.getOperand(0).isUndef())
Result = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(0));
else
Result = DAG.getUNDEF(VT);
for (unsigned i = 1; i < NumElems; ++i) {
if (Op.getOperand(i).isUndef()) continue;
Result = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Result,
Op.getOperand(i), DAG.getIntPtrConstant(i, dl));
}
return Result;
}
// Otherwise, expand into a number of unpckl*, start by extending each of
// our (non-undef) elements to the full vector width with the element in the
// bottom slot of the vector (which generates no code for SSE).
SmallVector<SDValue, 8> Ops(NumElems);
for (unsigned i = 0; i < NumElems; ++i) {
if (!Op.getOperand(i).isUndef())
Ops[i] = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Op.getOperand(i));
else
Ops[i] = DAG.getUNDEF(VT);
}
// Next, we iteratively mix elements, e.g. for v4f32:
// Step 1: unpcklps 0, 2 ==> X: <?, ?, 2, 0>
// : unpcklps 1, 3 ==> Y: <?, ?, 3, 1>
// Step 2: unpcklps X, Y ==> <3, 2, 1, 0>
unsigned EltStride = NumElems >> 1;
while (EltStride != 0) {
for (unsigned i = 0; i < EltStride; ++i) {
// If Ops[i+EltStride] is undef and this is the first round of mixing,
// then it is safe to just drop this shuffle: V[i] is already in the
// right place, the one element (since it's the first round) being
// inserted as undef can be dropped. This isn't safe for successive
// rounds because they will permute elements within both vectors.
if (Ops[i+EltStride].isUndef() &&
EltStride == NumElems/2)
continue;
Ops[i] = getUnpackl(DAG, dl, VT, Ops[i], Ops[i + EltStride]);
}
EltStride >>= 1;
}
return Ops[0];
}
return SDValue();
}
// 256-bit AVX can use the vinsertf128 instruction
// to create 256-bit vectors from two other 128-bit ones.
static SDValue LowerAVXCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
assert((ResVT.is256BitVector() ||
ResVT.is512BitVector()) && "Value type must be 256-/512-bit wide");
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
unsigned NumElems = ResVT.getVectorNumElements();
if (ResVT.is256BitVector())
return concat128BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
if (Op.getNumOperands() == 4) {
MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
ResVT.getVectorNumElements()/2);
SDValue V3 = Op.getOperand(2);
SDValue V4 = Op.getOperand(3);
return concat256BitVectors(
concat128BitVectors(V1, V2, HalfVT, NumElems / 2, DAG, dl),
concat128BitVectors(V3, V4, HalfVT, NumElems / 2, DAG, dl), ResVT,
NumElems, DAG, dl);
}
return concat256BitVectors(V1, V2, ResVT, NumElems, DAG, dl);
}
static SDValue LowerCONCAT_VECTORSvXi1(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG & DAG) {
SDLoc dl(Op);
MVT ResVT = Op.getSimpleValueType();
unsigned NumOfOperands = Op.getNumOperands();
assert(isPowerOf2_32(NumOfOperands) &&
"Unexpected number of operands in CONCAT_VECTORS");
SDValue Undef = DAG.getUNDEF(ResVT);
if (NumOfOperands > 2) {
// Specialize the cases when all, or all but one, of the operands are undef.
unsigned NumOfDefinedOps = 0;
unsigned OpIdx = 0;
for (unsigned i = 0; i < NumOfOperands; i++)
if (!Op.getOperand(i).isUndef()) {
NumOfDefinedOps++;
OpIdx = i;
}
if (NumOfDefinedOps == 0)
return Undef;
if (NumOfDefinedOps == 1) {
unsigned SubVecNumElts =
Op.getOperand(OpIdx).getValueType().getVectorNumElements();
SDValue IdxVal = DAG.getIntPtrConstant(SubVecNumElts * OpIdx, dl);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef,
Op.getOperand(OpIdx), IdxVal);
}
MVT HalfVT = MVT::getVectorVT(ResVT.getVectorElementType(),
ResVT.getVectorNumElements()/2);
SmallVector<SDValue, 2> Ops;
for (unsigned i = 0; i < NumOfOperands/2; i++)
Ops.push_back(Op.getOperand(i));
SDValue Lo = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
Ops.clear();
for (unsigned i = NumOfOperands/2; i < NumOfOperands; i++)
Ops.push_back(Op.getOperand(i));
SDValue Hi = DAG.getNode(ISD::CONCAT_VECTORS, dl, HalfVT, Ops);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, ResVT, Lo, Hi);
}
// 2 operands
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
unsigned NumElems = ResVT.getVectorNumElements();
assert(V1.getValueType() == V2.getValueType() &&
V1.getValueType().getVectorNumElements() == NumElems/2 &&
"Unexpected operands in CONCAT_VECTORS");
if (ResVT.getSizeInBits() >= 16)
return Op; // The operation is legal with KUNPCK
bool IsZeroV1 = ISD::isBuildVectorAllZeros(V1.getNode());
bool IsZeroV2 = ISD::isBuildVectorAllZeros(V2.getNode());
SDValue ZeroVec = getZeroVector(ResVT, Subtarget, DAG, dl);
if (IsZeroV1 && IsZeroV2)
return ZeroVec;
SDValue ZeroIdx = DAG.getIntPtrConstant(0, dl);
if (V2.isUndef())
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
if (IsZeroV2)
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V1, ZeroIdx);
SDValue IdxVal = DAG.getIntPtrConstant(NumElems/2, dl);
if (V1.isUndef())
V2 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V2, IdxVal);
if (IsZeroV1)
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, ZeroVec, V2, IdxVal);
V1 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, Undef, V1, ZeroIdx);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ResVT, V1, V2, IdxVal);
}
static SDValue LowerCONCAT_VECTORS(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
if (VT.getVectorElementType() == MVT::i1)
return LowerCONCAT_VECTORSvXi1(Op, Subtarget, DAG);
assert((VT.is256BitVector() && Op.getNumOperands() == 2) ||
(VT.is512BitVector() && (Op.getNumOperands() == 2 ||
Op.getNumOperands() == 4)));
// AVX can use the vinsertf128 instruction to create 256-bit vectors
// from two other 128-bit ones.
// 512-bit vector may contain 2 256-bit vectors or 4 128-bit vectors
return LowerAVXCONCAT_VECTORS(Op, DAG);
}
//===----------------------------------------------------------------------===//
// Vector shuffle lowering
//
// This is an experimental code path for lowering vector shuffles on x86. It is
// designed to handle arbitrary vector shuffles and blends, gracefully
// degrading performance as necessary. It works hard to recognize idiomatic
// shuffles and lower them to optimal instruction patterns without leaving
// a framework that allows reasonably efficient handling of all vector shuffle
// patterns.
//===----------------------------------------------------------------------===//
/// \brief Tiny helper function to identify a no-op mask.
///
/// This is a somewhat boring predicate function. It checks whether the mask
/// array input, which is assumed to be a single-input shuffle mask of the kind
/// used by the X86 shuffle instructions (not a fully general
/// ShuffleVectorSDNode mask) requires any shuffles to occur. Both undef and an
/// in-place shuffle are 'no-op's.
static bool isNoopShuffleMask(ArrayRef<int> Mask) {
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] != -1 && Mask[i] != i)
return false;
return true;
}
/// \brief Helper function to classify a mask as a single-input mask.
///
/// This isn't a generic single-input test because in the vector shuffle
/// lowering we canonicalize single inputs to be the first input operand. This
/// means we can more quickly test for a single input by only checking whether
/// an input from the second operand exists. We also assume that the size of
/// mask corresponds to the size of the input vectors which isn't true in the
/// fully general case.
static bool isSingleInputShuffleMask(ArrayRef<int> Mask) {
for (int M : Mask)
if (M >= (int)Mask.size())
return false;
return true;
}
/// \brief Test whether there are elements crossing 128-bit lanes in this
/// shuffle mask.
///
/// X86 divides up its shuffles into in-lane and cross-lane shuffle operations
/// and we routinely test for these.
static bool is128BitLaneCrossingShuffleMask(MVT VT, ArrayRef<int> Mask) {
int LaneSize = 128 / VT.getScalarSizeInBits();
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
return true;
return false;
}
/// \brief Test whether a shuffle mask is equivalent within each 128-bit lane.
///
/// This checks a shuffle mask to see if it is performing the same
/// 128-bit lane-relative shuffle in each 128-bit lane. This trivially implies
/// that it is also not lane-crossing. It may however involve a blend from the
/// same lane of a second vector.
///
/// The specific repeated shuffle mask is populated in \p RepeatedMask, as it is
/// non-trivial to compute in the face of undef lanes. The representation is
/// *not* suitable for use with existing 128-bit shuffles as it will contain
/// entries from both V1 and V2 inputs to the wider mask.
static bool
is128BitLaneRepeatedShuffleMask(MVT VT, ArrayRef<int> Mask,
SmallVectorImpl<int> &RepeatedMask) {
int LaneSize = 128 / VT.getScalarSizeInBits();
RepeatedMask.resize(LaneSize, -1);
int Size = Mask.size();
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
if ((Mask[i] % Size) / LaneSize != i / LaneSize)
// This entry crosses lanes, so there is no way to model this shuffle.
return false;
// Ok, handle the in-lane shuffles by detecting if and when they repeat.
if (RepeatedMask[i % LaneSize] == -1)
// This is the first non-undef entry in this slot of a 128-bit lane.
RepeatedMask[i % LaneSize] =
Mask[i] < Size ? Mask[i] % LaneSize : Mask[i] % LaneSize + Size;
else if (RepeatedMask[i % LaneSize] + (i / LaneSize) * LaneSize != Mask[i])
// Found a mismatch with the repeated mask.
return false;
}
return true;
}
/// \brief Checks whether a shuffle mask is equivalent to an explicit list of
/// arguments.
///
/// This is a fast way to test a shuffle mask against a fixed pattern:
///
/// if (isShuffleEquivalent(Mask, 3, 2, {1, 0})) { ... }
///
/// It returns true if the mask is exactly as wide as the argument list, and
/// each element of the mask is either -1 (signifying undef) or the value given
/// in the argument.
static bool isShuffleEquivalent(SDValue V1, SDValue V2, ArrayRef<int> Mask,
ArrayRef<int> ExpectedMask) {
if (Mask.size() != ExpectedMask.size())
return false;
int Size = Mask.size();
// If the values are build vectors, we can look through them to find
// equivalent inputs that make the shuffles equivalent.
auto *BV1 = dyn_cast<BuildVectorSDNode>(V1);
auto *BV2 = dyn_cast<BuildVectorSDNode>(V2);
for (int i = 0; i < Size; ++i)
if (Mask[i] != -1 && Mask[i] != ExpectedMask[i]) {
auto *MaskBV = Mask[i] < Size ? BV1 : BV2;
auto *ExpectedBV = ExpectedMask[i] < Size ? BV1 : BV2;
if (!MaskBV || !ExpectedBV ||
MaskBV->getOperand(Mask[i] % Size) !=
ExpectedBV->getOperand(ExpectedMask[i] % Size))
return false;
}
return true;
}
/// \brief Get a 4-lane 8-bit shuffle immediate for a mask.
///
/// This helper function produces an 8-bit shuffle immediate corresponding to
/// the ubiquitous shuffle encoding scheme used in x86 instructions for
/// shuffling 4 lanes. It can be used with most of the PSHUF instructions for
/// example.
///
/// NB: We rely heavily on "undef" masks preserving the input lane.
static SDValue getV4X86ShuffleImm8ForMask(ArrayRef<int> Mask, SDLoc DL,
SelectionDAG &DAG) {
assert(Mask.size() == 4 && "Only 4-lane shuffle masks");
assert(Mask[0] >= -1 && Mask[0] < 4 && "Out of bound mask element!");
assert(Mask[1] >= -1 && Mask[1] < 4 && "Out of bound mask element!");
assert(Mask[2] >= -1 && Mask[2] < 4 && "Out of bound mask element!");
assert(Mask[3] >= -1 && Mask[3] < 4 && "Out of bound mask element!");
unsigned Imm = 0;
Imm |= (Mask[0] == -1 ? 0 : Mask[0]) << 0;
Imm |= (Mask[1] == -1 ? 1 : Mask[1]) << 2;
Imm |= (Mask[2] == -1 ? 2 : Mask[2]) << 4;
Imm |= (Mask[3] == -1 ? 3 : Mask[3]) << 6;
return DAG.getConstant(Imm, DL, MVT::i8);
}
/// \brief Compute whether each element of a shuffle is zeroable.
///
/// A "zeroable" vector shuffle element is one which can be lowered to zero.
/// Either it is an undef element in the shuffle mask, the element of the input
/// referenced is undef, or the element of the input referenced is known to be
/// zero. Many x86 shuffles can zero lanes cheaply and we often want to handle
/// as many lanes with this technique as possible to simplify the remaining
/// shuffle.
static SmallBitVector computeZeroableShuffleElements(ArrayRef<int> Mask,
SDValue V1, SDValue V2) {
SmallBitVector Zeroable(Mask.size(), false);
V1 = peekThroughBitcasts(V1);
V2 = peekThroughBitcasts(V2);
bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
int VectorSizeInBits = V1.getValueType().getSizeInBits();
int ScalarSizeInBits = VectorSizeInBits / Mask.size();
assert(!(VectorSizeInBits % ScalarSizeInBits) && "Illegal shuffle mask size");
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
// Handle the easy cases.
if (M < 0 || (M >= 0 && M < Size && V1IsZero) || (M >= Size && V2IsZero)) {
Zeroable[i] = true;
continue;
}
// Determine shuffle input and normalize the mask.
SDValue V = M < Size ? V1 : V2;
M %= Size;
// Currently we can only search BUILD_VECTOR for UNDEF/ZERO elements.
if (V.getOpcode() != ISD::BUILD_VECTOR)
continue;
// If the BUILD_VECTOR has fewer elements then the bitcasted portion of
// the (larger) source element must be UNDEF/ZERO.
if ((Size % V.getNumOperands()) == 0) {
int Scale = Size / V->getNumOperands();
SDValue Op = V.getOperand(M / Scale);
if (Op.isUndef() || X86::isZeroNode(Op))
Zeroable[i] = true;
else if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
APInt Val = Cst->getAPIntValue();
Val = Val.lshr((M % Scale) * ScalarSizeInBits);
Val = Val.getLoBits(ScalarSizeInBits);
Zeroable[i] = (Val == 0);
} else if (ConstantFPSDNode *Cst = dyn_cast<ConstantFPSDNode>(Op)) {
APInt Val = Cst->getValueAPF().bitcastToAPInt();
Val = Val.lshr((M % Scale) * ScalarSizeInBits);
Val = Val.getLoBits(ScalarSizeInBits);
Zeroable[i] = (Val == 0);
}
continue;
}
// If the BUILD_VECTOR has more elements then all the (smaller) source
// elements must be UNDEF or ZERO.
if ((V.getNumOperands() % Size) == 0) {
int Scale = V->getNumOperands() / Size;
bool AllZeroable = true;
for (int j = 0; j < Scale; ++j) {
SDValue Op = V.getOperand((M * Scale) + j);
AllZeroable &= (Op.isUndef() || X86::isZeroNode(Op));
}
Zeroable[i] = AllZeroable;
continue;
}
}
return Zeroable;
}
// X86 has dedicated unpack instructions that can handle specific blend
// operations: UNPCKH and UNPCKL.
static SDValue lowerVectorShuffleWithUNPCK(SDLoc DL, MVT VT, ArrayRef<int> Mask,
SDValue V1, SDValue V2,
SelectionDAG &DAG) {
int NumElts = VT.getVectorNumElements();
int NumEltsInLane = 128 / VT.getScalarSizeInBits();
SmallVector<int, 8> Unpckl;
SmallVector<int, 8> Unpckh;
for (int i = 0; i < NumElts; ++i) {
unsigned LaneStart = (i / NumEltsInLane) * NumEltsInLane;
int LoPos = (i % NumEltsInLane) / 2 + LaneStart + NumElts * (i % 2);
int HiPos = LoPos + NumEltsInLane / 2;
Unpckl.push_back(LoPos);
Unpckh.push_back(HiPos);
}
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V1, V2);
// Commute and try again.
ShuffleVectorSDNode::commuteMask(Unpckl);
if (isShuffleEquivalent(V1, V2, Mask, Unpckl))
return DAG.getNode(X86ISD::UNPCKL, DL, VT, V2, V1);
ShuffleVectorSDNode::commuteMask(Unpckh);
if (isShuffleEquivalent(V1, V2, Mask, Unpckh))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, V2, V1);
return SDValue();
}
/// \brief Try to emit a bitmask instruction for a shuffle.
///
/// This handles cases where we can model a blend exactly as a bitmask due to
/// one of the inputs being zeroable.
static SDValue lowerVectorShuffleAsBitMask(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
MVT EltVT = VT.getVectorElementType();
int NumEltBits = EltVT.getSizeInBits();
MVT IntEltVT = MVT::getIntegerVT(NumEltBits);
SDValue Zero = DAG.getConstant(0, DL, IntEltVT);
SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
IntEltVT);
if (EltVT.isFloatingPoint()) {
Zero = DAG.getBitcast(EltVT, Zero);
AllOnes = DAG.getBitcast(EltVT, AllOnes);
}
SmallVector<SDValue, 16> VMaskOps(Mask.size(), Zero);
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
SDValue V;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Zeroable[i])
continue;
if (Mask[i] % Size != i)
return SDValue(); // Not a blend.
if (!V)
V = Mask[i] < Size ? V1 : V2;
else if (V != (Mask[i] < Size ? V1 : V2))
return SDValue(); // Can only let one input through the mask.
VMaskOps[i] = AllOnes;
}
if (!V)
return SDValue(); // No non-zeroable elements!
SDValue VMask = DAG.getBuildVector(VT, DL, VMaskOps);
V = DAG.getNode(VT.isFloatingPoint()
? (unsigned) X86ISD::FAND : (unsigned) ISD::AND,
DL, VT, V, VMask);
return V;
}
/// \brief Try to emit a blend instruction for a shuffle using bit math.
///
/// This is used as a fallback approach when first class blend instructions are
/// unavailable. Currently it is only suitable for integer vectors, but could
/// be generalized for floating point vectors if desirable.
static SDValue lowerVectorShuffleAsBitBlend(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.isInteger() && "Only supports integer vector types!");
MVT EltVT = VT.getVectorElementType();
int NumEltBits = EltVT.getSizeInBits();
SDValue Zero = DAG.getConstant(0, DL, EltVT);
SDValue AllOnes = DAG.getConstant(APInt::getAllOnesValue(NumEltBits), DL,
EltVT);
SmallVector<SDValue, 16> MaskOps;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] != -1 && Mask[i] != i && Mask[i] != i + Size)
return SDValue(); // Shuffled input!
MaskOps.push_back(Mask[i] < Size ? AllOnes : Zero);
}
SDValue V1Mask = DAG.getBuildVector(VT, DL, MaskOps);
V1 = DAG.getNode(ISD::AND, DL, VT, V1, V1Mask);
// We have to cast V2 around.
MVT MaskVT = MVT::getVectorVT(MVT::i64, VT.getSizeInBits() / 64);
V2 = DAG.getBitcast(VT, DAG.getNode(X86ISD::ANDNP, DL, MaskVT,
DAG.getBitcast(MaskVT, V1Mask),
DAG.getBitcast(MaskVT, V2)));
return DAG.getNode(ISD::OR, DL, VT, V1, V2);
}
/// \brief Try to emit a blend instruction for a shuffle.
///
/// This doesn't do any checks for the availability of instructions for blending
/// these values. It relies on the availability of the X86ISD::BLENDI pattern to
/// be matched in the backend with the type given. What it does check for is
/// that the shuffle mask is a blend, or convertible into a blend with zero.
static SDValue lowerVectorShuffleAsBlend(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Original,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
bool V1IsZero = ISD::isBuildVectorAllZeros(V1.getNode());
bool V2IsZero = ISD::isBuildVectorAllZeros(V2.getNode());
SmallVector<int, 8> Mask(Original.begin(), Original.end());
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
bool ForceV1Zero = false, ForceV2Zero = false;
// Attempt to generate the binary blend mask. If an input is zero then
// we can use any lane.
// TODO: generalize the zero matching to any scalar like isShuffleEquivalent.
unsigned BlendMask = 0;
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
int M = Mask[i];
if (M < 0)
continue;
if (M == i)
continue;
if (M == i + Size) {
BlendMask |= 1u << i;
continue;
}
if (Zeroable[i]) {
if (V1IsZero) {
ForceV1Zero = true;
Mask[i] = i;
continue;
}
if (V2IsZero) {
ForceV2Zero = true;
BlendMask |= 1u << i;
Mask[i] = i + Size;
continue;
}
}
return SDValue(); // Shuffled input!
}
// Create a REAL zero vector - ISD::isBuildVectorAllZeros allows UNDEFs.
if (ForceV1Zero)
V1 = getZeroVector(VT, Subtarget, DAG, DL);
if (ForceV2Zero)
V2 = getZeroVector(VT, Subtarget, DAG, DL);
auto ScaleBlendMask = [](unsigned BlendMask, int Size, int Scale) {
unsigned ScaledMask = 0;
for (int i = 0; i != Size; ++i)
if (BlendMask & (1u << i))
for (int j = 0; j != Scale; ++j)
ScaledMask |= 1u << (i * Scale + j);
return ScaledMask;
};
switch (VT.SimpleTy) {
case MVT::v2f64:
case MVT::v4f32:
case MVT::v4f64:
case MVT::v8f32:
return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8));
case MVT::v4i64:
case MVT::v8i32:
assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
// FALLTHROUGH
case MVT::v2i64:
case MVT::v4i32:
// If we have AVX2 it is faster to use VPBLENDD when the shuffle fits into
// that instruction.
if (Subtarget.hasAVX2()) {
// Scale the blend by the number of 32-bit dwords per element.
int Scale = VT.getScalarSizeInBits() / 32;
BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
MVT BlendVT = VT.getSizeInBits() > 128 ? MVT::v8i32 : MVT::v4i32;
V1 = DAG.getBitcast(BlendVT, V1);
V2 = DAG.getBitcast(BlendVT, V2);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::BLENDI, DL, BlendVT, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8)));
}
// FALLTHROUGH
case MVT::v8i16: {
// For integer shuffles we need to expand the mask and cast the inputs to
// v8i16s prior to blending.
int Scale = 8 / VT.getVectorNumElements();
BlendMask = ScaleBlendMask(BlendMask, Mask.size(), Scale);
V1 = DAG.getBitcast(MVT::v8i16, V1);
V2 = DAG.getBitcast(MVT::v8i16, V2);
return DAG.getBitcast(VT,
DAG.getNode(X86ISD::BLENDI, DL, MVT::v8i16, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8)));
}
case MVT::v16i16: {
assert(Subtarget.hasAVX2() && "256-bit integer blends require AVX2!");
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// We can lower these with PBLENDW which is mirrored across 128-bit lanes.
assert(RepeatedMask.size() == 8 && "Repeated mask size doesn't match!");
BlendMask = 0;
for (int i = 0; i < 8; ++i)
if (RepeatedMask[i] >= 16)
BlendMask |= 1u << i;
return DAG.getNode(X86ISD::BLENDI, DL, MVT::v16i16, V1, V2,
DAG.getConstant(BlendMask, DL, MVT::i8));
}
}
// FALLTHROUGH
case MVT::v16i8:
case MVT::v32i8: {
assert((VT.is128BitVector() || Subtarget.hasAVX2()) &&
"256-bit byte-blends require AVX2 support!");
// Attempt to lower to a bitmask if we can. VPAND is faster than VPBLENDVB.
if (SDValue Masked = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG))
return Masked;
// Scale the blend by the number of bytes per element.
int Scale = VT.getScalarSizeInBits() / 8;
// This form of blend is always done on bytes. Compute the byte vector
// type.
MVT BlendVT = MVT::getVectorVT(MVT::i8, VT.getSizeInBits() / 8);
// Compute the VSELECT mask. Note that VSELECT is really confusing in the
// mix of LLVM's code generator and the x86 backend. We tell the code
// generator that boolean values in the elements of an x86 vector register
// are -1 for true and 0 for false. We then use the LLVM semantics of 'true'
// mapping a select to operand #1, and 'false' mapping to operand #2. The
// reality in x86 is that vector masks (pre-AVX-512) use only the high bit
// of the element (the remaining are ignored) and 0 in that high bit would
// mean operand #1 while 1 in the high bit would mean operand #2. So while
// the LLVM model for boolean values in vector elements gets the relevant
// bit set, it is set backwards and over constrained relative to x86's
// actual model.
SmallVector<SDValue, 32> VSELECTMask;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
for (int j = 0; j < Scale; ++j)
VSELECTMask.push_back(
Mask[i] < 0 ? DAG.getUNDEF(MVT::i8)
: DAG.getConstant(Mask[i] < Size ? -1 : 0, DL,
MVT::i8));
V1 = DAG.getBitcast(BlendVT, V1);
V2 = DAG.getBitcast(BlendVT, V2);
return DAG.getBitcast(
VT, DAG.getNode(ISD::VSELECT, DL, BlendVT,
DAG.getBuildVector(BlendVT, DL, VSELECTMask), V1, V2));
}
default:
llvm_unreachable("Not a supported integer vector type!");
}
}
/// \brief Try to lower as a blend of elements from two inputs followed by
/// a single-input permutation.
///
/// This matches the pattern where we can blend elements from two inputs and
/// then reduce the shuffle to a single-input permutation.
static SDValue lowerVectorShuffleAsBlendAndPermute(SDLoc DL, MVT VT, SDValue V1,
SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
// We build up the blend mask while checking whether a blend is a viable way
// to reduce the shuffle.
SmallVector<int, 32> BlendMask(Mask.size(), -1);
SmallVector<int, 32> PermuteMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] < Size * 2 && "Shuffle input is out of bounds.");
if (BlendMask[Mask[i] % Size] == -1)
BlendMask[Mask[i] % Size] = Mask[i];
else if (BlendMask[Mask[i] % Size] != Mask[i])
return SDValue(); // Can't blend in the needed input!
PermuteMask[i] = Mask[i] % Size;
}
SDValue V = DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), PermuteMask);
}
/// \brief Generic routine to decompose a shuffle and blend into indepndent
/// blends and permutes.
///
/// This matches the extremely common pattern for handling combined
/// shuffle+blend operations on newer X86 ISAs where we have very fast blend
/// operations. It will try to pick the best arrangement of shuffles and
/// blends.
static SDValue lowerVectorShuffleAsDecomposedShuffleBlend(SDLoc DL, MVT VT,
SDValue V1,
SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
// Shuffle the input elements into the desired positions in V1 and V2 and
// blend them together.
SmallVector<int, 32> V1Mask(Mask.size(), -1);
SmallVector<int, 32> V2Mask(Mask.size(), -1);
SmallVector<int, 32> BlendMask(Mask.size(), -1);
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] < Size) {
V1Mask[i] = Mask[i];
BlendMask[i] = i;
} else if (Mask[i] >= Size) {
V2Mask[i] = Mask[i] - Size;
BlendMask[i] = i + Size;
}
// Try to lower with the simpler initial blend strategy unless one of the
// input shuffles would be a no-op. We prefer to shuffle inputs as the
// shuffle may be able to fold with a load or other benefit. However, when
// we'll have to do 2x as many shuffles in order to achieve this, blending
// first is a better strategy.
if (!isNoopShuffleMask(V1Mask) && !isNoopShuffleMask(V2Mask))
if (SDValue BlendPerm =
lowerVectorShuffleAsBlendAndPermute(DL, VT, V1, V2, Mask, DAG))
return BlendPerm;
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
return DAG.getVectorShuffle(VT, DL, V1, V2, BlendMask);
}
/// \brief Try to lower a vector shuffle as a byte rotation.
///
/// SSSE3 has a generic PALIGNR instruction in x86 that will do an arbitrary
/// byte-rotation of the concatenation of two vectors; pre-SSSE3 can use
/// a PSRLDQ/PSLLDQ/POR pattern to get a similar effect. This routine will
/// try to generically lower a vector shuffle through such an pattern. It
/// does not check for the profitability of lowering either as PALIGNR or
/// PSRLDQ/PSLLDQ/POR, only whether the mask is valid to lower in that form.
/// This matches shuffle vectors that look like:
///
/// v8i16 [11, 12, 13, 14, 15, 0, 1, 2]
///
/// Essentially it concatenates V1 and V2, shifts right by some number of
/// elements, and takes the low elements as the result. Note that while this is
/// specified as a *right shift* because x86 is little-endian, it is a *left
/// rotate* of the vector lanes.
static SDValue lowerVectorShuffleAsByteRotate(SDLoc DL, MVT VT, SDValue V1,
SDValue V2,
ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(!isNoopShuffleMask(Mask) && "We shouldn't lower no-op shuffles!");
int NumElts = Mask.size();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = NumElts / NumLanes;
// We need to detect various ways of spelling a rotation:
// [11, 12, 13, 14, 15, 0, 1, 2]
// [-1, 12, 13, 14, -1, -1, 1, -1]
// [-1, -1, -1, -1, -1, -1, 1, 2]
// [ 3, 4, 5, 6, 7, 8, 9, 10]
// [-1, 4, 5, 6, -1, -1, 9, -1]
// [-1, 4, 5, 6, -1, -1, -1, -1]
int Rotation = 0;
SDValue Lo, Hi;
for (int l = 0; l < NumElts; l += NumLaneElts) {
for (int i = 0; i < NumLaneElts; ++i) {
if (Mask[l + i] == -1)
continue;
assert(Mask[l + i] >= 0 && "Only -1 is a valid negative mask element!");
// Get the mod-Size index and lane correct it.
int LaneIdx = (Mask[l + i] % NumElts) - l;
// Make sure it was in this lane.
if (LaneIdx < 0 || LaneIdx >= NumLaneElts)
return SDValue();
// Determine where a rotated vector would have started.
int StartIdx = i - LaneIdx;
if (StartIdx == 0)
// The identity rotation isn't interesting, stop.
return SDValue();
// If we found the tail of a vector the rotation must be the missing
// front. If we found the head of a vector, it must be how much of the
// head.
int CandidateRotation = StartIdx < 0 ? -StartIdx : NumLaneElts - StartIdx;
if (Rotation == 0)
Rotation = CandidateRotation;
else if (Rotation != CandidateRotation)
// The rotations don't match, so we can't match this mask.
return SDValue();
// Compute which value this mask is pointing at.
SDValue MaskV = Mask[l + i] < NumElts ? V1 : V2;
// Compute which of the two target values this index should be assigned
// to. This reflects whether the high elements are remaining or the low
// elements are remaining.
SDValue &TargetV = StartIdx < 0 ? Hi : Lo;
// Either set up this value if we've not encountered it before, or check
// that it remains consistent.
if (!TargetV)
TargetV = MaskV;
else if (TargetV != MaskV)
// This may be a rotation, but it pulls from the inputs in some
// unsupported interleaving.
return SDValue();
}
}
// Check that we successfully analyzed the mask, and normalize the results.
assert(Rotation != 0 && "Failed to locate a viable rotation!");
assert((Lo || Hi) && "Failed to find a rotated input vector!");
if (!Lo)
Lo = Hi;
else if (!Hi)
Hi = Lo;
// The actual rotate instruction rotates bytes, so we need to scale the
// rotation based on how many bytes are in the vector lane.
int Scale = 16 / NumLaneElts;
// SSSE3 targets can use the palignr instruction.
if (Subtarget.hasSSSE3()) {
// Cast the inputs to i8 vector of correct length to match PALIGNR.
MVT AlignVT = MVT::getVectorVT(MVT::i8, 16 * NumLanes);
Lo = DAG.getBitcast(AlignVT, Lo);
Hi = DAG.getBitcast(AlignVT, Hi);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PALIGNR, DL, AlignVT, Lo, Hi,
DAG.getConstant(Rotation * Scale, DL, MVT::i8)));
}
assert(VT.is128BitVector() &&
"Rotate-based lowering only supports 128-bit lowering!");
assert(Mask.size() <= 16 &&
"Can shuffle at most 16 bytes in a 128-bit vector!");
// Default SSE2 implementation
int LoByteShift = 16 - Rotation * Scale;
int HiByteShift = Rotation * Scale;
// Cast the inputs to v2i64 to match PSLLDQ/PSRLDQ.
Lo = DAG.getBitcast(MVT::v2i64, Lo);
Hi = DAG.getBitcast(MVT::v2i64, Hi);
SDValue LoShift = DAG.getNode(X86ISD::VSHLDQ, DL, MVT::v2i64, Lo,
DAG.getConstant(LoByteShift, DL, MVT::i8));
SDValue HiShift = DAG.getNode(X86ISD::VSRLDQ, DL, MVT::v2i64, Hi,
DAG.getConstant(HiByteShift, DL, MVT::i8));
return DAG.getBitcast(VT,
DAG.getNode(ISD::OR, DL, MVT::v2i64, LoShift, HiShift));
}
/// \brief Try to lower a vector shuffle as a bit shift (shifts in zeros).
///
/// Attempts to match a shuffle mask against the PSLL(W/D/Q/DQ) and
/// PSRL(W/D/Q/DQ) SSE2 and AVX2 logical bit-shift instructions. The function
/// matches elements from one of the input vectors shuffled to the left or
/// right with zeroable elements 'shifted in'. It handles both the strictly
/// bit-wise element shifts and the byte shift across an entire 128-bit double
/// quad word lane.
///
/// PSHL : (little-endian) left bit shift.
/// [ zz, 0, zz, 2 ]
/// [ -1, 4, zz, -1 ]
/// PSRL : (little-endian) right bit shift.
/// [ 1, zz, 3, zz]
/// [ -1, -1, 7, zz]
/// PSLLDQ : (little-endian) left byte shift
/// [ zz, 0, 1, 2, 3, 4, 5, 6]
/// [ zz, zz, -1, -1, 2, 3, 4, -1]
/// [ zz, zz, zz, zz, zz, zz, -1, 1]
/// PSRLDQ : (little-endian) right byte shift
/// [ 5, 6, 7, zz, zz, zz, zz, zz]
/// [ -1, 5, 6, 7, zz, zz, zz, zz]
/// [ 1, 2, -1, -1, -1, -1, zz, zz]
static SDValue lowerVectorShuffleAsShift(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
int Size = Mask.size();
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
auto CheckZeros = [&](int Shift, int Scale, bool Left) {
for (int i = 0; i < Size; i += Scale)
for (int j = 0; j < Shift; ++j)
if (!Zeroable[i + j + (Left ? 0 : (Scale - Shift))])
return false;
return true;
};
auto MatchShift = [&](int Shift, int Scale, bool Left, SDValue V) {
for (int i = 0; i != Size; i += Scale) {
unsigned Pos = Left ? i + Shift : i;
unsigned Low = Left ? i : i + Shift;
unsigned Len = Scale - Shift;
if (!isSequentialOrUndefInRange(Mask, Pos, Len,
Low + (V == V1 ? 0 : Size)))
return SDValue();
}
int ShiftEltBits = VT.getScalarSizeInBits() * Scale;
bool ByteShift = ShiftEltBits > 64;
unsigned OpCode = Left ? (ByteShift ? X86ISD::VSHLDQ : X86ISD::VSHLI)
: (ByteShift ? X86ISD::VSRLDQ : X86ISD::VSRLI);
int ShiftAmt = Shift * VT.getScalarSizeInBits() / (ByteShift ? 8 : 1);
// Normalize the scale for byte shifts to still produce an i64 element
// type.
Scale = ByteShift ? Scale / 2 : Scale;
// We need to round trip through the appropriate type for the shift.
MVT ShiftSVT = MVT::getIntegerVT(VT.getScalarSizeInBits() * Scale);
MVT ShiftVT = MVT::getVectorVT(ShiftSVT, Size / Scale);
assert(DAG.getTargetLoweringInfo().isTypeLegal(ShiftVT) &&
"Illegal integer vector type");
V = DAG.getBitcast(ShiftVT, V);
V = DAG.getNode(OpCode, DL, ShiftVT, V,
DAG.getConstant(ShiftAmt, DL, MVT::i8));
return DAG.getBitcast(VT, V);
};
// SSE/AVX supports logical shifts up to 64-bit integers - so we can just
// keep doubling the size of the integer elements up to that. We can
// then shift the elements of the integer vector by whole multiples of
// their width within the elements of the larger integer vector. Test each
// multiple to see if we can find a match with the moved element indices
// and that the shifted in elements are all zeroable.
for (int Scale = 2; Scale * VT.getScalarSizeInBits() <= 128; Scale *= 2)
for (int Shift = 1; Shift != Scale; ++Shift)
for (bool Left : {true, false})
if (CheckZeros(Shift, Scale, Left))
for (SDValue V : {V1, V2})
if (SDValue Match = MatchShift(Shift, Scale, Left, V))
return Match;
// no match
return SDValue();
}
/// \brief Try to lower a vector shuffle using SSE4a EXTRQ/INSERTQ.
static SDValue lowerVectorShuffleWithSSE4A(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
assert(!Zeroable.all() && "Fully zeroable shuffle mask");
int Size = Mask.size();
int HalfSize = Size / 2;
assert(Size == (int)VT.getVectorNumElements() && "Unexpected mask size");
// Upper half must be undefined.
if (!isUndefInRange(Mask, HalfSize, HalfSize))
return SDValue();
// EXTRQ: Extract Len elements from lower half of source, starting at Idx.
// Remainder of lower half result is zero and upper half is all undef.
auto LowerAsEXTRQ = [&]() {
// Determine the extraction length from the part of the
// lower half that isn't zeroable.
int Len = HalfSize;
for (; Len > 0; --Len)
if (!Zeroable[Len - 1])
break;
assert(Len > 0 && "Zeroable shuffle mask");
// Attempt to match first Len sequential elements from the lower half.
SDValue Src;
int Idx = -1;
for (int i = 0; i != Len; ++i) {
int M = Mask[i];
if (M < 0)
continue;
SDValue &V = (M < Size ? V1 : V2);
M = M % Size;
// The extracted elements must start at a valid index and all mask
// elements must be in the lower half.
if (i > M || M >= HalfSize)
return SDValue();
if (Idx < 0 || (Src == V && Idx == (M - i))) {
Src = V;
Idx = M - i;
continue;
}
return SDValue();
}
if (Idx < 0)
return SDValue();
assert((Idx + Len) <= HalfSize && "Illegal extraction mask");
int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
return DAG.getNode(X86ISD::EXTRQI, DL, VT, Src,
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
};
if (SDValue ExtrQ = LowerAsEXTRQ())
return ExtrQ;
// INSERTQ: Extract lowest Len elements from lower half of second source and
// insert over first source, starting at Idx.
// { A[0], .., A[Idx-1], B[0], .., B[Len-1], A[Idx+Len], .., UNDEF, ... }
auto LowerAsInsertQ = [&]() {
for (int Idx = 0; Idx != HalfSize; ++Idx) {
SDValue Base;
// Attempt to match first source from mask before insertion point.
if (isUndefInRange(Mask, 0, Idx)) {
/* EMPTY */
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, 0)) {
Base = V1;
} else if (isSequentialOrUndefInRange(Mask, 0, Idx, Size)) {
Base = V2;
} else {
continue;
}
// Extend the extraction length looking to match both the insertion of
// the second source and the remaining elements of the first.
for (int Hi = Idx + 1; Hi <= HalfSize; ++Hi) {
SDValue Insert;
int Len = Hi - Idx;
// Match insertion.
if (isSequentialOrUndefInRange(Mask, Idx, Len, 0)) {
Insert = V1;
} else if (isSequentialOrUndefInRange(Mask, Idx, Len, Size)) {
Insert = V2;
} else {
continue;
}
// Match the remaining elements of the lower half.
if (isUndefInRange(Mask, Hi, HalfSize - Hi)) {
/* EMPTY */
} else if ((!Base || (Base == V1)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi, Hi)) {
Base = V1;
} else if ((!Base || (Base == V2)) &&
isSequentialOrUndefInRange(Mask, Hi, HalfSize - Hi,
Size + Hi)) {
Base = V2;
} else {
continue;
}
// We may not have a base (first source) - this can safely be undefined.
if (!Base)
Base = DAG.getUNDEF(VT);
int BitLen = (Len * VT.getScalarSizeInBits()) & 0x3f;
int BitIdx = (Idx * VT.getScalarSizeInBits()) & 0x3f;
return DAG.getNode(X86ISD::INSERTQI, DL, VT, Base, Insert,
DAG.getConstant(BitLen, DL, MVT::i8),
DAG.getConstant(BitIdx, DL, MVT::i8));
}
}
return SDValue();
};
if (SDValue InsertQ = LowerAsInsertQ())
return InsertQ;
return SDValue();
}
/// \brief Lower a vector shuffle as a zero or any extension.
///
/// Given a specific number of elements, element bit width, and extension
/// stride, produce either a zero or any extension based on the available
/// features of the subtarget. The extended elements are consecutive and
/// begin and can start from an offseted element index in the input; to
/// avoid excess shuffling the offset must either being in the bottom lane
/// or at the start of a higher lane. All extended elements must be from
/// the same lane.
static SDValue lowerVectorShuffleAsSpecificZeroOrAnyExtend(
SDLoc DL, MVT VT, int Scale, int Offset, bool AnyExt, SDValue InputV,
ArrayRef<int> Mask, const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(Scale > 1 && "Need a scale to extend.");
int EltBits = VT.getScalarSizeInBits();
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = 128 / EltBits;
int OffsetLane = Offset / NumEltsPerLane;
assert((EltBits == 8 || EltBits == 16 || EltBits == 32) &&
"Only 8, 16, and 32 bit elements can be extended.");
assert(Scale * EltBits <= 64 && "Cannot zero extend past 64 bits.");
assert(0 <= Offset && "Extension offset must be positive.");
assert((Offset < NumEltsPerLane || Offset % NumEltsPerLane == 0) &&
"Extension offset must be in the first lane or start an upper lane.");
// Check that an index is in same lane as the base offset.
auto SafeOffset = [&](int Idx) {
return OffsetLane == (Idx / NumEltsPerLane);
};
// Shift along an input so that the offset base moves to the first element.
auto ShuffleOffset = [&](SDValue V) {
if (!Offset)
return V;
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = 0; i * Scale < NumElements; ++i) {
int SrcIdx = i + Offset;
ShMask[i] = SafeOffset(SrcIdx) ? SrcIdx : -1;
}
return DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), ShMask);
};
// Found a valid zext mask! Try various lowering strategies based on the
// input type and available ISA extensions.
if (Subtarget.hasSSE41()) {
// Not worth offseting 128-bit vectors if scale == 2, a pattern using
// PUNPCK will catch this in a later shuffle match.
if (Offset && Scale == 2 && VT.is128BitVector())
return SDValue();
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits * Scale),
NumElements / Scale);
InputV = ShuffleOffset(InputV);
// For 256-bit vectors, we only need the lower (128-bit) input half.
if (VT.is256BitVector())
InputV = extract128BitVector(InputV, 0, DAG, DL);
InputV = DAG.getNode(X86ISD::VZEXT, DL, ExtVT, InputV);
return DAG.getBitcast(VT, InputV);
}
assert(VT.is128BitVector() && "Only 128-bit vectors can be extended.");
// For any extends we can cheat for larger element sizes and use shuffle
// instructions that can fold with a load and/or copy.
if (AnyExt && EltBits == 32) {
int PSHUFDMask[4] = {Offset, -1, SafeOffset(Offset + 1) ? Offset + 1 : -1,
-1};
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
if (AnyExt && EltBits == 16 && Scale > 2) {
int PSHUFDMask[4] = {Offset / 2, -1,
SafeOffset(Offset + 1) ? (Offset + 1) / 2 : -1, -1};
InputV = DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32,
DAG.getBitcast(MVT::v4i32, InputV),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
int PSHUFWMask[4] = {1, -1, -1, -1};
unsigned OddEvenOp = (Offset & 1 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW);
return DAG.getBitcast(
VT, DAG.getNode(OddEvenOp, DL, MVT::v8i16,
DAG.getBitcast(MVT::v8i16, InputV),
getV4X86ShuffleImm8ForMask(PSHUFWMask, DL, DAG)));
}
// The SSE4A EXTRQ instruction can efficiently extend the first 2 lanes
// to 64-bits.
if ((Scale * EltBits) == 64 && EltBits < 32 && Subtarget.hasSSE4A()) {
assert(NumElements == (int)Mask.size() && "Unexpected shuffle mask size!");
assert(VT.is128BitVector() && "Unexpected vector width!");
int LoIdx = Offset * EltBits;
SDValue Lo = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getConstant(EltBits, DL, MVT::i8),
DAG.getConstant(LoIdx, DL, MVT::i8)));
if (isUndefInRange(Mask, NumElements / 2, NumElements / 2) ||
!SafeOffset(Offset + 1))
return DAG.getBitcast(VT, Lo);
int HiIdx = (Offset + 1) * EltBits;
SDValue Hi = DAG.getBitcast(
MVT::v2i64, DAG.getNode(X86ISD::EXTRQI, DL, VT, InputV,
DAG.getConstant(EltBits, DL, MVT::i8),
DAG.getConstant(HiIdx, DL, MVT::i8)));
return DAG.getBitcast(VT,
DAG.getNode(X86ISD::UNPCKL, DL, MVT::v2i64, Lo, Hi));
}
// If this would require more than 2 unpack instructions to expand, use
// pshufb when available. We can only use more than 2 unpack instructions
// when zero extending i8 elements which also makes it easier to use pshufb.
if (Scale > 4 && EltBits == 8 && Subtarget.hasSSSE3()) {
assert(NumElements == 16 && "Unexpected byte vector width!");
SDValue PSHUFBMask[16];
for (int i = 0; i < 16; ++i) {
int Idx = Offset + (i / Scale);
PSHUFBMask[i] = DAG.getConstant(
(i % Scale == 0 && SafeOffset(Idx)) ? Idx : 0x80, DL, MVT::i8);
}
InputV = DAG.getBitcast(MVT::v16i8, InputV);
return DAG.getBitcast(
VT, DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8, InputV,
DAG.getBuildVector(MVT::v16i8, DL, PSHUFBMask)));
}
// If we are extending from an offset, ensure we start on a boundary that
// we can unpack from.
int AlignToUnpack = Offset % (NumElements / Scale);
if (AlignToUnpack) {
SmallVector<int, 8> ShMask((unsigned)NumElements, -1);
for (int i = AlignToUnpack; i < NumElements; ++i)
ShMask[i - AlignToUnpack] = i;
InputV = DAG.getVectorShuffle(VT, DL, InputV, DAG.getUNDEF(VT), ShMask);
Offset -= AlignToUnpack;
}
// Otherwise emit a sequence of unpacks.
do {
unsigned UnpackLoHi = X86ISD::UNPCKL;
if (Offset >= (NumElements / 2)) {
UnpackLoHi = X86ISD::UNPCKH;
Offset -= (NumElements / 2);
}
MVT InputVT = MVT::getVectorVT(MVT::getIntegerVT(EltBits), NumElements);
SDValue Ext = AnyExt ? DAG.getUNDEF(InputVT)
: getZeroVector(InputVT, Subtarget, DAG, DL);
InputV = DAG.getBitcast(InputVT, InputV);
InputV = DAG.getNode(UnpackLoHi, DL, InputVT, InputV, Ext);
Scale /= 2;
EltBits *= 2;
NumElements /= 2;
} while (Scale > 1);
return DAG.getBitcast(VT, InputV);
}
/// \brief Try to lower a vector shuffle as a zero extension on any microarch.
///
/// This routine will try to do everything in its power to cleverly lower
/// a shuffle which happens to match the pattern of a zero extend. It doesn't
/// check for the profitability of this lowering, it tries to aggressively
/// match this pattern. It will use all of the micro-architectural details it
/// can to emit an efficient lowering. It handles both blends with all-zero
/// inputs to explicitly zero-extend and undef-lanes (sometimes undef due to
/// masking out later).
///
/// The reason we have dedicated lowering for zext-style shuffles is that they
/// are both incredibly common and often quite performance sensitive.
static SDValue lowerVectorShuffleAsZeroOrAnyExtend(
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
int Bits = VT.getSizeInBits();
int NumLanes = Bits / 128;
int NumElements = VT.getVectorNumElements();
int NumEltsPerLane = NumElements / NumLanes;
assert(VT.getScalarSizeInBits() <= 32 &&
"Exceeds 32-bit integer zero extension limit");
assert((int)Mask.size() == NumElements && "Unexpected shuffle mask size");
// Define a helper function to check a particular ext-scale and lower to it if
// valid.
auto Lower = [&](int Scale) -> SDValue {
SDValue InputV;
bool AnyExt = true;
int Offset = 0;
int Matches = 0;
for (int i = 0; i < NumElements; ++i) {
int M = Mask[i];
if (M == -1)
continue; // Valid anywhere but doesn't tell us anything.
if (i % Scale != 0) {
// Each of the extended elements need to be zeroable.
if (!Zeroable[i])
return SDValue();
// We no longer are in the anyext case.
AnyExt = false;
continue;
}
// Each of the base elements needs to be consecutive indices into the
// same input vector.
SDValue V = M < NumElements ? V1 : V2;
M = M % NumElements;
if (!InputV) {
InputV = V;
Offset = M - (i / Scale);
} else if (InputV != V)
return SDValue(); // Flip-flopping inputs.
// Offset must start in the lowest 128-bit lane or at the start of an
// upper lane.
// FIXME: Is it ever worth allowing a negative base offset?
if (!((0 <= Offset && Offset < NumEltsPerLane) ||
(Offset % NumEltsPerLane) == 0))
return SDValue();
// If we are offsetting, all referenced entries must come from the same
// lane.
if (Offset && (Offset / NumEltsPerLane) != (M / NumEltsPerLane))
return SDValue();
if ((M % NumElements) != (Offset + (i / Scale)))
return SDValue(); // Non-consecutive strided elements.
Matches++;
}
// If we fail to find an input, we have a zero-shuffle which should always
// have already been handled.
// FIXME: Maybe handle this here in case during blending we end up with one?
if (!InputV)
return SDValue();
// If we are offsetting, don't extend if we only match a single input, we
// can always do better by using a basic PSHUF or PUNPCK.
if (Offset != 0 && Matches < 2)
return SDValue();
return lowerVectorShuffleAsSpecificZeroOrAnyExtend(
DL, VT, Scale, Offset, AnyExt, InputV, Mask, Subtarget, DAG);
};
// The widest scale possible for extending is to a 64-bit integer.
assert(Bits % 64 == 0 &&
"The number of bits in a vector must be divisible by 64 on x86!");
int NumExtElements = Bits / 64;
// Each iteration, try extending the elements half as much, but into twice as
// many elements.
for (; NumExtElements < NumElements; NumExtElements *= 2) {
assert(NumElements % NumExtElements == 0 &&
"The input vector size must be divisible by the extended size.");
if (SDValue V = Lower(NumElements / NumExtElements))
return V;
}
// General extends failed, but 128-bit vectors may be able to use MOVQ.
if (Bits != 128)
return SDValue();
// Returns one of the source operands if the shuffle can be reduced to a
// MOVQ, copying the lower 64-bits and zero-extending to the upper 64-bits.
auto CanZExtLowHalf = [&]() {
for (int i = NumElements / 2; i != NumElements; ++i)
if (!Zeroable[i])
return SDValue();
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, 0))
return V1;
if (isSequentialOrUndefInRange(Mask, 0, NumElements / 2, NumElements))
return V2;
return SDValue();
};
if (SDValue V = CanZExtLowHalf()) {
V = DAG.getBitcast(MVT::v2i64, V);
V = DAG.getNode(X86ISD::VZEXT_MOVL, DL, MVT::v2i64, V);
return DAG.getBitcast(VT, V);
}
// No viable ext lowering found.
return SDValue();
}
/// \brief Try to get a scalar value for a specific element of a vector.
///
/// Looks through BUILD_VECTOR and SCALAR_TO_VECTOR nodes to find a scalar.
static SDValue getScalarValueForVectorElement(SDValue V, int Idx,
SelectionDAG &DAG) {
MVT VT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
V = peekThroughBitcasts(V);
// If the bitcasts shift the element size, we can't extract an equivalent
// element from it.
MVT NewVT = V.getSimpleValueType();
if (!NewVT.isVector() || NewVT.getScalarSizeInBits() != VT.getScalarSizeInBits())
return SDValue();
if (V.getOpcode() == ISD::BUILD_VECTOR ||
(Idx == 0 && V.getOpcode() == ISD::SCALAR_TO_VECTOR)) {
// Ensure the scalar operand is the same size as the destination.
// FIXME: Add support for scalar truncation where possible.
SDValue S = V.getOperand(Idx);
if (EltVT.getSizeInBits() == S.getSimpleValueType().getSizeInBits())
return DAG.getBitcast(EltVT, S);
}
return SDValue();
}
/// \brief Helper to test for a load that can be folded with x86 shuffles.
///
/// This is particularly important because the set of instructions varies
/// significantly based on whether the operand is a load or not.
static bool isShuffleFoldableLoad(SDValue V) {
V = peekThroughBitcasts(V);
return ISD::isNON_EXTLoad(V.getNode());
}
/// \brief Try to lower insertion of a single element into a zero vector.
///
/// This is a common pattern that we have especially efficient patterns to lower
/// across all subtarget feature sets.
static SDValue lowerVectorShuffleAsElementInsertion(
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
MVT ExtVT = VT;
MVT EltVT = VT.getVectorElementType();
int V2Index = std::find_if(Mask.begin(), Mask.end(),
[&Mask](int M) { return M >= (int)Mask.size(); }) -
Mask.begin();
bool IsV1Zeroable = true;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (i != V2Index && !Zeroable[i]) {
IsV1Zeroable = false;
break;
}
// Check for a single input from a SCALAR_TO_VECTOR node.
// FIXME: All of this should be canonicalized into INSERT_VECTOR_ELT and
// all the smarts here sunk into that routine. However, the current
// lowering of BUILD_VECTOR makes that nearly impossible until the old
// vector shuffle lowering is dead.
SDValue V2S = getScalarValueForVectorElement(V2, Mask[V2Index] - Mask.size(),
DAG);
if (V2S && DAG.getTargetLoweringInfo().isTypeLegal(V2S.getValueType())) {
// We need to zext the scalar if it is smaller than an i32.
V2S = DAG.getBitcast(EltVT, V2S);
if (EltVT == MVT::i8 || EltVT == MVT::i16) {
// Using zext to expand a narrow element won't work for non-zero
// insertions.
if (!IsV1Zeroable)
return SDValue();
// Zero-extend directly to i32.
ExtVT = MVT::v4i32;
V2S = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, V2S);
}
V2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, ExtVT, V2S);
} else if (Mask[V2Index] != (int)Mask.size() || EltVT == MVT::i8 ||
EltVT == MVT::i16) {
// Either not inserting from the low element of the input or the input
// element size is too small to use VZEXT_MOVL to clear the high bits.
return SDValue();
}
if (!IsV1Zeroable) {
// If V1 can't be treated as a zero vector we have fewer options to lower
// this. We can't support integer vectors or non-zero targets cheaply, and
// the V1 elements can't be permuted in any way.
assert(VT == ExtVT && "Cannot change extended type when non-zeroable!");
if (!VT.isFloatingPoint() || V2Index != 0)
return SDValue();
SmallVector<int, 8> V1Mask(Mask.begin(), Mask.end());
V1Mask[V2Index] = -1;
if (!isNoopShuffleMask(V1Mask))
return SDValue();
// This is essentially a special case blend operation, but if we have
// general purpose blend operations, they are always faster. Bail and let
// the rest of the lowering handle these as blends.
if (Subtarget.hasSSE41())
return SDValue();
// Otherwise, use MOVSD or MOVSS.
assert((EltVT == MVT::f32 || EltVT == MVT::f64) &&
"Only two types of floating point element types to handle!");
return DAG.getNode(EltVT == MVT::f32 ? X86ISD::MOVSS : X86ISD::MOVSD, DL,
ExtVT, V1, V2);
}
// This lowering only works for the low element with floating point vectors.
if (VT.isFloatingPoint() && V2Index != 0)
return SDValue();
V2 = DAG.getNode(X86ISD::VZEXT_MOVL, DL, ExtVT, V2);
if (ExtVT != VT)
V2 = DAG.getBitcast(VT, V2);
if (V2Index != 0) {
// If we have 4 or fewer lanes we can cheaply shuffle the element into
// the desired position. Otherwise it is more efficient to do a vector
// shift left. We know that we can do a vector shift left because all
// the inputs are zero.
if (VT.isFloatingPoint() || VT.getVectorNumElements() <= 4) {
SmallVector<int, 4> V2Shuffle(Mask.size(), 1);
V2Shuffle[V2Index] = 0;
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Shuffle);
} else {
V2 = DAG.getBitcast(MVT::v2i64, V2);
V2 = DAG.getNode(
X86ISD::VSHLDQ, DL, MVT::v2i64, V2,
DAG.getConstant(V2Index * EltVT.getSizeInBits() / 8, DL,
DAG.getTargetLoweringInfo().getScalarShiftAmountTy(
DAG.getDataLayout(), VT)));
V2 = DAG.getBitcast(VT, V2);
}
}
return V2;
}
/// Try to lower broadcast of a single - truncated - integer element,
/// coming from a scalar_to_vector/build_vector node \p V0 with larger elements.
///
/// This assumes we have AVX2.
static SDValue lowerVectorShuffleAsTruncBroadcast(SDLoc DL, MVT VT, SDValue V0,
int BroadcastIdx,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX2() &&
"We can only lower integer broadcasts with AVX2!");
EVT EltVT = VT.getVectorElementType();
EVT V0VT = V0.getValueType();
assert(VT.isInteger() && "Unexpected non-integer trunc broadcast!");
assert(V0VT.isVector() && "Unexpected non-vector vector-sized value!");
EVT V0EltVT = V0VT.getVectorElementType();
if (!V0EltVT.isInteger())
return SDValue();
const unsigned EltSize = EltVT.getSizeInBits();
const unsigned V0EltSize = V0EltVT.getSizeInBits();
// This is only a truncation if the original element type is larger.
if (V0EltSize <= EltSize)
return SDValue();
assert(((V0EltSize % EltSize) == 0) &&
"Scalar type sizes must all be powers of 2 on x86!");
const unsigned V0Opc = V0.getOpcode();
const unsigned Scale = V0EltSize / EltSize;
const unsigned V0BroadcastIdx = BroadcastIdx / Scale;
if ((V0Opc != ISD::SCALAR_TO_VECTOR || V0BroadcastIdx != 0) &&
V0Opc != ISD::BUILD_VECTOR)
return SDValue();
SDValue Scalar = V0.getOperand(V0BroadcastIdx);
// If we're extracting non-least-significant bits, shift so we can truncate.
// Hopefully, we can fold away the trunc/srl/load into the broadcast.
// Even if we can't (and !isShuffleFoldableLoad(Scalar)), prefer
// vpbroadcast+vmovd+shr to vpshufb(m)+vmovd.
if (const int OffsetIdx = BroadcastIdx % Scale)
Scalar = DAG.getNode(ISD::SRL, DL, Scalar.getValueType(), Scalar,
DAG.getConstant(OffsetIdx * EltSize, DL, Scalar.getValueType()));
return DAG.getNode(X86ISD::VBROADCAST, DL, VT,
DAG.getNode(ISD::TRUNCATE, DL, EltVT, Scalar));
}
/// \brief Try to lower broadcast of a single element.
///
/// For convenience, this code also bundles all of the subtarget feature set
/// filtering. While a little annoying to re-dispatch on type here, there isn't
/// a convenient way to factor it out.
/// FIXME: This is very similar to LowerVectorBroadcast - can we merge them?
static SDValue lowerVectorShuffleAsBroadcast(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!((Subtarget.hasSSE3() && VT == MVT::v2f64) ||
(Subtarget.hasAVX() && VT.isFloatingPoint()) ||
(Subtarget.hasAVX2() && VT.isInteger())))
return SDValue();
// With MOVDDUP (v2f64) we can broadcast from a register or a load, otherwise
// we can only broadcast from a register with AVX2.
unsigned NumElts = Mask.size();
unsigned Opcode = VT == MVT::v2f64 ? X86ISD::MOVDDUP : X86ISD::VBROADCAST;
bool BroadcastFromReg = (Opcode == X86ISD::MOVDDUP) || Subtarget.hasAVX2();
// Check that the mask is a broadcast.
int BroadcastIdx = -1;
for (int i = 0; i != (int)NumElts; ++i) {
SmallVector<int, 8> BroadcastMask(NumElts, i);
if (isShuffleEquivalent(V1, V2, Mask, BroadcastMask)) {
BroadcastIdx = i;
break;
}
}
if (BroadcastIdx < 0)
return SDValue();
assert(BroadcastIdx < (int)Mask.size() && "We only expect to be called with "
"a sorted mask where the broadcast "
"comes from V1.");
// Go up the chain of (vector) values to find a scalar load that we can
// combine with the broadcast.
SDValue V = V1;
for (;;) {
switch (V.getOpcode()) {
case ISD::CONCAT_VECTORS: {
int OperandSize = Mask.size() / V.getNumOperands();
V = V.getOperand(BroadcastIdx / OperandSize);
BroadcastIdx %= OperandSize;
continue;
}
case ISD::INSERT_SUBVECTOR: {
SDValue VOuter = V.getOperand(0), VInner = V.getOperand(1);
auto ConstantIdx = dyn_cast<ConstantSDNode>(V.getOperand(2));
if (!ConstantIdx)
break;
int BeginIdx = (int)ConstantIdx->getZExtValue();
int EndIdx =
BeginIdx + (int)VInner.getSimpleValueType().getVectorNumElements();
if (BroadcastIdx >= BeginIdx && BroadcastIdx < EndIdx) {
BroadcastIdx -= BeginIdx;
V = VInner;
} else {
V = VOuter;
}
continue;
}
}
break;
}
// Check if this is a broadcast of a scalar. We special case lowering
// for scalars so that we can more effectively fold with loads.
// First, look through bitcast: if the original value has a larger element
// type than the shuffle, the broadcast element is in essence truncated.
// Make that explicit to ease folding.
if (V.getOpcode() == ISD::BITCAST && VT.isInteger())
if (SDValue TruncBroadcast = lowerVectorShuffleAsTruncBroadcast(
DL, VT, V.getOperand(0), BroadcastIdx, Subtarget, DAG))
return TruncBroadcast;
MVT BroadcastVT = VT;
// Peek through any bitcast (only useful for loads).
SDValue BC = peekThroughBitcasts(V);
// Also check the simpler case, where we can directly reuse the scalar.
if (V.getOpcode() == ISD::BUILD_VECTOR ||
(V.getOpcode() == ISD::SCALAR_TO_VECTOR && BroadcastIdx == 0)) {
V = V.getOperand(BroadcastIdx);
// If we can't broadcast from a register, check that the input is a load.
if (!BroadcastFromReg && !isShuffleFoldableLoad(V))
return SDValue();
} else if (MayFoldLoad(BC) && !cast<LoadSDNode>(BC)->isVolatile()) {
// 32-bit targets need to load i64 as a f64 and then bitcast the result.
if (!Subtarget.is64Bit() && VT.getScalarType() == MVT::i64)
BroadcastVT = MVT::getVectorVT(MVT::f64, VT.getVectorNumElements());
// If we are broadcasting a load that is only used by the shuffle
// then we can reduce the vector load to the broadcasted scalar load.
LoadSDNode *Ld = cast<LoadSDNode>(BC);
SDValue BaseAddr = Ld->getOperand(1);
EVT SVT = BroadcastVT.getScalarType();
unsigned Offset = BroadcastIdx * SVT.getStoreSize();
SDValue NewAddr = DAG.getMemBasePlusOffset(BaseAddr, Offset, DL);
V = DAG.getLoad(SVT, DL, Ld->getChain(), NewAddr,
DAG.getMachineFunction().getMachineMemOperand(
Ld->getMemOperand(), Offset, SVT.getStoreSize()));
} else if (!BroadcastFromReg) {
// We can't broadcast from a vector register.
return SDValue();
} else if (BroadcastIdx != 0) {
// We can only broadcast from the zero-element of a vector register,
// but it can be advantageous to broadcast from the zero-element of a
// subvector.
if (!VT.is256BitVector() && !VT.is512BitVector())
return SDValue();
// VPERMQ/VPERMPD can perform the cross-lane shuffle directly.
if (VT == MVT::v4f64 || VT == MVT::v4i64)
return SDValue();
// Only broadcast the zero-element of a 128-bit subvector.
unsigned EltSize = VT.getScalarSizeInBits();
if (((BroadcastIdx * EltSize) % 128) != 0)
return SDValue();
MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 128 / EltSize);
V = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ExtVT, V,
DAG.getIntPtrConstant(BroadcastIdx, DL));
}
if (Opcode == X86ISD::MOVDDUP && !V.getValueType().isVector())
V = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V);
return DAG.getBitcast(VT, DAG.getNode(Opcode, DL, BroadcastVT, V));
}
// Check for whether we can use INSERTPS to perform the shuffle. We only use
// INSERTPS when the V1 elements are already in the correct locations
// because otherwise we can just always use two SHUFPS instructions which
// are much smaller to encode than a SHUFPS and an INSERTPS. We can also
// perform INSERTPS if a single V1 element is out of place and all V2
// elements are zeroable.
static SDValue lowerVectorShuffleAsInsertPS(SDValue Op, SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
unsigned ZMask = 0;
int V1DstIndex = -1;
int V2DstIndex = -1;
bool V1UsedInPlace = false;
for (int i = 0; i < 4; ++i) {
// Synthesize a zero mask from the zeroable elements (includes undefs).
if (Zeroable[i]) {
ZMask |= 1 << i;
continue;
}
// Flag if we use any V1 inputs in place.
if (i == Mask[i]) {
V1UsedInPlace = true;
continue;
}
// We can only insert a single non-zeroable element.
if (V1DstIndex != -1 || V2DstIndex != -1)
return SDValue();
if (Mask[i] < 4) {
// V1 input out of place for insertion.
V1DstIndex = i;
} else {
// V2 input for insertion.
V2DstIndex = i;
}
}
// Don't bother if we have no (non-zeroable) element for insertion.
if (V1DstIndex == -1 && V2DstIndex == -1)
return SDValue();
// Determine element insertion src/dst indices. The src index is from the
// start of the inserted vector, not the start of the concatenated vector.
unsigned V2SrcIndex = 0;
if (V1DstIndex != -1) {
// If we have a V1 input out of place, we use V1 as the V2 element insertion
// and don't use the original V2 at all.
V2SrcIndex = Mask[V1DstIndex];
V2DstIndex = V1DstIndex;
V2 = V1;
} else {
V2SrcIndex = Mask[V2DstIndex] - 4;
}
// If no V1 inputs are used in place, then the result is created only from
// the zero mask and the V2 insertion - so remove V1 dependency.
if (!V1UsedInPlace)
V1 = DAG.getUNDEF(MVT::v4f32);
unsigned InsertPSMask = V2SrcIndex << 6 | V2DstIndex << 4 | ZMask;
assert((InsertPSMask & ~0xFFu) == 0 && "Invalid mask!");
// Insert the V2 element into the desired position.
SDLoc DL(Op);
return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, V1, V2,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
/// \brief Try to lower a shuffle as a permute of the inputs followed by an
/// UNPCK instruction.
///
/// This specifically targets cases where we end up with alternating between
/// the two inputs, and so can permute them into something that feeds a single
/// UNPCK instruction. Note that this routine only targets integer vectors
/// because for floating point vectors we have a generalized SHUFPS lowering
/// strategy that handles everything that doesn't *exactly* match an unpack,
/// making this clever lowering unnecessary.
static SDValue lowerVectorShuffleAsPermuteAndUnpack(SDLoc DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(!VT.isFloatingPoint() &&
"This routine only supports integer vectors.");
assert(!isSingleInputShuffleMask(Mask) &&
"This routine should only be used when blending two inputs.");
assert(Mask.size() >= 2 && "Single element masks are invalid.");
int Size = Mask.size();
int NumLoInputs = std::count_if(Mask.begin(), Mask.end(), [Size](int M) {
return M >= 0 && M % Size < Size / 2;
});
int NumHiInputs = std::count_if(
Mask.begin(), Mask.end(), [Size](int M) { return M % Size >= Size / 2; });
bool UnpackLo = NumLoInputs >= NumHiInputs;
auto TryUnpack = [&](MVT UnpackVT, int Scale) {
SmallVector<int, 32> V1Mask(Mask.size(), -1);
SmallVector<int, 32> V2Mask(Mask.size(), -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
// Each element of the unpack contains Scale elements from this mask.
int UnpackIdx = i / Scale;
// We only handle the case where V1 feeds the first slots of the unpack.
// We rely on canonicalization to ensure this is the case.
if ((UnpackIdx % 2 == 0) != (Mask[i] < Size))
return SDValue();
// Setup the mask for this input. The indexing is tricky as we have to
// handle the unpack stride.
SmallVectorImpl<int> &VMask = (UnpackIdx % 2 == 0) ? V1Mask : V2Mask;
VMask[(UnpackIdx / 2) * Scale + i % Scale + (UnpackLo ? 0 : Size / 2)] =
Mask[i] % Size;
}
// If we will have to shuffle both inputs to use the unpack, check whether
// we can just unpack first and shuffle the result. If so, skip this unpack.
if ((NumLoInputs == 0 || NumHiInputs == 0) && !isNoopShuffleMask(V1Mask) &&
!isNoopShuffleMask(V2Mask))
return SDValue();
// Shuffle the inputs into place.
V1 = DAG.getVectorShuffle(VT, DL, V1, DAG.getUNDEF(VT), V1Mask);
V2 = DAG.getVectorShuffle(VT, DL, V2, DAG.getUNDEF(VT), V2Mask);
// Cast the inputs to the type we will use to unpack them.
V1 = DAG.getBitcast(UnpackVT, V1);
V2 = DAG.getBitcast(UnpackVT, V2);
// Unpack the inputs and cast the result back to the desired type.
return DAG.getBitcast(
VT, DAG.getNode(UnpackLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
UnpackVT, V1, V2));
};
// We try each unpack from the largest to the smallest to try and find one
// that fits this mask.
int OrigNumElements = VT.getVectorNumElements();
int OrigScalarSize = VT.getScalarSizeInBits();
for (int ScalarSize = 64; ScalarSize >= OrigScalarSize; ScalarSize /= 2) {
int Scale = ScalarSize / OrigScalarSize;
int NumElements = OrigNumElements / Scale;
MVT UnpackVT = MVT::getVectorVT(MVT::getIntegerVT(ScalarSize), NumElements);
if (SDValue Unpack = TryUnpack(UnpackVT, Scale))
return Unpack;
}
// If none of the unpack-rooted lowerings worked (or were profitable) try an
// initial unpack.
if (NumLoInputs == 0 || NumHiInputs == 0) {
assert((NumLoInputs > 0 || NumHiInputs > 0) &&
"We have to have *some* inputs!");
int HalfOffset = NumLoInputs == 0 ? Size / 2 : 0;
// FIXME: We could consider the total complexity of the permute of each
// possible unpacking. Or at the least we should consider how many
// half-crossings are created.
// FIXME: We could consider commuting the unpacks.
SmallVector<int, 32> PermMask;
PermMask.assign(Size, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
assert(Mask[i] % Size >= HalfOffset && "Found input from wrong half!");
PermMask[i] =
2 * ((Mask[i] % Size) - HalfOffset) + (Mask[i] < Size ? 0 : 1);
}
return DAG.getVectorShuffle(
VT, DL, DAG.getNode(NumLoInputs == 0 ? X86ISD::UNPCKH : X86ISD::UNPCKL,
DL, VT, V1, V2),
DAG.getUNDEF(VT), PermMask);
}
return SDValue();
}
/// \brief Handle lowering of 2-lane 64-bit floating point shuffles.
///
/// This is the basis function for the 2-lane 64-bit shuffles as we have full
/// support for floating point shuffles but not integer shuffles. These
/// instructions will incur a domain crossing penalty on some chips though so
/// it is better to avoid lowering through this for integer vectors where
/// possible.
static SDValue lowerV2F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v2f64 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2f64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (isSingleInputShuffleMask(Mask)) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. Simulate this by using the
// single input as both of the "inputs" to this instruction..
unsigned SHUFPDMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1);
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v2f64, V1,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V1,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
assert(Mask[0] >= 0 && Mask[0] < 2 && "Non-canonicalized blend!");
assert(Mask[1] >= 2 && "Non-canonicalized blend!");
// If we have a single input, insert that into V1 if we can do so cheaply.
if ((Mask[0] >= 2) + (Mask[1] >= 2) == 1) {
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2f64, V1, V2, Mask, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] < 0 ? -1 : (Mask[0] ^ 2),
Mask[1] < 0 ? -1 : (Mask[1] ^ 2)};
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2f64, V2, V1, InverseMask, Subtarget, DAG))
return Insertion;
}
// Try to use one of the special instruction patterns to handle two common
// blend patterns if a zero-blend above didn't work.
if (isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
isShuffleEquivalent(V1, V2, Mask, {1, 3}))
if (SDValue V1S = getScalarValueForVectorElement(V1, Mask[0], DAG))
// We can either use a special instruction to load over the low double or
// to move just the low double.
return DAG.getNode(
isShuffleFoldableLoad(V1S) ? X86ISD::MOVLPD : X86ISD::MOVSD,
DL, MVT::v2f64, V2,
DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64, V1S));
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2f64, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v2f64, Mask, V1, V2, DAG))
return V;
unsigned SHUFPDMask = (Mask[0] == 1) | (((Mask[1] - 2) == 1) << 1);
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v2f64, V1, V2,
DAG.getConstant(SHUFPDMask, DL, MVT::i8));
}
/// \brief Handle lowering of 2-lane 64-bit integer shuffles.
///
/// Tries to lower a 2-lane 64-bit shuffle using shuffle operations provided by
/// the integer unit to minimize domain crossing penalties. However, for blends
/// it falls back to the floating point shuffle operation with appropriate bit
/// casting.
static SDValue lowerV2I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v2i64 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v2i64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 2 && "Unexpected mask size for v2 shuffle!");
if (isSingleInputShuffleMask(Mask)) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We have to map the mask as it is actually a v4i32 shuffle instruction.
V1 = DAG.getBitcast(MVT::v4i32, V1);
int WidenedMask[4] = {
std::max(Mask[0], 0) * 2, std::max(Mask[0], 0) * 2 + 1,
std::max(Mask[1], 0) * 2, std::max(Mask[1], 0) * 2 + 1};
return DAG.getBitcast(
MVT::v2i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(WidenedMask, DL, DAG)));
}
assert(Mask[0] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[1] != -1 && "No undef lanes in multi-input v2 shuffles!");
assert(Mask[0] < 2 && "We sort V1 to be the first input.");
assert(Mask[1] >= 2 && "We sort V2 to be the second input.");
// If we have a blend of two PACKUS operations an the blend aligns with the
// low and half halves, we can just merge the PACKUS operations. This is
// particularly important as it lets us merge shuffles that this routine itself
// creates.
auto GetPackNode = [](SDValue V) {
V = peekThroughBitcasts(V);
return V.getOpcode() == X86ISD::PACKUS ? V : SDValue();
};
if (SDValue V1Pack = GetPackNode(V1))
if (SDValue V2Pack = GetPackNode(V2))
return DAG.getBitcast(MVT::v2i64,
DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8,
Mask[0] == 0 ? V1Pack.getOperand(0)
: V1Pack.getOperand(1),
Mask[1] == 2 ? V2Pack.getOperand(0)
: V2Pack.getOperand(1)));
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v2i64, V1, V2, Mask, DAG))
return Shift;
// When loading a scalar and then shuffling it into a vector we can often do
// the insertion cheaply.
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
return Insertion;
// Try inverting the insertion since for v2 masks it is easy to do and we
// can't reliably sort the mask one way or the other.
int InverseMask[2] = {Mask[0] ^ 2, Mask[1] ^ 2};
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, MVT::v2i64, V2, V1, InverseMask, Subtarget, DAG))
return Insertion;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v2i64, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v2i64, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3())
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v2i64, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v2i64, V1, V2,
Mask, DAG);
// We implement this with SHUFPD which is pretty lame because it will likely
// incur 2 cycles of stall for integer vectors on Nehalem and older chips.
// However, all the alternatives are still more cycles and newer chips don't
// have this problem. It would be really nice if x86 had better shuffles here.
V1 = DAG.getBitcast(MVT::v2f64, V1);
V2 = DAG.getBitcast(MVT::v2f64, V2);
return DAG.getBitcast(MVT::v2i64,
DAG.getVectorShuffle(MVT::v2f64, DL, V1, V2, Mask));
}
/// \brief Test whether this can be lowered with a single SHUFPS instruction.
///
/// This is used to disable more specialized lowerings when the shufps lowering
/// will happen to be efficient.
static bool isSingleSHUFPSMask(ArrayRef<int> Mask) {
// This routine only handles 128-bit shufps.
assert(Mask.size() == 4 && "Unsupported mask size!");
// To lower with a single SHUFPS we need to have the low half and high half
// each requiring a single input.
if (Mask[0] != -1 && Mask[1] != -1 && (Mask[0] < 4) != (Mask[1] < 4))
return false;
if (Mask[2] != -1 && Mask[3] != -1 && (Mask[2] < 4) != (Mask[3] < 4))
return false;
return true;
}
/// \brief Lower a vector shuffle using the SHUFPS instruction.
///
/// This is a helper routine dedicated to lowering vector shuffles using SHUFPS.
/// It makes no assumptions about whether this is the *best* lowering, it simply
/// uses it.
static SDValue lowerVectorShuffleWithSHUFPS(SDLoc DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
SDValue LowV = V1, HighV = V2;
int NewMask[4] = {Mask[0], Mask[1], Mask[2], Mask[3]};
int NumV2Elements =
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
if (NumV2Elements == 1) {
int V2Index =
std::find_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; }) -
Mask.begin();
// Compute the index adjacent to V2Index and in the same half by toggling
// the low bit.
int V2AdjIndex = V2Index ^ 1;
if (Mask[V2AdjIndex] == -1) {
// Handles all the cases where we have a single V2 element and an undef.
// This will only ever happen in the high lanes because we commute the
// vector otherwise.
if (V2Index < 2)
std::swap(LowV, HighV);
NewMask[V2Index] -= 4;
} else {
// Handle the case where the V2 element ends up adjacent to a V1 element.
// To make this work, blend them together as the first step.
int V1Index = V2AdjIndex;
int BlendMask[4] = {Mask[V2Index] - 4, 0, Mask[V1Index], 0};
V2 = DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now proceed to reconstruct the final blend as we have the necessary
// high or low half formed.
if (V2Index < 2) {
LowV = V2;
HighV = V1;
} else {
HighV = V2;
}
NewMask[V1Index] = 2; // We put the V1 element in V2[2].
NewMask[V2Index] = 0; // We shifted the V2 element into V2[0].
}
} else if (NumV2Elements == 2) {
if (Mask[0] < 4 && Mask[1] < 4) {
// Handle the easy case where we have V1 in the low lanes and V2 in the
// high lanes.
NewMask[2] -= 4;
NewMask[3] -= 4;
} else if (Mask[2] < 4 && Mask[3] < 4) {
// We also handle the reversed case because this utility may get called
// when we detect a SHUFPS pattern but can't easily commute the shuffle to
// arrange things in the right direction.
NewMask[0] -= 4;
NewMask[1] -= 4;
HighV = V1;
LowV = V2;
} else {
// We have a mixture of V1 and V2 in both low and high lanes. Rather than
// trying to place elements directly, just blend them and set up the final
// shuffle to place them.
// The first two blend mask elements are for V1, the second two are for
// V2.
int BlendMask[4] = {Mask[0] < 4 ? Mask[0] : Mask[1],
Mask[2] < 4 ? Mask[2] : Mask[3],
(Mask[0] >= 4 ? Mask[0] : Mask[1]) - 4,
(Mask[2] >= 4 ? Mask[2] : Mask[3]) - 4};
V1 = DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
getV4X86ShuffleImm8ForMask(BlendMask, DL, DAG));
// Now we do a normal shuffle of V1 by giving V1 as both operands to
// a blend.
LowV = HighV = V1;
NewMask[0] = Mask[0] < 4 ? 0 : 2;
NewMask[1] = Mask[0] < 4 ? 2 : 0;
NewMask[2] = Mask[2] < 4 ? 1 : 3;
NewMask[3] = Mask[2] < 4 ? 3 : 1;
}
}
return DAG.getNode(X86ISD::SHUFP, DL, VT, LowV, HighV,
getV4X86ShuffleImm8ForMask(NewMask, DL, DAG));
}
/// \brief Lower 4-lane 32-bit floating point shuffles.
///
/// Uses instructions exclusively from the floating point unit to minimize
/// domain crossing penalties, as these are sufficient to implement all v4f32
/// shuffles.
static SDValue lowerV4F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v4f32 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
int NumV2Elements =
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4f32, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Use even/odd duplicate instructions for masks that match their pattern.
if (Subtarget.hasSSE3()) {
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v4f32, V1);
if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v4f32, V1);
}
if (Subtarget.hasAVX()) {
// If we have AVX, we can use VPERMILPS which will allow folding a load
// into the shuffle.
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Otherwise, use a straight shuffle of a single input vector. We pass the
// input vector to both operands to simulate this with a SHUFPS.
return DAG.getNode(X86ISD::SHUFP, DL, MVT::v4f32, V1, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// There are special ways we can lower some single-element blends. However, we
// have custom ways we can lower more complex single-element blends below that
// we defer to if both this and BLENDPS fail to match, so restrict this to
// when the V2 input is targeting element 0 of the mask -- that is the fast
// case here.
if (NumV2Elements == 1 && Mask[0] >= 4)
if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4f32, V1, V2,
Mask, Subtarget, DAG))
return V;
if (Subtarget.hasSSE41()) {
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f32, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Use INSERTPS if we can complete the shuffle efficiently.
if (SDValue V = lowerVectorShuffleAsInsertPS(Op, V1, V2, Mask, DAG))
return V;
if (!isSingleSHUFPSMask(Mask))
if (SDValue BlendPerm = lowerVectorShuffleAsBlendAndPermute(
DL, MVT::v4f32, V1, V2, Mask, DAG))
return BlendPerm;
}
// Use low/high mov instructions.
if (isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5}))
return DAG.getNode(X86ISD::MOVLHPS, DL, MVT::v4f32, V1, V2);
if (isShuffleEquivalent(V1, V2, Mask, {2, 3, 6, 7}))
return DAG.getNode(X86ISD::MOVHLPS, DL, MVT::v4f32, V2, V1);
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4f32, Mask, V1, V2, DAG))
return V;
// Otherwise fall back to a SHUFPS lowering strategy.
return lowerVectorShuffleWithSHUFPS(DL, MVT::v4f32, Mask, V1, V2, DAG);
}
/// \brief Lower 4-lane i32 vector shuffles.
///
/// We try to handle these with integer-domain shuffles where we can, but for
/// blends we use the floating point domain blend instructions.
static SDValue lowerV4I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v4i32 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v4i32, V1, V2,
Mask, Subtarget, DAG))
return ZExt;
int NumV2Elements =
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 4; });
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Straight shuffle of a single input vector. For everything from SSE2
// onward this has a single fast instruction with no scary immediates.
// We coerce the shuffle pattern to be compatible with UNPCK instructions
// but we aren't actually going to use the UNPCK instruction because doing
// so prevents folding a load into this instruction or making a copy.
const int UnpackLoMask[] = {0, 0, 1, 1};
const int UnpackHiMask[] = {2, 2, 3, 3};
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 1, 1}))
Mask = UnpackLoMask;
else if (isShuffleEquivalent(V1, V2, Mask, {2, 2, 3, 3}))
Mask = UnpackHiMask;
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v4i32, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
}
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v4i32, V1, V2, Mask, DAG))
return Shift;
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v4i32, V1, V2,
Mask, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i32, V1, V2, Mask,
Subtarget, DAG))
return Blend;
if (SDValue Masked =
lowerVectorShuffleAsBitMask(DL, MVT::v4i32, V1, V2, Mask, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4i32, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
// Its more profitable for pre-SSSE3 to use shuffles/unpacks.
if (Subtarget.hasSSSE3())
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v4i32, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// If we have direct support for blends, we should lower by decomposing into
// a permute. That will be faster than the domain cross.
if (IsBlendSupported)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i32, V1, V2,
Mask, DAG);
// Try to lower by permuting the inputs into an unpack instruction.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v4i32, V1,
V2, Mask, DAG))
return Unpack;
// We implement this with SHUFPS because it can blend from two vectors.
// Because we're going to eventually use SHUFPS, we use SHUFPS even to build
// up the inputs, bypassing domain shift penalties that we would encur if we
// directly used PSHUFD on Nehalem and older. For newer chips, this isn't
// relevant.
return DAG.getBitcast(
MVT::v4i32,
DAG.getVectorShuffle(MVT::v4f32, DL, DAG.getBitcast(MVT::v4f32, V1),
DAG.getBitcast(MVT::v4f32, V2), Mask));
}
/// \brief Lowering of single-input v8i16 shuffles is the cornerstone of SSE2
/// shuffle lowering, and the most complex part.
///
/// The lowering strategy is to try to form pairs of input lanes which are
/// targeted at the same half of the final vector, and then use a dword shuffle
/// to place them onto the right half, and finally unpack the paired lanes into
/// their final position.
///
/// The exact breakdown of how to form these dword pairs and align them on the
/// correct sides is really tricky. See the comments within the function for
/// more of the details.
///
/// This code also handles repeated 128-bit lanes of v8i16 shuffles, but each
/// lane must shuffle the *exact* same way. In fact, you must pass a v8 Mask to
/// this routine for it to work correctly. To shuffle a 256-bit or 512-bit i16
/// vector, form the analogous 128-bit 8-element Mask.
static SDValue lowerV8I16GeneralSingleInputVectorShuffle(
SDLoc DL, MVT VT, SDValue V, MutableArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(VT.getVectorElementType() == MVT::i16 && "Bad input type!");
MVT PSHUFDVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
assert(Mask.size() == 8 && "Shuffle mask length doen't match!");
MutableArrayRef<int> LoMask = Mask.slice(0, 4);
MutableArrayRef<int> HiMask = Mask.slice(4, 4);
SmallVector<int, 4> LoInputs;
std::copy_if(LoMask.begin(), LoMask.end(), std::back_inserter(LoInputs),
[](int M) { return M >= 0; });
std::sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()), LoInputs.end());
SmallVector<int, 4> HiInputs;
std::copy_if(HiMask.begin(), HiMask.end(), std::back_inserter(HiInputs),
[](int M) { return M >= 0; });
std::sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()), HiInputs.end());
int NumLToL =
std::lower_bound(LoInputs.begin(), LoInputs.end(), 4) - LoInputs.begin();
int NumHToL = LoInputs.size() - NumLToL;
int NumLToH =
std::lower_bound(HiInputs.begin(), HiInputs.end(), 4) - HiInputs.begin();
int NumHToH = HiInputs.size() - NumLToH;
MutableArrayRef<int> LToLInputs(LoInputs.data(), NumLToL);
MutableArrayRef<int> LToHInputs(HiInputs.data(), NumLToH);
MutableArrayRef<int> HToLInputs(LoInputs.data() + NumLToL, NumHToL);
MutableArrayRef<int> HToHInputs(HiInputs.data() + NumLToH, NumHToH);
// If we are splatting two values from one half - one to each half, then
// we can shuffle that half so each is splatted to a dword, then splat those
// to their respective halves.
auto SplatHalfs = [&](int LoInput, int HiInput, unsigned ShufWOp,
int DOffset) {
int PSHUFHalfMask[] = {LoInput % 4, LoInput % 4, HiInput % 4, HiInput % 4};
int PSHUFDMask[] = {DOffset + 0, DOffset + 0, DOffset + 1, DOffset + 1};
V = DAG.getNode(ShufWOp, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
V = DAG.getBitcast(PSHUFDVT, V);
V = DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, V,
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG));
return DAG.getBitcast(VT, V);
};
if (NumLToL == 1 && NumLToH == 1 && (NumHToL + NumHToH) == 0)
return SplatHalfs(LToLInputs[0], LToHInputs[0], X86ISD::PSHUFLW, 0);
if (NumHToL == 1 && NumHToH == 1 && (NumLToL + NumLToH) == 0)
return SplatHalfs(HToLInputs[0], HToHInputs[0], X86ISD::PSHUFHW, 2);
// Simplify the 1-into-3 and 3-into-1 cases with a single pshufd. For all
// such inputs we can swap two of the dwords across the half mark and end up
// with <=2 inputs to each half in each half. Once there, we can fall through
// to the generic code below. For example:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [0, 1, 2, 7, 4, 5, 6, 3] -----------------> [0, 1, 4, 7, 2, 3, 6, 5]
//
// However in some very rare cases we have a 1-into-3 or 3-into-1 on one half
// and an existing 2-into-2 on the other half. In this case we may have to
// pre-shuffle the 2-into-2 half to avoid turning it into a 3-into-1 or
// 1-into-3 which could cause us to cycle endlessly fixing each side in turn.
// Fortunately, we don't have to handle anything but a 2-into-2 pattern
// because any other situation (including a 3-into-1 or 1-into-3 in the other
// half than the one we target for fixing) will be fixed when we re-enter this
// path. We will also combine away any sequence of PSHUFD instructions that
// result into a single instruction. Here is an example of the tricky case:
//
// Input: [a, b, c, d, e, f, g, h] -PSHUFD[0,2,1,3]-> [a, b, e, f, c, d, g, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -THIS-IS-BAD!!!!-> [5, 7, 1, 0, 4, 7, 5, 3]
//
// This now has a 1-into-3 in the high half! Instead, we do two shuffles:
//
// Input: [a, b, c, d, e, f, g, h] PSHUFHW[0,2,1,3]-> [a, b, c, d, e, g, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 5] -----------------> [3, 7, 1, 0, 2, 7, 3, 6]
//
// Input: [a, b, c, d, e, g, f, h] -PSHUFD[0,2,1,3]-> [a, b, e, g, c, d, f, h]
// Mask: [3, 7, 1, 0, 2, 7, 3, 6] -----------------> [5, 7, 1, 0, 4, 7, 5, 6]
//
// The result is fine to be handled by the generic logic.
auto balanceSides = [&](ArrayRef<int> AToAInputs, ArrayRef<int> BToAInputs,
ArrayRef<int> BToBInputs, ArrayRef<int> AToBInputs,
int AOffset, int BOffset) {
assert((AToAInputs.size() == 3 || AToAInputs.size() == 1) &&
"Must call this with A having 3 or 1 inputs from the A half.");
assert((BToAInputs.size() == 1 || BToAInputs.size() == 3) &&
"Must call this with B having 1 or 3 inputs from the B half.");
assert(AToAInputs.size() + BToAInputs.size() == 4 &&
"Must call this with either 3:1 or 1:3 inputs (summing to 4).");
bool ThreeAInputs = AToAInputs.size() == 3;
// Compute the index of dword with only one word among the three inputs in
// a half by taking the sum of the half with three inputs and subtracting
// the sum of the actual three inputs. The difference is the remaining
// slot.
int ADWord, BDWord;
int &TripleDWord = ThreeAInputs ? ADWord : BDWord;
int &OneInputDWord = ThreeAInputs ? BDWord : ADWord;
int TripleInputOffset = ThreeAInputs ? AOffset : BOffset;
ArrayRef<int> TripleInputs = ThreeAInputs ? AToAInputs : BToAInputs;
int OneInput = ThreeAInputs ? BToAInputs[0] : AToAInputs[0];
int TripleInputSum = 0 + 1 + 2 + 3 + (4 * TripleInputOffset);
int TripleNonInputIdx =
TripleInputSum - std::accumulate(TripleInputs.begin(), TripleInputs.end(), 0);
TripleDWord = TripleNonInputIdx / 2;
// We use xor with one to compute the adjacent DWord to whichever one the
// OneInput is in.
OneInputDWord = (OneInput / 2) ^ 1;
// Check for one tricky case: We're fixing a 3<-1 or a 1<-3 shuffle for AToA
// and BToA inputs. If there is also such a problem with the BToB and AToB
// inputs, we don't try to fix it necessarily -- we'll recurse and see it in
// the next pass. However, if we have a 2<-2 in the BToB and AToB inputs, it
// is essential that we don't *create* a 3<-1 as then we might oscillate.
if (BToBInputs.size() == 2 && AToBInputs.size() == 2) {
// Compute how many inputs will be flipped by swapping these DWords. We
// need
// to balance this to ensure we don't form a 3-1 shuffle in the other
// half.
int NumFlippedAToBInputs =
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord) +
std::count(AToBInputs.begin(), AToBInputs.end(), 2 * ADWord + 1);
int NumFlippedBToBInputs =
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord) +
std::count(BToBInputs.begin(), BToBInputs.end(), 2 * BDWord + 1);
if ((NumFlippedAToBInputs == 1 &&
(NumFlippedBToBInputs == 0 || NumFlippedBToBInputs == 2)) ||
(NumFlippedBToBInputs == 1 &&
(NumFlippedAToBInputs == 0 || NumFlippedAToBInputs == 2))) {
// We choose whether to fix the A half or B half based on whether that
// half has zero flipped inputs. At zero, we may not be able to fix it
// with that half. We also bias towards fixing the B half because that
// will more commonly be the high half, and we have to bias one way.
auto FixFlippedInputs = [&V, &DL, &Mask, &DAG](int PinnedIdx, int DWord,
ArrayRef<int> Inputs) {
int FixIdx = PinnedIdx ^ 1; // The adjacent slot to the pinned slot.
bool IsFixIdxInput = std::find(Inputs.begin(), Inputs.end(),
PinnedIdx ^ 1) != Inputs.end();
// Determine whether the free index is in the flipped dword or the
// unflipped dword based on where the pinned index is. We use this bit
// in an xor to conditionally select the adjacent dword.
int FixFreeIdx = 2 * (DWord ^ (PinnedIdx / 2 == DWord));
bool IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
FixFreeIdx) != Inputs.end();
if (IsFixIdxInput == IsFixFreeIdxInput)
FixFreeIdx += 1;
IsFixFreeIdxInput = std::find(Inputs.begin(), Inputs.end(),
FixFreeIdx) != Inputs.end();
assert(IsFixIdxInput != IsFixFreeIdxInput &&
"We need to be changing the number of flipped inputs!");
int PSHUFHalfMask[] = {0, 1, 2, 3};
std::swap(PSHUFHalfMask[FixFreeIdx % 4], PSHUFHalfMask[FixIdx % 4]);
V = DAG.getNode(FixIdx < 4 ? X86ISD::PSHUFLW : X86ISD::PSHUFHW, DL,
MVT::v8i16, V,
getV4X86ShuffleImm8ForMask(PSHUFHalfMask, DL, DAG));
for (int &M : Mask)
if (M != -1 && M == FixIdx)
M = FixFreeIdx;
else if (M != -1 && M == FixFreeIdx)
M = FixIdx;
};
if (NumFlippedBToBInputs != 0) {
int BPinnedIdx =
BToAInputs.size() == 3 ? TripleNonInputIdx : OneInput;
FixFlippedInputs(BPinnedIdx, BDWord, BToBInputs);
} else {
assert(NumFlippedAToBInputs != 0 && "Impossible given predicates!");
int APinnedIdx = ThreeAInputs ? TripleNonInputIdx : OneInput;
FixFlippedInputs(APinnedIdx, ADWord, AToBInputs);
}
}
}
int PSHUFDMask[] = {0, 1, 2, 3};
PSHUFDMask[ADWord] = BDWord;
PSHUFDMask[BDWord] = ADWord;
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// Adjust the mask to match the new locations of A and B.
for (int &M : Mask)
if (M != -1 && M/2 == ADWord)
M = 2 * BDWord + M % 2;
else if (M != -1 && M/2 == BDWord)
M = 2 * ADWord + M % 2;
// Recurse back into this routine to re-compute state now that this isn't
// a 3 and 1 problem.
return lowerV8I16GeneralSingleInputVectorShuffle(DL, VT, V, Mask, Subtarget,
DAG);
};
if ((NumLToL == 3 && NumHToL == 1) || (NumLToL == 1 && NumHToL == 3))
return balanceSides(LToLInputs, HToLInputs, HToHInputs, LToHInputs, 0, 4);
else if ((NumHToH == 3 && NumLToH == 1) || (NumHToH == 1 && NumLToH == 3))
return balanceSides(HToHInputs, LToHInputs, LToLInputs, HToLInputs, 4, 0);
// At this point there are at most two inputs to the low and high halves from
// each half. That means the inputs can always be grouped into dwords and
// those dwords can then be moved to the correct half with a dword shuffle.
// We use at most one low and one high word shuffle to collect these paired
// inputs into dwords, and finally a dword shuffle to place them.
int PSHUFLMask[4] = {-1, -1, -1, -1};
int PSHUFHMask[4] = {-1, -1, -1, -1};
int PSHUFDMask[4] = {-1, -1, -1, -1};
// First fix the masks for all the inputs that are staying in their
// original halves. This will then dictate the targets of the cross-half
// shuffles.
auto fixInPlaceInputs =
[&PSHUFDMask](ArrayRef<int> InPlaceInputs, ArrayRef<int> IncomingInputs,
MutableArrayRef<int> SourceHalfMask,
MutableArrayRef<int> HalfMask, int HalfOffset) {
if (InPlaceInputs.empty())
return;
if (InPlaceInputs.size() == 1) {
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
PSHUFDMask[InPlaceInputs[0] / 2] = InPlaceInputs[0] / 2;
return;
}
if (IncomingInputs.empty()) {
// Just fix all of the in place inputs.
for (int Input : InPlaceInputs) {
SourceHalfMask[Input - HalfOffset] = Input - HalfOffset;
PSHUFDMask[Input / 2] = Input / 2;
}
return;
}
assert(InPlaceInputs.size() == 2 && "Cannot handle 3 or 4 inputs!");
SourceHalfMask[InPlaceInputs[0] - HalfOffset] =
InPlaceInputs[0] - HalfOffset;
// Put the second input next to the first so that they are packed into
// a dword. We find the adjacent index by toggling the low bit.
int AdjIndex = InPlaceInputs[0] ^ 1;
SourceHalfMask[AdjIndex - HalfOffset] = InPlaceInputs[1] - HalfOffset;
std::replace(HalfMask.begin(), HalfMask.end(), InPlaceInputs[1], AdjIndex);
PSHUFDMask[AdjIndex / 2] = AdjIndex / 2;
};
fixInPlaceInputs(LToLInputs, HToLInputs, PSHUFLMask, LoMask, 0);
fixInPlaceInputs(HToHInputs, LToHInputs, PSHUFHMask, HiMask, 4);
// Now gather the cross-half inputs and place them into a free dword of
// their target half.
// FIXME: This operation could almost certainly be simplified dramatically to
// look more like the 3-1 fixing operation.
auto moveInputsToRightHalf = [&PSHUFDMask](
MutableArrayRef<int> IncomingInputs, ArrayRef<int> ExistingInputs,
MutableArrayRef<int> SourceHalfMask, MutableArrayRef<int> HalfMask,
MutableArrayRef<int> FinalSourceHalfMask, int SourceOffset,
int DestOffset) {
auto isWordClobbered = [](ArrayRef<int> SourceHalfMask, int Word) {
return SourceHalfMask[Word] != -1 && SourceHalfMask[Word] != Word;
};
auto isDWordClobbered = [&isWordClobbered](ArrayRef<int> SourceHalfMask,
int Word) {
int LowWord = Word & ~1;
int HighWord = Word | 1;
return isWordClobbered(SourceHalfMask, LowWord) ||
isWordClobbered(SourceHalfMask, HighWord);
};
if (IncomingInputs.empty())
return;
if (ExistingInputs.empty()) {
// Map any dwords with inputs from them into the right half.
for (int Input : IncomingInputs) {
// If the source half mask maps over the inputs, turn those into
// swaps and use the swapped lane.
if (isWordClobbered(SourceHalfMask, Input - SourceOffset)) {
if (SourceHalfMask[SourceHalfMask[Input - SourceOffset]] == -1) {
SourceHalfMask[SourceHalfMask[Input - SourceOffset]] =
Input - SourceOffset;
// We have to swap the uses in our half mask in one sweep.
for (int &M : HalfMask)
if (M == SourceHalfMask[Input - SourceOffset] + SourceOffset)
M = Input;
else if (M == Input)
M = SourceHalfMask[Input - SourceOffset] + SourceOffset;
} else {
assert(SourceHalfMask[SourceHalfMask[Input - SourceOffset]] ==
Input - SourceOffset &&
"Previous placement doesn't match!");
}
// Note that this correctly re-maps both when we do a swap and when
// we observe the other side of the swap above. We rely on that to
// avoid swapping the members of the input list directly.
Input = SourceHalfMask[Input - SourceOffset] + SourceOffset;
}
// Map the input's dword into the correct half.
if (PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] == -1)
PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] = Input / 2;
else
assert(PSHUFDMask[(Input - SourceOffset + DestOffset) / 2] ==
Input / 2 &&
"Previous placement doesn't match!");
}
// And just directly shift any other-half mask elements to be same-half
// as we will have mirrored the dword containing the element into the
// same position within that half.
for (int &M : HalfMask)
if (M >= SourceOffset && M < SourceOffset + 4) {
M = M - SourceOffset + DestOffset;
assert(M >= 0 && "This should never wrap below zero!");
}
return;
}
// Ensure we have the input in a viable dword of its current half. This
// is particularly tricky because the original position may be clobbered
// by inputs being moved and *staying* in that half.
if (IncomingInputs.size() == 1) {
if (isWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
int InputFixed = std::find(std::begin(SourceHalfMask),
std::end(SourceHalfMask), -1) -
std::begin(SourceHalfMask) + SourceOffset;
SourceHalfMask[InputFixed - SourceOffset] =
IncomingInputs[0] - SourceOffset;
std::replace(HalfMask.begin(), HalfMask.end(), IncomingInputs[0],
InputFixed);
IncomingInputs[0] = InputFixed;
}
} else if (IncomingInputs.size() == 2) {
if (IncomingInputs[0] / 2 != IncomingInputs[1] / 2 ||
isDWordClobbered(SourceHalfMask, IncomingInputs[0] - SourceOffset)) {
// We have two non-adjacent or clobbered inputs we need to extract from
// the source half. To do this, we need to map them into some adjacent
// dword slot in the source mask.
int InputsFixed[2] = {IncomingInputs[0] - SourceOffset,
IncomingInputs[1] - SourceOffset};
// If there is a free slot in the source half mask adjacent to one of
// the inputs, place the other input in it. We use (Index XOR 1) to
// compute an adjacent index.
if (!isWordClobbered(SourceHalfMask, InputsFixed[0]) &&
SourceHalfMask[InputsFixed[0] ^ 1] == -1) {
SourceHalfMask[InputsFixed[0]] = InputsFixed[0];
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
InputsFixed[1] = InputsFixed[0] ^ 1;
} else if (!isWordClobbered(SourceHalfMask, InputsFixed[1]) &&
SourceHalfMask[InputsFixed[1] ^ 1] == -1) {
SourceHalfMask[InputsFixed[1]] = InputsFixed[1];
SourceHalfMask[InputsFixed[1] ^ 1] = InputsFixed[0];
InputsFixed[0] = InputsFixed[1] ^ 1;
} else if (SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] == -1 &&
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] == -1) {
// The two inputs are in the same DWord but it is clobbered and the
// adjacent DWord isn't used at all. Move both inputs to the free
// slot.
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1)] = InputsFixed[0];
SourceHalfMask[2 * ((InputsFixed[0] / 2) ^ 1) + 1] = InputsFixed[1];
InputsFixed[0] = 2 * ((InputsFixed[0] / 2) ^ 1);
InputsFixed[1] = 2 * ((InputsFixed[0] / 2) ^ 1) + 1;
} else {
// The only way we hit this point is if there is no clobbering
// (because there are no off-half inputs to this half) and there is no
// free slot adjacent to one of the inputs. In this case, we have to
// swap an input with a non-input.
for (int i = 0; i < 4; ++i)
assert((SourceHalfMask[i] == -1 || SourceHalfMask[i] == i) &&
"We can't handle any clobbers here!");
assert(InputsFixed[1] != (InputsFixed[0] ^ 1) &&
"Cannot have adjacent inputs here!");
SourceHalfMask[InputsFixed[0] ^ 1] = InputsFixed[1];
SourceHalfMask[InputsFixed[1]] = InputsFixed[0] ^ 1;
// We also have to update the final source mask in this case because
// it may need to undo the above swap.
for (int &M : FinalSourceHalfMask)
if (M == (InputsFixed[0] ^ 1) + SourceOffset)
M = InputsFixed[1] + SourceOffset;
else if (M == InputsFixed[1] + SourceOffset)
M = (InputsFixed[0] ^ 1) + SourceOffset;
InputsFixed[1] = InputsFixed[0] ^ 1;
}
// Point everything at the fixed inputs.
for (int &M : HalfMask)
if (M == IncomingInputs[0])
M = InputsFixed[0] + SourceOffset;
else if (M == IncomingInputs[1])
M = InputsFixed[1] + SourceOffset;
IncomingInputs[0] = InputsFixed[0] + SourceOffset;
IncomingInputs[1] = InputsFixed[1] + SourceOffset;
}
} else {
llvm_unreachable("Unhandled input size!");
}
// Now hoist the DWord down to the right half.
int FreeDWord = (PSHUFDMask[DestOffset / 2] == -1 ? 0 : 1) + DestOffset / 2;
assert(PSHUFDMask[FreeDWord] == -1 && "DWord not free");
PSHUFDMask[FreeDWord] = IncomingInputs[0] / 2;
for (int &M : HalfMask)
for (int Input : IncomingInputs)
if (M == Input)
M = FreeDWord * 2 + Input % 2;
};
moveInputsToRightHalf(HToLInputs, LToLInputs, PSHUFHMask, LoMask, HiMask,
/*SourceOffset*/ 4, /*DestOffset*/ 0);
moveInputsToRightHalf(LToHInputs, HToHInputs, PSHUFLMask, HiMask, LoMask,
/*SourceOffset*/ 0, /*DestOffset*/ 4);
// Now enact all the shuffles we've computed to move the inputs into their
// target half.
if (!isNoopShuffleMask(PSHUFLMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFLMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFHMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(PSHUFHMask, DL, DAG));
if (!isNoopShuffleMask(PSHUFDMask))
V = DAG.getBitcast(
VT,
DAG.getNode(X86ISD::PSHUFD, DL, PSHUFDVT, DAG.getBitcast(PSHUFDVT, V),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
// At this point, each half should contain all its inputs, and we can then
// just shuffle them into their final position.
assert(std::count_if(LoMask.begin(), LoMask.end(),
[](int M) { return M >= 4; }) == 0 &&
"Failed to lift all the high half inputs to the low mask!");
assert(std::count_if(HiMask.begin(), HiMask.end(),
[](int M) { return M >= 0 && M < 4; }) == 0 &&
"Failed to lift all the low half inputs to the high mask!");
// Do a half shuffle for the low mask.
if (!isNoopShuffleMask(LoMask))
V = DAG.getNode(X86ISD::PSHUFLW, DL, VT, V,
getV4X86ShuffleImm8ForMask(LoMask, DL, DAG));
// Do a half shuffle with the high mask after shifting its values down.
for (int &M : HiMask)
if (M >= 0)
M -= 4;
if (!isNoopShuffleMask(HiMask))
V = DAG.getNode(X86ISD::PSHUFHW, DL, VT, V,
getV4X86ShuffleImm8ForMask(HiMask, DL, DAG));
return V;
}
/// \brief Helper to form a PSHUFB-based shuffle+blend.
static SDValue lowerVectorShuffleAsPSHUFB(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG, bool &V1InUse,
bool &V2InUse) {
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
SDValue V1Mask[16];
SDValue V2Mask[16];
V1InUse = false;
V2InUse = false;
int Size = Mask.size();
int Scale = 16 / Size;
for (int i = 0; i < 16; ++i) {
if (Mask[i / Scale] == -1) {
V1Mask[i] = V2Mask[i] = DAG.getUNDEF(MVT::i8);
} else {
const int ZeroMask = 0x80;
int V1Idx = Mask[i / Scale] < Size ? Mask[i / Scale] * Scale + i % Scale
: ZeroMask;
int V2Idx = Mask[i / Scale] < Size
? ZeroMask
: (Mask[i / Scale] - Size) * Scale + i % Scale;
if (Zeroable[i / Scale])
V1Idx = V2Idx = ZeroMask;
V1Mask[i] = DAG.getConstant(V1Idx, DL, MVT::i8);
V2Mask[i] = DAG.getConstant(V2Idx, DL, MVT::i8);
V1InUse |= (ZeroMask != V1Idx);
V2InUse |= (ZeroMask != V2Idx);
}
}
if (V1InUse)
V1 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
DAG.getBitcast(MVT::v16i8, V1),
DAG.getBuildVector(MVT::v16i8, DL, V1Mask));
if (V2InUse)
V2 = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v16i8,
DAG.getBitcast(MVT::v16i8, V2),
DAG.getBuildVector(MVT::v16i8, DL, V2Mask));
// If we need shuffled inputs from both, blend the two.
SDValue V;
if (V1InUse && V2InUse)
V = DAG.getNode(ISD::OR, DL, MVT::v16i8, V1, V2);
else
V = V1InUse ? V1 : V2;
// Cast the result back to the correct type.
return DAG.getBitcast(VT, V);
}
/// \brief Generic lowering of 8-lane i16 shuffles.
///
/// This handles both single-input shuffles and combined shuffle/blends with
/// two inputs. The single input shuffles are immediately delegated to
/// a dedicated lowering routine.
///
/// The blends are lowered in one of three fundamental ways. If there are few
/// enough inputs, it delegates to a basic UNPCK-based strategy. If the shuffle
/// of the input is significantly cheaper when lowered as an interleaving of
/// the two inputs, try to interleave them. Otherwise, blend the low and high
/// halves of the inputs separately (making them have relatively few inputs)
/// and then concatenate them.
static SDValue lowerV8I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v8i16 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i16 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> OrigMask = SVOp->getMask();
int MaskStorage[8] = {OrigMask[0], OrigMask[1], OrigMask[2], OrigMask[3],
OrigMask[4], OrigMask[5], OrigMask[6], OrigMask[7]};
MutableArrayRef<int> Mask(MaskStorage);
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v8i16, V1, V2, OrigMask, Subtarget, DAG))
return ZExt;
auto isV1 = [](int M) { return M >= 0 && M < 8; };
(void)isV1;
auto isV2 = [](int M) { return M >= 8; };
int NumV2Inputs = std::count_if(Mask.begin(), Mask.end(), isV2);
if (NumV2Inputs == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V1, Mask, DAG))
return Shift;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(DL, MVT::v8i16, V1, V1,
Mask, Subtarget, DAG))
return Rotate;
return lowerV8I16GeneralSingleInputVectorShuffle(DL, MVT::v8i16, V1, Mask,
Subtarget, DAG);
}
assert(llvm::any_of(Mask, isV1) &&
"All single-input shuffles should be canonicalized to be V1-input "
"shuffles.");
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v8i16, V1, V2, Mask, DAG))
return Shift;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v8i16, V1, V2, Mask, DAG))
return V;
// There are special ways we can lower some single-element blends.
if (NumV2Inputs == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v8i16, V1, V2,
Mask, Subtarget, DAG))
return V;
// We have different paths for blend lowering, but they all must use the
// *exact* same predicate.
bool IsBlendSupported = Subtarget.hasSSE41();
if (IsBlendSupported)
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i16, V1, V2, Mask,
Subtarget, DAG))
return Blend;
if (SDValue Masked =
lowerVectorShuffleAsBitMask(DL, MVT::v8i16, V1, V2, Mask, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i16, Mask, V1, V2, DAG))
return V;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v8i16, V1, V2, Mask, Subtarget, DAG))
return Rotate;
if (SDValue BitBlend =
lowerVectorShuffleAsBitBlend(DL, MVT::v8i16, V1, V2, Mask, DAG))
return BitBlend;
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(DL, MVT::v8i16, V1,
V2, Mask, DAG))
return Unpack;
// If we can't directly blend but can use PSHUFB, that will be better as it
// can both shuffle and set up the inefficient blend.
if (!IsBlendSupported && Subtarget.hasSSSE3()) {
bool V1InUse, V2InUse;
return lowerVectorShuffleAsPSHUFB(DL, MVT::v8i16, V1, V2, Mask, DAG,
V1InUse, V2InUse);
}
// We can always bit-blend if we have to so the fallback strategy is to
// decompose into single-input permutes and blends.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i16, V1, V2,
Mask, DAG);
}
/// \brief Check whether a compaction lowering can be done by dropping even
/// elements and compute how many times even elements must be dropped.
///
/// This handles shuffles which take every Nth element where N is a power of
/// two. Example shuffle masks:
///
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 0, 2, 4, 6, 8, 10, 12, 14
/// N = 1: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30
/// N = 2: 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12, 0, 4, 8, 12
/// N = 2: 0, 4, 8, 12, 16, 20, 24, 28, 0, 4, 8, 12, 16, 20, 24, 28
/// N = 3: 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8, 0, 8
/// N = 3: 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24
///
/// Any of these lanes can of course be undef.
///
/// This routine only supports N <= 3.
/// FIXME: Evaluate whether either AVX or AVX-512 have any opportunities here
/// for larger N.
///
/// \returns N above, or the number of times even elements must be dropped if
/// there is such a number. Otherwise returns zero.
static int canLowerByDroppingEvenElements(ArrayRef<int> Mask) {
// Figure out whether we're looping over two inputs or just one.
bool IsSingleInput = isSingleInputShuffleMask(Mask);
// The modulus for the shuffle vector entries is based on whether this is
// a single input or not.
int ShuffleModulus = Mask.size() * (IsSingleInput ? 1 : 2);
assert(isPowerOf2_32((uint32_t)ShuffleModulus) &&
"We should only be called with masks with a power-of-2 size!");
uint64_t ModMask = (uint64_t)ShuffleModulus - 1;
// We track whether the input is viable for all power-of-2 strides 2^1, 2^2,
// and 2^3 simultaneously. This is because we may have ambiguity with
// partially undef inputs.
bool ViableForN[3] = {true, true, true};
for (int i = 0, e = Mask.size(); i < e; ++i) {
// Ignore undef lanes, we'll optimistically collapse them to the pattern we
// want.
if (Mask[i] == -1)
continue;
bool IsAnyViable = false;
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j]) {
uint64_t N = j + 1;
// The shuffle mask must be equal to (i * 2^N) % M.
if ((uint64_t)Mask[i] == (((uint64_t)i << N) & ModMask))
IsAnyViable = true;
else
ViableForN[j] = false;
}
// Early exit if we exhaust the possible powers of two.
if (!IsAnyViable)
break;
}
for (unsigned j = 0; j != array_lengthof(ViableForN); ++j)
if (ViableForN[j])
return j + 1;
// Return 0 as there is no viable power of two.
return 0;
}
/// \brief Generic lowering of v16i8 shuffles.
///
/// This is a hybrid strategy to lower v16i8 vectors. It first attempts to
/// detect any complexity reducing interleaving. If that doesn't help, it uses
/// UNPCK to spread the i8 elements across two i16-element vectors, and uses
/// the existing lowering for v8i16 blends on each half, finally PACK-ing them
/// back together.
static SDValue lowerV16I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(Op.getSimpleValueType() == MVT::v16i8 && "Bad shuffle type!");
assert(V1.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i8 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v16i8, V1, V2, Mask, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to use a zext lowering.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return ZExt;
// See if we can use SSE4A Extraction / Insertion.
if (Subtarget.hasSSE4A())
if (SDValue V = lowerVectorShuffleWithSSE4A(DL, MVT::v16i8, V1, V2, Mask, DAG))
return V;
int NumV2Elements =
std::count_if(Mask.begin(), Mask.end(), [](int M) { return M >= 16; });
// For single-input shuffles, there are some nicer lowering tricks we can use.
if (NumV2Elements == 0) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v16i8, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Check whether we can widen this to an i16 shuffle by duplicating bytes.
// Notably, this handles splat and partial-splat shuffles more efficiently.
// However, it only makes sense if the pre-duplication shuffle simplifies
// things significantly. Currently, this means we need to be able to
// express the pre-duplication shuffle as an i16 shuffle.
//
// FIXME: We should check for other patterns which can be widened into an
// i16 shuffle as well.
auto canWidenViaDuplication = [](ArrayRef<int> Mask) {
for (int i = 0; i < 16; i += 2)
if (Mask[i] != -1 && Mask[i + 1] != -1 && Mask[i] != Mask[i + 1])
return false;
return true;
};
auto tryToWidenViaDuplication = [&]() -> SDValue {
if (!canWidenViaDuplication(Mask))
return SDValue();
SmallVector<int, 4> LoInputs;
std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(LoInputs),
[](int M) { return M >= 0 && M < 8; });
std::sort(LoInputs.begin(), LoInputs.end());
LoInputs.erase(std::unique(LoInputs.begin(), LoInputs.end()),
LoInputs.end());
SmallVector<int, 4> HiInputs;
std::copy_if(Mask.begin(), Mask.end(), std::back_inserter(HiInputs),
[](int M) { return M >= 8; });
std::sort(HiInputs.begin(), HiInputs.end());
HiInputs.erase(std::unique(HiInputs.begin(), HiInputs.end()),
HiInputs.end());
bool TargetLo = LoInputs.size() >= HiInputs.size();
ArrayRef<int> InPlaceInputs = TargetLo ? LoInputs : HiInputs;
ArrayRef<int> MovingInputs = TargetLo ? HiInputs : LoInputs;
int PreDupI16Shuffle[] = {-1, -1, -1, -1, -1, -1, -1, -1};
SmallDenseMap<int, int, 8> LaneMap;
for (int I : InPlaceInputs) {
PreDupI16Shuffle[I/2] = I/2;
LaneMap[I] = I;
}
int j = TargetLo ? 0 : 4, je = j + 4;
for (int i = 0, ie = MovingInputs.size(); i < ie; ++i) {
// Check if j is already a shuffle of this input. This happens when
// there are two adjacent bytes after we move the low one.
if (PreDupI16Shuffle[j] != MovingInputs[i] / 2) {
// If we haven't yet mapped the input, search for a slot into which
// we can map it.
while (j < je && PreDupI16Shuffle[j] != -1)
++j;
if (j == je)
// We can't place the inputs into a single half with a simple i16 shuffle, so bail.
return SDValue();
// Map this input with the i16 shuffle.
PreDupI16Shuffle[j] = MovingInputs[i] / 2;
}
// Update the lane map based on the mapping we ended up with.
LaneMap[MovingInputs[i]] = 2 * j + MovingInputs[i] % 2;
}
V1 = DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PreDupI16Shuffle));
// Unpack the bytes to form the i16s that will be shuffled into place.
V1 = DAG.getNode(TargetLo ? X86ISD::UNPCKL : X86ISD::UNPCKH, DL,
MVT::v16i8, V1, V1);
int PostDupI16Shuffle[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
for (int i = 0; i < 16; ++i)
if (Mask[i] != -1) {
int MappedMask = LaneMap[Mask[i]] - (TargetLo ? 0 : 8);
assert(MappedMask < 8 && "Invalid v8 shuffle mask!");
if (PostDupI16Shuffle[i / 2] == -1)
PostDupI16Shuffle[i / 2] = MappedMask;
else
assert(PostDupI16Shuffle[i / 2] == MappedMask &&
"Conflicting entrties in the original shuffle!");
}
return DAG.getBitcast(
MVT::v16i8,
DAG.getVectorShuffle(MVT::v8i16, DL, DAG.getBitcast(MVT::v8i16, V1),
DAG.getUNDEF(MVT::v8i16), PostDupI16Shuffle));
};
if (SDValue V = tryToWidenViaDuplication())
return V;
}
if (SDValue Masked =
lowerVectorShuffleAsBitMask(DL, MVT::v16i8, V1, V2, Mask, DAG))
return Masked;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i8, Mask, V1, V2, DAG))
return V;
// Check for SSSE3 which lets us lower all v16i8 shuffles much more directly
// with PSHUFB. It is important to do this before we attempt to generate any
// blends but after all of the single-input lowerings. If the single input
// lowerings can find an instruction sequence that is faster than a PSHUFB, we
// want to preserve that and we can DAG combine any longer sequences into
// a PSHUFB in the end. But once we start blending from multiple inputs,
// the complexity of DAG combining bad patterns back into PSHUFB is too high,
// and there are *very* few patterns that would actually be faster than the
// PSHUFB approach because of its ability to zero lanes.
//
// FIXME: The only exceptions to the above are blends which are exact
// interleavings with direct instructions supporting them. We currently don't
// handle those well here.
if (Subtarget.hasSSSE3()) {
bool V1InUse = false;
bool V2InUse = false;
SDValue PSHUFB = lowerVectorShuffleAsPSHUFB(DL, MVT::v16i8, V1, V2, Mask,
DAG, V1InUse, V2InUse);
// If both V1 and V2 are in use and we can use a direct blend or an unpack,
// do so. This avoids using them to handle blends-with-zero which is
// important as a single pshufb is significantly faster for that.
if (V1InUse && V2InUse) {
if (Subtarget.hasSSE41())
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i8, V1, V2,
Mask, Subtarget, DAG))
return Blend;
// We can use an unpack to do the blending rather than an or in some
// cases. Even though the or may be (very minorly) more efficient, we
// preference this lowering because there are common cases where part of
// the complexity of the shuffles goes away when we do the final blend as
// an unpack.
// FIXME: It might be worth trying to detect if the unpack-feeding
// shuffles will both be pshufb, in which case we shouldn't bother with
// this.
if (SDValue Unpack = lowerVectorShuffleAsPermuteAndUnpack(
DL, MVT::v16i8, V1, V2, Mask, DAG))
return Unpack;
}
return PSHUFB;
}
// There are special ways we can lower some single-element blends.
if (NumV2Elements == 1)
if (SDValue V = lowerVectorShuffleAsElementInsertion(DL, MVT::v16i8, V1, V2,
Mask, Subtarget, DAG))
return V;
if (SDValue BitBlend =
lowerVectorShuffleAsBitBlend(DL, MVT::v16i8, V1, V2, Mask, DAG))
return BitBlend;
// Check whether a compaction lowering can be done. This handles shuffles
// which take every Nth element for some even N. See the helper function for
// details.
//
// We special case these as they can be particularly efficiently handled with
// the PACKUSB instruction on x86 and they show up in common patterns of
// rearranging bytes to truncate wide elements.
if (int NumEvenDrops = canLowerByDroppingEvenElements(Mask)) {
// NumEvenDrops is the power of two stride of the elements. Another way of
// thinking about it is that we need to drop the even elements this many
// times to get the original input.
bool IsSingleInput = isSingleInputShuffleMask(Mask);
// First we need to zero all the dropped bytes.
assert(NumEvenDrops <= 3 &&
"No support for dropping even elements more than 3 times.");
// We use the mask type to pick which bytes are preserved based on how many
// elements are dropped.
MVT MaskVTs[] = { MVT::v8i16, MVT::v4i32, MVT::v2i64 };
SDValue ByteClearMask = DAG.getBitcast(
MVT::v16i8, DAG.getConstant(0xFF, DL, MaskVTs[NumEvenDrops - 1]));
V1 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V1, ByteClearMask);
if (!IsSingleInput)
V2 = DAG.getNode(ISD::AND, DL, MVT::v16i8, V2, ByteClearMask);
// Now pack things back together.
V1 = DAG.getBitcast(MVT::v8i16, V1);
V2 = IsSingleInput ? V1 : DAG.getBitcast(MVT::v8i16, V2);
SDValue Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, V1, V2);
for (int i = 1; i < NumEvenDrops; ++i) {
Result = DAG.getBitcast(MVT::v8i16, Result);
Result = DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, Result, Result);
}
return Result;
}
// Handle multi-input cases by blending single-input shuffles.
if (NumV2Elements > 0)
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v16i8, V1, V2,
Mask, DAG);
// The fallback path for single-input shuffles widens this into two v8i16
// vectors with unpacks, shuffles those, and then pulls them back together
// with a pack.
SDValue V = V1;
int LoBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
int HiBlendMask[8] = {-1, -1, -1, -1, -1, -1, -1, -1};
for (int i = 0; i < 16; ++i)
if (Mask[i] >= 0)
(i < 8 ? LoBlendMask[i] : HiBlendMask[i % 8]) = Mask[i];
SDValue Zero = getZeroVector(MVT::v8i16, Subtarget, DAG, DL);
SDValue VLoHalf, VHiHalf;
// Check if any of the odd lanes in the v16i8 are used. If not, we can mask
// them out and avoid using UNPCK{L,H} to extract the elements of V as
// i16s.
if (std::none_of(std::begin(LoBlendMask), std::end(LoBlendMask),
[](int M) { return M >= 0 && M % 2 == 1; }) &&
std::none_of(std::begin(HiBlendMask), std::end(HiBlendMask),
[](int M) { return M >= 0 && M % 2 == 1; })) {
// Use a mask to drop the high bytes.
VLoHalf = DAG.getBitcast(MVT::v8i16, V);
VLoHalf = DAG.getNode(ISD::AND, DL, MVT::v8i16, VLoHalf,
DAG.getConstant(0x00FF, DL, MVT::v8i16));
// This will be a single vector shuffle instead of a blend so nuke VHiHalf.
VHiHalf = DAG.getUNDEF(MVT::v8i16);
// Squash the masks to point directly into VLoHalf.
for (int &M : LoBlendMask)
if (M >= 0)
M /= 2;
for (int &M : HiBlendMask)
if (M >= 0)
M /= 2;
} else {
// Otherwise just unpack the low half of V into VLoHalf and the high half into
// VHiHalf so that we can blend them as i16s.
VLoHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKL, DL, MVT::v16i8, V, Zero));
VHiHalf = DAG.getBitcast(
MVT::v8i16, DAG.getNode(X86ISD::UNPCKH, DL, MVT::v16i8, V, Zero));
}
SDValue LoV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, LoBlendMask);
SDValue HiV = DAG.getVectorShuffle(MVT::v8i16, DL, VLoHalf, VHiHalf, HiBlendMask);
return DAG.getNode(X86ISD::PACKUS, DL, MVT::v16i8, LoV, HiV);
}
/// \brief Dispatching routine to lower various 128-bit x86 vector shuffles.
///
/// This routine breaks down the specific type of 128-bit shuffle and
/// dispatches to the lowering routines accordingly.
static SDValue lower128BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
switch (VT.SimpleTy) {
case MVT::v2i64:
return lowerV2I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v2f64:
return lowerV2F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v4i32:
return lowerV4I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v4f32:
return lowerV4F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v8i16:
return lowerV8I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v16i8:
return lowerV16I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Unimplemented!");
}
}
/// \brief Helper function to test whether a shuffle mask could be
/// simplified by widening the elements being shuffled.
///
/// Appends the mask for wider elements in WidenedMask if valid. Otherwise
/// leaves it in an unspecified state.
///
/// NOTE: This must handle normal vector shuffle masks and *target* vector
/// shuffle masks. The latter have the special property of a '-2' representing
/// a zero-ed lane of a vector.
static bool canWidenShuffleElements(ArrayRef<int> Mask,
SmallVectorImpl<int> &WidenedMask) {
for (int i = 0, Size = Mask.size(); i < Size; i += 2) {
// If both elements are undef, its trivial.
if (Mask[i] == SM_SentinelUndef && Mask[i + 1] == SM_SentinelUndef) {
WidenedMask.push_back(SM_SentinelUndef);
continue;
}
// Check for an undef mask and a mask value properly aligned to fit with
// a pair of values. If we find such a case, use the non-undef mask's value.
if (Mask[i] == SM_SentinelUndef && Mask[i + 1] >= 0 && Mask[i + 1] % 2 == 1) {
WidenedMask.push_back(Mask[i + 1] / 2);
continue;
}
if (Mask[i + 1] == SM_SentinelUndef && Mask[i] >= 0 && Mask[i] % 2 == 0) {
WidenedMask.push_back(Mask[i] / 2);
continue;
}
// When zeroing, we need to spread the zeroing across both lanes to widen.
if (Mask[i] == SM_SentinelZero || Mask[i + 1] == SM_SentinelZero) {
if ((Mask[i] == SM_SentinelZero || Mask[i] == SM_SentinelUndef) &&
(Mask[i + 1] == SM_SentinelZero || Mask[i + 1] == SM_SentinelUndef)) {
WidenedMask.push_back(SM_SentinelZero);
continue;
}
return false;
}
// Finally check if the two mask values are adjacent and aligned with
// a pair.
if (Mask[i] != SM_SentinelUndef && Mask[i] % 2 == 0 && Mask[i] + 1 == Mask[i + 1]) {
WidenedMask.push_back(Mask[i] / 2);
continue;
}
// Otherwise we can't safely widen the elements used in this shuffle.
return false;
}
assert(WidenedMask.size() == Mask.size() / 2 &&
"Incorrect size of mask after widening the elements!");
return true;
}
/// \brief Generic routine to split vector shuffle into half-sized shuffles.
///
/// This routine just extracts two subvectors, shuffles them independently, and
/// then concatenates them back together. This should work effectively with all
/// AVX vector shuffle types.
static SDValue splitAndLowerVectorShuffle(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(VT.getSizeInBits() >= 256 &&
"Only for 256-bit or wider vector shuffles!");
assert(V1.getSimpleValueType() == VT && "Bad operand type!");
assert(V2.getSimpleValueType() == VT && "Bad operand type!");
ArrayRef<int> LoMask = Mask.slice(0, Mask.size() / 2);
ArrayRef<int> HiMask = Mask.slice(Mask.size() / 2);
int NumElements = VT.getVectorNumElements();
int SplitNumElements = NumElements / 2;
MVT ScalarVT = VT.getVectorElementType();
MVT SplitVT = MVT::getVectorVT(ScalarVT, NumElements / 2);
// Rather than splitting build-vectors, just build two narrower build
// vectors. This helps shuffling with splats and zeros.
auto SplitVector = [&](SDValue V) {
V = peekThroughBitcasts(V);
MVT OrigVT = V.getSimpleValueType();
int OrigNumElements = OrigVT.getVectorNumElements();
int OrigSplitNumElements = OrigNumElements / 2;
MVT OrigScalarVT = OrigVT.getVectorElementType();
MVT OrigSplitVT = MVT::getVectorVT(OrigScalarVT, OrigNumElements / 2);
SDValue LoV, HiV;
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV) {
LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(0, DL));
HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigSplitVT, V,
DAG.getIntPtrConstant(OrigSplitNumElements, DL));
} else {
SmallVector<SDValue, 16> LoOps, HiOps;
for (int i = 0; i < OrigSplitNumElements; ++i) {
LoOps.push_back(BV->getOperand(i));
HiOps.push_back(BV->getOperand(i + OrigSplitNumElements));
}
LoV = DAG.getBuildVector(OrigSplitVT, DL, LoOps);
HiV = DAG.getBuildVector(OrigSplitVT, DL, HiOps);
}
return std::make_pair(DAG.getBitcast(SplitVT, LoV),
DAG.getBitcast(SplitVT, HiV));
};
SDValue LoV1, HiV1, LoV2, HiV2;
std::tie(LoV1, HiV1) = SplitVector(V1);
std::tie(LoV2, HiV2) = SplitVector(V2);
// Now create two 4-way blends of these half-width vectors.
auto HalfBlend = [&](ArrayRef<int> HalfMask) {
bool UseLoV1 = false, UseHiV1 = false, UseLoV2 = false, UseHiV2 = false;
SmallVector<int, 32> V1BlendMask, V2BlendMask, BlendMask;
for (int i = 0; i < SplitNumElements; ++i) {
int M = HalfMask[i];
if (M >= NumElements) {
if (M >= NumElements + SplitNumElements)
UseHiV2 = true;
else
UseLoV2 = true;
V2BlendMask.push_back(M - NumElements);
V1BlendMask.push_back(-1);
BlendMask.push_back(SplitNumElements + i);
} else if (M >= 0) {
if (M >= SplitNumElements)
UseHiV1 = true;
else
UseLoV1 = true;
V2BlendMask.push_back(-1);
V1BlendMask.push_back(M);
BlendMask.push_back(i);
} else {
V2BlendMask.push_back(-1);
V1BlendMask.push_back(-1);
BlendMask.push_back(-1);
}
}
// Because the lowering happens after all combining takes place, we need to
// manually combine these blend masks as much as possible so that we create
// a minimal number of high-level vector shuffle nodes.
// First try just blending the halves of V1 or V2.
if (!UseLoV1 && !UseHiV1 && !UseLoV2 && !UseHiV2)
return DAG.getUNDEF(SplitVT);
if (!UseLoV2 && !UseHiV2)
return DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
if (!UseLoV1 && !UseHiV1)
return DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
SDValue V1Blend, V2Blend;
if (UseLoV1 && UseHiV1) {
V1Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV1, HiV1, V1BlendMask);
} else {
// We only use half of V1 so map the usage down into the final blend mask.
V1Blend = UseLoV1 ? LoV1 : HiV1;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= 0 && BlendMask[i] < SplitNumElements)
BlendMask[i] = V1BlendMask[i] - (UseLoV1 ? 0 : SplitNumElements);
}
if (UseLoV2 && UseHiV2) {
V2Blend =
DAG.getVectorShuffle(SplitVT, DL, LoV2, HiV2, V2BlendMask);
} else {
// We only use half of V2 so map the usage down into the final blend mask.
V2Blend = UseLoV2 ? LoV2 : HiV2;
for (int i = 0; i < SplitNumElements; ++i)
if (BlendMask[i] >= SplitNumElements)
BlendMask[i] = V2BlendMask[i] + (UseLoV2 ? SplitNumElements : 0);
}
return DAG.getVectorShuffle(SplitVT, DL, V1Blend, V2Blend, BlendMask);
};
SDValue Lo = HalfBlend(LoMask);
SDValue Hi = HalfBlend(HiMask);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Lo, Hi);
}
/// \brief Either split a vector in halves or decompose the shuffles and the
/// blend.
///
/// This is provided as a good fallback for many lowerings of non-single-input
/// shuffles with more than one 128-bit lane. In those cases, we want to select
/// between splitting the shuffle into 128-bit components and stitching those
/// back together vs. extracting the single-input shuffles and blending those
/// results.
static SDValue lowerVectorShuffleAsSplitOrBlend(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
SelectionDAG &DAG) {
assert(!isSingleInputShuffleMask(Mask) && "This routine must not be used to "
"lower single-input shuffles as it "
"could then recurse on itself.");
int Size = Mask.size();
// If this can be modeled as a broadcast of two elements followed by a blend,
// prefer that lowering. This is especially important because broadcasts can
// often fold with memory operands.
auto DoBothBroadcast = [&] {
int V1BroadcastIdx = -1, V2BroadcastIdx = -1;
for (int M : Mask)
if (M >= Size) {
if (V2BroadcastIdx == -1)
V2BroadcastIdx = M - Size;
else if (M - Size != V2BroadcastIdx)
return false;
} else if (M >= 0) {
if (V1BroadcastIdx == -1)
V1BroadcastIdx = M;
else if (M != V1BroadcastIdx)
return false;
}
return true;
};
if (DoBothBroadcast())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask,
DAG);
// If the inputs all stem from a single 128-bit lane of each input, then we
// split them rather than blending because the split will decompose to
// unusually few instructions.
int LaneCount = VT.getSizeInBits() / 128;
int LaneSize = Size / LaneCount;
SmallBitVector LaneInputs[2];
LaneInputs[0].resize(LaneCount, false);
LaneInputs[1].resize(LaneCount, false);
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
LaneInputs[Mask[i] / Size][(Mask[i] % Size) / LaneSize] = true;
if (LaneInputs[0].count() <= 1 && LaneInputs[1].count() <= 1)
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
// Otherwise, just fall back to decomposed shuffles and a blend. This requires
// that the decomposed single-input shuffles don't end up here.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
}
/// \brief Lower a vector shuffle crossing multiple 128-bit lanes as
/// a permutation and blend of those lanes.
///
/// This essentially blends the out-of-lane inputs to each lane into the lane
/// from a permuted copy of the vector. This lowering strategy results in four
/// instructions in the worst case for a single-input cross lane shuffle which
/// is lower than any other fully general cross-lane shuffle strategy I'm aware
/// of. Special cases for each particular shuffle pattern should be handled
/// prior to trying this lowering.
static SDValue lowerVectorShuffleAsLanePermuteAndBlend(SDLoc DL, MVT VT,
SDValue V1, SDValue V2,
ArrayRef<int> Mask,
SelectionDAG &DAG) {
// FIXME: This should probably be generalized for 512-bit vectors as well.
assert(VT.is256BitVector() && "Only for 256-bit vector shuffles!");
int LaneSize = Mask.size() / 2;
// If there are only inputs from one 128-bit lane, splitting will in fact be
// less expensive. The flags track whether the given lane contains an element
// that crosses to another lane.
bool LaneCrossing[2] = {false, false};
for (int i = 0, Size = Mask.size(); i < Size; ++i)
if (Mask[i] >= 0 && (Mask[i] % Size) / LaneSize != i / LaneSize)
LaneCrossing[(Mask[i] % Size) / LaneSize] = true;
if (!LaneCrossing[0] || !LaneCrossing[1])
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
if (isSingleInputShuffleMask(Mask)) {
SmallVector<int, 32> FlippedBlendMask;
for (int i = 0, Size = Mask.size(); i < Size; ++i)
FlippedBlendMask.push_back(
Mask[i] < 0 ? -1 : (((Mask[i] % Size) / LaneSize == i / LaneSize)
? Mask[i]
: Mask[i] % LaneSize +
(i / LaneSize) * LaneSize + Size));
// Flip the vector, and blend the results which should now be in-lane. The
// VPERM2X128 mask uses the low 2 bits for the low source and bits 4 and
// 5 for the high source. The value 3 selects the high half of source 2 and
// the value 2 selects the low half of source 2. We only use source 2 to
// allow folding it into a memory operand.
unsigned PERMMask = 3 | 2 << 4;
SDValue Flipped = DAG.getNode(X86ISD::VPERM2X128, DL, VT, DAG.getUNDEF(VT),
V1, DAG.getConstant(PERMMask, DL, MVT::i8));
return DAG.getVectorShuffle(VT, DL, V1, Flipped, FlippedBlendMask);
}
// This now reduces to two single-input shuffles of V1 and V2 which at worst
// will be handled by the above logic and a blend of the results, much like
// other patterns in AVX.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, VT, V1, V2, Mask, DAG);
}
/// \brief Handle lowering 2-lane 128-bit shuffles.
static SDValue lowerV2X128VectorShuffle(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// TODO: If minimizing size and one of the inputs is a zero vector and the
// the zero vector has only one use, we could use a VPERM2X128 to save the
// instruction bytes needed to explicitly generate the zero vector.
// Blends are faster and handle all the non-lane-crossing cases.
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, VT, V1, V2, Mask,
Subtarget, DAG))
return Blend;
bool IsV1Zero = ISD::isBuildVectorAllZeros(V1.getNode());
bool IsV2Zero = ISD::isBuildVectorAllZeros(V2.getNode());
// If either input operand is a zero vector, use VPERM2X128 because its mask
// allows us to replace the zero input with an implicit zero.
if (!IsV1Zero && !IsV2Zero) {
// Check for patterns which can be matched with a single insert of a 128-bit
// subvector.
bool OnlyUsesV1 = isShuffleEquivalent(V1, V2, Mask, {0, 1, 0, 1});
if (OnlyUsesV1 || isShuffleEquivalent(V1, V2, Mask, {0, 1, 4, 5})) {
// With AVX2 we should use VPERMQ/VPERMPD to allow memory folding.
if (Subtarget.hasAVX2() && isSingleInputShuffleMask(Mask))
return SDValue();
MVT SubVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements() / 2);
SDValue LoV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT, V1,
DAG.getIntPtrConstant(0, DL));
SDValue HiV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubVT,
OnlyUsesV1 ? V1 : V2,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, LoV, HiV);
}
}
// Otherwise form a 128-bit permutation. After accounting for undefs,
// convert the 64-bit shuffle mask selection values into 128-bit
// selection bits by dividing the indexes by 2 and shifting into positions
// defined by a vperm2*128 instruction's immediate control byte.
// The immediate permute control byte looks like this:
// [1:0] - select 128 bits from sources for low half of destination
// [2] - ignore
// [3] - zero low half of destination
// [5:4] - select 128 bits from sources for high half of destination
// [6] - ignore
// [7] - zero high half of destination
int MaskLO = Mask[0];
if (MaskLO == SM_SentinelUndef)
MaskLO = Mask[1] == SM_SentinelUndef ? 0 : Mask[1];
int MaskHI = Mask[2];
if (MaskHI == SM_SentinelUndef)
MaskHI = Mask[3] == SM_SentinelUndef ? 0 : Mask[3];
unsigned PermMask = MaskLO / 2 | (MaskHI / 2) << 4;
// If either input is a zero vector, replace it with an undef input.
// Shuffle mask values < 4 are selecting elements of V1.
// Shuffle mask values >= 4 are selecting elements of V2.
// Adjust each half of the permute mask by clearing the half that was
// selecting the zero vector and setting the zero mask bit.
if (IsV1Zero) {
V1 = DAG.getUNDEF(VT);
if (MaskLO < 4)
PermMask = (PermMask & 0xf0) | 0x08;
if (MaskHI < 4)
PermMask = (PermMask & 0x0f) | 0x80;
}
if (IsV2Zero) {
V2 = DAG.getUNDEF(VT);
if (MaskLO >= 4)
PermMask = (PermMask & 0xf0) | 0x08;
if (MaskHI >= 4)
PermMask = (PermMask & 0x0f) | 0x80;
}
return DAG.getNode(X86ISD::VPERM2X128, DL, VT, V1, V2,
DAG.getConstant(PermMask, DL, MVT::i8));
}
/// \brief Lower a vector shuffle by first fixing the 128-bit lanes and then
/// shuffling each lane.
///
/// This will only succeed when the result of fixing the 128-bit lanes results
/// in a single-input non-lane-crossing shuffle with a repeating shuffle mask in
/// each 128-bit lanes. This handles many cases where we can quickly blend away
/// the lane crosses early and then use simpler shuffles within each lane.
///
/// FIXME: It might be worthwhile at some point to support this without
/// requiring the 128-bit lane-relative shuffles to be repeating, but currently
/// in x86 only floating point has interesting non-repeating shuffles, and even
/// those are still *marginally* more expensive.
static SDValue lowerVectorShuffleByMerging128BitLanes(
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
assert(!isSingleInputShuffleMask(Mask) &&
"This is only useful with multiple inputs.");
int Size = Mask.size();
int LaneSize = 128 / VT.getScalarSizeInBits();
int NumLanes = Size / LaneSize;
assert(NumLanes > 1 && "Only handles 256-bit and wider shuffles.");
// See if we can build a hypothetical 128-bit lane-fixing shuffle mask. Also
// check whether the in-128-bit lane shuffles share a repeating pattern.
SmallVector<int, 4> Lanes;
Lanes.resize(NumLanes, -1);
SmallVector<int, 4> InLaneMask;
InLaneMask.resize(LaneSize, -1);
for (int i = 0; i < Size; ++i) {
if (Mask[i] < 0)
continue;
int j = i / LaneSize;
if (Lanes[j] < 0) {
// First entry we've seen for this lane.
Lanes[j] = Mask[i] / LaneSize;
} else if (Lanes[j] != Mask[i] / LaneSize) {
// This doesn't match the lane selected previously!
return SDValue();
}
// Check that within each lane we have a consistent shuffle mask.
int k = i % LaneSize;
if (InLaneMask[k] < 0) {
InLaneMask[k] = Mask[i] % LaneSize;
} else if (InLaneMask[k] != Mask[i] % LaneSize) {
// This doesn't fit a repeating in-lane mask.
return SDValue();
}
}
// First shuffle the lanes into place.
MVT LaneVT = MVT::getVectorVT(VT.isFloatingPoint() ? MVT::f64 : MVT::i64,
VT.getSizeInBits() / 64);
SmallVector<int, 8> LaneMask;
LaneMask.resize(NumLanes * 2, -1);
for (int i = 0; i < NumLanes; ++i)
if (Lanes[i] >= 0) {
LaneMask[2 * i + 0] = 2*Lanes[i] + 0;
LaneMask[2 * i + 1] = 2*Lanes[i] + 1;
}
V1 = DAG.getBitcast(LaneVT, V1);
V2 = DAG.getBitcast(LaneVT, V2);
SDValue LaneShuffle = DAG.getVectorShuffle(LaneVT, DL, V1, V2, LaneMask);
// Cast it back to the type we actually want.
LaneShuffle = DAG.getBitcast(VT, LaneShuffle);
// Now do a simple shuffle that isn't lane crossing.
SmallVector<int, 8> NewMask;
NewMask.resize(Size, -1);
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0)
NewMask[i] = (i / LaneSize) * LaneSize + Mask[i] % LaneSize;
assert(!is128BitLaneCrossingShuffleMask(VT, NewMask) &&
"Must not introduce lane crosses at this point!");
return DAG.getVectorShuffle(VT, DL, LaneShuffle, DAG.getUNDEF(VT), NewMask);
}
/// Lower shuffles where an entire half of a 256-bit vector is UNDEF.
/// This allows for fast cases such as subvector extraction/insertion
/// or shuffling smaller vector types which can lower more efficiently.
static SDValue lowerVectorShuffleWithUndefHalf(SDLoc DL, MVT VT, SDValue V1,
SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(VT.is256BitVector() && "Expected 256-bit vector");
unsigned NumElts = VT.getVectorNumElements();
unsigned HalfNumElts = NumElts / 2;
MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(), HalfNumElts);
bool UndefLower = isUndefInRange(Mask, 0, HalfNumElts);
bool UndefUpper = isUndefInRange(Mask, HalfNumElts, HalfNumElts);
if (!UndefLower && !UndefUpper)
return SDValue();
// Upper half is undef and lower half is whole upper subvector.
// e.g. vector_shuffle <4, 5, 6, 7, u, u, u, u> or <2, 3, u, u>
if (UndefUpper &&
isSequentialOrUndefInRange(Mask, 0, HalfNumElts, HalfNumElts)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(HalfNumElts, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(0, DL));
}
// Lower half is undef and upper half is whole lower subvector.
// e.g. vector_shuffle <u, u, u, u, 0, 1, 2, 3> or <u, u, 0, 1>
if (UndefLower &&
isSequentialOrUndefInRange(Mask, HalfNumElts, HalfNumElts, 0)) {
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V1,
DAG.getIntPtrConstant(0, DL));
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), Hi,
DAG.getIntPtrConstant(HalfNumElts, DL));
}
// If the shuffle only uses two of the four halves of the input operands,
// then extract them and perform the 'half' shuffle at half width.
// e.g. vector_shuffle <X, X, X, X, u, u, u, u> or <X, X, u, u>
int HalfIdx1 = -1, HalfIdx2 = -1;
SmallVector<int, 8> HalfMask;
unsigned Offset = UndefLower ? HalfNumElts : 0;
for (unsigned i = 0; i != HalfNumElts; ++i) {
int M = Mask[i + Offset];
if (M < 0) {
HalfMask.push_back(M);
continue;
}
// Determine which of the 4 half vectors this element is from.
// i.e. 0 = Lower V1, 1 = Upper V1, 2 = Lower V2, 3 = Upper V2.
int HalfIdx = M / HalfNumElts;
// Determine the element index into its half vector source.
int HalfElt = M % HalfNumElts;
// We can shuffle with up to 2 half vectors, set the new 'half'
// shuffle mask accordingly.
if (-1 == HalfIdx1 || HalfIdx1 == HalfIdx) {
HalfMask.push_back(HalfElt);
HalfIdx1 = HalfIdx;
continue;
}
if (-1 == HalfIdx2 || HalfIdx2 == HalfIdx) {
HalfMask.push_back(HalfElt + HalfNumElts);
HalfIdx2 = HalfIdx;
continue;
}
// Too many half vectors referenced.
return SDValue();
}
assert(HalfMask.size() == HalfNumElts && "Unexpected shuffle mask length");
// Only shuffle the halves of the inputs when useful.
int NumLowerHalves =
(HalfIdx1 == 0 || HalfIdx1 == 2) + (HalfIdx2 == 0 || HalfIdx2 == 2);
int NumUpperHalves =
(HalfIdx1 == 1 || HalfIdx1 == 3) + (HalfIdx2 == 1 || HalfIdx2 == 3);
// uuuuXXXX - don't extract uppers just to insert again.
if (UndefLower && NumUpperHalves != 0)
return SDValue();
// XXXXuuuu - don't extract both uppers, instead shuffle and then extract.
if (UndefUpper && NumUpperHalves == 2)
return SDValue();
// AVX2 - XXXXuuuu - always extract lowers.
if (Subtarget.hasAVX2() && !(UndefUpper && NumUpperHalves == 0)) {
// AVX2 supports efficient immediate 64-bit element cross-lane shuffles.
if (VT == MVT::v4f64 || VT == MVT::v4i64)
return SDValue();
// AVX2 supports variable 32-bit element cross-lane shuffles.
if (VT == MVT::v8f32 || VT == MVT::v8i32) {
// XXXXuuuu - don't extract lowers and uppers.
if (UndefUpper && NumLowerHalves != 0 && NumUpperHalves != 0)
return SDValue();
}
}
auto GetHalfVector = [&](int HalfIdx) {
if (HalfIdx < 0)
return DAG.getUNDEF(HalfVT);
SDValue V = (HalfIdx < 2 ? V1 : V2);
HalfIdx = (HalfIdx % 2) * HalfNumElts;
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, HalfVT, V,
DAG.getIntPtrConstant(HalfIdx, DL));
};
SDValue Half1 = GetHalfVector(HalfIdx1);
SDValue Half2 = GetHalfVector(HalfIdx2);
SDValue V = DAG.getVectorShuffle(HalfVT, DL, Half1, Half2, HalfMask);
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, DAG.getUNDEF(VT), V,
DAG.getIntPtrConstant(Offset, DL));
}
/// \brief Test whether the specified input (0 or 1) is in-place blended by the
/// given mask.
///
/// This returns true if the elements from a particular input are already in the
/// slot required by the given mask and require no permutation.
static bool isShuffleMaskInputInPlace(int Input, ArrayRef<int> Mask) {
assert((Input == 0 || Input == 1) && "Only two inputs to shuffles.");
int Size = Mask.size();
for (int i = 0; i < Size; ++i)
if (Mask[i] >= 0 && Mask[i] / Size == Input && Mask[i] % Size != i)
return false;
return true;
}
/// Handle case where shuffle sources are coming from the same 128-bit lane and
/// every lane can be represented as the same repeating mask - allowing us to
/// shuffle the sources with the repeating shuffle and then permute the result
/// to the destination lanes.
static SDValue lowerShuffleAsRepeatedMaskAndLanePermute(
SDLoc DL, MVT VT, SDValue V1, SDValue V2, ArrayRef<int> Mask,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
int NumElts = VT.getVectorNumElements();
int NumLanes = VT.getSizeInBits() / 128;
int NumLaneElts = NumElts / NumLanes;
// On AVX2 we may be able to just shuffle the lowest elements and then
// broadcast the result.
if (Subtarget.hasAVX2()) {
for (unsigned BroadcastSize : {16, 32, 64}) {
if (BroadcastSize <= VT.getScalarSizeInBits())
continue;
int NumBroadcastElts = BroadcastSize / VT.getScalarSizeInBits();
// Attempt to match a repeating pattern every NumBroadcastElts,
// accounting for UNDEFs but only references the lowest 128-bit
// lane of the inputs.
auto FindRepeatingBroadcastMask = [&](SmallVectorImpl<int> &RepeatMask) {
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j) {
int M = Mask[i + j];
if (M < 0)
continue;
int &R = RepeatMask[j];
if (0 != ((M % NumElts) / NumLaneElts))
return false;
else if (0 <= R && R != M)
return false;
else
R = M;
}
return true;
};
SmallVector<int, 8> RepeatMask((unsigned)NumElts, -1);
if (!FindRepeatingBroadcastMask(RepeatMask))
continue;
// Shuffle the (lowest) repeated elements in place for broadcast.
SDValue RepeatShuf = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatMask);
// Shuffle the actual broadcast.
SmallVector<int, 8> BroadcastMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumBroadcastElts)
for (int j = 0; j != NumBroadcastElts; ++j)
BroadcastMask[i + j] = j;
return DAG.getVectorShuffle(VT, DL, RepeatShuf, DAG.getUNDEF(VT),
BroadcastMask);
}
}
// Bail if we already have a repeated lane shuffle mask.
SmallVector<int, 8> RepeatedShuffleMask((unsigned)NumLaneElts, -1);
if (is128BitLaneRepeatedShuffleMask(VT, Mask, RepeatedShuffleMask))
return SDValue();
// On AVX2 targets we can permute 256-bit vectors as 64-bit sub-lanes
// (with PERMQ/PERMPD), otherwise we can only permute whole 128-bit lanes.
int SubLaneScale = Subtarget.hasAVX2() && VT.is256BitVector() ? 2 : 1;
int NumSubLanes = NumLanes * SubLaneScale;
int NumSubLaneElts = NumLaneElts / SubLaneScale;
// Check that all the sources are coming from the same lane and see if we
// can form a repeating shuffle mask (local to each lane). At the same time,
// determine the source sub-lane for each destination sub-lane.
int TopSrcSubLane = -1;
SmallVector<int, 8> RepeatedLaneMask((unsigned)NumLaneElts, -1);
SmallVector<int, 8> Dst2SrcSubLanes((unsigned)NumSubLanes, -1);
for (int i = 0; i != NumElts; ++i) {
int M = Mask[i];
if (M < 0)
continue;
assert(0 <= M && M < 2 * NumElts);
// Check that the local mask index is the same for every lane. We always do
// this with 128-bit lanes to match in is128BitLaneRepeatedShuffleMask.
int LocalM = M < NumElts ? (M % NumLaneElts) : (M % NumLaneElts) + NumElts;
int &RepeatM = RepeatedLaneMask[i % NumLaneElts];
if (0 <= RepeatM && RepeatM != LocalM)
return SDValue();
RepeatM = LocalM;
// Check that the whole of each destination sub-lane comes from the same
// sub-lane, we need to calculate the source based off where the repeated
// lane mask will have left it.
int SrcLane = (M % NumElts) / NumLaneElts;
int SrcSubLane = (SrcLane * SubLaneScale) +
((i % NumLaneElts) / NumSubLaneElts);
int &Dst2SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
if (0 <= Dst2SrcSubLane && SrcSubLane != Dst2SrcSubLane)
return SDValue();
Dst2SrcSubLane = SrcSubLane;
// Track the top most source sub-lane - by setting the remaining to UNDEF
// we can greatly simplify shuffle matching.
TopSrcSubLane = std::max(TopSrcSubLane, SrcSubLane);
}
assert(0 <= TopSrcSubLane && TopSrcSubLane < NumSubLanes &&
"Unexpected source lane");
// Create a repeating shuffle mask for the entire vector.
SmallVector<int, 8> RepeatedMask((unsigned)NumElts, -1);
for (int i = 0, e = ((TopSrcSubLane + 1) * NumSubLaneElts); i != e; ++i) {
int M = RepeatedLaneMask[i % NumLaneElts];
if (M < 0)
continue;
int Lane = i / NumLaneElts;
RepeatedMask[i] = M + (Lane * NumLaneElts);
}
SDValue RepeatedShuffle = DAG.getVectorShuffle(VT, DL, V1, V2, RepeatedMask);
// Shuffle each source sub-lane to its destination.
SmallVector<int, 8> SubLaneMask((unsigned)NumElts, -1);
for (int i = 0; i != NumElts; i += NumSubLaneElts) {
int SrcSubLane = Dst2SrcSubLanes[i / NumSubLaneElts];
if (SrcSubLane < 0)
continue;
for (int j = 0; j != NumSubLaneElts; ++j)
SubLaneMask[i + j] = j + (SrcSubLane * NumSubLaneElts);
}
return DAG.getVectorShuffle(VT, DL, RepeatedShuffle, DAG.getUNDEF(VT),
SubLaneMask);
}
static SDValue lowerVectorShuffleWithSHUFPD(SDLoc DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
// Mask for V8F64: 0/1, 8/9, 2/3, 10/11, 4/5, ..
// Mask for V4F64; 0/1, 4/5, 2/3, 6/7..
assert(VT.getScalarSizeInBits() == 64 && "Unexpected data type for VSHUFPD");
int NumElts = VT.getVectorNumElements();
bool ShufpdMask = true;
bool CommutableMask = true;
unsigned Immediate = 0;
for (int i = 0; i < NumElts; ++i) {
if (Mask[i] < 0)
continue;
int Val = (i & 6) + NumElts * (i & 1);
int CommutVal = (i & 0xe) + NumElts * ((i & 1)^1);
if (Mask[i] < Val || Mask[i] > Val + 1)
ShufpdMask = false;
if (Mask[i] < CommutVal || Mask[i] > CommutVal + 1)
CommutableMask = false;
Immediate |= (Mask[i] % 2) << i;
}
if (ShufpdMask)
return DAG.getNode(X86ISD::SHUFP, DL, VT, V1, V2,
DAG.getConstant(Immediate, DL, MVT::i8));
if (CommutableMask)
return DAG.getNode(X86ISD::SHUFP, DL, VT, V2, V1,
DAG.getConstant(Immediate, DL, MVT::i8));
return SDValue();
}
/// \brief Handle lowering of 4-lane 64-bit floating point shuffles.
///
/// Also ends up handling lowering of 4-lane 64-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV4F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4f64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
SmallVector<int, 4> WidenedMask;
if (canWidenShuffleElements(Mask, WidenedMask))
if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4f64, V1, V2, Mask,
Subtarget, DAG))
return V;
if (isSingleInputShuffleMask(Mask)) {
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Use low duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2}))
return DAG.getNode(X86ISD::MOVDDUP, DL, MVT::v4f64, V1);
if (!is128BitLaneCrossingShuffleMask(MVT::v4f64, Mask)) {
// Non-half-crossing single input shuffles can be lowerid with an
// interleaved permutation.
unsigned VPERMILPMask = (Mask[0] == 1) | ((Mask[1] == 1) << 1) |
((Mask[2] == 3) << 2) | ((Mask[3] == 3) << 3);
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v4f64, V1,
DAG.getConstant(VPERMILPMask, DL, MVT::i8));
}
// With AVX2 we have direct support for this permutation.
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4f64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Otherwise, fall back.
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v4f64, V1, V2, Mask,
DAG);
}
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4f64, Mask, V1, V2, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4f64, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Check if the blend happens to exactly fit that of SHUFPD.
if (SDValue Op =
lowerVectorShuffleWithSHUFPD(DL, MVT::v4f64, Mask, V1, V2, DAG))
return Op;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
isShuffleMaskInputInPlace(1, Mask))))
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v4f64, V1, V2, Mask, Subtarget, DAG))
return Result;
// If we have AVX2 then we always want to lower with a blend because an v4 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4f64, V1, V2,
Mask, DAG);
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v4f64, V1, V2, Mask, DAG);
}
/// \brief Handle lowering of 4-lane 64-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v4i64 shuffling..
static SDValue lowerV4I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v4i64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 4 && "Unexpected mask size for v4 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v4i64 with AVX2!");
SmallVector<int, 4> WidenedMask;
if (canWidenShuffleElements(Mask, WidenedMask))
if (SDValue V = lowerV2X128VectorShuffle(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG))
return V;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v4i64, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v4i64, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// When the shuffle is mirrored between the 128-bit lanes of the unit, we can
// use lower latency instructions that will operate on both 128-bit lanes.
SmallVector<int, 2> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v4i64, Mask, RepeatedMask)) {
if (isSingleInputShuffleMask(Mask)) {
int PSHUFDMask[] = {-1, -1, -1, -1};
for (int i = 0; i < 2; ++i)
if (RepeatedMask[i] >= 0) {
PSHUFDMask[2 * i] = 2 * RepeatedMask[i];
PSHUFDMask[2 * i + 1] = 2 * RepeatedMask[i] + 1;
}
return DAG.getBitcast(
MVT::v4i64,
DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32,
DAG.getBitcast(MVT::v8i32, V1),
getV4X86ShuffleImm8ForMask(PSHUFDMask, DL, DAG)));
}
}
// AVX2 provides a direct instruction for permuting a single input across
// lanes.
if (isSingleInputShuffleMask(Mask))
return DAG.getNode(X86ISD::VPERMI, DL, MVT::v4i64, V1,
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v4i64, V1, V2, Mask, DAG))
return Shift;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v4i64, Mask, V1, V2, DAG))
return V;
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle. However, if we have AVX2 and either inputs are already in place,
// we will be able to shuffle even across lanes the other input in a single
// instruction so skip this pattern.
if (!(Subtarget.hasAVX2() && (isShuffleMaskInputInPlace(0, Mask) ||
isShuffleMaskInputInPlace(1, Mask))))
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v4i64, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v4i64, V1, V2,
Mask, DAG);
}
/// \brief Handle lowering of 8-lane 32-bit floating point shuffles.
///
/// Also ends up handling lowering of 8-lane 32-bit integer shuffles when AVX2
/// isn't available.
static SDValue lowerV8F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8f32, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8f32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane, we have many more
// options to efficiently lower the shuffle.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8f32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 &&
"Repeated masks must be half the mask width!");
// Use even/odd duplicate instructions for masks that match their pattern.
if (isShuffleEquivalent(V1, V2, Mask, {0, 0, 2, 2, 4, 4, 6, 6}))
return DAG.getNode(X86ISD::MOVSLDUP, DL, MVT::v8f32, V1);
if (isShuffleEquivalent(V1, V2, Mask, {1, 1, 3, 3, 5, 5, 7, 7}))
return DAG.getNode(X86ISD::MOVSHDUP, DL, MVT::v8f32, V1);
if (isSingleInputShuffleMask(Mask))
return DAG.getNode(X86ISD::VPERMILPI, DL, MVT::v8f32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8f32, Mask, V1, V2, DAG))
return V;
// Otherwise, fall back to a SHUFPS sequence. Here it is important that we
// have already handled any direct blends. We also need to squash the
// repeated mask into a simulated v4f32 mask.
for (int i = 0; i < 4; ++i)
if (RepeatedMask[i] >= 8)
RepeatedMask[i] -= 4;
return lowerVectorShuffleWithSHUFPS(DL, MVT::v8f32, RepeatedMask, V1, V2, DAG);
}
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return V;
// If we have a single input shuffle with different shuffle patterns in the
// two 128-bit lanes use the variable mask to VPERMILPS.
if (isSingleInputShuffleMask(Mask)) {
SDValue VPermMask[8];
for (int i = 0; i < 8; ++i)
VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
: DAG.getConstant(Mask[i], DL, MVT::i32);
if (!is128BitLaneCrossingShuffleMask(MVT::v8f32, Mask))
return DAG.getNode(X86ISD::VPERMILPV, DL, MVT::v8f32, V1,
DAG.getBuildVector(MVT::v8i32, DL, VPermMask));
if (Subtarget.hasAVX2())
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8f32,
DAG.getBuildVector(MVT::v8i32, DL, VPermMask), V1);
// Otherwise, fall back.
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v8f32, V1, V2, Mask,
DAG);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v8f32, V1, V2, Mask, Subtarget, DAG))
return Result;
// If we have AVX2 then we always want to lower with a blend because at v8 we
// can fully permute the elements.
if (Subtarget.hasAVX2())
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8f32, V1, V2,
Mask, DAG);
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v8f32, V1, V2, Mask, DAG);
}
/// \brief Handle lowering of 8-lane 32-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v8i32 shuffling..
static SDValue lowerV8I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v8i32 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v8i32, V1, V2,
Mask, Subtarget, DAG))
return ZExt;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v8i32, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v8i32, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
// If the shuffle mask is repeated in each 128-bit lane we can use more
// efficient instructions that mirror the shuffles across the two 128-bit
// lanes.
SmallVector<int, 4> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v8i32, Mask, RepeatedMask)) {
assert(RepeatedMask.size() == 4 && "Unexpected repeated mask size!");
if (isSingleInputShuffleMask(Mask))
return DAG.getNode(X86ISD::PSHUFD, DL, MVT::v8i32, V1,
getV4X86ShuffleImm8ForMask(RepeatedMask, DL, DAG));
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i32, Mask, V1, V2, DAG))
return V;
}
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v8i32, V1, V2, Mask, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return V;
// If the shuffle patterns aren't repeated but it is a single input, directly
// generate a cross-lane VPERMD instruction.
if (isSingleInputShuffleMask(Mask)) {
SDValue VPermMask[8];
for (int i = 0; i < 8; ++i)
VPermMask[i] = Mask[i] < 0 ? DAG.getUNDEF(MVT::i32)
: DAG.getConstant(Mask[i], DL, MVT::i32);
return DAG.getNode(X86ISD::VPERMV, DL, MVT::v8i32,
DAG.getBuildVector(MVT::v8i32, DL, VPermMask), V1);
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v8i32, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic blend lowering.
return lowerVectorShuffleAsDecomposedShuffleBlend(DL, MVT::v8i32, V1, V2,
Mask, DAG);
}
/// \brief Handle lowering of 16-lane 16-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v16i16 shuffling..
static SDValue lowerV16I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i16 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v16i16 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v16i16, V1, V2,
Mask, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v16i16, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v16i16, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i16, Mask, V1, V2, DAG))
return V;
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v16i16, V1, V2, Mask, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return V;
if (isSingleInputShuffleMask(Mask)) {
// There are no generalized cross-lane shuffle operations available on i16
// element types.
if (is128BitLaneCrossingShuffleMask(MVT::v16i16, Mask))
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v16i16, V1, V2,
Mask, DAG);
SmallVector<int, 8> RepeatedMask;
if (is128BitLaneRepeatedShuffleMask(MVT::v16i16, Mask, RepeatedMask)) {
// As this is a single-input shuffle, the repeated mask should be
// a strictly valid v8i16 mask that we can pass through to the v8i16
// lowering to handle even the v16 case.
return lowerV8I16GeneralSingleInputVectorShuffle(
DL, MVT::v16i16, V1, RepeatedMask, Subtarget, DAG);
}
SDValue PSHUFBMask[32];
for (int i = 0; i < 16; ++i) {
if (Mask[i] == -1) {
PSHUFBMask[2 * i] = PSHUFBMask[2 * i + 1] = DAG.getUNDEF(MVT::i8);
continue;
}
int M = i < 8 ? Mask[i] : Mask[i] - 8;
assert(M >= 0 && M < 8 && "Invalid single-input mask!");
PSHUFBMask[2 * i] = DAG.getConstant(2 * M, DL, MVT::i8);
PSHUFBMask[2 * i + 1] = DAG.getConstant(2 * M + 1, DL, MVT::i8);
}
return DAG.getBitcast(
MVT::v16i16,
DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8,
DAG.getBitcast(MVT::v32i8, V1),
DAG.getBuildVector(MVT::v32i8, DL, PSHUFBMask)));
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v16i16, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v16i16, V1, V2, Mask, DAG);
}
/// \brief Handle lowering of 32-lane 8-bit integer shuffles.
///
/// This routine is only called when we have AVX2 and thus a reasonable
/// instruction set for v32i8 shuffling..
static SDValue lowerV32I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i8 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasAVX2() && "We can only lower v32i8 with AVX2!");
// Whenever we can lower this as a zext, that instruction is strictly faster
// than any alternative. It also allows us to fold memory operands into the
// shuffle in many cases.
if (SDValue ZExt = lowerVectorShuffleAsZeroOrAnyExtend(DL, MVT::v32i8, V1, V2,
Mask, Subtarget, DAG))
return ZExt;
// Check for being able to broadcast a single element.
if (SDValue Broadcast = lowerVectorShuffleAsBroadcast(DL, MVT::v32i8, V1, V2,
Mask, Subtarget, DAG))
return Broadcast;
if (SDValue Blend = lowerVectorShuffleAsBlend(DL, MVT::v32i8, V1, V2, Mask,
Subtarget, DAG))
return Blend;
// Use dedicated unpack instructions for masks that match their pattern.
if (SDValue V =
lowerVectorShuffleWithUNPCK(DL, MVT::v32i8, Mask, V1, V2, DAG))
return V;
// Try to use shift instructions.
if (SDValue Shift =
lowerVectorShuffleAsShift(DL, MVT::v32i8, V1, V2, Mask, DAG))
return Shift;
// Try to use byte rotation instructions.
if (SDValue Rotate = lowerVectorShuffleAsByteRotate(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return Rotate;
// Try to create an in-lane repeating shuffle mask and then shuffle the
// the results into the target lanes.
if (SDValue V = lowerShuffleAsRepeatedMaskAndLanePermute(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return V;
if (isSingleInputShuffleMask(Mask)) {
// There are no generalized cross-lane shuffle operations available on i8
// element types.
if (is128BitLaneCrossingShuffleMask(MVT::v32i8, Mask))
return lowerVectorShuffleAsLanePermuteAndBlend(DL, MVT::v32i8, V1, V2,
Mask, DAG);
SDValue PSHUFBMask[32];
for (int i = 0; i < 32; ++i)
PSHUFBMask[i] =
Mask[i] < 0
? DAG.getUNDEF(MVT::i8)
: DAG.getConstant(Mask[i] < 16 ? Mask[i] : Mask[i] - 16, DL,
MVT::i8);
return DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, V1,
DAG.getBuildVector(MVT::v32i8, DL, PSHUFBMask));
}
// Try to simplify this by merging 128-bit lanes to enable a lane-based
// shuffle.
if (SDValue Result = lowerVectorShuffleByMerging128BitLanes(
DL, MVT::v32i8, V1, V2, Mask, Subtarget, DAG))
return Result;
// Otherwise fall back on generic lowering.
return lowerVectorShuffleAsSplitOrBlend(DL, MVT::v32i8, V1, V2, Mask, DAG);
}
/// \brief High-level routine to lower various 256-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 256-bit x86 vector
/// shuffle or splits it into two 128-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower256BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
// If we have a single input to the zero element, insert that into V1 if we
// can do so cheaply.
int NumElts = VT.getVectorNumElements();
int NumV2Elements = std::count_if(Mask.begin(), Mask.end(), [NumElts](int M) {
return M >= NumElts;
});
if (NumV2Elements == 1 && Mask[0] >= NumElts)
if (SDValue Insertion = lowerVectorShuffleAsElementInsertion(
DL, VT, V1, V2, Mask, Subtarget, DAG))
return Insertion;
// Handle special cases where the lower or upper half is UNDEF.
if (SDValue V =
lowerVectorShuffleWithUndefHalf(DL, VT, V1, V2, Mask, Subtarget, DAG))
return V;
// There is a really nice hard cut-over between AVX1 and AVX2 that means we
// can check for those subtargets here and avoid much of the subtarget
// querying in the per-vector-type lowering routines. With AVX1 we have
// essentially *zero* ability to manipulate a 256-bit vector with integer
// types. Since we'll use floating point types there eventually, just
// immediately cast everything to a float and operate entirely in that domain.
if (VT.isInteger() && !Subtarget.hasAVX2()) {
int ElementBits = VT.getScalarSizeInBits();
if (ElementBits < 32) {
// No floating point type available, if we can't use the bit operations
// for masking/blending then decompose into 128-bit vectors.
if (SDValue V = lowerVectorShuffleAsBitMask(DL, VT, V1, V2, Mask, DAG))
return V;
if (SDValue V = lowerVectorShuffleAsBitBlend(DL, VT, V1, V2, Mask, DAG))
return V;
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
}
MVT FpVT = MVT::getVectorVT(MVT::getFloatingPointVT(ElementBits),
VT.getVectorNumElements());
V1 = DAG.getBitcast(FpVT, V1);
V2 = DAG.getBitcast(FpVT, V2);
return DAG.getBitcast(VT, DAG.getVectorShuffle(FpVT, DL, V1, V2, Mask));
}
switch (VT.SimpleTy) {
case MVT::v4f64:
return lowerV4F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v4i64:
return lowerV4I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v8f32:
return lowerV8F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v8i32:
return lowerV8I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v16i16:
return lowerV16I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v32i8:
return lowerV32I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
default:
llvm_unreachable("Not a valid 256-bit x86 vector type!");
}
}
/// \brief Try to lower a vector shuffle as a 128-bit shuffles.
static SDValue lowerV4X128VectorShuffle(SDLoc DL, MVT VT,
ArrayRef<int> Mask,
SDValue V1, SDValue V2,
SelectionDAG &DAG) {
assert(VT.getScalarSizeInBits() == 64 &&
"Unexpected element type size for 128bit shuffle.");
// To handle 256 bit vector requires VLX and most probably
// function lowerV2X128VectorShuffle() is better solution.
assert(VT.is512BitVector() && "Unexpected vector size for 128bit shuffle.");
SmallVector<int, 4> WidenedMask;
if (!canWidenShuffleElements(Mask, WidenedMask))
return SDValue();
SDValue Ops[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT)};
// Insure elements came from the same Op.
int MaxOp1Index = VT.getVectorNumElements()/2 - 1;
for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) {
if (WidenedMask[i] == SM_SentinelZero)
return SDValue();
if (WidenedMask[i] == SM_SentinelUndef)
continue;
SDValue Op = WidenedMask[i] > MaxOp1Index ? V2 : V1;
unsigned OpIndex = (i < Size/2) ? 0 : 1;
if (Ops[OpIndex].isUndef())
Ops[OpIndex] = Op;
else if (Ops[OpIndex] != Op)
return SDValue();
}
// Form a 128-bit permutation.
// Convert the 64-bit shuffle mask selection values into 128-bit selection
// bits defined by a vshuf64x2 instruction's immediate control byte.
unsigned PermMask = 0, Imm = 0;
unsigned ControlBitsNum = WidenedMask.size() / 2;
for (int i = 0, Size = WidenedMask.size(); i < Size; ++i) {
// Use first element in place of undef mask.
Imm = (WidenedMask[i] == SM_SentinelUndef) ? 0 : WidenedMask[i];
PermMask |= (Imm % WidenedMask.size()) << (i * ControlBitsNum);
}
return DAG.getNode(X86ISD::SHUF128, DL, VT, Ops[0], Ops[1],
DAG.getConstant(PermMask, DL, MVT::i8));
}
static SDValue lowerVectorShuffleWithPERMV(SDLoc DL, MVT VT,
ArrayRef<int> Mask, SDValue V1,
SDValue V2, SelectionDAG &DAG) {
assert(VT.getScalarSizeInBits() >= 16 && "Unexpected data type for PERMV");
MVT MaskEltVT = MVT::getIntegerVT(VT.getScalarSizeInBits());
MVT MaskVecVT = MVT::getVectorVT(MaskEltVT, VT.getVectorNumElements());
SDValue MaskNode = getConstVector(Mask, MaskVecVT, DAG, DL, true);
if (isSingleInputShuffleMask(Mask))
return DAG.getNode(X86ISD::VPERMV, DL, VT, MaskNode, V1);
return DAG.getNode(X86ISD::VPERMV3, DL, VT, V1, MaskNode, V2);
}
/// \brief Handle lowering of 8-lane 64-bit floating point shuffles.
static SDValue lowerV8F64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8f64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (SDValue Shuf128 =
lowerV4X128VectorShuffle(DL, MVT::v8f64, Mask, V1, V2, DAG))
return Shuf128;
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v8f64, Mask, V1, V2, DAG))
return Unpck;
return lowerVectorShuffleWithPERMV(DL, MVT::v8f64, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 16-lane 32-bit floating point shuffles.
static SDValue lowerV16F32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16f32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v16f32, Mask, V1, V2, DAG))
return Unpck;
return lowerVectorShuffleWithPERMV(DL, MVT::v16f32, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 8-lane 64-bit integer shuffles.
static SDValue lowerV8I64VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v8i64 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 8 && "Unexpected mask size for v8 shuffle!");
if (SDValue Shuf128 =
lowerV4X128VectorShuffle(DL, MVT::v8i64, Mask, V1, V2, DAG))
return Shuf128;
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v8i64, Mask, V1, V2, DAG))
return Unpck;
return lowerVectorShuffleWithPERMV(DL, MVT::v8i64, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 16-lane 32-bit integer shuffles.
static SDValue lowerV16I32VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v16i32 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 16 && "Unexpected mask size for v16 shuffle!");
if (SDValue Unpck =
lowerVectorShuffleWithUNPCK(DL, MVT::v16i32, Mask, V1, V2, DAG))
return Unpck;
return lowerVectorShuffleWithPERMV(DL, MVT::v16i32, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 32-lane 16-bit integer shuffles.
static SDValue lowerV32I16VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v32i16 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 32 && "Unexpected mask size for v32 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v32i16 with AVX-512-BWI!");
return lowerVectorShuffleWithPERMV(DL, MVT::v32i16, Mask, V1, V2, DAG);
}
/// \brief Handle lowering of 64-lane 8-bit integer shuffles.
static SDValue lowerV64I8VectorShuffle(SDValue Op, SDValue V1, SDValue V2,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
assert(V1.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
assert(V2.getSimpleValueType() == MVT::v64i8 && "Bad operand type!");
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Mask.size() == 64 && "Unexpected mask size for v64 shuffle!");
assert(Subtarget.hasBWI() && "We can only lower v64i8 with AVX-512-BWI!");
// FIXME: Implement direct support for this type!
return splitAndLowerVectorShuffle(DL, MVT::v64i8, V1, V2, Mask, DAG);
}
/// \brief High-level routine to lower various 512-bit x86 vector shuffles.
///
/// This routine either breaks down the specific type of a 512-bit x86 vector
/// shuffle or splits it into two 256-bit shuffles and fuses the results back
/// together based on the available instructions.
static SDValue lower512BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/ basic ISA!");
// Check for being able to broadcast a single element.
if (SDValue Broadcast =
lowerVectorShuffleAsBroadcast(DL, VT, V1, V2, Mask, Subtarget, DAG))
return Broadcast;
// Dispatch to each element type for lowering. If we don't have support for
// specific element type shuffles at 512 bits, immediately split them and
// lower them. Each lowering routine of a given type is allowed to assume that
// the requisite ISA extensions for that element type are available.
switch (VT.SimpleTy) {
case MVT::v8f64:
return lowerV8F64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v16f32:
return lowerV16F32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v8i64:
return lowerV8I64VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v16i32:
return lowerV16I32VectorShuffle(Op, V1, V2, Subtarget, DAG);
case MVT::v32i16:
if (Subtarget.hasBWI())
return lowerV32I16VectorShuffle(Op, V1, V2, Subtarget, DAG);
break;
case MVT::v64i8:
if (Subtarget.hasBWI())
return lowerV64I8VectorShuffle(Op, V1, V2, Subtarget, DAG);
break;
default:
llvm_unreachable("Not a valid 512-bit x86 vector type!");
}
// Otherwise fall back on splitting.
return splitAndLowerVectorShuffle(DL, VT, V1, V2, Mask, DAG);
}
// Lower vXi1 vector shuffles.
// There is no a dedicated instruction on AVX-512 that shuffles the masks.
// The only way to shuffle bits is to sign-extend the mask vector to SIMD
// vector, shuffle and then truncate it back.
static SDValue lower1BitVectorShuffle(SDValue Op, SDValue V1, SDValue V2,
MVT VT, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
assert(Subtarget.hasAVX512() &&
"Cannot lower 512-bit vectors w/o basic ISA!");
MVT ExtVT;
switch (VT.SimpleTy) {
default:
llvm_unreachable("Expected a vector of i1 elements");
case MVT::v2i1:
ExtVT = MVT::v2i64;
break;
case MVT::v4i1:
ExtVT = MVT::v4i32;
break;
case MVT::v8i1:
ExtVT = MVT::v8i64; // Take 512-bit type, more shuffles on KNL
break;
case MVT::v16i1:
ExtVT = MVT::v16i32;
break;
case MVT::v32i1:
ExtVT = MVT::v32i16;
break;
case MVT::v64i1:
ExtVT = MVT::v64i8;
break;
}
if (ISD::isBuildVectorAllZeros(V1.getNode()))
V1 = getZeroVector(ExtVT, Subtarget, DAG, DL);
else if (ISD::isBuildVectorAllOnes(V1.getNode()))
V1 = getOnesVector(ExtVT, Subtarget, DAG, DL);
else
V1 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V1);
if (V2.isUndef())
V2 = DAG.getUNDEF(ExtVT);
else if (ISD::isBuildVectorAllZeros(V2.getNode()))
V2 = getZeroVector(ExtVT, Subtarget, DAG, DL);
else if (ISD::isBuildVectorAllOnes(V2.getNode()))
V2 = getOnesVector(ExtVT, Subtarget, DAG, DL);
else
V2 = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, V2);
return DAG.getNode(ISD::TRUNCATE, DL, VT,
DAG.getVectorShuffle(ExtVT, DL, V1, V2, Mask));
}
/// \brief Top-level lowering for x86 vector shuffles.
///
/// This handles decomposition, canonicalization, and lowering of all x86
/// vector shuffles. Most of the specific lowering strategies are encapsulated
/// above in helper routines. The canonicalization attempts to widen shuffles
/// to involve fewer lanes of wider elements, consolidate symmetric patterns
/// s.t. only one of the two inputs needs to be tested, etc.
static SDValue lowerVectorShuffle(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
ArrayRef<int> Mask = SVOp->getMask();
SDValue V1 = Op.getOperand(0);
SDValue V2 = Op.getOperand(1);
MVT VT = Op.getSimpleValueType();
int NumElements = VT.getVectorNumElements();
SDLoc dl(Op);
bool Is1BitVector = (VT.getVectorElementType() == MVT::i1);
assert((VT.getSizeInBits() != 64 || Is1BitVector) &&
"Can't lower MMX shuffles");
bool V1IsUndef = V1.isUndef();
bool V2IsUndef = V2.isUndef();
if (V1IsUndef && V2IsUndef)
return DAG.getUNDEF(VT);
// When we create a shuffle node we put the UNDEF node to second operand,
// but in some cases the first operand may be transformed to UNDEF.
// In this case we should just commute the node.
if (V1IsUndef)
return DAG.getCommutedVectorShuffle(*SVOp);
// Check for non-undef masks pointing at an undef vector and make the masks
// undef as well. This makes it easier to match the shuffle based solely on
// the mask.
if (V2IsUndef)
for (int M : Mask)
if (M >= NumElements) {
SmallVector<int, 8> NewMask(Mask.begin(), Mask.end());
for (int &M : NewMask)
if (M >= NumElements)
M = -1;
return DAG.getVectorShuffle(VT, dl, V1, V2, NewMask);
}
// We actually see shuffles that are entirely re-arrangements of a set of
// zero inputs. This mostly happens while decomposing complex shuffles into
// simple ones. Directly lower these as a buildvector of zeros.
SmallBitVector Zeroable = computeZeroableShuffleElements(Mask, V1, V2);
if (Zeroable.all())
return getZeroVector(VT, Subtarget, DAG, dl);
// Try to collapse shuffles into using a vector type with fewer elements but
// wider element types. We cap this to not form integers or floating point
// elements wider than 64 bits, but it might be interesting to form i128
// integers to handle flipping the low and high halves of AVX 256-bit vectors.
SmallVector<int, 16> WidenedMask;
if (VT.getScalarSizeInBits() < 64 && !Is1BitVector &&
canWidenShuffleElements(Mask, WidenedMask)) {
MVT NewEltVT = VT.isFloatingPoint()
? MVT::getFloatingPointVT(VT.getScalarSizeInBits() * 2)
: MVT::getIntegerVT(VT.getScalarSizeInBits() * 2);
MVT NewVT = MVT::getVectorVT(NewEltVT, VT.getVectorNumElements() / 2);
// Make sure that the new vector type is legal. For example, v2f64 isn't
// legal on SSE1.
if (DAG.getTargetLoweringInfo().isTypeLegal(NewVT)) {
V1 = DAG.getBitcast(NewVT, V1);
V2 = DAG.getBitcast(NewVT, V2);
return DAG.getBitcast(
VT, DAG.getVectorShuffle(NewVT, dl, V1, V2, WidenedMask));
}
}
int NumV1Elements = 0, NumUndefElements = 0, NumV2Elements = 0;
for (int M : SVOp->getMask())
if (M < 0)
++NumUndefElements;
else if (M < NumElements)
++NumV1Elements;
else
++NumV2Elements;
// Commute the shuffle as needed such that more elements come from V1 than
// V2. This allows us to match the shuffle pattern strictly on how many
// elements come from V1 without handling the symmetric cases.
if (NumV2Elements > NumV1Elements)
return DAG.getCommutedVectorShuffle(*SVOp);
// When the number of V1 and V2 elements are the same, try to minimize the
// number of uses of V2 in the low half of the vector. When that is tied,
// ensure that the sum of indices for V1 is equal to or lower than the sum
// indices for V2. When those are equal, try to ensure that the number of odd
// indices for V1 is lower than the number of odd indices for V2.
if (NumV1Elements == NumV2Elements) {
int LowV1Elements = 0, LowV2Elements = 0;
for (int M : SVOp->getMask().slice(0, NumElements / 2))
if (M >= NumElements)
++LowV2Elements;
else if (M >= 0)
++LowV1Elements;
if (LowV2Elements > LowV1Elements) {
return DAG.getCommutedVectorShuffle(*SVOp);
} else if (LowV2Elements == LowV1Elements) {
int SumV1Indices = 0, SumV2Indices = 0;
for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
if (SVOp->getMask()[i] >= NumElements)
SumV2Indices += i;
else if (SVOp->getMask()[i] >= 0)
SumV1Indices += i;
if (SumV2Indices < SumV1Indices) {
return DAG.getCommutedVectorShuffle(*SVOp);
} else if (SumV2Indices == SumV1Indices) {
int NumV1OddIndices = 0, NumV2OddIndices = 0;
for (int i = 0, Size = SVOp->getMask().size(); i < Size; ++i)
if (SVOp->getMask()[i] >= NumElements)
NumV2OddIndices += i % 2;
else if (SVOp->getMask()[i] >= 0)
NumV1OddIndices += i % 2;
if (NumV2OddIndices < NumV1OddIndices)
return DAG.getCommutedVectorShuffle(*SVOp);
}
}
}
// For each vector width, delegate to a specialized lowering routine.
if (VT.is128BitVector())
return lower128BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
if (VT.is256BitVector())
return lower256BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
if (VT.is512BitVector())
return lower512BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
if (Is1BitVector)
return lower1BitVectorShuffle(Op, V1, V2, VT, Subtarget, DAG);
llvm_unreachable("Unimplemented!");
}
/// \brief Try to lower a VSELECT instruction to a vector shuffle.
static SDValue lowerVSELECTtoVectorShuffle(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Cond = Op.getOperand(0);
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
if (!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode()))
return SDValue();
auto *CondBV = cast<BuildVectorSDNode>(Cond);
// Only non-legal VSELECTs reach this lowering, convert those into generic
// shuffles and re-use the shuffle lowering path for blends.
SmallVector<int, 32> Mask;
for (int i = 0, Size = VT.getVectorNumElements(); i < Size; ++i) {
SDValue CondElt = CondBV->getOperand(i);
Mask.push_back(
isa<ConstantSDNode>(CondElt) ? i + (isNullConstant(CondElt) ? Size : 0)
: -1);
}
return DAG.getVectorShuffle(VT, dl, LHS, RHS, Mask);
}
SDValue X86TargetLowering::LowerVSELECT(SDValue Op, SelectionDAG &DAG) const {
// A vselect where all conditions and data are constants can be optimized into
// a single vector load by SelectionDAGLegalize::ExpandBUILD_VECTOR().
if (ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(0).getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(1).getNode()) &&
ISD::isBuildVectorOfConstantSDNodes(Op.getOperand(2).getNode()))
return SDValue();
// Try to lower this to a blend-style vector shuffle. This can handle all
// constant condition cases.
if (SDValue BlendOp = lowerVSELECTtoVectorShuffle(Op, Subtarget, DAG))
return BlendOp;
// Variable blends are only legal from SSE4.1 onward.
if (!Subtarget.hasSSE41())
return SDValue();
// Only some types will be legal on some subtargets. If we can emit a legal
// VSELECT-matching blend, return Op, and but if we need to expand, return
// a null value.
switch (Op.getSimpleValueType().SimpleTy) {
default:
// Most of the vector types have blends past SSE4.1.
return Op;
case MVT::v32i8:
// The byte blends for AVX vectors were introduced only in AVX2.
if (Subtarget.hasAVX2())
return Op;
return SDValue();
case MVT::v8i16:
case MVT::v16i16:
// AVX-512 BWI and VLX features support VSELECT with i16 elements.
if (Subtarget.hasBWI() && Subtarget.hasVLX())
return Op;
// FIXME: We should custom lower this by fixing the condition and using i8
// blends.
return SDValue();
}
}
static SDValue LowerEXTRACT_VECTOR_ELT_SSE4(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (!Op.getOperand(0).getSimpleValueType().is128BitVector())
return SDValue();
if (VT.getSizeInBits() == 8) {
SDValue Extract = DAG.getNode(X86ISD::PEXTRB, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
}
if (VT.getSizeInBits() == 16) {
// If Idx is 0, it's cheaper to do a move instead of a pextrw.
if (isNullConstant(Op.getOperand(1)))
return DAG.getNode(
ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
Op.getOperand(1)));
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, MVT::i32,
Op.getOperand(0), Op.getOperand(1));
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
}
if (VT == MVT::f32) {
// EXTRACTPS outputs to a GPR32 register which will require a movd to copy
// the result back to FR32 register. It's only worth matching if the
// result has a single use which is a store or a bitcast to i32. And in
// the case of a store, it's not worth it if the index is a constant 0,
// because a MOVSSmr can be used instead, which is smaller and faster.
if (!Op.hasOneUse())
return SDValue();
SDNode *User = *Op.getNode()->use_begin();
if ((User->getOpcode() != ISD::STORE ||
isNullConstant(Op.getOperand(1))) &&
(User->getOpcode() != ISD::BITCAST ||
User->getValueType(0) != MVT::i32))
return SDValue();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Op.getOperand(0)),
Op.getOperand(1));
return DAG.getBitcast(MVT::f32, Extract);
}
if (VT == MVT::i32 || VT == MVT::i64) {
// ExtractPS/pextrq works with constant index.
if (isa<ConstantSDNode>(Op.getOperand(1)))
return Op;
}
return SDValue();
}
/// Extract one bit from mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
SDValue
X86TargetLowering::ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const {
SDValue Vec = Op.getOperand(0);
SDLoc dl(Vec);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
MVT EltVT = Op.getSimpleValueType();
assert((EltVT == MVT::i1) && "Unexpected operands in ExtractBitFromMaskVector");
assert((VecVT.getVectorNumElements() <= 16 || Subtarget.hasBWI()) &&
"Unexpected vector type in ExtractBitFromMaskVector");
// variable index can't be handled in mask registers,
// extend vector to VR512
if (!isa<ConstantSDNode>(Idx)) {
MVT ExtVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVT, Vec);
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
ExtVT.getVectorElementType(), Ext, Idx);
return DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
if (!Subtarget.hasDQI() && (VecVT.getVectorNumElements() <= 8)) {
// Use kshiftlw/rw instruction.
VecVT = MVT::v16i1;
Vec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, VecVT,
DAG.getUNDEF(VecVT),
Vec,
DAG.getIntPtrConstant(0, dl));
}
unsigned MaxSift = VecVT.getVectorNumElements() - 1;
Vec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, Vec,
DAG.getConstant(MaxSift - IdxVal, dl, MVT::i8));
Vec = DAG.getNode(X86ISD::VSRLI, dl, VecVT, Vec,
DAG.getConstant(MaxSift, dl, MVT::i8));
return DAG.getNode(X86ISD::VEXTRACT, dl, MVT::i1, Vec,
DAG.getIntPtrConstant(0, dl));
}
SDValue
X86TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
MVT VecVT = Vec.getSimpleValueType();
SDValue Idx = Op.getOperand(1);
if (Op.getSimpleValueType() == MVT::i1)
return ExtractBitFromMaskVector(Op, DAG);
if (!isa<ConstantSDNode>(Idx)) {
if (VecVT.is512BitVector() ||
(VecVT.is256BitVector() && Subtarget.hasInt256() &&
VecVT.getVectorElementType().getSizeInBits() == 32)) {
MVT MaskEltVT =
MVT::getIntegerVT(VecVT.getVectorElementType().getSizeInBits());
MVT MaskVT = MVT::getVectorVT(MaskEltVT, VecVT.getSizeInBits() /
MaskEltVT.getSizeInBits());
Idx = DAG.getZExtOrTrunc(Idx, dl, MaskEltVT);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Mask = DAG.getNode(X86ISD::VINSERT, dl, MaskVT,
getZeroVector(MaskVT, Subtarget, DAG, dl), Idx,
DAG.getConstant(0, dl, PtrVT));
SDValue Perm = DAG.getNode(X86ISD::VPERMV, dl, VecVT, Mask, Vec);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Perm,
DAG.getConstant(0, dl, PtrVT));
}
return SDValue();
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
// If this is a 256-bit vector result, first extract the 128-bit vector and
// then extract the element from the 128-bit vector.
if (VecVT.is256BitVector() || VecVT.is512BitVector()) {
// Get the 128-bit vector.
Vec = extract128BitVector(Vec, IdxVal, DAG, dl);
MVT EltVT = VecVT.getVectorElementType();
unsigned ElemsPerChunk = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(ElemsPerChunk) && "Elements per chunk not power of 2");
// Find IdxVal modulo ElemsPerChunk. Since ElemsPerChunk is a power of 2
// this can be done with a mask.
IdxVal &= ElemsPerChunk - 1;
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, Op.getValueType(), Vec,
DAG.getConstant(IdxVal, dl, MVT::i32));
}
assert(VecVT.is128BitVector() && "Unexpected vector length");
if (Subtarget.hasSSE41())
if (SDValue Res = LowerEXTRACT_VECTOR_ELT_SSE4(Op, DAG))
return Res;
MVT VT = Op.getSimpleValueType();
// TODO: handle v16i8.
if (VT.getSizeInBits() == 16) {
if (IdxVal == 0)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i16,
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i32,
DAG.getBitcast(MVT::v4i32, Vec), Idx));
// Transform it so it match pextrw which produces a 32-bit result.
MVT EltVT = MVT::i32;
SDValue Extract = DAG.getNode(X86ISD::PEXTRW, dl, EltVT, Vec, Idx);
SDValue Assert = DAG.getNode(ISD::AssertZext, dl, EltVT, Extract,
DAG.getValueType(VT));
return DAG.getNode(ISD::TRUNCATE, dl, VT, Assert);
}
if (VT.getSizeInBits() == 32) {
if (IdxVal == 0)
return Op;
// SHUFPS the element to the lowest double word, then movss.
int Mask[4] = { static_cast<int>(IdxVal), -1, -1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
if (VT.getSizeInBits() == 64) {
// FIXME: .td only matches this for <2 x f64>, not <2 x i64> on 32b
// FIXME: seems like this should be unnecessary if mov{h,l}pd were taught
// to match extract_elt for f64.
if (IdxVal == 0)
return Op;
// UNPCKHPD the element to the lowest double word, then movsd.
// Note if the lower 64 bits of the result of the UNPCKHPD is then stored
// to a f64mem, the whole operation is folded into a single MOVHPDmr.
int Mask[2] = { 1, -1 };
Vec = DAG.getVectorShuffle(VecVT, dl, Vec, DAG.getUNDEF(VecVT), Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, Vec,
DAG.getIntPtrConstant(0, dl));
}
return SDValue();
}
/// Insert one bit to mask vector, like v16i1 or v8i1.
/// AVX-512 feature.
SDValue
X86TargetLowering::InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const {
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue Elt = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
MVT VecVT = Vec.getSimpleValueType();
if (!isa<ConstantSDNode>(Idx)) {
// Non constant index. Extend source and destination,
// insert element and then truncate the result.
MVT ExtVecVT = (VecVT == MVT::v8i1 ? MVT::v8i64 : MVT::v16i32);
MVT ExtEltVT = (VecVT == MVT::v8i1 ? MVT::i64 : MVT::i32);
SDValue ExtOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, ExtVecVT,
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtVecVT, Vec),
DAG.getNode(ISD::ZERO_EXTEND, dl, ExtEltVT, Elt), Idx);
return DAG.getNode(ISD::TRUNCATE, dl, VecVT, ExtOp);
}
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
SDValue EltInVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, Elt);
if (IdxVal)
EltInVec = DAG.getNode(X86ISD::VSHLI, dl, VecVT, EltInVec,
DAG.getConstant(IdxVal, dl, MVT::i8));
if (Vec.isUndef())
return EltInVec;
return DAG.getNode(ISD::OR, dl, VecVT, Vec, EltInVec);
}
SDValue X86TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElts = VT.getVectorNumElements();
if (EltVT == MVT::i1)
return InsertBitToMaskVector(Op, DAG);
SDLoc dl(Op);
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
SDValue N2 = Op.getOperand(2);
if (!isa<ConstantSDNode>(N2))
return SDValue();
auto *N2C = cast<ConstantSDNode>(N2);
unsigned IdxVal = N2C->getZExtValue();
// If we are clearing out a element, we do this more efficiently with a
// blend shuffle than a costly integer insertion.
// TODO: would other rematerializable values (e.g. allbits) benefit as well?
// TODO: pre-SSE41 targets will tend to use bit masking - this could still
// be beneficial if we are inserting several zeros and can combine the masks.
if (X86::isZeroNode(N1) && Subtarget.hasSSE41() && NumElts <= 8) {
SmallVector<int, 8> ClearMask;
for (unsigned i = 0; i != NumElts; ++i)
ClearMask.push_back(i == IdxVal ? i + NumElts : i);
SDValue ZeroVector = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getVectorShuffle(VT, dl, N0, ZeroVector, ClearMask);
}
// If the vector is wider than 128 bits, extract the 128-bit subvector, insert
// into that, and then insert the subvector back into the result.
if (VT.is256BitVector() || VT.is512BitVector()) {
// With a 256-bit vector, we can insert into the zero element efficiently
// using a blend if we have AVX or AVX2 and the right data type.
if (VT.is256BitVector() && IdxVal == 0) {
// TODO: It is worthwhile to cast integer to floating point and back
// and incur a domain crossing penalty if that's what we'll end up
// doing anyway after extracting to a 128-bit vector.
if ((Subtarget.hasAVX() && (EltVT == MVT::f64 || EltVT == MVT::f32)) ||
(Subtarget.hasAVX2() && EltVT == MVT::i32)) {
SDValue N1Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, N1);
N2 = DAG.getIntPtrConstant(1, dl);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1Vec, N2);
}
}
// Get the desired 128-bit vector chunk.
SDValue V = extract128BitVector(N0, IdxVal, DAG, dl);
// Insert the element into the desired chunk.
unsigned NumEltsIn128 = 128 / EltVT.getSizeInBits();
assert(isPowerOf2_32(NumEltsIn128));
// Since NumEltsIn128 is a power of 2 we can use mask instead of modulo.
unsigned IdxIn128 = IdxVal & (NumEltsIn128 - 1);
V = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, V.getValueType(), V, N1,
DAG.getConstant(IdxIn128, dl, MVT::i32));
// Insert the changed part back into the bigger vector
return insert128BitVector(N0, V, IdxVal, DAG, dl);
}
assert(VT.is128BitVector() && "Only 128-bit vector types should be left!");
if (Subtarget.hasSSE41()) {
if (EltVT.getSizeInBits() == 8 || EltVT.getSizeInBits() == 16) {
unsigned Opc;
if (VT == MVT::v8i16) {
Opc = X86ISD::PINSRW;
} else {
assert(VT == MVT::v16i8);
Opc = X86ISD::PINSRB;
}
// Transform it so it match pinsr{b,w} which expects a GR32 as its second
// argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(Opc, dl, VT, N0, N1, N2);
}
if (EltVT == MVT::f32) {
// Bits [7:6] of the constant are the source select. This will always be
// zero here. The DAG Combiner may combine an extract_elt index into
// these bits. For example (insert (extract, 3), 2) could be matched by
// putting the '3' into bits [7:6] of X86ISD::INSERTPS.
// Bits [5:4] of the constant are the destination select. This is the
// value of the incoming immediate.
// Bits [3:0] of the constant are the zero mask. The DAG Combiner may
// combine either bitwise AND or insert of float 0.0 to set these bits.
bool MinSize = DAG.getMachineFunction().getFunction()->optForMinSize();
if (IdxVal == 0 && (!MinSize || !MayFoldLoad(N1))) {
// If this is an insertion of 32-bits into the low 32-bits of
// a vector, we prefer to generate a blend with immediate rather
// than an insertps. Blends are simpler operations in hardware and so
// will always have equal or better performance than insertps.
// But if optimizing for size and there's a load folding opportunity,
// generate insertps because blendps does not have a 32-bit memory
// operand form.
N2 = DAG.getIntPtrConstant(1, dl);
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::BLENDI, dl, VT, N0, N1, N2);
}
N2 = DAG.getIntPtrConstant(IdxVal << 4, dl);
// Create this as a scalar to vector..
N1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4f32, N1);
return DAG.getNode(X86ISD::INSERTPS, dl, VT, N0, N1, N2);
}
if (EltVT == MVT::i32 || EltVT == MVT::i64) {
// PINSR* works with constant index.
return Op;
}
}
if (EltVT == MVT::i8)
return SDValue();
if (EltVT.getSizeInBits() == 16) {
// Transform it so it match pinsrw which expects a 16-bit value in a GR32
// as its second argument.
if (N1.getValueType() != MVT::i32)
N1 = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, N1);
if (N2.getValueType() != MVT::i32)
N2 = DAG.getIntPtrConstant(IdxVal, dl);
return DAG.getNode(X86ISD::PINSRW, dl, VT, N0, N1, N2);
}
return SDValue();
}
static SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) {
SDLoc dl(Op);
MVT OpVT = Op.getSimpleValueType();
// If this is a 256-bit vector result, first insert into a 128-bit
// vector and then insert into the 256-bit vector.
if (!OpVT.is128BitVector()) {
// Insert into a 128-bit vector.
unsigned SizeFactor = OpVT.getSizeInBits()/128;
MVT VT128 = MVT::getVectorVT(OpVT.getVectorElementType(),
OpVT.getVectorNumElements() / SizeFactor);
Op = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT128, Op.getOperand(0));
// Insert the 128-bit vector.
return insert128BitVector(DAG.getUNDEF(OpVT), Op, 0, DAG, dl);
}
if (OpVT == MVT::v1i64 &&
Op.getOperand(0).getValueType() == MVT::i64)
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v1i64, Op.getOperand(0));
SDValue AnyExt = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, Op.getOperand(0));
assert(OpVT.is128BitVector() && "Expected an SSE type!");
return DAG.getBitcast(
OpVT, DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32, AnyExt));
}
// Lower a node with an EXTRACT_SUBVECTOR opcode. This may result in
// a simple subregister reference or explicit instructions to grab
// upper bits of a vector.
static SDValue LowerEXTRACT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
SDValue In = Op.getOperand(0);
SDValue Idx = Op.getOperand(1);
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
MVT ResVT = Op.getSimpleValueType();
MVT InVT = In.getSimpleValueType();
if (Subtarget.hasFp256()) {
if (ResVT.is128BitVector() &&
(InVT.is256BitVector() || InVT.is512BitVector()) &&
isa<ConstantSDNode>(Idx)) {
return extract128BitVector(In, IdxVal, DAG, dl);
}
if (ResVT.is256BitVector() && InVT.is512BitVector() &&
isa<ConstantSDNode>(Idx)) {
return extract256BitVector(In, IdxVal, DAG, dl);
}
}
return SDValue();
}
// Lower a node with an INSERT_SUBVECTOR opcode. This may result in a
// simple superregister reference or explicit instructions to insert
// the upper bits of a vector.
static SDValue LowerINSERT_SUBVECTOR(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (!Subtarget.hasAVX())
return SDValue();
SDLoc dl(Op);
SDValue Vec = Op.getOperand(0);
SDValue SubVec = Op.getOperand(1);
SDValue Idx = Op.getOperand(2);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
MVT OpVT = Op.getSimpleValueType();
MVT SubVecVT = SubVec.getSimpleValueType();
// Fold two 16-byte subvector loads into one 32-byte load:
// (insert_subvector (insert_subvector undef, (load addr), 0),
// (load addr + 16), Elts/2)
// --> load32 addr
if ((IdxVal == OpVT.getVectorNumElements() / 2) &&
Vec.getOpcode() == ISD::INSERT_SUBVECTOR &&
OpVT.is256BitVector() && SubVecVT.is128BitVector()) {
auto *Idx2 = dyn_cast<ConstantSDNode>(Vec.getOperand(2));
if (Idx2 && Idx2->getZExtValue() == 0) {
// If needed, look through bitcasts to get to the load.
SDValue SubVec2 = peekThroughBitcasts(Vec.getOperand(1));
if (auto *FirstLd = dyn_cast<LoadSDNode>(SubVec2)) {
bool Fast;
unsigned Alignment = FirstLd->getAlignment();
unsigned AS = FirstLd->getAddressSpace();
const X86TargetLowering *TLI = Subtarget.getTargetLowering();
if (TLI->allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(),
OpVT, AS, Alignment, &Fast) && Fast) {
SDValue Ops[] = { SubVec2, SubVec };
if (SDValue Ld = EltsFromConsecutiveLoads(OpVT, Ops, dl, DAG, false))
return Ld;
}
}
}
}
if ((OpVT.is256BitVector() || OpVT.is512BitVector()) &&
SubVecVT.is128BitVector())
return insert128BitVector(Vec, SubVec, IdxVal, DAG, dl);
if (OpVT.is512BitVector() && SubVecVT.is256BitVector())
return insert256BitVector(Vec, SubVec, IdxVal, DAG, dl);
if (OpVT.getVectorElementType() == MVT::i1)
return insert1BitVector(Op, DAG, Subtarget);
return SDValue();
}
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
// their target countpart wrapped in the X86ISD::Wrapper node. Suppose N is
// one of the above mentioned nodes. It has to be wrapped because otherwise
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
// be used to form addressing mode. These wrapped nodes will be selected
// into MOV32ri.
SDValue
X86TargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = DAG.getTarget().getCodeModel();
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
WrapperKind = X86ISD::WrapperRIP;
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetConstantPool(
CP->getConstVal(), PtrVT, CP->getAlignment(), CP->getOffset(), OpFlag);
SDLoc DL(CP);
Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag) {
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
}
return Result;
}
SDValue X86TargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
unsigned char OpFlag = Subtarget.classifyLocalReference(nullptr);
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = DAG.getTarget().getCodeModel();
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
WrapperKind = X86ISD::WrapperRIP;
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, OpFlag);
SDLoc DL(JT);
Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (OpFlag)
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
return Result;
}
SDValue
X86TargetLowering::LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const {
const char *Sym = cast<ExternalSymbolSDNode>(Op)->getSymbol();
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
const Module *Mod = DAG.getMachineFunction().getFunction()->getParent();
unsigned char OpFlag = Subtarget.classifyGlobalReference(nullptr, *Mod);
unsigned WrapperKind = X86ISD::Wrapper;
CodeModel::Model M = DAG.getTarget().getCodeModel();
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
WrapperKind = X86ISD::WrapperRIP;
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetExternalSymbol(Sym, PtrVT, OpFlag);
SDLoc DL(Op);
Result = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (DAG.getTarget().getRelocationModel() == Reloc::PIC_ &&
!Subtarget.is64Bit()) {
Result =
DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), Result);
}
// For symbols that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlag))
Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
false, false, false, 0);
return Result;
}
SDValue
X86TargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
// Create the TargetBlockAddressAddress node.
unsigned char OpFlags =
Subtarget.classifyBlockAddressReference();
CodeModel::Model M = DAG.getTarget().getCodeModel();
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
int64_t Offset = cast<BlockAddressSDNode>(Op)->getOffset();
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result = DAG.getTargetBlockAddress(BA, PtrVT, Offset, OpFlags);
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
int64_t Offset, SelectionDAG &DAG) const {
// Create the TargetGlobalAddress node, folding in the constant
// offset if it is legal.
unsigned char OpFlags = Subtarget.classifyGlobalReference(GV);
CodeModel::Model M = DAG.getTarget().getCodeModel();
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (OpFlags == X86II::MO_NO_FLAG &&
X86::isOffsetSuitableForCodeModel(Offset, M)) {
// A direct static reference to a global.
Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, Offset);
Offset = 0;
} else {
Result = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, OpFlags);
}
if (Subtarget.isPICStyleRIPRel() &&
(M == CodeModel::Small || M == CodeModel::Kernel))
Result = DAG.getNode(X86ISD::WrapperRIP, dl, PtrVT, Result);
else
Result = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, Result);
// With PIC, the address is actually $g + Offset.
if (isGlobalRelativeToPICBase(OpFlags)) {
Result = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, dl, PtrVT), Result);
}
// For globals that require a load from a stub to get the address, emit the
// load.
if (isGlobalStubReference(OpFlags))
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
false, false, false, 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result,
DAG.getConstant(Offset, dl, PtrVT));
return Result;
}
SDValue
X86TargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
return LowerGlobalAddress(GV, SDLoc(Op), Offset, DAG);
}
static SDValue
GetTLSADDR(SelectionDAG &DAG, SDValue Chain, GlobalAddressSDNode *GA,
SDValue *InFlag, const EVT PtrVT, unsigned ReturnReg,
unsigned char OperandFlags, bool LocalDynamic = false) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SDLoc dl(GA);
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(),
OperandFlags);
X86ISD::NodeType CallType = LocalDynamic ? X86ISD::TLSBASEADDR
: X86ISD::TLSADDR;
if (InFlag) {
SDValue Ops[] = { Chain, TGA, *InFlag };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
} else {
SDValue Ops[] = { Chain, TGA };
Chain = DAG.getNode(CallType, dl, NodeTys, Ops);
}
// TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
MFI->setAdjustsStack(true);
MFI->setHasCalls(true);
SDValue Flag = Chain.getValue(1);
return DAG.getCopyFromReg(Chain, dl, ReturnReg, PtrVT, Flag);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 32 bit
static SDValue
LowerToTLSGeneralDynamicModel32(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
SDValue InFlag;
SDLoc dl(GA); // ? function entry point might be better
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg,
SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
return GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX, X86II::MO_TLSGD);
}
// Lower ISD::GlobalTLSAddress using the "general dynamic" model, 64 bit
static SDValue
LowerToTLSGeneralDynamicModel64(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT) {
return GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT,
X86::RAX, X86II::MO_TLSGD);
}
static SDValue LowerToTLSLocalDynamicModel(GlobalAddressSDNode *GA,
SelectionDAG &DAG,
const EVT PtrVT,
bool is64Bit) {
SDLoc dl(GA);
// Get the start address of the TLS block for this module.
X86MachineFunctionInfo* MFI = DAG.getMachineFunction()
.getInfo<X86MachineFunctionInfo>();
MFI->incNumLocalDynamicTLSAccesses();
SDValue Base;
if (is64Bit) {
Base = GetTLSADDR(DAG, DAG.getEntryNode(), GA, nullptr, PtrVT, X86::RAX,
X86II::MO_TLSLD, /*LocalDynamic=*/true);
} else {
SDValue InFlag;
SDValue Chain = DAG.getCopyToReg(DAG.getEntryNode(), dl, X86::EBX,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT), InFlag);
InFlag = Chain.getValue(1);
Base = GetTLSADDR(DAG, Chain, GA, &InFlag, PtrVT, X86::EAX,
X86II::MO_TLSLDM, /*LocalDynamic=*/true);
}
// Note: the CleanupLocalDynamicTLSPass will remove redundant computations
// of Base.
// Build x@dtpoff.
unsigned char OperandFlags = X86II::MO_DTPOFF;
unsigned WrapperKind = X86ISD::Wrapper;
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
// Add x@dtpoff with the base.
return DAG.getNode(ISD::ADD, dl, PtrVT, Offset, Base);
}
// Lower ISD::GlobalTLSAddress using the "initial exec" or "local exec" model.
static SDValue LowerToTLSExecModel(GlobalAddressSDNode *GA, SelectionDAG &DAG,
const EVT PtrVT, TLSModel::Model model,
bool is64Bit, bool isPIC) {
SDLoc dl(GA);
// Get the Thread Pointer, which is %gs:0 (32-bit) or %fs:0 (64-bit).
Value *Ptr = Constant::getNullValue(Type::getInt8PtrTy(*DAG.getContext(),
is64Bit ? 257 : 256));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getIntPtrConstant(0, dl),
MachinePointerInfo(Ptr), false, false, false, 0);
unsigned char OperandFlags = 0;
// Most TLS accesses are not RIP relative, even on x86-64. One exception is
// initialexec.
unsigned WrapperKind = X86ISD::Wrapper;
if (model == TLSModel::LocalExec) {
OperandFlags = is64Bit ? X86II::MO_TPOFF : X86II::MO_NTPOFF;
} else if (model == TLSModel::InitialExec) {
if (is64Bit) {
OperandFlags = X86II::MO_GOTTPOFF;
WrapperKind = X86ISD::WrapperRIP;
} else {
OperandFlags = isPIC ? X86II::MO_GOTNTPOFF : X86II::MO_INDNTPOFF;
}
} else {
llvm_unreachable("Unexpected model");
}
// emit "addl x@ntpoff,%eax" (local exec)
// or "addl x@indntpoff,%eax" (initial exec)
// or "addl x@gotntpoff(%ebx) ,%eax" (initial exec, 32-bit pic)
SDValue TGA =
DAG.getTargetGlobalAddress(GA->getGlobal(), dl, GA->getValueType(0),
GA->getOffset(), OperandFlags);
SDValue Offset = DAG.getNode(WrapperKind, dl, PtrVT, TGA);
if (model == TLSModel::InitialExec) {
if (isPIC && !is64Bit) {
Offset = DAG.getNode(ISD::ADD, dl, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
}
Offset = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Offset,
MachinePointerInfo::getGOT(DAG.getMachineFunction()),
false, false, false, 0);
}
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
}
SDValue
X86TargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
if (DAG.getTarget().Options.EmulatedTLS)
return LowerToTLSEmulatedModel(GA, DAG);
const GlobalValue *GV = GA->getGlobal();
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (Subtarget.isTargetELF()) {
TLSModel::Model model = DAG.getTarget().getTLSModel(GV);
switch (model) {
case TLSModel::GeneralDynamic:
if (Subtarget.is64Bit())
return LowerToTLSGeneralDynamicModel64(GA, DAG, PtrVT);
return LowerToTLSGeneralDynamicModel32(GA, DAG, PtrVT);
case TLSModel::LocalDynamic:
return LowerToTLSLocalDynamicModel(GA, DAG, PtrVT,
Subtarget.is64Bit());
case TLSModel::InitialExec:
case TLSModel::LocalExec:
return LowerToTLSExecModel(GA, DAG, PtrVT, model, Subtarget.is64Bit(),
DAG.getTarget().getRelocationModel() ==
Reloc::PIC_);
}
llvm_unreachable("Unknown TLS model.");
}
if (Subtarget.isTargetDarwin()) {
// Darwin only has one model of TLS. Lower to that.
unsigned char OpFlag = 0;
unsigned WrapperKind = Subtarget.isPICStyleRIPRel() ?
X86ISD::WrapperRIP : X86ISD::Wrapper;
// In PIC mode (unless we're in RIPRel PIC mode) we add an offset to the
// global base reg.
bool PIC32 = (DAG.getTarget().getRelocationModel() == Reloc::PIC_) &&
!Subtarget.is64Bit();
if (PIC32)
OpFlag = X86II::MO_TLVP_PIC_BASE;
else
OpFlag = X86II::MO_TLVP;
SDLoc DL(Op);
SDValue Result = DAG.getTargetGlobalAddress(GA->getGlobal(), DL,
GA->getValueType(0),
GA->getOffset(), OpFlag);
SDValue Offset = DAG.getNode(WrapperKind, DL, PtrVT, Result);
// With PIC32, the address is actually $g + Offset.
if (PIC32)
Offset = DAG.getNode(ISD::ADD, DL, PtrVT,
DAG.getNode(X86ISD::GlobalBaseReg, SDLoc(), PtrVT),
Offset);
// Lowering the machine isd will make sure everything is in the right
// location.
SDValue Chain = DAG.getEntryNode();
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, DL, true), DL);
SDValue Args[] = { Chain, Offset };
Chain = DAG.getNode(X86ISD::TLSCALL, DL, NodeTys, Args);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, DL, true),
DAG.getIntPtrConstant(0, DL, true),
Chain.getValue(1), DL);
// TLSCALL will be codegen'ed as call. Inform MFI that function has calls.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setAdjustsStack(true);
// And our return value (tls address) is in the standard call return value
// location.
unsigned Reg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
return DAG.getCopyFromReg(Chain, DL, Reg, PtrVT, Chain.getValue(1));
}
if (Subtarget.isTargetKnownWindowsMSVC() ||
Subtarget.isTargetWindowsGNU()) {
// Just use the implicit TLS architecture
// Need to generate someting similar to:
// mov rdx, qword [gs:abs 58H]; Load pointer to ThreadLocalStorage
// ; from TEB
// mov ecx, dword [rel _tls_index]: Load index (from C runtime)
// mov rcx, qword [rdx+rcx*8]
// mov eax, .tls$:tlsvar
// [rax+rcx] contains the address
// Windows 64bit: gs:0x58
// Windows 32bit: fs:__tls_array
SDLoc dl(GA);
SDValue Chain = DAG.getEntryNode();
// Get the Thread Pointer, which is %fs:__tls_array (32-bit) or
// %gs:0x58 (64-bit). On MinGW, __tls_array is not available, so directly
// use its literal value of 0x2C.
Value *Ptr = Constant::getNullValue(Subtarget.is64Bit()
? Type::getInt8PtrTy(*DAG.getContext(),
256)
: Type::getInt32PtrTy(*DAG.getContext(),
257));
SDValue TlsArray = Subtarget.is64Bit()
? DAG.getIntPtrConstant(0x58, dl)
: (Subtarget.isTargetWindowsGNU()
? DAG.getIntPtrConstant(0x2C, dl)
: DAG.getExternalSymbol("_tls_array", PtrVT));
SDValue ThreadPointer =
DAG.getLoad(PtrVT, dl, Chain, TlsArray, MachinePointerInfo(Ptr), false,
false, false, 0);
SDValue res;
if (GV->getThreadLocalMode() == GlobalVariable::LocalExecTLSModel) {
res = ThreadPointer;
} else {
// Load the _tls_index variable
SDValue IDX = DAG.getExternalSymbol("_tls_index", PtrVT);
if (Subtarget.is64Bit())
IDX = DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, IDX,
MachinePointerInfo(), MVT::i32, false, false,
false, 0);
else
IDX = DAG.getLoad(PtrVT, dl, Chain, IDX, MachinePointerInfo(), false,
false, false, 0);
auto &DL = DAG.getDataLayout();
SDValue Scale =
DAG.getConstant(Log2_64_Ceil(DL.getPointerSize()), dl, PtrVT);
IDX = DAG.getNode(ISD::SHL, dl, PtrVT, IDX, Scale);
res = DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, IDX);
}
res = DAG.getLoad(PtrVT, dl, Chain, res, MachinePointerInfo(), false, false,
false, 0);
// Get the offset of start of .tls section
SDValue TGA = DAG.getTargetGlobalAddress(GA->getGlobal(), dl,
GA->getValueType(0),
GA->getOffset(), X86II::MO_SECREL);
SDValue Offset = DAG.getNode(X86ISD::Wrapper, dl, PtrVT, TGA);
// The address of the thread local variable is the add of the thread
// pointer with the offset of the variable.
return DAG.getNode(ISD::ADD, dl, PtrVT, res, Offset);
}
llvm_unreachable("TLS not implemented for this target.");
}
/// Lower SRA_PARTS and friends, which return two i32 values
/// and take a 2 x i32 value to shift plus a shift amount.
static SDValue LowerShiftParts(SDValue Op, SelectionDAG &DAG) {
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
MVT VT = Op.getSimpleValueType();
unsigned VTBits = VT.getSizeInBits();
SDLoc dl(Op);
bool isSRA = Op.getOpcode() == ISD::SRA_PARTS;
SDValue ShOpLo = Op.getOperand(0);
SDValue ShOpHi = Op.getOperand(1);
SDValue ShAmt = Op.getOperand(2);
// X86ISD::SHLD and X86ISD::SHRD have defined overflow behavior but the
// generic ISD nodes haven't. Insert an AND to be safe, it's optimized away
// during isel.
SDValue SafeShAmt = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits - 1, dl, MVT::i8));
SDValue Tmp1 = isSRA ? DAG.getNode(ISD::SRA, dl, VT, ShOpHi,
DAG.getConstant(VTBits - 1, dl, MVT::i8))
: DAG.getConstant(0, dl, VT);
SDValue Tmp2, Tmp3;
if (Op.getOpcode() == ISD::SHL_PARTS) {
Tmp2 = DAG.getNode(X86ISD::SHLD, dl, VT, ShOpHi, ShOpLo, ShAmt);
Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, SafeShAmt);
} else {
Tmp2 = DAG.getNode(X86ISD::SHRD, dl, VT, ShOpLo, ShOpHi, ShAmt);
Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SRL, dl, VT, ShOpHi, SafeShAmt);
}
// If the shift amount is larger or equal than the width of a part we can't
// rely on the results of shld/shrd. Insert a test and select the appropriate
// values for large shift amounts.
SDValue AndNode = DAG.getNode(ISD::AND, dl, MVT::i8, ShAmt,
DAG.getConstant(VTBits, dl, MVT::i8));
SDValue Cond = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
AndNode, DAG.getConstant(0, dl, MVT::i8));
SDValue Hi, Lo;
SDValue CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
SDValue Ops0[4] = { Tmp2, Tmp3, CC, Cond };
SDValue Ops1[4] = { Tmp3, Tmp1, CC, Cond };
if (Op.getOpcode() == ISD::SHL_PARTS) {
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
} else {
Lo = DAG.getNode(X86ISD::CMOV, dl, VT, Ops0);
Hi = DAG.getNode(X86ISD::CMOV, dl, VT, Ops1);
}
SDValue Ops[2] = { Lo, Hi };
return DAG.getMergeValues(Ops, dl);
}
SDValue X86TargetLowering::LowerSINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue Src = Op.getOperand(0);
MVT SrcVT = Src.getSimpleValueType();
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
if (SrcVT.isVector()) {
if (SrcVT == MVT::v2i32 && VT == MVT::v2f64) {
return DAG.getNode(X86ISD::CVTDQ2PD, dl, VT,
DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4i32, Src,
DAG.getUNDEF(SrcVT)));
}
if (SrcVT.getVectorElementType() == MVT::i1) {
MVT IntegerVT = MVT::getVectorVT(MVT::i32, SrcVT.getVectorNumElements());
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
DAG.getNode(ISD::SIGN_EXTEND, dl, IntegerVT, Src));
}
return SDValue();
}
assert(SrcVT <= MVT::i64 && SrcVT >= MVT::i16 &&
"Unknown SINT_TO_FP to lower!");
// These are really Legal; return the operand so the caller accepts it as
// Legal.
if (SrcVT == MVT::i32 && isScalarFPTypeInSSEReg(Op.getValueType()))
return Op;
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
Subtarget.is64Bit()) {
return Op;
}
SDValue ValueToStore = Op.getOperand(0);
if (SrcVT == MVT::i64 && isScalarFPTypeInSSEReg(Op.getValueType()) &&
!Subtarget.is64Bit())
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
unsigned Size = SrcVT.getSizeInBits()/8;
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
SDValue Chain = DAG.getStore(
DAG.getEntryNode(), dl, ValueToStore, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), false,
false, 0);
return BuildFILD(Op, SrcVT, Chain, StackSlot, DAG);
}
SDValue X86TargetLowering::BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain,
SDValue StackSlot,
SelectionDAG &DAG) const {
// Build the FILD
SDLoc DL(Op);
SDVTList Tys;
bool useSSE = isScalarFPTypeInSSEReg(Op.getValueType());
if (useSSE)
Tys = DAG.getVTList(MVT::f64, MVT::Other, MVT::Glue);
else
Tys = DAG.getVTList(Op.getValueType(), MVT::Other);
unsigned ByteSize = SrcVT.getSizeInBits()/8;
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(StackSlot);
MachineMemOperand *MMO;
if (FI) {
int SSFI = FI->getIndex();
MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, ByteSize, ByteSize);
} else {
MMO = cast<LoadSDNode>(StackSlot)->getMemOperand();
StackSlot = StackSlot.getOperand(1);
}
SDValue Ops[] = { Chain, StackSlot, DAG.getValueType(SrcVT) };
SDValue Result = DAG.getMemIntrinsicNode(useSSE ? X86ISD::FILD_FLAG :
X86ISD::FILD, DL,
Tys, Ops, SrcVT, MMO);
if (useSSE) {
Chain = Result.getValue(1);
SDValue InFlag = Result.getValue(2);
// FIXME: Currently the FST is flagged to the FILD_FLAG. This
// shouldn't be necessary except that RFP cannot be live across
// multiple blocks. When stackifier is fixed, they can be uncoupled.
MachineFunction &MF = DAG.getMachineFunction();
unsigned SSFISize = Op.getValueType().getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(SSFISize, SSFISize, false);
auto PtrVT = getPointerTy(MF.getDataLayout());
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
Tys = DAG.getVTList(MVT::Other);
SDValue Ops[] = {
Chain, Result, StackSlot, DAG.getValueType(Op.getValueType()), InFlag
};
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOStore, SSFISize, SSFISize);
Chain = DAG.getMemIntrinsicNode(X86ISD::FST, DL, Tys,
Ops, Op.getValueType(), MMO);
Result = DAG.getLoad(
Op.getValueType(), DL, Chain, StackSlot,
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
false, false, false, 0);
}
return Result;
}
/// 64-bit unsigned integer to double expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i64(SDValue Op,
SelectionDAG &DAG) const {
// This algorithm is not obvious. Here it is what we're trying to output:
/*
movq %rax, %xmm0
punpckldq (c0), %xmm0 // c0: (uint4){ 0x43300000U, 0x45300000U, 0U, 0U }
subpd (c1), %xmm0 // c1: (double2){ 0x1.0p52, 0x1.0p52 * 0x1.0p32 }
#ifdef __SSE3__
haddpd %xmm0, %xmm0
#else
pshufd $0x4e, %xmm0, %xmm1
addpd %xmm1, %xmm0
#endif
*/
SDLoc dl(Op);
LLVMContext *Context = DAG.getContext();
// Build some magic constants.
static const uint32_t CV0[] = { 0x43300000, 0x45300000, 0, 0 };
Constant *C0 = ConstantDataVector::get(*Context, CV0);
auto PtrVT = getPointerTy(DAG.getDataLayout());
SDValue CPIdx0 = DAG.getConstantPool(C0, PtrVT, 16);
SmallVector<Constant*,2> CV1;
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
APInt(64, 0x4330000000000000ULL))));
CV1.push_back(
ConstantFP::get(*Context, APFloat(APFloat::IEEEdouble,
APInt(64, 0x4530000000000000ULL))));
Constant *C1 = ConstantVector::get(CV1);
SDValue CPIdx1 = DAG.getConstantPool(C1, PtrVT, 16);
// Load the 64-bit value into an XMM register.
SDValue XR1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2i64,
Op.getOperand(0));
SDValue CLod0 =
DAG.getLoad(MVT::v4i32, dl, DAG.getEntryNode(), CPIdx0,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, 16);
SDValue Unpck1 =
getUnpackl(DAG, dl, MVT::v4i32, DAG.getBitcast(MVT::v4i32, XR1), CLod0);
SDValue CLod1 =
DAG.getLoad(MVT::v2f64, dl, CLod0.getValue(1), CPIdx1,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, 16);
SDValue XR2F = DAG.getBitcast(MVT::v2f64, Unpck1);
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, XR2F, CLod1);
SDValue Result;
if (Subtarget.hasSSE3()) {
// FIXME: The 'haddpd' instruction may be slower than 'movhlps + addsd'.
Result = DAG.getNode(X86ISD::FHADD, dl, MVT::v2f64, Sub, Sub);
} else {
SDValue S2F = DAG.getBitcast(MVT::v4i32, Sub);
SDValue Shuffle = getTargetShuffleNode(X86ISD::PSHUFD, dl, MVT::v4i32,
S2F, 0x4E, DAG);
Result = DAG.getNode(ISD::FADD, dl, MVT::v2f64,
DAG.getBitcast(MVT::v2f64, Shuffle), Sub);
}
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Result,
DAG.getIntPtrConstant(0, dl));
}
/// 32-bit unsigned integer to float expansion.
SDValue X86TargetLowering::LowerUINT_TO_FP_i32(SDValue Op,
SelectionDAG &DAG) const {
SDLoc dl(Op);
// FP constant to bias correct the final result.
SDValue Bias = DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl,
MVT::f64);
// Load the 32-bit value into an XMM register.
SDValue Load = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v4i32,
Op.getOperand(0));
// Zero out the upper parts of the register.
Load = getShuffleVectorZeroOrUndef(Load, 0, true, Subtarget, DAG);
Load = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getBitcast(MVT::v2f64, Load),
DAG.getIntPtrConstant(0, dl));
// Or the load with the bias.
SDValue Or = DAG.getNode(
ISD::OR, dl, MVT::v2i64,
DAG.getBitcast(MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Load)),
DAG.getBitcast(MVT::v2i64,
DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f64, Bias)));
Or =
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
DAG.getBitcast(MVT::v2f64, Or), DAG.getIntPtrConstant(0, dl));
// Subtract the bias.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Or, Bias);
// Handle final rounding.
MVT DestVT = Op.getSimpleValueType();
if (DestVT.bitsLT(MVT::f64))
return DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
DAG.getIntPtrConstant(0, dl));
if (DestVT.bitsGT(MVT::f64))
return DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
// Handle final rounding.
return Sub;
}
static SDValue lowerUINT_TO_FP_vXi32(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// The algorithm is the following:
// #ifdef __SSE4_1__
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
// #else
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
// #endif
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
// return (float4) lo + fhi;
// We shouldn't use it when unsafe-fp-math is enabled though: we might later
// reassociate the two FADDs, and if we do that, the algorithm fails
// spectacularly (PR24512).
// FIXME: If we ever have some kind of Machine FMF, this should be marked
// as non-fast and always be enabled. Why isn't SDAG FMF enough? Because
// there's also the MachineCombiner reassociations happening on Machine IR.
if (DAG.getTarget().Options.UnsafeFPMath)
return SDValue();
SDLoc DL(Op);
SDValue V = Op->getOperand(0);
MVT VecIntVT = V.getSimpleValueType();
bool Is128 = VecIntVT == MVT::v4i32;
MVT VecFloatVT = Is128 ? MVT::v4f32 : MVT::v8f32;
// If we convert to something else than the supported type, e.g., to v4f64,
// abort early.
if (VecFloatVT != Op->getSimpleValueType(0))
return SDValue();
assert((VecIntVT == MVT::v4i32 || VecIntVT == MVT::v8i32) &&
"Unsupported custom type");
// In the #idef/#else code, we have in common:
// - The vector of constants:
// -- 0x4b000000
// -- 0x53000000
// - A shift:
// -- v >> 16
// Create the splat vector for 0x4b000000.
SDValue VecCstLow = DAG.getConstant(0x4b000000, DL, VecIntVT);
// Create the splat vector for 0x53000000.
SDValue VecCstHigh = DAG.getConstant(0x53000000, DL, VecIntVT);
// Create the right shift.
SDValue VecCstShift = DAG.getConstant(16, DL, VecIntVT);
SDValue HighShift = DAG.getNode(ISD::SRL, DL, VecIntVT, V, VecCstShift);
SDValue Low, High;
if (Subtarget.hasSSE41()) {
MVT VecI16VT = Is128 ? MVT::v8i16 : MVT::v16i16;
// uint4 lo = _mm_blend_epi16( v, (uint4) 0x4b000000, 0xaa);
SDValue VecCstLowBitcast = DAG.getBitcast(VecI16VT, VecCstLow);
SDValue VecBitcast = DAG.getBitcast(VecI16VT, V);
// Low will be bitcasted right away, so do not bother bitcasting back to its
// original type.
Low = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecBitcast,
VecCstLowBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
// uint4 hi = _mm_blend_epi16( _mm_srli_epi32(v,16),
// (uint4) 0x53000000, 0xaa);
SDValue VecCstHighBitcast = DAG.getBitcast(VecI16VT, VecCstHigh);
SDValue VecShiftBitcast = DAG.getBitcast(VecI16VT, HighShift);
// High will be bitcasted right away, so do not bother bitcasting back to
// its original type.
High = DAG.getNode(X86ISD::BLENDI, DL, VecI16VT, VecShiftBitcast,
VecCstHighBitcast, DAG.getConstant(0xaa, DL, MVT::i32));
} else {
SDValue VecCstMask = DAG.getConstant(0xffff, DL, VecIntVT);
// uint4 lo = (v & (uint4) 0xffff) | (uint4) 0x4b000000;
SDValue LowAnd = DAG.getNode(ISD::AND, DL, VecIntVT, V, VecCstMask);
Low = DAG.getNode(ISD::OR, DL, VecIntVT, LowAnd, VecCstLow);
// uint4 hi = (v >> 16) | (uint4) 0x53000000;
High = DAG.getNode(ISD::OR, DL, VecIntVT, HighShift, VecCstHigh);
}
// Create the vector constant for -(0x1.0p39f + 0x1.0p23f).
SDValue VecCstFAdd = DAG.getConstantFP(
APFloat(APFloat::IEEEsingle, APInt(32, 0xD3000080)), DL, VecFloatVT);
// float4 fhi = (float4) hi - (0x1.0p39f + 0x1.0p23f);
SDValue HighBitcast = DAG.getBitcast(VecFloatVT, High);
// TODO: Are there any fast-math-flags to propagate here?
SDValue FHigh =
DAG.getNode(ISD::FADD, DL, VecFloatVT, HighBitcast, VecCstFAdd);
// return (float4) lo + fhi;
SDValue LowBitcast = DAG.getBitcast(VecFloatVT, Low);
return DAG.getNode(ISD::FADD, DL, VecFloatVT, LowBitcast, FHigh);
}
SDValue X86TargetLowering::lowerUINT_TO_FP_vec(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
MVT SVT = N0.getSimpleValueType();
SDLoc dl(Op);
switch (SVT.SimpleTy) {
default:
llvm_unreachable("Custom UINT_TO_FP is not supported!");
case MVT::v4i8:
case MVT::v4i16:
case MVT::v8i8:
case MVT::v8i16: {
MVT NVT = MVT::getVectorVT(MVT::i32, SVT.getVectorNumElements());
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(),
DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, N0));
}
case MVT::v4i32:
case MVT::v8i32:
return lowerUINT_TO_FP_vXi32(Op, DAG, Subtarget);
case MVT::v16i8:
case MVT::v16i16:
assert(Subtarget.hasAVX512());
return DAG.getNode(ISD::UINT_TO_FP, dl, Op.getValueType(),
DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v16i32, N0));
}
}
SDValue X86TargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (Op.getSimpleValueType().isVector())
return lowerUINT_TO_FP_vec(Op, DAG);
// Since UINT_TO_FP is legal (it's marked custom), dag combiner won't
// optimize it to a SINT_TO_FP when the sign bit is known zero. Perform
// the optimization here.
if (DAG.SignBitIsZero(N0))
return DAG.getNode(ISD::SINT_TO_FP, dl, Op.getValueType(), N0);
MVT SrcVT = N0.getSimpleValueType();
MVT DstVT = Op.getSimpleValueType();
if (Subtarget.hasAVX512() && isScalarFPTypeInSSEReg(DstVT) &&
(SrcVT == MVT::i32 || (SrcVT == MVT::i64 && Subtarget.is64Bit()))) {
// Conversions from unsigned i32 to f32/f64 are legal,
// using VCVTUSI2SS/SD. Same for i64 in 64-bit mode.
return Op;
}
if (SrcVT == MVT::i64 && DstVT == MVT::f64 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i64(Op, DAG);
if (SrcVT == MVT::i32 && X86ScalarSSEf64)
return LowerUINT_TO_FP_i32(Op, DAG);
if (Subtarget.is64Bit() && SrcVT == MVT::i64 && DstVT == MVT::f32)
return SDValue();
// Make a 64-bit buffer, and use it to build an FILD.
SDValue StackSlot = DAG.CreateStackTemporary(MVT::i64);
if (SrcVT == MVT::i32) {
SDValue OffsetSlot = DAG.getMemBasePlusOffset(StackSlot, 4, dl);
SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0),
StackSlot, MachinePointerInfo(),
false, false, 0);
SDValue Store2 = DAG.getStore(Store1, dl, DAG.getConstant(0, dl, MVT::i32),
OffsetSlot, MachinePointerInfo(),
false, false, 0);
SDValue Fild = BuildFILD(Op, MVT::i64, Store2, StackSlot, DAG);
return Fild;
}
assert(SrcVT == MVT::i64 && "Unexpected type in UINT_TO_FP");
SDValue ValueToStore = Op.getOperand(0);
if (isScalarFPTypeInSSEReg(Op.getValueType()) && !Subtarget.is64Bit())
// Bitcasting to f64 here allows us to do a single 64-bit store from
// an SSE register, avoiding the store forwarding penalty that would come
// with two 32-bit stores.
ValueToStore = DAG.getBitcast(MVT::f64, ValueToStore);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, ValueToStore,
StackSlot, MachinePointerInfo(),
false, false, 0);
// For i64 source, we need to add the appropriate power of 2 if the input
// was negative. This is the same as the optimization in
// DAGTypeLegalizer::ExpandIntOp_UNIT_TO_FP, and for it to be safe here,
// we must be careful to do the computation in x87 extended precision, not
// in SSE. (The generic code can't know it's OK to do this, or how to.)
int SSFI = cast<FrameIndexSDNode>(StackSlot)->getIndex();
MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
MachineMemOperand::MOLoad, 8, 8);
SDVTList Tys = DAG.getVTList(MVT::f80, MVT::Other);
SDValue Ops[] = { Store, StackSlot, DAG.getValueType(MVT::i64) };
SDValue Fild = DAG.getMemIntrinsicNode(X86ISD::FILD, dl, Tys, Ops,
MVT::i64, MMO);
APInt FF(32, 0x5F800000ULL);
// Check whether the sign bit is set.
SDValue SignSet = DAG.getSetCC(
dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
Op.getOperand(0), DAG.getConstant(0, dl, MVT::i64), ISD::SETLT);
// Build a 64 bit pair (0, FF) in the constant pool, with FF in the lo bits.
SDValue FudgePtr = DAG.getConstantPool(
ConstantInt::get(*DAG.getContext(), FF.zext(64)), PtrVT);
// Get a pointer to FF if the sign bit was set, or to 0 otherwise.
SDValue Zero = DAG.getIntPtrConstant(0, dl);
SDValue Four = DAG.getIntPtrConstant(4, dl);
SDValue Offset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(), SignSet,
Zero, Four);
FudgePtr = DAG.getNode(ISD::ADD, dl, PtrVT, FudgePtr, Offset);
// Load the value out, extending it from f32 to f80.
// FIXME: Avoid the extend by constructing the right constant pool?
SDValue Fudge = DAG.getExtLoad(
ISD::EXTLOAD, dl, MVT::f80, DAG.getEntryNode(), FudgePtr,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32,
false, false, false, 4);
// Extend everything to 80 bits to force it to be done on x87.
// TODO: Are there any fast-math-flags to propagate here?
SDValue Add = DAG.getNode(ISD::FADD, dl, MVT::f80, Fild, Fudge);
return DAG.getNode(ISD::FP_ROUND, dl, DstVT, Add,
DAG.getIntPtrConstant(0, dl));
}
// If the given FP_TO_SINT (IsSigned) or FP_TO_UINT (!IsSigned) operation
// is legal, or has an fp128 or f16 source (which needs to be promoted to f32),
// just return an <SDValue(), SDValue()> pair.
// Otherwise it is assumed to be a conversion from one of f32, f64 or f80
// to i16, i32 or i64, and we lower it to a legal sequence.
// If lowered to the final integer result we return a <result, SDValue()> pair.
// Otherwise we lower it to a sequence ending with a FIST, return a
// <FIST, StackSlot> pair, and the caller is responsible for loading
// the final integer result from StackSlot.
std::pair<SDValue,SDValue>
X86TargetLowering::FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
bool IsSigned, bool IsReplace) const {
SDLoc DL(Op);
EVT DstTy = Op.getValueType();
EVT TheVT = Op.getOperand(0).getValueType();
auto PtrVT = getPointerTy(DAG.getDataLayout());
if (TheVT != MVT::f32 && TheVT != MVT::f64 && TheVT != MVT::f80) {
// f16 must be promoted before using the lowering in this routine.
// fp128 does not use this lowering.
return std::make_pair(SDValue(), SDValue());
}
// If using FIST to compute an unsigned i64, we'll need some fixup
// to handle values above the maximum signed i64. A FIST is always
// used for the 32-bit subtarget, but also for f80 on a 64-bit target.
bool UnsignedFixup = !IsSigned &&
DstTy == MVT::i64 &&
(!Subtarget.is64Bit() ||
!isScalarFPTypeInSSEReg(TheVT));
if (!IsSigned && DstTy != MVT::i64 && !Subtarget.hasAVX512()) {
// Replace the fp-to-uint32 operation with an fp-to-sint64 FIST.
// The low 32 bits of the fist result will have the correct uint32 result.
assert(DstTy == MVT::i32 && "Unexpected FP_TO_UINT");
DstTy = MVT::i64;
}
assert(DstTy.getSimpleVT() <= MVT::i64 &&
DstTy.getSimpleVT() >= MVT::i16 &&
"Unknown FP_TO_INT to lower!");
// These are really Legal.
if (DstTy == MVT::i32 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
if (Subtarget.is64Bit() &&
DstTy == MVT::i64 &&
isScalarFPTypeInSSEReg(Op.getOperand(0).getValueType()))
return std::make_pair(SDValue(), SDValue());
// We lower FP->int64 into FISTP64 followed by a load from a temporary
// stack slot.
MachineFunction &MF = DAG.getMachineFunction();
unsigned MemSize = DstTy.getSizeInBits()/8;
int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
unsigned Opc;
switch (DstTy.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Invalid FP_TO_SINT to lower!");
case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break;
case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break;
case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break;
}
SDValue Chain = DAG.getEntryNode();
SDValue Value = Op.getOperand(0);
SDValue Adjust; // 0x0 or 0x80000000, for result sign bit adjustment.
if (UnsignedFixup) {
//
// Conversion to unsigned i64 is implemented with a select,
// depending on whether the source value fits in the range
// of a signed i64. Let Thresh be the FP equivalent of
// 0x8000000000000000ULL.
//
// Adjust i32 = (Value < Thresh) ? 0 : 0x80000000;
// FistSrc = (Value < Thresh) ? Value : (Value - Thresh);
// Fist-to-mem64 FistSrc
// Add 0 or 0x800...0ULL to the 64-bit result, which is equivalent
// to XOR'ing the high 32 bits with Adjust.
//
// Being a power of 2, Thresh is exactly representable in all FP formats.
// For X87 we'd like to use the smallest FP type for this constant, but
// for DAG type consistency we have to match the FP operand type.
APFloat Thresh(APFloat::IEEEsingle, APInt(32, 0x5f000000));
LLVM_ATTRIBUTE_UNUSED APFloat::opStatus Status = APFloat::opOK;
bool LosesInfo = false;
if (TheVT == MVT::f64)
// The rounding mode is irrelevant as the conversion should be exact.
Status = Thresh.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
&LosesInfo);
else if (TheVT == MVT::f80)
Status = Thresh.convert(APFloat::x87DoubleExtended,
APFloat::rmNearestTiesToEven, &LosesInfo);
assert(Status == APFloat::opOK && !LosesInfo &&
"FP conversion should have been exact");
SDValue ThreshVal = DAG.getConstantFP(Thresh, DL, TheVT);
SDValue Cmp = DAG.getSetCC(DL,
getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TheVT),
Value, ThreshVal, ISD::SETLT);
Adjust = DAG.getSelect(DL, MVT::i32, Cmp,
DAG.getConstant(0, DL, MVT::i32),
DAG.getConstant(0x80000000, DL, MVT::i32));
SDValue Sub = DAG.getNode(ISD::FSUB, DL, TheVT, Value, ThreshVal);
Cmp = DAG.getSetCC(DL, getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), TheVT),
Value, ThreshVal, ISD::SETLT);
Value = DAG.getSelect(DL, TheVT, Cmp, Value, Sub);
}
// FIXME This causes a redundant load/store if the SSE-class value is already
// in memory, such as if it is on the callstack.
if (isScalarFPTypeInSSEReg(TheVT)) {
assert(DstTy == MVT::i64 && "Invalid FP_TO_SINT to lower!");
Chain = DAG.getStore(Chain, DL, Value, StackSlot,
MachinePointerInfo::getFixedStack(MF, SSFI), false,
false, 0);
SDVTList Tys = DAG.getVTList(Op.getOperand(0).getValueType(), MVT::Other);
SDValue Ops[] = {
Chain, StackSlot, DAG.getValueType(TheVT)
};
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOLoad, MemSize, MemSize);
Value = DAG.getMemIntrinsicNode(X86ISD::FLD, DL, Tys, Ops, DstTy, MMO);
Chain = Value.getValue(1);
SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize, false);
StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
}
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOStore, MemSize, MemSize);
if (UnsignedFixup) {
// Insert the FIST, load its result as two i32's,
// and XOR the high i32 with Adjust.
SDValue FistOps[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
FistOps, DstTy, MMO);
SDValue Low32 = DAG.getLoad(MVT::i32, DL, FIST, StackSlot,
MachinePointerInfo(),
false, false, false, 0);
SDValue HighAddr = DAG.getMemBasePlusOffset(StackSlot, 4, DL);
SDValue High32 = DAG.getLoad(MVT::i32, DL, FIST, HighAddr,
MachinePointerInfo(),
false, false, false, 0);
High32 = DAG.getNode(ISD::XOR, DL, MVT::i32, High32, Adjust);
if (Subtarget.is64Bit()) {
// Join High32 and Low32 into a 64-bit result.
// (High32 << 32) | Low32
Low32 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Low32);
High32 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i64, High32);
High32 = DAG.getNode(ISD::SHL, DL, MVT::i64, High32,
DAG.getConstant(32, DL, MVT::i8));
SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i64, High32, Low32);
return std::make_pair(Result, SDValue());
}
SDValue ResultOps[] = { Low32, High32 };
SDValue pair = IsReplace
? DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, ResultOps)
: DAG.getMergeValues(ResultOps, DL);
return std::make_pair(pair, SDValue());
} else {
// Build the FP_TO_INT*_IN_MEM
SDValue Ops[] = { Chain, Value, StackSlot };
SDValue FIST = DAG.getMemIntrinsicNode(Opc, DL, DAG.getVTList(MVT::Other),
Ops, DstTy, MMO);
return std::make_pair(FIST, StackSlot);
}
}
static SDValue LowerAVXExtend(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
return DAG.getNode(ISD::ZERO_EXTEND, dl, VT, In);
// Optimize vectors in AVX mode:
//
// v8i16 -> v8i32
// Use vpunpcklwd for 4 lower elements v8i16 -> v4i32.
// Use vpunpckhwd for 4 upper elements v8i16 -> v4i32.
// Concat upper and lower parts.
//
// v4i32 -> v4i64
// Use vpunpckldq for 4 lower elements v4i32 -> v2i64.
// Use vpunpckhdq for 4 upper elements v4i32 -> v2i64.
// Concat upper and lower parts.
//
if (((VT != MVT::v16i16) || (InVT != MVT::v16i8)) &&
((VT != MVT::v8i32) || (InVT != MVT::v8i16)) &&
((VT != MVT::v4i64) || (InVT != MVT::v4i32)))
return SDValue();
if (Subtarget.hasInt256())
return DAG.getNode(X86ISD::VZEXT, dl, VT, In);
SDValue ZeroVec = getZeroVector(InVT, Subtarget, DAG, dl);
SDValue Undef = DAG.getUNDEF(InVT);
bool NeedZero = Op.getOpcode() == ISD::ZERO_EXTEND;
SDValue OpLo = getUnpackl(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
SDValue OpHi = getUnpackh(DAG, dl, InVT, In, NeedZero ? ZeroVec : Undef);
MVT HVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements()/2);
OpLo = DAG.getBitcast(HVT, OpLo);
OpHi = DAG.getBitcast(HVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
static SDValue LowerZERO_EXTEND_AVX512(SDValue Op,
const X86Subtarget &Subtarget, SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc DL(Op);
unsigned int NumElts = VT.getVectorNumElements();
if (NumElts != 8 && NumElts != 16 && !Subtarget.hasBWI())
return SDValue();
if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1)
return DAG.getNode(X86ISD::VZEXT, DL, VT, In);
assert(InVT.getVectorElementType() == MVT::i1);
// Extend VT if the target is 256 or 128bit vector and VLX is not supported.
MVT ExtVT = VT;
if (!VT.is512BitVector() && !Subtarget.hasVLX())
ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
SDValue One =
DAG.getConstant(APInt(ExtVT.getScalarSizeInBits(), 1), DL, ExtVT);
SDValue Zero =
DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), DL, ExtVT);
SDValue SelectedVal = DAG.getNode(ISD::VSELECT, DL, ExtVT, In, One, Zero);
if (VT == ExtVT)
return SelectedVal;
return DAG.getNode(X86ISD::VTRUNC, DL, VT, SelectedVal);
}
static SDValue LowerANY_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (Subtarget.hasFp256())
if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
return Res;
return SDValue();
}
static SDValue LowerZERO_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT SVT = In.getSimpleValueType();
if (VT.is512BitVector() || SVT.getVectorElementType() == MVT::i1)
return LowerZERO_EXTEND_AVX512(Op, Subtarget, DAG);
if (Subtarget.hasFp256())
if (SDValue Res = LowerAVXExtend(Op, DAG, Subtarget))
return Res;
assert(!VT.is256BitVector() || !SVT.is128BitVector() ||
VT.getVectorNumElements() != SVT.getVectorNumElements());
return SDValue();
}
static SDValue LowerTruncateVecI1(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
assert(VT.getVectorElementType() == MVT::i1 && "Unexpected vector type.");
// Shift LSB to MSB and use VPMOVB/W2M or TESTD/Q.
unsigned ShiftInx = InVT.getScalarSizeInBits() - 1;
if (InVT.getScalarSizeInBits() <= 16) {
if (Subtarget.hasBWI()) {
// legal, will go to VPMOVB2M, VPMOVW2M
// Shift packed bytes not supported natively, bitcast to word
MVT ExtVT = MVT::getVectorVT(MVT::i16, InVT.getSizeInBits()/16);
SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, ExtVT,
DAG.getBitcast(ExtVT, In),
DAG.getConstant(ShiftInx, DL, ExtVT));
ShiftNode = DAG.getBitcast(InVT, ShiftNode);
return DAG.getNode(X86ISD::CVT2MASK, DL, VT, ShiftNode);
}
// Use TESTD/Q, extended vector to packed dword/qword.
assert((InVT.is256BitVector() || InVT.is128BitVector()) &&
"Unexpected vector type.");
unsigned NumElts = InVT.getVectorNumElements();
MVT ExtVT = MVT::getVectorVT(MVT::getIntegerVT(512/NumElts), NumElts);
In = DAG.getNode(ISD::SIGN_EXTEND, DL, ExtVT, In);
InVT = ExtVT;
ShiftInx = InVT.getScalarSizeInBits() - 1;
}
SDValue ShiftNode = DAG.getNode(ISD::SHL, DL, InVT, In,
DAG.getConstant(ShiftInx, DL, InVT));
return DAG.getNode(X86ISD::TESTM, DL, VT, ShiftNode, ShiftNode);
}
SDValue X86TargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT InVT = In.getSimpleValueType();
if (VT == MVT::i1) {
assert((InVT.isInteger() && (InVT.getSizeInBits() <= 64)) &&
"Invalid scalar TRUNCATE operation");
if (InVT.getSizeInBits() >= 32)
return SDValue();
In = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, In);
return DAG.getNode(ISD::TRUNCATE, DL, VT, In);
}
assert(VT.getVectorNumElements() == InVT.getVectorNumElements() &&
"Invalid TRUNCATE operation");
if (VT.getVectorElementType() == MVT::i1)
return LowerTruncateVecI1(Op, DAG, Subtarget);
// vpmovqb/w/d, vpmovdb/w, vpmovwb
if (Subtarget.hasAVX512()) {
// word to byte only under BWI
if (InVT == MVT::v16i16 && !Subtarget.hasBWI()) // v16i16 -> v16i8
return DAG.getNode(X86ISD::VTRUNC, DL, VT,
DAG.getNode(X86ISD::VSEXT, DL, MVT::v16i32, In));
return DAG.getNode(X86ISD::VTRUNC, DL, VT, In);
}
if ((VT == MVT::v4i32) && (InVT == MVT::v4i64)) {
// On AVX2, v4i64 -> v4i32 becomes VPERMD.
if (Subtarget.hasInt256()) {
static const int ShufMask[] = {0, 2, 4, 6, -1, -1, -1, -1};
In = DAG.getBitcast(MVT::v8i32, In);
In = DAG.getVectorShuffle(MVT::v8i32, DL, In, DAG.getUNDEF(MVT::v8i32),
ShufMask);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, In,
DAG.getIntPtrConstant(0, DL));
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(2, DL));
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
static const int ShufMask[] = {0, 2, 4, 6};
return DAG.getVectorShuffle(VT, DL, OpLo, OpHi, ShufMask);
}
if ((VT == MVT::v8i16) && (InVT == MVT::v8i32)) {
// On AVX2, v8i32 -> v8i16 becomed PSHUFB.
if (Subtarget.hasInt256()) {
In = DAG.getBitcast(MVT::v32i8, In);
SmallVector<SDValue,32> pshufbMask;
for (unsigned i = 0; i < 2; ++i) {
pshufbMask.push_back(DAG.getConstant(0x0, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x1, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x4, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x5, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x8, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0x9, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0xc, DL, MVT::i8));
pshufbMask.push_back(DAG.getConstant(0xd, DL, MVT::i8));
for (unsigned j = 0; j < 8; ++j)
pshufbMask.push_back(DAG.getConstant(0x80, DL, MVT::i8));
}
SDValue BV = DAG.getBuildVector(MVT::v32i8, DL, pshufbMask);
In = DAG.getNode(X86ISD::PSHUFB, DL, MVT::v32i8, In, BV);
In = DAG.getBitcast(MVT::v4i64, In);
static const int ShufMask[] = {0, 2, -1, -1};
In = DAG.getVectorShuffle(MVT::v4i64, DL, In, DAG.getUNDEF(MVT::v4i64),
&ShufMask[0]);
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i64, In,
DAG.getIntPtrConstant(0, DL));
return DAG.getBitcast(VT, In);
}
SDValue OpLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(0, DL));
SDValue OpHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i32, In,
DAG.getIntPtrConstant(4, DL));
OpLo = DAG.getBitcast(MVT::v16i8, OpLo);
OpHi = DAG.getBitcast(MVT::v16i8, OpHi);
// The PSHUFB mask:
static const int ShufMask1[] = {0, 1, 4, 5, 8, 9, 12, 13,
-1, -1, -1, -1, -1, -1, -1, -1};
SDValue Undef = DAG.getUNDEF(MVT::v16i8);
OpLo = DAG.getVectorShuffle(MVT::v16i8, DL, OpLo, Undef, ShufMask1);
OpHi = DAG.getVectorShuffle(MVT::v16i8, DL, OpHi, Undef, ShufMask1);
OpLo = DAG.getBitcast(MVT::v4i32, OpLo);
OpHi = DAG.getBitcast(MVT::v4i32, OpHi);
// The MOVLHPS Mask:
static const int ShufMask2[] = {0, 1, 4, 5};
SDValue res = DAG.getVectorShuffle(MVT::v4i32, DL, OpLo, OpHi, ShufMask2);
return DAG.getBitcast(MVT::v8i16, res);
}
// Handle truncation of V256 to V128 using shuffles.
if (!VT.is128BitVector() || !InVT.is256BitVector())
return SDValue();
assert(Subtarget.hasFp256() && "256-bit vector without AVX!");
unsigned NumElems = VT.getVectorNumElements();
MVT NVT = MVT::getVectorVT(VT.getVectorElementType(), NumElems * 2);
SmallVector<int, 16> MaskVec(NumElems * 2, -1);
// Prepare truncation shuffle mask
for (unsigned i = 0; i != NumElems; ++i)
MaskVec[i] = i * 2;
SDValue V = DAG.getVectorShuffle(NVT, DL, DAG.getBitcast(NVT, In),
DAG.getUNDEF(NVT), &MaskVec[0]);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, V,
DAG.getIntPtrConstant(0, DL));
}
SDValue X86TargetLowering::LowerFP_TO_SINT(SDValue Op,
SelectionDAG &DAG) const {
assert(!Op.getSimpleValueType().isVector());
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
/*IsSigned=*/ true, /*IsReplace=*/ false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
if (!FIST.getNode())
return Op;
if (StackSlot.getNode())
// Load the result.
return DAG.getLoad(Op.getValueType(), SDLoc(Op),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
// The node is the result.
return FIST;
}
SDValue X86TargetLowering::LowerFP_TO_UINT(SDValue Op,
SelectionDAG &DAG) const {
std::pair<SDValue,SDValue> Vals = FP_TO_INTHelper(Op, DAG,
/*IsSigned=*/ false, /*IsReplace=*/ false);
SDValue FIST = Vals.first, StackSlot = Vals.second;
// If FP_TO_INTHelper failed, the node is actually supposed to be Legal.
if (!FIST.getNode())
return Op;
if (StackSlot.getNode())
// Load the result.
return DAG.getLoad(Op.getValueType(), SDLoc(Op),
FIST, StackSlot, MachinePointerInfo(),
false, false, false, 0);
// The node is the result.
return FIST;
}
static SDValue LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) {
SDLoc DL(Op);
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
MVT SVT = In.getSimpleValueType();
assert(SVT == MVT::v2f32 && "Only customize MVT::v2f32 type legalization!");
return DAG.getNode(X86ISD::VFPEXT, DL, VT,
DAG.getNode(ISD::CONCAT_VECTORS, DL, MVT::v4f32,
In, DAG.getUNDEF(SVT)));
}
/// The only differences between FABS and FNEG are the mask and the logic op.
/// FNEG also has a folding opportunity for FNEG(FABS(x)).
static SDValue LowerFABSorFNEG(SDValue Op, SelectionDAG &DAG) {
assert((Op.getOpcode() == ISD::FABS || Op.getOpcode() == ISD::FNEG) &&
"Wrong opcode for lowering FABS or FNEG.");
bool IsFABS = (Op.getOpcode() == ISD::FABS);
// If this is a FABS and it has an FNEG user, bail out to fold the combination
// into an FNABS. We'll lower the FABS after that if it is still in use.
if (IsFABS)
for (SDNode *User : Op->uses())
if (User->getOpcode() == ISD::FNEG)
return Op;
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
bool IsF128 = (VT == MVT::f128);
// FIXME: Use function attribute "OptimizeForSize" and/or CodeGenOpt::Level to
// decide if we should generate a 16-byte constant mask when we only need 4 or
// 8 bytes for the scalar case.
MVT LogicVT;
MVT EltVT;
unsigned NumElts;
if (VT.isVector()) {
LogicVT = VT;
EltVT = VT.getVectorElementType();
NumElts = VT.getVectorNumElements();
} else if (IsF128) {
// SSE instructions are used for optimized f128 logical operations.
LogicVT = MVT::f128;
EltVT = VT;
NumElts = 1;
} else {
// There are no scalar bitwise logical SSE/AVX instructions, so we
// generate a 16-byte vector constant and logic op even for the scalar case.
// Using a 16-byte mask allows folding the load of the mask with
// the logic op, so it can save (~4 bytes) on code size.
LogicVT = (VT == MVT::f64) ? MVT::v2f64 : MVT::v4f32;
EltVT = VT;
NumElts = (VT == MVT::f64) ? 2 : 4;
}
unsigned EltBits = EltVT.getSizeInBits();
LLVMContext *Context = DAG.getContext();
// For FABS, mask is 0x7f...; for FNEG, mask is 0x80...
APInt MaskElt =
IsFABS ? APInt::getSignedMaxValue(EltBits) : APInt::getSignBit(EltBits);
Constant *C = ConstantInt::get(*Context, MaskElt);
C = ConstantVector::getSplat(NumElts, C);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue CPIdx = DAG.getConstantPool(C, TLI.getPointerTy(DAG.getDataLayout()));
unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
SDValue Mask =
DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, Alignment);
SDValue Op0 = Op.getOperand(0);
bool IsFNABS = !IsFABS && (Op0.getOpcode() == ISD::FABS);
unsigned LogicOp =
IsFABS ? X86ISD::FAND : IsFNABS ? X86ISD::FOR : X86ISD::FXOR;
SDValue Operand = IsFNABS ? Op0.getOperand(0) : Op0;
if (VT.isVector() || IsF128)
return DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
// For the scalar case extend to a 128-bit vector, perform the logic op,
// and extract the scalar result back out.
Operand = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Operand);
SDValue LogicNode = DAG.getNode(LogicOp, dl, LogicVT, Operand, Mask);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT, LogicNode,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
LLVMContext *Context = DAG.getContext();
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT SrcVT = Op1.getSimpleValueType();
bool IsF128 = (VT == MVT::f128);
// If second operand is smaller, extend it first.
if (SrcVT.bitsLT(VT)) {
Op1 = DAG.getNode(ISD::FP_EXTEND, dl, VT, Op1);
SrcVT = VT;
}
// And if it is bigger, shrink it first.
if (SrcVT.bitsGT(VT)) {
Op1 = DAG.getNode(ISD::FP_ROUND, dl, VT, Op1, DAG.getIntPtrConstant(1, dl));
SrcVT = VT;
}
// At this point the operands and the result should have the same
// type, and that won't be f80 since that is not custom lowered.
assert((VT == MVT::f64 || VT == MVT::f32 || IsF128) &&
"Unexpected type in LowerFCOPYSIGN");
const fltSemantics &Sem =
VT == MVT::f64 ? APFloat::IEEEdouble :
(IsF128 ? APFloat::IEEEquad : APFloat::IEEEsingle);
const unsigned SizeInBits = VT.getSizeInBits();
SmallVector<Constant *, 4> CV(
VT == MVT::f64 ? 2 : (IsF128 ? 1 : 4),
ConstantFP::get(*Context, APFloat(Sem, APInt(SizeInBits, 0))));
// First, clear all bits but the sign bit from the second operand (sign).
CV[0] = ConstantFP::get(*Context,
APFloat(Sem, APInt::getHighBitsSet(SizeInBits, 1)));
Constant *C = ConstantVector::get(CV);
auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
SDValue CPIdx = DAG.getConstantPool(C, PtrVT, 16);
// Perform all logic operations as 16-byte vectors because there are no
// scalar FP logic instructions in SSE. This allows load folding of the
// constants into the logic instructions.
MVT LogicVT = (VT == MVT::f64) ? MVT::v2f64 : (IsF128 ? MVT::f128 : MVT::v4f32);
SDValue Mask1 =
DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, 16);
if (!IsF128)
Op1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op1);
SDValue SignBit = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op1, Mask1);
// Next, clear the sign bit from the first operand (magnitude).
// If it's a constant, we can clear it here.
if (ConstantFPSDNode *Op0CN = dyn_cast<ConstantFPSDNode>(Op0)) {
APFloat APF = Op0CN->getValueAPF();
// If the magnitude is a positive zero, the sign bit alone is enough.
if (APF.isPosZero())
return IsF128 ? SignBit :
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, SignBit,
DAG.getIntPtrConstant(0, dl));
APF.clearSign();
CV[0] = ConstantFP::get(*Context, APF);
} else {
CV[0] = ConstantFP::get(
*Context,
APFloat(Sem, APInt::getLowBitsSet(SizeInBits, SizeInBits - 1)));
}
C = ConstantVector::get(CV);
CPIdx = DAG.getConstantPool(C, PtrVT, 16);
SDValue Val =
DAG.getLoad(LogicVT, dl, DAG.getEntryNode(), CPIdx,
MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
false, false, false, 16);
// If the magnitude operand wasn't a constant, we need to AND out the sign.
if (!isa<ConstantFPSDNode>(Op0)) {
if (!IsF128)
Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LogicVT, Op0);
Val = DAG.getNode(X86ISD::FAND, dl, LogicVT, Op0, Val);
}
// OR the magnitude value with the sign bit.
Val = DAG.getNode(X86ISD::FOR, dl, LogicVT, Val, SignBit);
return IsF128 ? Val :
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SrcVT, Val,
DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerFGETSIGN(SDValue Op, SelectionDAG &DAG) {
SDValue N0 = Op.getOperand(0);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT OpVT = N0.getSimpleValueType();
assert((OpVT == MVT::f32 || OpVT == MVT::f64) &&
"Unexpected type for FGETSIGN");
// Lower ISD::FGETSIGN to (AND (X86ISD::MOVMSK ...) 1).
MVT VecVT = (OpVT == MVT::f32 ? MVT::v4f32 : MVT::v2f64);
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VecVT, N0);
Res = DAG.getNode(X86ISD::MOVMSK, dl, MVT::i32, Res);
Res = DAG.getZExtOrTrunc(Res, dl, VT);
Res = DAG.getNode(ISD::AND, dl, VT, Res, DAG.getConstant(1, dl, VT));
return Res;
}
// Check whether an OR'd tree is PTEST-able.
static SDValue LowerVectorAllZeroTest(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::OR && "Only check OR'd tree.");
if (!Subtarget.hasSSE41())
return SDValue();
if (!Op->hasOneUse())
return SDValue();
SDNode *N = Op.getNode();
SDLoc DL(N);
SmallVector<SDValue, 8> Opnds;
DenseMap<SDValue, unsigned> VecInMap;
SmallVector<SDValue, 8> VecIns;
EVT VT = MVT::Other;
// Recognize a special case where a vector is casted into wide integer to
// test all 0s.
Opnds.push_back(N->getOperand(0));
Opnds.push_back(N->getOperand(1));
for (unsigned Slot = 0, e = Opnds.size(); Slot < e; ++Slot) {
SmallVectorImpl<SDValue>::const_iterator I = Opnds.begin() + Slot;
// BFS traverse all OR'd operands.
if (I->getOpcode() == ISD::OR) {
Opnds.push_back(I->getOperand(0));
Opnds.push_back(I->getOperand(1));
// Re-evaluate the number of nodes to be traversed.
e += 2; // 2 more nodes (LHS and RHS) are pushed.
continue;
}
// Quit if a non-EXTRACT_VECTOR_ELT
if (I->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
// Quit if without a constant index.
SDValue Idx = I->getOperand(1);
if (!isa<ConstantSDNode>(Idx))
return SDValue();
SDValue ExtractedFromVec = I->getOperand(0);
DenseMap<SDValue, unsigned>::iterator M = VecInMap.find(ExtractedFromVec);
if (M == VecInMap.end()) {
VT = ExtractedFromVec.getValueType();
// Quit if not 128/256-bit vector.
if (!VT.is128BitVector() && !VT.is256BitVector())
return SDValue();
// Quit if not the same type.
if (VecInMap.begin() != VecInMap.end() &&
VT != VecInMap.begin()->first.getValueType())
return SDValue();
M = VecInMap.insert(std::make_pair(ExtractedFromVec, 0)).first;
VecIns.push_back(ExtractedFromVec);
}
M->second |= 1U << cast<ConstantSDNode>(Idx)->getZExtValue();
}
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Not extracted from 128-/256-bit vector.");
unsigned FullMask = (1U << VT.getVectorNumElements()) - 1U;
for (DenseMap<SDValue, unsigned>::const_iterator
I = VecInMap.begin(), E = VecInMap.end(); I != E; ++I) {
// Quit if not all elements are used.
if (I->second != FullMask)
return SDValue();
}
MVT TestVT = VT.is128BitVector() ? MVT::v2i64 : MVT::v4i64;
// Cast all vectors into TestVT for PTEST.
for (unsigned i = 0, e = VecIns.size(); i < e; ++i)
VecIns[i] = DAG.getBitcast(TestVT, VecIns[i]);
// If more than one full vectors are evaluated, OR them first before PTEST.
for (unsigned Slot = 0, e = VecIns.size(); e - Slot > 1; Slot += 2, e += 1) {
// Each iteration will OR 2 nodes and append the result until there is only
// 1 node left, i.e. the final OR'd value of all vectors.
SDValue LHS = VecIns[Slot];
SDValue RHS = VecIns[Slot + 1];
VecIns.push_back(DAG.getNode(ISD::OR, DL, TestVT, LHS, RHS));
}
return DAG.getNode(X86ISD::PTEST, DL, MVT::i32,
VecIns.back(), VecIns.back());
}
/// \brief return true if \c Op has a use that doesn't just read flags.
static bool hasNonFlagsUse(SDValue Op) {
for (SDNode::use_iterator UI = Op->use_begin(), UE = Op->use_end(); UI != UE;
++UI) {
SDNode *User = *UI;
unsigned UOpNo = UI.getOperandNo();
if (User->getOpcode() == ISD::TRUNCATE && User->hasOneUse()) {
// Look pass truncate.
UOpNo = User->use_begin().getOperandNo();
User = *User->use_begin();
}
if (User->getOpcode() != ISD::BRCOND && User->getOpcode() != ISD::SETCC &&
!(User->getOpcode() == ISD::SELECT && UOpNo == 0))
return true;
}
return false;
}
// Emit KTEST instruction for bit vectors on AVX-512
static SDValue EmitKTEST(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Op.getOpcode() == ISD::BITCAST) {
auto hasKTEST = [&](MVT VT) {
unsigned SizeInBits = VT.getSizeInBits();
return (Subtarget.hasDQI() && (SizeInBits == 8 || SizeInBits == 16)) ||
(Subtarget.hasBWI() && (SizeInBits == 32 || SizeInBits == 64));
};
SDValue Op0 = Op.getOperand(0);
MVT Op0VT = Op0.getValueType().getSimpleVT();
if (Op0VT.isVector() && Op0VT.getVectorElementType() == MVT::i1 &&
hasKTEST(Op0VT))
return DAG.getNode(X86ISD::KTEST, SDLoc(Op), Op0VT, Op0, Op0);
}
return SDValue();
}
/// Emit nodes that will be selected as "test Op0,Op0", or something
/// equivalent.
SDValue X86TargetLowering::EmitTest(SDValue Op, unsigned X86CC, SDLoc dl,
SelectionDAG &DAG) const {
if (Op.getValueType() == MVT::i1) {
SDValue ExtOp = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, Op);
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, ExtOp,
DAG.getConstant(0, dl, MVT::i8));
}
// CF and OF aren't always set the way we want. Determine which
// of these we need.
bool NeedCF = false;
bool NeedOF = false;
switch (X86CC) {
default: break;
case X86::COND_A: case X86::COND_AE:
case X86::COND_B: case X86::COND_BE:
NeedCF = true;
break;
case X86::COND_G: case X86::COND_GE:
case X86::COND_L: case X86::COND_LE:
case X86::COND_O: case X86::COND_NO: {
// Check if we really need to set the
// Overflow flag. If NoSignedWrap is present
// that is not actually needed.
switch (Op->getOpcode()) {
case ISD::ADD:
case ISD::SUB:
case ISD::MUL:
case ISD::SHL: {
const auto *BinNode = cast<BinaryWithFlagsSDNode>(Op.getNode());
if (BinNode->Flags.hasNoSignedWrap())
break;
}
default:
NeedOF = true;
break;
}
break;
}
}
// See if we can use the EFLAGS value from the operand instead of
// doing a separate TEST. TEST always sets OF and CF to 0, so unless
// we prove that the arithmetic won't overflow, we can't use OF or CF.
if (Op.getResNo() != 0 || NeedOF || NeedCF) {
// Emit KTEST for bit vectors
if (auto Node = EmitKTEST(Op, DAG, Subtarget))
return Node;
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
unsigned Opcode = 0;
unsigned NumOperands = 0;
// Truncate operations may prevent the merge of the SETCC instruction
// and the arithmetic instruction before it. Attempt to truncate the operands
// of the arithmetic instruction and use a reduced bit-width instruction.
bool NeedTruncation = false;
SDValue ArithOp = Op;
if (Op->getOpcode() == ISD::TRUNCATE && Op->hasOneUse()) {
SDValue Arith = Op->getOperand(0);
// Both the trunc and the arithmetic op need to have one user each.
if (Arith->hasOneUse())
switch (Arith.getOpcode()) {
default: break;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR: {
NeedTruncation = true;
ArithOp = Arith;
}
}
}
// NOTICE: In the code below we use ArithOp to hold the arithmetic operation
// which may be the result of a CAST. We use the variable 'Op', which is the
// non-casted variable when we check for possible users.
switch (ArithOp.getOpcode()) {
case ISD::ADD:
// Due to an isel shortcoming, be conservative if this add is likely to be
// selected as part of a load-modify-store instruction. When the root node
// in a match is a store, isel doesn't know how to remap non-chain non-flag
// uses of other nodes in the match, such as the ADD in this case. This
// leads to the ADD being left around and reselected, with the result being
// two adds in the output. Alas, even if none our users are stores, that
// doesn't prove we're O.K. Ergo, if we have any parents that aren't
// CopyToReg or SETCC, eschew INC/DEC. A better fix seems to require
// climbing the DAG back to the root, and it doesn't seem to be worth the
// effort.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() != ISD::CopyToReg &&
UI->getOpcode() != ISD::SETCC &&
UI->getOpcode() != ISD::STORE)
goto default_case;
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(ArithOp.getNode()->getOperand(1))) {
// An add of one will be selected as an INC.
if (C->isOne() && !Subtarget.slowIncDec()) {
Opcode = X86ISD::INC;
NumOperands = 1;
break;
}
// An add of negative one (subtract of one) will be selected as a DEC.
if (C->isAllOnesValue() && !Subtarget.slowIncDec()) {
Opcode = X86ISD::DEC;
NumOperands = 1;
break;
}
}
// Otherwise use a regular EFLAGS-setting add.
Opcode = X86ISD::ADD;
NumOperands = 2;
break;
case ISD::SHL:
case ISD::SRL:
// If we have a constant logical shift that's only used in a comparison
// against zero turn it into an equivalent AND. This allows turning it into
// a TEST instruction later.
if ((X86CC == X86::COND_E || X86CC == X86::COND_NE) && Op->hasOneUse() &&
isa<ConstantSDNode>(Op->getOperand(1)) && !hasNonFlagsUse(Op)) {
EVT VT = Op.getValueType();
unsigned BitWidth = VT.getSizeInBits();
unsigned ShAmt = Op->getConstantOperandVal(1);
if (ShAmt >= BitWidth) // Avoid undefined shifts.
break;
APInt Mask = ArithOp.getOpcode() == ISD::SRL
? APInt::getHighBitsSet(BitWidth, BitWidth - ShAmt)
: APInt::getLowBitsSet(BitWidth, BitWidth - ShAmt);
if (!Mask.isSignedIntN(32)) // Avoid large immediates.
break;
SDValue New = DAG.getNode(ISD::AND, dl, VT, Op->getOperand(0),
DAG.getConstant(Mask, dl, VT));
DAG.ReplaceAllUsesWith(Op, New);
Op = New;
}
break;
case ISD::AND:
// If the primary 'and' result isn't used, don't bother using X86ISD::AND,
// because a TEST instruction will be better.
if (!hasNonFlagsUse(Op)) {
SDValue Op0 = ArithOp->getOperand(0);
SDValue Op1 = ArithOp->getOperand(1);
EVT VT = ArithOp.getValueType();
bool isAndn = isBitwiseNot(Op0) || isBitwiseNot(Op1);
bool isLegalAndnType = VT == MVT::i32 || VT == MVT::i64;
// But if we can combine this into an ANDN operation, then create an AND
// now and allow it to be pattern matched into an ANDN.
if (!Subtarget.hasBMI() || !isAndn || !isLegalAndnType)
break;
}
// FALL THROUGH
case ISD::SUB:
case ISD::OR:
case ISD::XOR:
// Due to the ISEL shortcoming noted above, be conservative if this op is
// likely to be selected as part of a load-modify-store instruction.
for (SDNode::use_iterator UI = Op.getNode()->use_begin(),
UE = Op.getNode()->use_end(); UI != UE; ++UI)
if (UI->getOpcode() == ISD::STORE)
goto default_case;
// Otherwise use a regular EFLAGS-setting instruction.
switch (ArithOp.getOpcode()) {
default: llvm_unreachable("unexpected operator!");
case ISD::SUB: Opcode = X86ISD::SUB; break;
case ISD::XOR: Opcode = X86ISD::XOR; break;
case ISD::AND: Opcode = X86ISD::AND; break;
case ISD::OR: {
if (!NeedTruncation && (X86CC == X86::COND_E || X86CC == X86::COND_NE)) {
if (SDValue EFLAGS = LowerVectorAllZeroTest(Op, Subtarget, DAG))
return EFLAGS;
}
Opcode = X86ISD::OR;
break;
}
}
NumOperands = 2;
break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::INC:
case X86ISD::DEC:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
return SDValue(Op.getNode(), 1);
default:
default_case:
break;
}
// If we found that truncation is beneficial, perform the truncation and
// update 'Op'.
if (NeedTruncation) {
EVT VT = Op.getValueType();
SDValue WideVal = Op->getOperand(0);
EVT WideVT = WideVal.getValueType();
unsigned ConvertedOp = 0;
// Use a target machine opcode to prevent further DAGCombine
// optimizations that may separate the arithmetic operations
// from the setcc node.
switch (WideVal.getOpcode()) {
default: break;
case ISD::ADD: ConvertedOp = X86ISD::ADD; break;
case ISD::SUB: ConvertedOp = X86ISD::SUB; break;
case ISD::AND: ConvertedOp = X86ISD::AND; break;
case ISD::OR: ConvertedOp = X86ISD::OR; break;
case ISD::XOR: ConvertedOp = X86ISD::XOR; break;
}
if (ConvertedOp) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.isOperationLegal(WideVal.getOpcode(), WideVT)) {
SDValue V0 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(0));
SDValue V1 = DAG.getNode(ISD::TRUNCATE, dl, VT, WideVal.getOperand(1));
Op = DAG.getNode(ConvertedOp, dl, VT, V0, V1);
}
}
}
if (Opcode == 0) {
// Emit KTEST for bit vectors
if (auto Node = EmitKTEST(Op, DAG, Subtarget))
return Node;
// Emit a CMP with 0, which is the TEST pattern.
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op,
DAG.getConstant(0, dl, Op.getValueType()));
}
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SmallVector<SDValue, 4> Ops(Op->op_begin(), Op->op_begin() + NumOperands);
SDValue New = DAG.getNode(Opcode, dl, VTs, Ops);
DAG.ReplaceAllUsesWith(Op, New);
return SDValue(New.getNode(), 1);
}
/// Emit nodes that will be selected as "cmp Op0,Op1", or something
/// equivalent.
SDValue X86TargetLowering::EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC,
SDLoc dl, SelectionDAG &DAG) const {
if (isNullConstant(Op1))
return EmitTest(Op0, X86CC, dl, DAG);
assert(!(isa<ConstantSDNode>(Op1) && Op0.getValueType() == MVT::i1) &&
"Unexpected comparison operation for MVT::i1 operands");
if ((Op0.getValueType() == MVT::i8 || Op0.getValueType() == MVT::i16 ||
Op0.getValueType() == MVT::i32 || Op0.getValueType() == MVT::i64)) {
// Do the comparison at i32 if it's smaller, besides the Atom case.
// This avoids subregister aliasing issues. Keep the smaller reference
// if we're optimizing for size, however, as that'll allow better folding
// of memory operations.
if (Op0.getValueType() != MVT::i32 && Op0.getValueType() != MVT::i64 &&
!DAG.getMachineFunction().getFunction()->optForMinSize() &&
!Subtarget.isAtom()) {
unsigned ExtendOp =
isX86CCUnsigned(X86CC) ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
Op0 = DAG.getNode(ExtendOp, dl, MVT::i32, Op0);
Op1 = DAG.getNode(ExtendOp, dl, MVT::i32, Op1);
}
// Use SUB instead of CMP to enable CSE between SUB and CMP.
SDVTList VTs = DAG.getVTList(Op0.getValueType(), MVT::i32);
SDValue Sub = DAG.getNode(X86ISD::SUB, dl, VTs,
Op0, Op1);
return SDValue(Sub.getNode(), 1);
}
return DAG.getNode(X86ISD::CMP, dl, MVT::i32, Op0, Op1);
}
/// Convert a comparison if required by the subtarget.
SDValue X86TargetLowering::ConvertCmpIfNecessary(SDValue Cmp,
SelectionDAG &DAG) const {
// If the subtarget does not support the FUCOMI instruction, floating-point
// comparisons have to be converted.
if (Subtarget.hasCMov() ||
Cmp.getOpcode() != X86ISD::CMP ||
!Cmp.getOperand(0).getValueType().isFloatingPoint() ||
!Cmp.getOperand(1).getValueType().isFloatingPoint())
return Cmp;
// The instruction selector will select an FUCOM instruction instead of
// FUCOMI, which writes the comparison result to FPSW instead of EFLAGS. Hence
// build an SDNode sequence that transfers the result from FPSW into EFLAGS:
// (X86sahf (trunc (srl (X86fp_stsw (trunc (X86cmp ...)), 8))))
SDLoc dl(Cmp);
SDValue TruncFPSW = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, Cmp);
SDValue FNStSW = DAG.getNode(X86ISD::FNSTSW16r, dl, MVT::i16, TruncFPSW);
SDValue Srl = DAG.getNode(ISD::SRL, dl, MVT::i16, FNStSW,
DAG.getConstant(8, dl, MVT::i8));
SDValue TruncSrl = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Srl);
// Some 64-bit targets lack SAHF support, but they do support FCOMI.
assert(Subtarget.hasLAHFSAHF() && "Target doesn't support SAHF or FCOMI?");
return DAG.getNode(X86ISD::SAHF, dl, MVT::i32, TruncSrl);
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getRsqrtEstimate(SDValue Op,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps,
bool &UseOneConstNR) const {
EVT VT = Op.getValueType();
const char *RecipOp;
// SSE1 has rsqrtss and rsqrtps. AVX adds a 256-bit variant for rsqrtps.
// TODO: Add support for AVX512 (v16f32).
// It is likely not profitable to do this for f64 because a double-precision
// rsqrt estimate with refinement on x86 prior to FMA requires at least 16
// instructions: convert to single, rsqrtss, convert back to double, refine
// (3 steps = at least 13 insts). If an 'rsqrtsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
if (VT == MVT::f32 && Subtarget.hasSSE1())
RecipOp = "sqrtf";
else if ((VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()))
RecipOp = "vec-sqrtf";
else
return SDValue();
TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
if (!Recips.isEnabled(RecipOp))
return SDValue();
RefinementSteps = Recips.getRefinementSteps(RecipOp);
UseOneConstNR = false;
return DCI.DAG.getNode(X86ISD::FRSQRT, SDLoc(Op), VT, Op);
}
/// The minimum architected relative accuracy is 2^-12. We need one
/// Newton-Raphson step to have a good float result (24 bits of precision).
SDValue X86TargetLowering::getRecipEstimate(SDValue Op,
DAGCombinerInfo &DCI,
unsigned &RefinementSteps) const {
EVT VT = Op.getValueType();
const char *RecipOp;
// SSE1 has rcpss and rcpps. AVX adds a 256-bit variant for rcpps.
// TODO: Add support for AVX512 (v16f32).
// It is likely not profitable to do this for f64 because a double-precision
// reciprocal estimate with refinement on x86 prior to FMA requires
// 15 instructions: convert to single, rcpss, convert back to double, refine
// (3 steps = 12 insts). If an 'rcpsd' variant was added to the ISA
// along with FMA, this could be a throughput win.
if (VT == MVT::f32 && Subtarget.hasSSE1())
RecipOp = "divf";
else if ((VT == MVT::v4f32 && Subtarget.hasSSE1()) ||
(VT == MVT::v8f32 && Subtarget.hasAVX()))
RecipOp = "vec-divf";
else
return SDValue();
TargetRecip Recips = DCI.DAG.getTarget().Options.Reciprocals;
if (!Recips.isEnabled(RecipOp))
return SDValue();
RefinementSteps = Recips.getRefinementSteps(RecipOp);
return DCI.DAG.getNode(X86ISD::FRCP, SDLoc(Op), VT, Op);
}
/// If we have at least two divisions that use the same divisor, convert to
/// multplication by a reciprocal. This may need to be adjusted for a given
/// CPU if a division's cost is not at least twice the cost of a multiplication.
/// This is because we still need one division to calculate the reciprocal and
/// then we need two multiplies by that reciprocal as replacements for the
/// original divisions.
unsigned X86TargetLowering::combineRepeatedFPDivisors() const {
return 2;
}
/// Result of 'and' is compared against zero. Change to a BT node if possible.
SDValue X86TargetLowering::LowerToBT(SDValue And, ISD::CondCode CC,
SDLoc dl, SelectionDAG &DAG) const {
SDValue Op0 = And.getOperand(0);
SDValue Op1 = And.getOperand(1);
if (Op0.getOpcode() == ISD::TRUNCATE)
Op0 = Op0.getOperand(0);
if (Op1.getOpcode() == ISD::TRUNCATE)
Op1 = Op1.getOperand(0);
SDValue LHS, RHS;
if (Op1.getOpcode() == ISD::SHL)
std::swap(Op0, Op1);
if (Op0.getOpcode() == ISD::SHL) {
if (isOneConstant(Op0.getOperand(0))) {
// If we looked past a truncate, check that it's only truncating away
// known zeros.
unsigned BitWidth = Op0.getValueSizeInBits();
unsigned AndBitWidth = And.getValueSizeInBits();
if (BitWidth > AndBitWidth) {
APInt Zeros, Ones;
DAG.computeKnownBits(Op0, Zeros, Ones);
if (Zeros.countLeadingOnes() < BitWidth - AndBitWidth)
return SDValue();
}
LHS = Op1;
RHS = Op0.getOperand(1);
}
} else if (Op1.getOpcode() == ISD::Constant) {
ConstantSDNode *AndRHS = cast<ConstantSDNode>(Op1);
uint64_t AndRHSVal = AndRHS->getZExtValue();
SDValue AndLHS = Op0;
if (AndRHSVal == 1 && AndLHS.getOpcode() == ISD::SRL) {
LHS = AndLHS.getOperand(0);
RHS = AndLHS.getOperand(1);
}
// Use BT if the immediate can't be encoded in a TEST instruction.
if (!isUInt<32>(AndRHSVal) && isPowerOf2_64(AndRHSVal)) {
LHS = AndLHS;
RHS = DAG.getConstant(Log2_64_Ceil(AndRHSVal), dl, LHS.getValueType());
}
}
if (LHS.getNode()) {
// If LHS is i8, promote it to i32 with any_extend. There is no i8 BT
// instruction. Since the shift amount is in-range-or-undefined, we know
// that doing a bittest on the i32 value is ok. We extend to i32 because
// the encoding for the i16 version is larger than the i32 version.
// Also promote i16 to i32 for performance / code size reason.
if (LHS.getValueType() == MVT::i8 ||
LHS.getValueType() == MVT::i16)
LHS = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, LHS);
// If the operand types disagree, extend the shift amount to match. Since
// BT ignores high bits (like shifts) we can use anyextend.
if (LHS.getValueType() != RHS.getValueType())
RHS = DAG.getNode(ISD::ANY_EXTEND, dl, LHS.getValueType(), RHS);
SDValue BT = DAG.getNode(X86ISD::BT, dl, MVT::i32, LHS, RHS);
X86::CondCode Cond = CC == ISD::SETEQ ? X86::COND_AE : X86::COND_B;
return DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(Cond, dl, MVT::i8), BT);
}
return SDValue();
}
/// Turns an ISD::CondCode into a value suitable for SSE floating-point mask
/// CMPs.
static int translateX86FSETCC(ISD::CondCode SetCCOpcode, SDValue &Op0,
SDValue &Op1) {
unsigned SSECC;
bool Swap = false;
// SSE Condition code mapping:
// 0 - EQ
// 1 - LT
// 2 - LE
// 3 - UNORD
// 4 - NEQ
// 5 - NLT
// 6 - NLE
// 7 - ORD
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETOEQ:
case ISD::SETEQ: SSECC = 0; break;
case ISD::SETOGT:
case ISD::SETGT: Swap = true; // Fallthrough
case ISD::SETLT:
case ISD::SETOLT: SSECC = 1; break;
case ISD::SETOGE:
case ISD::SETGE: Swap = true; // Fallthrough
case ISD::SETLE:
case ISD::SETOLE: SSECC = 2; break;
case ISD::SETUO: SSECC = 3; break;
case ISD::SETUNE:
case ISD::SETNE: SSECC = 4; break;
case ISD::SETULE: Swap = true; // Fallthrough
case ISD::SETUGE: SSECC = 5; break;
case ISD::SETULT: Swap = true; // Fallthrough
case ISD::SETUGT: SSECC = 6; break;
case ISD::SETO: SSECC = 7; break;
case ISD::SETUEQ:
case ISD::SETONE: SSECC = 8; break;
}
if (Swap)
std::swap(Op0, Op1);
return SSECC;
}
/// Break a VSETCC 256-bit integer VSETCC into two new 128 ones and then
/// concatenate the result back.
static SDValue Lower256IntVSETCC(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && Op.getOpcode() == ISD::SETCC &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
SDValue CC = Op.getOperand(2);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
// Issue the operation on the smaller types and concatenate the result back
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1, CC),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2, CC));
}
static SDValue LowerBoolVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(Op0.getSimpleValueType().getVectorElementType() == MVT::i1 &&
"Unexpected type for boolean compare operation");
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
SDValue NotOp0 = DAG.getNode(ISD::XOR, dl, VT, Op0,
DAG.getConstant(-1, dl, VT));
SDValue NotOp1 = DAG.getNode(ISD::XOR, dl, VT, Op1,
DAG.getConstant(-1, dl, VT));
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETEQ:
// (x == y) -> ~(x ^ y)
return DAG.getNode(ISD::XOR, dl, VT,
DAG.getNode(ISD::XOR, dl, VT, Op0, Op1),
DAG.getConstant(-1, dl, VT));
case ISD::SETNE:
// (x != y) -> (x ^ y)
return DAG.getNode(ISD::XOR, dl, VT, Op0, Op1);
case ISD::SETUGT:
case ISD::SETGT:
// (x > y) -> (x & ~y)
return DAG.getNode(ISD::AND, dl, VT, Op0, NotOp1);
case ISD::SETULT:
case ISD::SETLT:
// (x < y) -> (~x & y)
return DAG.getNode(ISD::AND, dl, VT, NotOp0, Op1);
case ISD::SETULE:
case ISD::SETLE:
// (x <= y) -> (~x | y)
return DAG.getNode(ISD::OR, dl, VT, NotOp0, Op1);
case ISD::SETUGE:
case ISD::SETGE:
// (x >=y) -> (x | ~y)
return DAG.getNode(ISD::OR, dl, VT, Op0, NotOp1);
}
}
static SDValue LowerIntVSETCC_AVX512(SDValue Op, SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
assert(VT.getVectorElementType() == MVT::i1 &&
"Cannot set masked compare for this operation");
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
unsigned Opc = 0;
bool Unsigned = false;
bool Swap = false;
unsigned SSECC;
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETNE: SSECC = 4; break;
case ISD::SETEQ: Opc = X86ISD::PCMPEQM; break;
case ISD::SETUGT: SSECC = 6; Unsigned = true; break;
case ISD::SETLT: Swap = true; //fall-through
case ISD::SETGT: Opc = X86ISD::PCMPGTM; break;
case ISD::SETULT: SSECC = 1; Unsigned = true; break;
case ISD::SETUGE: SSECC = 5; Unsigned = true; break; //NLT
case ISD::SETGE: Swap = true; SSECC = 2; break; // LE + swap
case ISD::SETULE: Unsigned = true; //fall-through
case ISD::SETLE: SSECC = 2; break;
}
if (Swap)
std::swap(Op0, Op1);
if (Opc)
return DAG.getNode(Opc, dl, VT, Op0, Op1);
Opc = Unsigned ? X86ISD::CMPMU: X86ISD::CMPM;
return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, dl, MVT::i8));
}
/// \brief Try to turn a VSETULT into a VSETULE by modifying its second
/// operand \p Op1. If non-trivial (for example because it's not constant)
/// return an empty value.
static SDValue ChangeVSETULTtoVSETULE(SDLoc dl, SDValue Op1, SelectionDAG &DAG)
{
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Op1.getNode());
if (!BV)
return SDValue();
MVT VT = Op1.getSimpleValueType();
MVT EVT = VT.getVectorElementType();
unsigned n = VT.getVectorNumElements();
SmallVector<SDValue, 8> ULTOp1;
for (unsigned i = 0; i < n; ++i) {
ConstantSDNode *Elt = dyn_cast<ConstantSDNode>(BV->getOperand(i));
if (!Elt || Elt->isOpaque() || Elt->getSimpleValueType(0) != EVT)
return SDValue();
// Avoid underflow.
APInt Val = Elt->getAPIntValue();
if (Val == 0)
return SDValue();
ULTOp1.push_back(DAG.getConstant(Val - 1, dl, EVT));
}
return DAG.getBuildVector(VT, dl, ULTOp1);
}
static SDValue LowerVSETCC(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue CC = Op.getOperand(2);
MVT VT = Op.getSimpleValueType();
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
bool isFP = Op.getOperand(1).getSimpleValueType().isFloatingPoint();
SDLoc dl(Op);
if (isFP) {
#ifndef NDEBUG
MVT EltVT = Op0.getSimpleValueType().getVectorElementType();
assert(EltVT == MVT::f32 || EltVT == MVT::f64);
#endif
unsigned SSECC = translateX86FSETCC(SetCCOpcode, Op0, Op1);
unsigned Opc = X86ISD::CMPP;
if (Subtarget.hasAVX512() && VT.getVectorElementType() == MVT::i1) {
assert(VT.getVectorNumElements() <= 16);
Opc = X86ISD::CMPM;
}
// In the two special cases we can't handle, emit two comparisons.
if (SSECC == 8) {
unsigned CC0, CC1;
unsigned CombineOpc;
if (SetCCOpcode == ISD::SETUEQ) {
CC0 = 3; CC1 = 0; CombineOpc = ISD::OR;
} else {
assert(SetCCOpcode == ISD::SETONE);
CC0 = 7; CC1 = 4; CombineOpc = ISD::AND;
}
SDValue Cmp0 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC0, dl, MVT::i8));
SDValue Cmp1 = DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CC1, dl, MVT::i8));
return DAG.getNode(CombineOpc, dl, VT, Cmp0, Cmp1);
}
// Handle all other FP comparisons here.
return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(SSECC, dl, MVT::i8));
}
MVT VTOp0 = Op0.getSimpleValueType();
assert(VTOp0 == Op1.getSimpleValueType() &&
"Expected operands with same type!");
assert(VT.getVectorNumElements() == VTOp0.getVectorNumElements() &&
"Invalid number of packed elements for source and destination!");
if (VT.is128BitVector() && VTOp0.is256BitVector()) {
// On non-AVX512 targets, a vector of MVT::i1 is promoted by the type
// legalizer to a wider vector type. In the case of 'vsetcc' nodes, the
// legalizer firstly checks if the first operand in input to the setcc has
// a legal type. If so, then it promotes the return type to that same type.
// Otherwise, the return type is promoted to the 'next legal type' which,
// for a vector of MVT::i1 is always a 128-bit integer vector type.
//
// We reach this code only if the following two conditions are met:
// 1. Both return type and operand type have been promoted to wider types
// by the type legalizer.
// 2. The original operand type has been promoted to a 256-bit vector.
//
// Note that condition 2. only applies for AVX targets.
SDValue NewOp = DAG.getSetCC(dl, VTOp0, Op0, Op1, SetCCOpcode);
return DAG.getZExtOrTrunc(NewOp, dl, VT);
}
// The non-AVX512 code below works under the assumption that source and
// destination types are the same.
assert((Subtarget.hasAVX512() || (VT == VTOp0)) &&
"Value types for source and destination must be the same!");
// Break 256-bit integer vector compare into smaller ones.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntVSETCC(Op, DAG);
// Operands are boolean (vectors of i1)
MVT OpVT = Op1.getSimpleValueType();
if (OpVT.getVectorElementType() == MVT::i1)
return LowerBoolVSETCC_AVX512(Op, DAG);
// The result is boolean, but operands are int/float
if (VT.getVectorElementType() == MVT::i1) {
// In AVX-512 architecture setcc returns mask with i1 elements,
// But there is no compare instruction for i8 and i16 elements in KNL.
// In this case use SSE compare
bool UseAVX512Inst =
(OpVT.is512BitVector() ||
OpVT.getVectorElementType().getSizeInBits() >= 32 ||
(Subtarget.hasBWI() && Subtarget.hasVLX()));
if (UseAVX512Inst)
return LowerIntVSETCC_AVX512(Op, DAG);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::SETCC, dl, OpVT, Op0, Op1, CC));
}
// Lower using XOP integer comparisons.
if ((VT == MVT::v16i8 || VT == MVT::v8i16 ||
VT == MVT::v4i32 || VT == MVT::v2i64) && Subtarget.hasXOP()) {
// Translate compare code to XOP PCOM compare mode.
unsigned CmpMode = 0;
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETULT:
case ISD::SETLT: CmpMode = 0x00; break;
case ISD::SETULE:
case ISD::SETLE: CmpMode = 0x01; break;
case ISD::SETUGT:
case ISD::SETGT: CmpMode = 0x02; break;
case ISD::SETUGE:
case ISD::SETGE: CmpMode = 0x03; break;
case ISD::SETEQ: CmpMode = 0x04; break;
case ISD::SETNE: CmpMode = 0x05; break;
}
// Are we comparing unsigned or signed integers?
unsigned Opc = ISD::isUnsignedIntSetCC(SetCCOpcode)
? X86ISD::VPCOMU : X86ISD::VPCOM;
return DAG.getNode(Opc, dl, VT, Op0, Op1,
DAG.getConstant(CmpMode, dl, MVT::i8));
}
// We are handling one of the integer comparisons here. Since SSE only has
// GT and EQ comparisons for integer, swapping operands and multiple
// operations may be required for some comparisons.
unsigned Opc;
bool Swap = false, Invert = false, FlipSigns = false, MinMax = false;
bool Subus = false;
switch (SetCCOpcode) {
default: llvm_unreachable("Unexpected SETCC condition");
case ISD::SETNE: Invert = true;
case ISD::SETEQ: Opc = X86ISD::PCMPEQ; break;
case ISD::SETLT: Swap = true;
case ISD::SETGT: Opc = X86ISD::PCMPGT; break;
case ISD::SETGE: Swap = true;
case ISD::SETLE: Opc = X86ISD::PCMPGT;
Invert = true; break;
case ISD::SETULT: Swap = true;
case ISD::SETUGT: Opc = X86ISD::PCMPGT;
FlipSigns = true; break;
case ISD::SETUGE: Swap = true;
case ISD::SETULE: Opc = X86ISD::PCMPGT;
FlipSigns = true; Invert = true; break;
}
// Special case: Use min/max operations for SETULE/SETUGE
MVT VET = VT.getVectorElementType();
bool hasMinMax =
(Subtarget.hasSSE41() && (VET >= MVT::i8 && VET <= MVT::i32))
|| (Subtarget.hasSSE2() && (VET == MVT::i8));
if (hasMinMax) {
switch (SetCCOpcode) {
default: break;
case ISD::SETULE: Opc = ISD::UMIN; MinMax = true; break;
case ISD::SETUGE: Opc = ISD::UMAX; MinMax = true; break;
}
if (MinMax) { Swap = false; Invert = false; FlipSigns = false; }
}
bool hasSubus = Subtarget.hasSSE2() && (VET == MVT::i8 || VET == MVT::i16);
if (!MinMax && hasSubus) {
// As another special case, use PSUBUS[BW] when it's profitable. E.g. for
// Op0 u<= Op1:
// t = psubus Op0, Op1
// pcmpeq t, <0..0>
switch (SetCCOpcode) {
default: break;
case ISD::SETULT: {
// If the comparison is against a constant we can turn this into a
// setule. With psubus, setule does not require a swap. This is
// beneficial because the constant in the register is no longer
// destructed as the destination so it can be hoisted out of a loop.
// Only do this pre-AVX since vpcmp* is no longer destructive.
if (Subtarget.hasAVX())
break;
if (SDValue ULEOp1 = ChangeVSETULTtoVSETULE(dl, Op1, DAG)) {
Op1 = ULEOp1;
Subus = true; Invert = false; Swap = false;
}
break;
}
// Psubus is better than flip-sign because it requires no inversion.
case ISD::SETUGE: Subus = true; Invert = false; Swap = true; break;
case ISD::SETULE: Subus = true; Invert = false; Swap = false; break;
}
if (Subus) {
Opc = X86ISD::SUBUS;
FlipSigns = false;
}
}
if (Swap)
std::swap(Op0, Op1);
// Check that the operation in question is available (most are plain SSE2,
// but PCMPGTQ and PCMPEQQ have different requirements).
if (VT == MVT::v2i64) {
if (Opc == X86ISD::PCMPGT && !Subtarget.hasSSE42()) {
assert(Subtarget.hasSSE2() && "Don't know how to lower!");
// First cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations. The lower
// compare is always unsigned.
SDValue SB;
if (FlipSigns) {
SB = DAG.getConstant(0x80000000U, dl, MVT::v4i32);
} else {
SDValue Sign = DAG.getConstant(0x80000000U, dl, MVT::i32);
SDValue Zero = DAG.getConstant(0x00000000U, dl, MVT::i32);
SB = DAG.getBuildVector(MVT::v4i32, dl, {Sign, Zero, Sign, Zero});
}
Op0 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op0, SB);
Op1 = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Op1, SB);
// Emulate PCMPGTQ with (hi1 > hi2) | ((hi1 == hi2) & (lo1 > lo2))
SDValue GT = DAG.getNode(X86ISD::PCMPGT, dl, MVT::v4i32, Op0, Op1);
SDValue EQ = DAG.getNode(X86ISD::PCMPEQ, dl, MVT::v4i32, Op0, Op1);
// Create masks for only the low parts/high parts of the 64 bit integers.
static const int MaskHi[] = { 1, 1, 3, 3 };
static const int MaskLo[] = { 0, 0, 2, 2 };
SDValue EQHi = DAG.getVectorShuffle(MVT::v4i32, dl, EQ, EQ, MaskHi);
SDValue GTLo = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskLo);
SDValue GTHi = DAG.getVectorShuffle(MVT::v4i32, dl, GT, GT, MaskHi);
SDValue Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, EQHi, GTLo);
Result = DAG.getNode(ISD::OR, dl, MVT::v4i32, Result, GTHi);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
if (Opc == X86ISD::PCMPEQ && !Subtarget.hasSSE41()) {
// If pcmpeqq is missing but pcmpeqd is available synthesize pcmpeqq with
// pcmpeqd + pshufd + pand.
assert(Subtarget.hasSSE2() && !FlipSigns && "Don't know how to lower!");
// First cast everything to the right type.
Op0 = DAG.getBitcast(MVT::v4i32, Op0);
Op1 = DAG.getBitcast(MVT::v4i32, Op1);
// Do the compare.
SDValue Result = DAG.getNode(Opc, dl, MVT::v4i32, Op0, Op1);
// Make sure the lower and upper halves are both all-ones.
static const int Mask[] = { 1, 0, 3, 2 };
SDValue Shuf = DAG.getVectorShuffle(MVT::v4i32, dl, Result, Result, Mask);
Result = DAG.getNode(ISD::AND, dl, MVT::v4i32, Result, Shuf);
if (Invert)
Result = DAG.getNOT(dl, Result, MVT::v4i32);
return DAG.getBitcast(VT, Result);
}
}
// Since SSE has no unsigned integer comparisons, we need to flip the sign
// bits of the inputs before performing those operations.
if (FlipSigns) {
MVT EltVT = VT.getVectorElementType();
SDValue SB = DAG.getConstant(APInt::getSignBit(EltVT.getSizeInBits()), dl,
VT);
Op0 = DAG.getNode(ISD::XOR, dl, VT, Op0, SB);
Op1 = DAG.getNode(ISD::XOR, dl, VT, Op1, SB);
}
SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
// If the logical-not of the result is required, perform that now.
if (Invert)
Result = DAG.getNOT(dl, Result, VT);
if (MinMax)
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Op0, Result);
if (Subus)
Result = DAG.getNode(X86ISD::PCMPEQ, dl, VT, Result,
getZeroVector(VT, Subtarget, DAG, dl));
return Result;
}
SDValue X86TargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
if (VT.isVector()) return LowerVSETCC(Op, Subtarget, DAG);
assert(((!Subtarget.hasAVX512() && VT == MVT::i8) || (VT == MVT::i1))
&& "SetCC type must be 8-bit or 1-bit integer");
SDValue Op0 = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDLoc dl(Op);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
// Optimize to BT if possible.
// Lower (X & (1 << N)) == 0 to BT(X, N).
// Lower ((X >>u N) & 1) != 0 to BT(X, N).
// Lower ((X >>s N) & 1) != 0 to BT(X, N).
if (Op0.getOpcode() == ISD::AND && Op0.hasOneUse() &&
isNullConstant(Op1) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (SDValue NewSetCC = LowerToBT(Op0, CC, dl, DAG)) {
if (VT == MVT::i1)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewSetCC);
return NewSetCC;
}
}
// Look for X == 0, X == 1, X != 0, or X != 1. We can simplify some forms of
// these.
if ((isOneConstant(Op1) || isNullConstant(Op1)) &&
(CC == ISD::SETEQ || CC == ISD::SETNE)) {
// If the input is a setcc, then reuse the input setcc or use a new one with
// the inverted condition.
if (Op0.getOpcode() == X86ISD::SETCC) {
X86::CondCode CCode = (X86::CondCode)Op0.getConstantOperandVal(0);
bool Invert = (CC == ISD::SETNE) ^ isNullConstant(Op1);
if (!Invert)
return Op0;
CCode = X86::GetOppositeBranchCondition(CCode);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(CCode, dl, MVT::i8),
Op0.getOperand(1));
if (VT == MVT::i1)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
return SetCC;
}
}
if (Op0.getValueType() == MVT::i1 && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
if (isOneConstant(Op1)) {
ISD::CondCode NewCC = ISD::getSetCCInverse(CC, true);
return DAG.getSetCC(dl, VT, Op0, DAG.getConstant(0, dl, MVT::i1), NewCC);
}
if (!isNullConstant(Op1)) {
SDValue Xor = DAG.getNode(ISD::XOR, dl, MVT::i1, Op0, Op1);
return DAG.getSetCC(dl, VT, Xor, DAG.getConstant(0, dl, MVT::i1), CC);
}
}
bool isFP = Op1.getSimpleValueType().isFloatingPoint();
unsigned X86CC = TranslateX86CC(CC, dl, isFP, Op0, Op1, DAG);
if (X86CC == X86::COND_INVALID)
return SDValue();
SDValue EFLAGS = EmitCmp(Op0, Op1, X86CC, dl, DAG);
EFLAGS = ConvertCmpIfNecessary(EFLAGS, DAG);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86CC, dl, MVT::i8), EFLAGS);
if (VT == MVT::i1)
return DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, SetCC);
return SetCC;
}
SDValue X86TargetLowering::LowerSETCCE(SDValue Op, SelectionDAG &DAG) const {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue Carry = Op.getOperand(2);
SDValue Cond = Op.getOperand(3);
SDLoc DL(Op);
assert(LHS.getSimpleValueType().isInteger() && "SETCCE is integer only.");
X86::CondCode CC = TranslateIntegerX86CC(cast<CondCodeSDNode>(Cond)->get());
assert(Carry.getOpcode() != ISD::CARRY_FALSE);
SDVTList VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue Cmp = DAG.getNode(X86ISD::SBB, DL, VTs, LHS, RHS, Carry);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, DL, MVT::i8), Cmp.getValue(1));
if (Op.getSimpleValueType() == MVT::i1)
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, SetCC);
return SetCC;
}
/// Return true if opcode is a X86 logical comparison.
static bool isX86LogicalCmp(SDValue Op) {
unsigned Opc = Op.getNode()->getOpcode();
if (Opc == X86ISD::CMP || Opc == X86ISD::COMI || Opc == X86ISD::UCOMI ||
Opc == X86ISD::SAHF)
return true;
if (Op.getResNo() == 1 &&
(Opc == X86ISD::ADD ||
Opc == X86ISD::SUB ||
Opc == X86ISD::ADC ||
Opc == X86ISD::SBB ||
Opc == X86ISD::SMUL ||
Opc == X86ISD::UMUL ||
Opc == X86ISD::INC ||
Opc == X86ISD::DEC ||
Opc == X86ISD::OR ||
Opc == X86ISD::XOR ||
Opc == X86ISD::AND))
return true;
if (Op.getResNo() == 2 && Opc == X86ISD::UMUL)
return true;
return false;
}
static bool isTruncWithZeroHighBitsInput(SDValue V, SelectionDAG &DAG) {
if (V.getOpcode() != ISD::TRUNCATE)
return false;
SDValue VOp0 = V.getOperand(0);
unsigned InBits = VOp0.getValueSizeInBits();
unsigned Bits = V.getValueSizeInBits();
return DAG.MaskedValueIsZero(VOp0, APInt::getHighBitsSet(InBits,InBits-Bits));
}
SDValue X86TargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Cond = Op.getOperand(0);
SDValue Op1 = Op.getOperand(1);
SDValue Op2 = Op.getOperand(2);
SDLoc DL(Op);
MVT VT = Op1.getSimpleValueType();
SDValue CC;
// Lower FP selects into a CMP/AND/ANDN/OR sequence when the necessary SSE ops
// are available or VBLENDV if AVX is available.
// Otherwise FP cmovs get lowered into a less efficient branch sequence later.
if (Cond.getOpcode() == ISD::SETCC &&
((Subtarget.hasSSE2() && (VT == MVT::f32 || VT == MVT::f64)) ||
(Subtarget.hasSSE1() && VT == MVT::f32)) &&
VT == Cond.getOperand(0).getSimpleValueType() && Cond->hasOneUse()) {
SDValue CondOp0 = Cond.getOperand(0), CondOp1 = Cond.getOperand(1);
int SSECC = translateX86FSETCC(
cast<CondCodeSDNode>(Cond.getOperand(2))->get(), CondOp0, CondOp1);
if (SSECC != 8) {
if (Subtarget.hasAVX512()) {
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CondOp0, CondOp1,
DAG.getConstant(SSECC, DL, MVT::i8));
return DAG.getNode(X86ISD::SELECT, DL, VT, Cmp, Op1, Op2);
}
SDValue Cmp = DAG.getNode(X86ISD::FSETCC, DL, VT, CondOp0, CondOp1,
DAG.getConstant(SSECC, DL, MVT::i8));
// If we have AVX, we can use a variable vector select (VBLENDV) instead
// of 3 logic instructions for size savings and potentially speed.
// Unfortunately, there is no scalar form of VBLENDV.
// If either operand is a constant, don't try this. We can expect to
// optimize away at least one of the logic instructions later in that
// case, so that sequence would be faster than a variable blend.
// BLENDV was introduced with SSE 4.1, but the 2 register form implicitly
// uses XMM0 as the selection register. That may need just as many
// instructions as the AND/ANDN/OR sequence due to register moves, so
// don't bother.
if (Subtarget.hasAVX() &&
!isa<ConstantFPSDNode>(Op1) && !isa<ConstantFPSDNode>(Op2)) {
// Convert to vectors, do a VSELECT, and convert back to scalar.
// All of the conversions should be optimized away.
MVT VecVT = VT == MVT::f32 ? MVT::v4f32 : MVT::v2f64;
SDValue VOp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op1);
SDValue VOp2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Op2);
SDValue VCmp = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, Cmp);
MVT VCmpVT = VT == MVT::f32 ? MVT::v4i32 : MVT::v2i64;
VCmp = DAG.getBitcast(VCmpVT, VCmp);
SDValue VSel = DAG.getNode(ISD::VSELECT, DL, VecVT, VCmp, VOp1, VOp2);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
VSel, DAG.getIntPtrConstant(0, DL));
}
SDValue AndN = DAG.getNode(X86ISD::FANDN, DL, VT, Cmp, Op2);
SDValue And = DAG.getNode(X86ISD::FAND, DL, VT, Cmp, Op1);
return DAG.getNode(X86ISD::FOR, DL, VT, AndN, And);
}
}
if (VT.isVector() && VT.getVectorElementType() == MVT::i1) {
SDValue Op1Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op1.getNode()))
Op1Scalar = ConvertI1VectorToInteger(Op1, DAG);
else if (Op1.getOpcode() == ISD::BITCAST && Op1.getOperand(0))
Op1Scalar = Op1.getOperand(0);
SDValue Op2Scalar;
if (ISD::isBuildVectorOfConstantSDNodes(Op2.getNode()))
Op2Scalar = ConvertI1VectorToInteger(Op2, DAG);
else if (Op2.getOpcode() == ISD::BITCAST && Op2.getOperand(0))
Op2Scalar = Op2.getOperand(0);
if (Op1Scalar.getNode() && Op2Scalar.getNode()) {
SDValue newSelect = DAG.getNode(ISD::SELECT, DL,
Op1Scalar.getValueType(),
Cond, Op1Scalar, Op2Scalar);
if (newSelect.getValueSizeInBits() == VT.getSizeInBits())
return DAG.getBitcast(VT, newSelect);
SDValue ExtVec = DAG.getBitcast(MVT::v8i1, newSelect);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, ExtVec,
DAG.getIntPtrConstant(0, DL));
}
}
if (VT == MVT::v4i1 || VT == MVT::v2i1) {
SDValue zeroConst = DAG.getIntPtrConstant(0, DL);
Op1 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), Op1, zeroConst);
Op2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), Op2, zeroConst);
SDValue newSelect = DAG.getNode(ISD::SELECT, DL, MVT::v8i1,
Cond, Op1, Op2);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, newSelect, zeroConst);
}
if (Cond.getOpcode() == ISD::SETCC) {
if (SDValue NewCond = LowerSETCC(Cond, DAG))
Cond = NewCond;
}
// (select (x == 0), -1, y) -> (sign_bit (x - 1)) | y
// (select (x == 0), y, -1) -> ~(sign_bit (x - 1)) | y
// (select (x != 0), y, -1) -> (sign_bit (x - 1)) | y
// (select (x != 0), -1, y) -> ~(sign_bit (x - 1)) | y
if (Cond.getOpcode() == X86ISD::SETCC &&
Cond.getOperand(1).getOpcode() == X86ISD::CMP &&
isNullConstant(Cond.getOperand(1).getOperand(1))) {
SDValue Cmp = Cond.getOperand(1);
unsigned CondCode =cast<ConstantSDNode>(Cond.getOperand(0))->getZExtValue();
if ((isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(CondCode == X86::COND_E || CondCode == X86::COND_NE)) {
SDValue Y = isAllOnesConstant(Op2) ? Op1 : Op2;
SDValue CmpOp0 = Cmp.getOperand(0);
// Apply further optimizations for special cases
// (select (x != 0), -1, 0) -> neg & sbb
// (select (x == 0), 0, -1) -> neg & sbb
if (isNullConstant(Y) &&
(isAllOnesConstant(Op1) == (CondCode == X86::COND_NE))) {
SDVTList VTs = DAG.getVTList(CmpOp0.getValueType(), MVT::i32);
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, VTs,
DAG.getConstant(0, DL,
CmpOp0.getValueType()),
CmpOp0);
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8),
SDValue(Neg.getNode(), 1));
return Res;
}
Cmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32,
CmpOp0, DAG.getConstant(1, DL, CmpOp0.getValueType()));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
SDValue Res = // Res = 0 or -1.
DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8), Cmp);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_E))
Res = DAG.getNOT(DL, Res, Res.getValueType());
if (!isNullConstant(Op2))
Res = DAG.getNode(ISD::OR, DL, Res.getValueType(), Res, Y);
return Res;
}
}
// Look past (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
MVT VT = Op.getSimpleValueType();
bool IllegalFPCMov = false;
if (VT.isFloatingPoint() && !VT.isVector() &&
!isScalarFPTypeInSSEReg(VT)) // FPStack?
IllegalFPCMov = !hasFPCMov(cast<ConstantSDNode>(CC)->getSExtValue());
if ((isX86LogicalCmp(Cmp) && !IllegalFPCMov) ||
Opc == X86ISD::BT) { // FIXME
Cond = Cmp;
addTest = false;
}
} else if (CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, DL, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, DL, MVT::i8);
addTest = false;
}
if (addTest) {
// Look past the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, DL, DAG)) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
addTest = false;
}
}
}
if (addTest) {
CC = DAG.getConstant(X86::COND_NE, DL, MVT::i8);
Cond = EmitTest(Cond, X86::COND_NE, DL, DAG);
}
// a < b ? -1 : 0 -> RES = ~setcc_carry
// a < b ? 0 : -1 -> RES = setcc_carry
// a >= b ? -1 : 0 -> RES = setcc_carry
// a >= b ? 0 : -1 -> RES = ~setcc_carry
if (Cond.getOpcode() == X86ISD::SUB) {
Cond = ConvertCmpIfNecessary(Cond, DAG);
unsigned CondCode = cast<ConstantSDNode>(CC)->getZExtValue();
if ((CondCode == X86::COND_AE || CondCode == X86::COND_B) &&
(isAllOnesConstant(Op1) || isAllOnesConstant(Op2)) &&
(isNullConstant(Op1) || isNullConstant(Op2))) {
SDValue Res = DAG.getNode(X86ISD::SETCC_CARRY, DL, Op.getValueType(),
DAG.getConstant(X86::COND_B, DL, MVT::i8),
Cond);
if (isAllOnesConstant(Op1) != (CondCode == X86::COND_B))
return DAG.getNOT(DL, Res, Res.getValueType());
return Res;
}
}
// X86 doesn't have an i8 cmov. If both operands are the result of a truncate
// widen the cmov and push the truncate through. This avoids introducing a new
// branch during isel and doesn't add any extensions.
if (Op.getValueType() == MVT::i8 &&
Op1.getOpcode() == ISD::TRUNCATE && Op2.getOpcode() == ISD::TRUNCATE) {
SDValue T1 = Op1.getOperand(0), T2 = Op2.getOperand(0);
if (T1.getValueType() == T2.getValueType() &&
// Blacklist CopyFromReg to avoid partial register stalls.
T1.getOpcode() != ISD::CopyFromReg && T2.getOpcode()!=ISD::CopyFromReg){
SDVTList VTs = DAG.getVTList(T1.getValueType(), MVT::Glue);
SDValue Cmov = DAG.getNode(X86ISD::CMOV, DL, VTs, T2, T1, CC, Cond);
return DAG.getNode(ISD::TRUNCATE, DL, Op.getValueType(), Cmov);
}
}
// X86ISD::CMOV means set the result (which is operand 1) to the RHS if
// condition is true.
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
SDValue Ops[] = { Op2, Op1, CC, Cond };
return DAG.getNode(X86ISD::CMOV, DL, VTs, Ops);
}
static SDValue LowerSIGN_EXTEND_AVX512(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
MVT VTElt = VT.getVectorElementType();
MVT InVTElt = InVT.getVectorElementType();
SDLoc dl(Op);
// SKX processor
if ((InVTElt == MVT::i1) &&
(((Subtarget.hasBWI() && Subtarget.hasVLX() &&
VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() <= 16)) ||
((Subtarget.hasBWI() && VT.is512BitVector() &&
VTElt.getSizeInBits() <= 16)) ||
((Subtarget.hasDQI() && Subtarget.hasVLX() &&
VT.getSizeInBits() <= 256 && VTElt.getSizeInBits() >= 32)) ||
((Subtarget.hasDQI() && VT.is512BitVector() &&
VTElt.getSizeInBits() >= 32))))
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
unsigned int NumElts = VT.getVectorNumElements();
if (NumElts != 8 && NumElts != 16 && !Subtarget.hasBWI())
return SDValue();
if (VT.is512BitVector() && InVT.getVectorElementType() != MVT::i1) {
if (In.getOpcode() == X86ISD::VSEXT || In.getOpcode() == X86ISD::VZEXT)
return DAG.getNode(In.getOpcode(), dl, VT, In.getOperand(0));
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
}
assert (InVT.getVectorElementType() == MVT::i1 && "Unexpected vector type");
MVT ExtVT = NumElts == 8 ? MVT::v8i64 : MVT::v16i32;
SDValue NegOne =
DAG.getConstant(APInt::getAllOnesValue(ExtVT.getScalarSizeInBits()), dl,
ExtVT);
SDValue Zero =
DAG.getConstant(APInt::getNullValue(ExtVT.getScalarSizeInBits()), dl, ExtVT);
SDValue V = DAG.getNode(ISD::VSELECT, dl, ExtVT, In, NegOne, Zero);
if (VT.is512BitVector())
return V;
return DAG.getNode(X86ISD::VTRUNC, dl, VT, V);
}
static SDValue LowerSIGN_EXTEND_VECTOR_INREG(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue In = Op->getOperand(0);
MVT VT = Op->getSimpleValueType(0);
MVT InVT = In.getSimpleValueType();
assert(VT.getSizeInBits() == InVT.getSizeInBits());
MVT SVT = VT.getVectorElementType();
MVT InSVT = InVT.getVectorElementType();
assert(SVT.getSizeInBits() > InSVT.getSizeInBits());
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
return SDValue();
if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
return SDValue();
if (!(VT.is128BitVector() && Subtarget.hasSSE2()) &&
!(VT.is256BitVector() && Subtarget.hasInt256()))
return SDValue();
SDLoc dl(Op);
// For 256-bit vectors, we only need the lower (128-bit) half of the input.
if (VT.is256BitVector())
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl,
MVT::getVectorVT(InSVT, InVT.getVectorNumElements() / 2),
In, DAG.getIntPtrConstant(0, dl));
// SSE41 targets can use the pmovsx* instructions directly.
if (Subtarget.hasSSE41())
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
// pre-SSE41 targets unpack lower lanes and then sign-extend using SRAI.
SDValue Curr = In;
MVT CurrVT = InVT;
// As SRAI is only available on i16/i32 types, we expand only up to i32
// and handle i64 separately.
while (CurrVT != VT && CurrVT.getVectorElementType() != MVT::i32) {
Curr = DAG.getNode(X86ISD::UNPCKL, dl, CurrVT, DAG.getUNDEF(CurrVT), Curr);
MVT CurrSVT = MVT::getIntegerVT(CurrVT.getScalarSizeInBits() * 2);
CurrVT = MVT::getVectorVT(CurrSVT, CurrVT.getVectorNumElements() / 2);
Curr = DAG.getBitcast(CurrVT, Curr);
}
SDValue SignExt = Curr;
if (CurrVT != InVT) {
unsigned SignExtShift =
CurrVT.getVectorElementType().getSizeInBits() - InSVT.getSizeInBits();
SignExt = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
DAG.getConstant(SignExtShift, dl, MVT::i8));
}
if (CurrVT == VT)
return SignExt;
if (VT == MVT::v2i64 && CurrVT == MVT::v4i32) {
SDValue Sign = DAG.getNode(X86ISD::VSRAI, dl, CurrVT, Curr,
DAG.getConstant(31, dl, MVT::i8));
SDValue Ext = DAG.getVectorShuffle(CurrVT, dl, SignExt, Sign, {0, 4, 1, 5});
return DAG.getBitcast(VT, Ext);
}
return SDValue();
}
static SDValue LowerSIGN_EXTEND(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op->getSimpleValueType(0);
SDValue In = Op->getOperand(0);
MVT InVT = In.getSimpleValueType();
SDLoc dl(Op);
if (VT.is512BitVector() || InVT.getVectorElementType() == MVT::i1)
return LowerSIGN_EXTEND_AVX512(Op, Subtarget, DAG);
if ((VT != MVT::v4i64 || InVT != MVT::v4i32) &&
(VT != MVT::v8i32 || InVT != MVT::v8i16) &&
(VT != MVT::v16i16 || InVT != MVT::v16i8))
return SDValue();
if (Subtarget.hasInt256())
return DAG.getNode(X86ISD::VSEXT, dl, VT, In);
// Optimize vectors in AVX mode
// Sign extend v8i16 to v8i32 and
// v4i32 to v4i64
//
// Divide input vector into two parts
// for v4i32 the shuffle mask will be { 0, 1, -1, -1} {2, 3, -1, -1}
// use vpmovsx instruction to extend v4i32 -> v2i64; v8i16 -> v4i32
// concat the vectors to original VT
unsigned NumElems = InVT.getVectorNumElements();
SDValue Undef = DAG.getUNDEF(InVT);
SmallVector<int,8> ShufMask1(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask1[i] = i;
SDValue OpLo = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask1[0]);
SmallVector<int,8> ShufMask2(NumElems, -1);
for (unsigned i = 0; i != NumElems/2; ++i)
ShufMask2[i] = i + NumElems/2;
SDValue OpHi = DAG.getVectorShuffle(InVT, dl, In, Undef, &ShufMask2[0]);
MVT HalfVT = MVT::getVectorVT(VT.getVectorElementType(),
VT.getVectorNumElements()/2);
OpLo = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpLo);
OpHi = DAG.getNode(X86ISD::VSEXT, dl, HalfVT, OpHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, OpLo, OpHi);
}
// Lower truncating store. We need a special lowering to vXi1 vectors
static SDValue LowerTruncatingStore(SDValue StOp, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
StoreSDNode *St = cast<StoreSDNode>(StOp.getNode());
SDLoc dl(St);
EVT MemVT = St->getMemoryVT();
assert(St->isTruncatingStore() && "We only custom truncating store.");
assert(MemVT.isVector() && MemVT.getVectorElementType() == MVT::i1 &&
"Expected truncstore of i1 vector");
SDValue Op = St->getValue();
MVT OpVT = Op.getValueType().getSimpleVT();
unsigned NumElts = OpVT.getVectorNumElements();
if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) ||
NumElts == 16) {
// Truncate and store - everything is legal
Op = DAG.getNode(ISD::TRUNCATE, dl, MemVT, Op);
if (MemVT.getSizeInBits() < 8)
Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, MVT::v8i1,
DAG.getUNDEF(MVT::v8i1), Op,
DAG.getIntPtrConstant(0, dl));
return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
St->getMemOperand());
}
// A subset, assume that we have only AVX-512F
if (NumElts <= 8) {
if (NumElts < 8) {
// Extend to 8-elts vector
MVT ExtVT = MVT::getVectorVT(OpVT.getScalarType(), 8);
Op = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, ExtVT,
DAG.getUNDEF(ExtVT), Op, DAG.getIntPtrConstant(0, dl));
}
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i1, Op);
return DAG.getStore(St->getChain(), dl, Op, St->getBasePtr(),
St->getMemOperand());
}
// v32i8
assert(OpVT == MVT::v32i8 && "Unexpected operand type");
// Divide the vector into 2 parts and store each part separately
SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
DAG.getIntPtrConstant(0, dl));
Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Lo);
SDValue BasePtr = St->getBasePtr();
SDValue StLo = DAG.getStore(St->getChain(), dl, Lo, BasePtr,
St->getMemOperand());
SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, Op,
DAG.getIntPtrConstant(16, dl));
Hi = DAG.getNode(ISD::TRUNCATE, dl, MVT::v16i1, Hi);
SDValue BasePtrHi =
DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(2, dl, BasePtr.getValueType()));
SDValue StHi = DAG.getStore(St->getChain(), dl, Hi,
BasePtrHi, St->getMemOperand());
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StLo, StHi);
}
static SDValue LowerExtended1BitVectorLoad(SDValue Op,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
SDLoc dl(Ld);
EVT MemVT = Ld->getMemoryVT();
assert(MemVT.isVector() && MemVT.getScalarType() == MVT::i1 &&
"Expected i1 vector load");
unsigned ExtOpcode = Ld->getExtensionType() == ISD::ZEXTLOAD ?
ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
MVT VT = Op.getValueType().getSimpleVT();
unsigned NumElts = VT.getVectorNumElements();
if ((Subtarget.hasVLX() && Subtarget.hasBWI() && Subtarget.hasDQI()) ||
NumElts == 16) {
// Load and extend - everything is legal
if (NumElts < 8) {
SDValue Load = DAG.getLoad(MVT::v8i1, dl, Ld->getChain(),
Ld->getBasePtr(),
Ld->getMemOperand());
// Replace chain users with the new chain.
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, Load);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
SDValue Load = DAG.getLoad(MemVT, dl, Ld->getChain(),
Ld->getBasePtr(),
Ld->getMemOperand());
// Replace chain users with the new chain.
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
// Finally, do a normal sign-extend to the desired register.
return DAG.getNode(ExtOpcode, dl, Op.getValueType(), Load);
}
if (NumElts <= 8) {
// A subset, assume that we have only AVX-512F
unsigned NumBitsToLoad = NumElts < 8 ? 8 : NumElts;
MVT TypeToLoad = MVT::getIntegerVT(NumBitsToLoad);
SDValue Load = DAG.getLoad(TypeToLoad, dl, Ld->getChain(),
Ld->getBasePtr(),
Ld->getMemOperand());
// Replace chain users with the new chain.
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
MVT MaskVT = MVT::getVectorVT(MVT::i1, NumBitsToLoad);
SDValue BitVec = DAG.getBitcast(MaskVT, Load);
if (NumElts == 8)
return DAG.getNode(ExtOpcode, dl, VT, BitVec);
// we should take care to v4i1 and v2i1
MVT ExtVT = MVT::getVectorVT(VT.getScalarType(), 8);
SDValue ExtVec = DAG.getNode(ExtOpcode, dl, ExtVT, BitVec);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, ExtVec,
DAG.getIntPtrConstant(0, dl));
}
assert(VT == MVT::v32i8 && "Unexpected extload type");
SmallVector<SDValue, 2> Chains;
SDValue BasePtr = Ld->getBasePtr();
SDValue LoadLo = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(),
Ld->getBasePtr(),
Ld->getMemOperand());
Chains.push_back(LoadLo.getValue(1));
SDValue BasePtrHi =
DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
DAG.getConstant(2, dl, BasePtr.getValueType()));
SDValue LoadHi = DAG.getLoad(MVT::v16i1, dl, Ld->getChain(),
BasePtrHi,
Ld->getMemOperand());
Chains.push_back(LoadHi.getValue(1));
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
SDValue Lo = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadLo);
SDValue Hi = DAG.getNode(ExtOpcode, dl, MVT::v16i8, LoadHi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v32i8, Lo, Hi);
}
// Lower vector extended loads using a shuffle. If SSSE3 is not available we
// may emit an illegal shuffle but the expansion is still better than scalar
// code. We generate X86ISD::VSEXT for SEXTLOADs if it's available, otherwise
// we'll emit a shuffle and a arithmetic shift.
// FIXME: Is the expansion actually better than scalar code? It doesn't seem so.
// TODO: It is possible to support ZExt by zeroing the undef values during
// the shuffle phase or after the shuffle.
static SDValue LowerExtendedLoad(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT RegVT = Op.getSimpleValueType();
assert(RegVT.isVector() && "We only custom lower vector sext loads.");
assert(RegVT.isInteger() &&
"We only custom lower integer vector sext loads.");
// Nothing useful we can do without SSE2 shuffles.
assert(Subtarget.hasSSE2() && "We only custom lower sext loads with SSE2.");
LoadSDNode *Ld = cast<LoadSDNode>(Op.getNode());
SDLoc dl(Ld);
EVT MemVT = Ld->getMemoryVT();
if (MemVT.getScalarType() == MVT::i1)
return LowerExtended1BitVectorLoad(Op, Subtarget, DAG);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned RegSz = RegVT.getSizeInBits();
ISD::LoadExtType Ext = Ld->getExtensionType();
assert((Ext == ISD::EXTLOAD || Ext == ISD::SEXTLOAD)
&& "Only anyext and sext are currently implemented.");
assert(MemVT != RegVT && "Cannot extend to the same type");
assert(MemVT.isVector() && "Must load a vector from memory");
unsigned NumElems = RegVT.getVectorNumElements();
unsigned MemSz = MemVT.getSizeInBits();
assert(RegSz > MemSz && "Register size must be greater than the mem size");
if (Ext == ISD::SEXTLOAD && RegSz == 256 && !Subtarget.hasInt256()) {
// The only way in which we have a legal 256-bit vector result but not the
// integer 256-bit operations needed to directly lower a sextload is if we
// have AVX1 but not AVX2. In that case, we can always emit a sextload to
// a 128-bit vector and a normal sign_extend to 256-bits that should get
// correctly legalized. We do this late to allow the canonical form of
// sextload to persist throughout the rest of the DAG combiner -- it wants
// to fold together any extensions it can, and so will fuse a sign_extend
// of an sextload into a sextload targeting a wider value.
SDValue Load;
if (MemSz == 128) {
// Just switch this to a normal load.
assert(TLI.isTypeLegal(MemVT) && "If the memory type is a 128-bit type, "
"it must be a legal 128-bit vector "
"type!");
Load = DAG.getLoad(MemVT, dl, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->isVolatile(), Ld->isNonTemporal(),
Ld->isInvariant(), Ld->getAlignment());
} else {
assert(MemSz < 128 &&
"Can't extend a type wider than 128 bits to a 256 bit vector!");
// Do an sext load to a 128-bit vector type. We want to use the same
// number of elements, but elements half as wide. This will end up being
// recursively lowered by this routine, but will succeed as we definitely
// have all the necessary features if we're using AVX1.
EVT HalfEltVT =
EVT::getIntegerVT(*DAG.getContext(), RegVT.getScalarSizeInBits() / 2);
EVT HalfVecVT = EVT::getVectorVT(*DAG.getContext(), HalfEltVT, NumElems);
Load =
DAG.getExtLoad(Ext, dl, HalfVecVT, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), MemVT, Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
Ld->getAlignment());
}
// Replace chain users with the new chain.
assert(Load->getNumValues() == 2 && "Loads must carry a chain!");
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), Load.getValue(1));
// Finally, do a normal sign-extend to the desired register.
return DAG.getSExtOrTrunc(Load, dl, RegVT);
}
// All sizes must be a power of two.
assert(isPowerOf2_32(RegSz * MemSz * NumElems) &&
"Non-power-of-two elements are not custom lowered!");
// Attempt to load the original value using scalar loads.
// Find the largest scalar type that divides the total loaded size.
MVT SclrLoadTy = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && ((MemSz % Tp.getSizeInBits()) == 0)) {
SclrLoadTy = Tp;
}
}
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
if (TLI.isTypeLegal(MVT::f64) && SclrLoadTy.getSizeInBits() < 64 &&
(64 <= MemSz))
SclrLoadTy = MVT::f64;
// Calculate the number of scalar loads that we need to perform
// in order to load our vector from memory.
unsigned NumLoads = MemSz / SclrLoadTy.getSizeInBits();
assert((Ext != ISD::SEXTLOAD || NumLoads == 1) &&
"Can only lower sext loads with a single scalar load!");
unsigned loadRegZize = RegSz;
if (Ext == ISD::SEXTLOAD && RegSz >= 256)
loadRegZize = 128;
// Represent our vector as a sequence of elements which are the
// largest scalar that we can load.
EVT LoadUnitVecVT = EVT::getVectorVT(
*DAG.getContext(), SclrLoadTy, loadRegZize / SclrLoadTy.getSizeInBits());
// Represent the data using the same element type that is stored in
// memory. In practice, we ''widen'' MemVT.
EVT WideVecVT =
EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
loadRegZize / MemVT.getScalarSizeInBits());
assert(WideVecVT.getSizeInBits() == LoadUnitVecVT.getSizeInBits() &&
"Invalid vector type");
// We can't shuffle using an illegal type.
assert(TLI.isTypeLegal(WideVecVT) &&
"We only lower types that form legal widened vector types");
SmallVector<SDValue, 8> Chains;
SDValue Ptr = Ld->getBasePtr();
SDValue Increment = DAG.getConstant(SclrLoadTy.getSizeInBits() / 8, dl,
TLI.getPointerTy(DAG.getDataLayout()));
SDValue Res = DAG.getUNDEF(LoadUnitVecVT);
for (unsigned i = 0; i < NumLoads; ++i) {
// Perform a single load.
SDValue ScalarLoad =
DAG.getLoad(SclrLoadTy, dl, Ld->getChain(), Ptr, Ld->getPointerInfo(),
Ld->isVolatile(), Ld->isNonTemporal(), Ld->isInvariant(),
Ld->getAlignment());
Chains.push_back(ScalarLoad.getValue(1));
// Create the first element type using SCALAR_TO_VECTOR in order to avoid
// another round of DAGCombining.
if (i == 0)
Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, LoadUnitVecVT, ScalarLoad);
else
Res = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, LoadUnitVecVT, Res,
ScalarLoad, DAG.getIntPtrConstant(i, dl));
Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
}
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
// Bitcast the loaded value to a vector of the original element type, in
// the size of the target vector type.
SDValue SlicedVec = DAG.getBitcast(WideVecVT, Res);
unsigned SizeRatio = RegSz / MemSz;
if (Ext == ISD::SEXTLOAD) {
// If we have SSE4.1, we can directly emit a VSEXT node.
if (Subtarget.hasSSE41()) {
SDValue Sext = DAG.getNode(X86ISD::VSEXT, dl, RegVT, SlicedVec);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Sext;
}
// Otherwise we'll use SIGN_EXTEND_VECTOR_INREG to sign extend the lowest
// lanes.
assert(TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND_VECTOR_INREG, RegVT) &&
"We can't implement a sext load without SIGN_EXTEND_VECTOR_INREG!");
SDValue Shuff = DAG.getSignExtendVectorInReg(SlicedVec, dl, RegVT);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Shuff;
}
// Redistribute the loaded elements into the different locations.
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i * SizeRatio] = i;
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, SlicedVec,
DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
// Bitcast to the requested type.
Shuff = DAG.getBitcast(RegVT, Shuff);
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), TF);
return Shuff;
}
/// Return true if node is an ISD::AND or ISD::OR of two X86ISD::SETCC nodes
/// each of which has no other use apart from the AND / OR.
static bool isAndOrOfSetCCs(SDValue Op, unsigned &Opc) {
Opc = Op.getOpcode();
if (Opc != ISD::OR && Opc != ISD::AND)
return false;
return (Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse() &&
Op.getOperand(1).getOpcode() == X86ISD::SETCC &&
Op.getOperand(1).hasOneUse());
}
/// Return true if node is an ISD::XOR of a X86ISD::SETCC and 1 and that the
/// SETCC node has a single use.
static bool isXor1OfSetCC(SDValue Op) {
if (Op.getOpcode() != ISD::XOR)
return false;
if (isOneConstant(Op.getOperand(1)))
return Op.getOperand(0).getOpcode() == X86ISD::SETCC &&
Op.getOperand(0).hasOneUse();
return false;
}
SDValue X86TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
bool addTest = true;
SDValue Chain = Op.getOperand(0);
SDValue Cond = Op.getOperand(1);
SDValue Dest = Op.getOperand(2);
SDLoc dl(Op);
SDValue CC;
bool Inverted = false;
if (Cond.getOpcode() == ISD::SETCC) {
// Check for setcc([su]{add,sub,mul}o == 0).
if (cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETEQ &&
isNullConstant(Cond.getOperand(1)) &&
Cond.getOperand(0).getResNo() == 1 &&
(Cond.getOperand(0).getOpcode() == ISD::SADDO ||
Cond.getOperand(0).getOpcode() == ISD::UADDO ||
Cond.getOperand(0).getOpcode() == ISD::SSUBO ||
Cond.getOperand(0).getOpcode() == ISD::USUBO ||
Cond.getOperand(0).getOpcode() == ISD::SMULO ||
Cond.getOperand(0).getOpcode() == ISD::UMULO)) {
Inverted = true;
Cond = Cond.getOperand(0);
} else {
if (SDValue NewCond = LowerSETCC(Cond, DAG))
Cond = NewCond;
}
}
#if 0
// FIXME: LowerXALUO doesn't handle these!!
else if (Cond.getOpcode() == X86ISD::ADD ||
Cond.getOpcode() == X86ISD::SUB ||
Cond.getOpcode() == X86ISD::SMUL ||
Cond.getOpcode() == X86ISD::UMUL)
Cond = LowerXALUO(Cond, DAG);
#endif
// Look pass (and (setcc_carry (cmp ...)), 1).
if (Cond.getOpcode() == ISD::AND &&
Cond.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY &&
isOneConstant(Cond.getOperand(1)))
Cond = Cond.getOperand(0);
// If condition flag is set by a X86ISD::CMP, then use it as the condition
// setting operand in place of the X86ISD::SETCC.
unsigned CondOpcode = Cond.getOpcode();
if (CondOpcode == X86ISD::SETCC ||
CondOpcode == X86ISD::SETCC_CARRY) {
CC = Cond.getOperand(0);
SDValue Cmp = Cond.getOperand(1);
unsigned Opc = Cmp.getOpcode();
// FIXME: WHY THE SPECIAL CASING OF LogicalCmp??
if (isX86LogicalCmp(Cmp) || Opc == X86ISD::BT) {
Cond = Cmp;
addTest = false;
} else {
switch (cast<ConstantSDNode>(CC)->getZExtValue()) {
default: break;
case X86::COND_O:
case X86::COND_B:
// These can only come from an arithmetic instruction with overflow,
// e.g. SADDO, UADDO.
Cond = Cond.getNode()->getOperand(1);
addTest = false;
break;
}
}
}
CondOpcode = Cond.getOpcode();
if (CondOpcode == ISD::UADDO || CondOpcode == ISD::SADDO ||
CondOpcode == ISD::USUBO || CondOpcode == ISD::SSUBO ||
((CondOpcode == ISD::UMULO || CondOpcode == ISD::SMULO) &&
Cond.getOperand(0).getValueType() != MVT::i8)) {
SDValue LHS = Cond.getOperand(0);
SDValue RHS = Cond.getOperand(1);
unsigned X86Opcode;
unsigned X86Cond;
SDVTList VTs;
// Keep this in sync with LowerXALUO, otherwise we might create redundant
// instructions that can't be removed afterwards (i.e. X86ISD::ADD and
// X86ISD::INC).
switch (CondOpcode) {
case ISD::UADDO: X86Opcode = X86ISD::ADD; X86Cond = X86::COND_B; break;
case ISD::SADDO:
if (isOneConstant(RHS)) {
X86Opcode = X86ISD::INC; X86Cond = X86::COND_O;
break;
}
X86Opcode = X86ISD::ADD; X86Cond = X86::COND_O; break;
case ISD::USUBO: X86Opcode = X86ISD::SUB; X86Cond = X86::COND_B; break;
case ISD::SSUBO:
if (isOneConstant(RHS)) {
X86Opcode = X86ISD::DEC; X86Cond = X86::COND_O;
break;
}
X86Opcode = X86ISD::SUB; X86Cond = X86::COND_O; break;
case ISD::UMULO: X86Opcode = X86ISD::UMUL; X86Cond = X86::COND_O; break;
case ISD::SMULO: X86Opcode = X86ISD::SMUL; X86Cond = X86::COND_O; break;
default: llvm_unreachable("unexpected overflowing operator");
}
if (Inverted)
X86Cond = X86::GetOppositeBranchCondition((X86::CondCode)X86Cond);
if (CondOpcode == ISD::UMULO)
VTs = DAG.getVTList(LHS.getValueType(), LHS.getValueType(),
MVT::i32);
else
VTs = DAG.getVTList(LHS.getValueType(), MVT::i32);
SDValue X86Op = DAG.getNode(X86Opcode, dl, VTs, LHS, RHS);
if (CondOpcode == ISD::UMULO)
Cond = X86Op.getValue(2);
else
Cond = X86Op.getValue(1);
CC = DAG.getConstant(X86Cond, dl, MVT::i8);
addTest = false;
} else {
unsigned CondOpc;
if (Cond.hasOneUse() && isAndOrOfSetCCs(Cond, CondOpc)) {
SDValue Cmp = Cond.getOperand(0).getOperand(1);
if (CondOpc == ISD::OR) {
// Also, recognize the pattern generated by an FCMP_UNE. We can emit
// two branches instead of an explicit OR instruction with a
// separate test.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp)) {
CC = Cond.getOperand(0).getOperand(0);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = Cond.getOperand(1).getOperand(0);
Cond = Cmp;
addTest = false;
}
} else { // ISD::AND
// Also, recognize the pattern generated by an FCMP_OEQ. We can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Cmp == Cond.getOperand(1).getOperand(1) &&
isX86LogicalCmp(Cmp) &&
Op.getNode()->hasOneUse()) {
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(1).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
}
} else if (Cond.hasOneUse() && isXor1OfSetCC(Cond)) {
// Recognize for xorb (setcc), 1 patterns. The xor inverts the condition.
// It should be transformed during dag combiner except when the condition
// is set by a arithmetics with overflow node.
X86::CondCode CCode =
(X86::CondCode)Cond.getOperand(0).getConstantOperandVal(0);
CCode = X86::GetOppositeBranchCondition(CCode);
CC = DAG.getConstant(CCode, dl, MVT::i8);
Cond = Cond.getOperand(0).getOperand(1);
addTest = false;
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETOEQ) {
// For FCMP_OEQ, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_OEQ.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
Dest = FalseBB;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_P, dl, MVT::i8);
Cond = Cmp;
addTest = false;
}
}
} else if (Cond.getOpcode() == ISD::SETCC &&
cast<CondCodeSDNode>(Cond.getOperand(2))->get() == ISD::SETUNE) {
// For FCMP_UNE, we can emit
// two branches instead of an explicit AND instruction with a
// separate test. However, we only do this if this block doesn't
// have a fall-through edge, because this requires an explicit
// jmp when the condition is false.
if (Op.getNode()->hasOneUse()) {
SDNode *User = *Op.getNode()->use_begin();
// Look for an unconditional branch following this conditional branch.
// We need this because we need to reverse the successors in order
// to implement FCMP_UNE.
if (User->getOpcode() == ISD::BR) {
SDValue FalseBB = User->getOperand(1);
SDNode *NewBR =
DAG.UpdateNodeOperands(User, User->getOperand(0), Dest);
assert(NewBR == User);
(void)NewBR;
SDValue Cmp = DAG.getNode(X86ISD::CMP, dl, MVT::i32,
Cond.getOperand(0), Cond.getOperand(1));
Cmp = ConvertCmpIfNecessary(Cmp, DAG);
CC = DAG.getConstant(X86::COND_NE, dl, MVT::i8);
Chain = DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cmp);
CC = DAG.getConstant(X86::COND_NP, dl, MVT::i8);
Cond = Cmp;
addTest = false;
Dest = FalseBB;
}
}
}
}
if (addTest) {
// Look pass the truncate if the high bits are known zero.
if (isTruncWithZeroHighBitsInput(Cond, DAG))
Cond = Cond.getOperand(0);
// We know the result of AND is compared against zero. Try to match
// it to BT.
if (Cond.getOpcode() == ISD::AND && Cond.hasOneUse()) {
if (SDValue NewSetCC = LowerToBT(Cond, ISD::SETNE, dl, DAG)) {
CC = NewSetCC.getOperand(0);
Cond = NewSetCC.getOperand(1);
addTest = false;
}
}
}
if (addTest) {
X86::CondCode X86Cond = Inverted ? X86::COND_E : X86::COND_NE;
CC = DAG.getConstant(X86Cond, dl, MVT::i8);
Cond = EmitTest(Cond, X86Cond, dl, DAG);
}
Cond = ConvertCmpIfNecessary(Cond, DAG);
return DAG.getNode(X86ISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, CC, Cond);
}
// Lower dynamic stack allocation to _alloca call for Cygwin/Mingw targets.
// Calls to _alloca are needed to probe the stack when allocating more than 4k
// bytes in one go. Touching the stack at 4K increments is necessary to ensure
// that the guard pages used by the OS virtual memory manager are allocated in
// correct sequence.
SDValue
X86TargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
bool SplitStack = MF.shouldSplitStack();
bool Lower = (Subtarget.isOSWindows() && !Subtarget.isTargetMachO()) ||
SplitStack;
SDLoc dl(Op);
// Get the inputs.
SDNode *Node = Op.getNode();
SDValue Chain = Op.getOperand(0);
SDValue Size = Op.getOperand(1);
unsigned Align = cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue();
EVT VT = Node->getValueType(0);
// Chain the dynamic stack allocation so that it doesn't modify the stack
// pointer when other instructions are using the stack.
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl);
bool Is64Bit = Subtarget.is64Bit();
MVT SPTy = getPointerTy(DAG.getDataLayout());
SDValue Result;
if (!Lower) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
" not tell us which reg is the stack pointer!");
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
Chain = SP.getValue(1);
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlign = TFI.getStackAlignment();
Result = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value
if (Align > StackAlign)
Result = DAG.getNode(ISD::AND, dl, VT, Result,
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, Result); // Output chain
} else if (SplitStack) {
MachineRegisterInfo &MRI = MF.getRegInfo();
if (Is64Bit) {
// The 64 bit implementation of segmented stacks needs to clobber both r10
// r11. This makes it impossible to use it along with nested parameters.
const Function *F = MF.getFunction();
for (const auto &A : F->args()) {
if (A.hasNestAttr())
report_fatal_error("Cannot use segmented stacks with functions that "
"have nested arguments.");
}
}
const TargetRegisterClass *AddrRegClass = getRegClassFor(SPTy);
unsigned Vreg = MRI.createVirtualRegister(AddrRegClass);
Chain = DAG.getCopyToReg(Chain, dl, Vreg, Size);
Result = DAG.getNode(X86ISD::SEG_ALLOCA, dl, SPTy, Chain,
DAG.getRegister(Vreg, SPTy));
} else {
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
Chain = DAG.getNode(X86ISD::WIN_ALLOCA, dl, NodeTys, Chain, Size);
MF.getInfo<X86MachineFunctionInfo>()->setHasWinAlloca(true);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned SPReg = RegInfo->getStackRegister();
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, SPTy);
Chain = SP.getValue(1);
if (Align) {
SP = DAG.getNode(ISD::AND, dl, VT, SP.getValue(0),
DAG.getConstant(-(uint64_t)Align, dl, VT));
Chain = DAG.getCopyToReg(Chain, dl, SPReg, SP);
}
Result = SP;
}
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true),
DAG.getIntPtrConstant(0, dl, true), SDValue(), dl);
SDValue Ops[2] = {Result, Chain};
return DAG.getMergeValues(Ops, dl);
}
SDValue X86TargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
auto PtrVT = getPointerTy(MF.getDataLayout());
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
SDLoc DL(Op);
if (!Subtarget.is64Bit() ||
Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv())) {
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
return DAG.getStore(Op.getOperand(0), DL, FR, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
// __va_list_tag:
// gp_offset (0 - 6 * 8)
// fp_offset (48 - 48 + 8 * 16)
// overflow_arg_area (point to parameters coming in memory).
// reg_save_area
SmallVector<SDValue, 8> MemOps;
SDValue FIN = Op.getOperand(1);
// Store gp_offset
SDValue Store = DAG.getStore(Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsGPOffset(),
DL, MVT::i32),
FIN, MachinePointerInfo(SV), false, false, 0);
MemOps.push_back(Store);
// Store fp_offset
FIN = DAG.getMemBasePlusOffset(FIN, 4, DL);
Store = DAG.getStore(Op.getOperand(0), DL,
DAG.getConstant(FuncInfo->getVarArgsFPOffset(), DL,
MVT::i32),
FIN, MachinePointerInfo(SV, 4), false, false, 0);
MemOps.push_back(Store);
// Store ptr to overflow_arg_area
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(4, DL));
SDValue OVFIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
Store = DAG.getStore(Op.getOperand(0), DL, OVFIN, FIN,
MachinePointerInfo(SV, 8),
false, false, 0);
MemOps.push_back(Store);
// Store ptr to reg_save_area.
FIN = DAG.getNode(ISD::ADD, DL, PtrVT, FIN, DAG.getIntPtrConstant(
Subtarget.isTarget64BitLP64() ? 8 : 4, DL));
SDValue RSFIN = DAG.getFrameIndex(FuncInfo->getRegSaveFrameIndex(), PtrVT);
Store = DAG.getStore(Op.getOperand(0), DL, RSFIN, FIN, MachinePointerInfo(
SV, Subtarget.isTarget64BitLP64() ? 16 : 12), false, false, 0);
MemOps.push_back(Store);
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOps);
}
SDValue X86TargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.is64Bit() &&
"LowerVAARG only handles 64-bit va_arg!");
assert(Op.getNode()->getNumOperands() == 4);
MachineFunction &MF = DAG.getMachineFunction();
if (Subtarget.isCallingConvWin64(MF.getFunction()->getCallingConv()))
// The Win64 ABI uses char* instead of a structure.
return DAG.expandVAArg(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue SrcPtr = Op.getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
unsigned Align = Op.getConstantOperandVal(3);
SDLoc dl(Op);
EVT ArgVT = Op.getNode()->getValueType(0);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
uint32_t ArgSize = DAG.getDataLayout().getTypeAllocSize(ArgTy);
uint8_t ArgMode;
// Decide which area this value should be read from.
// TODO: Implement the AMD64 ABI in its entirety. This simple
// selection mechanism works only for the basic types.
if (ArgVT == MVT::f80) {
llvm_unreachable("va_arg for f80 not yet implemented");
} else if (ArgVT.isFloatingPoint() && ArgSize <= 16 /*bytes*/) {
ArgMode = 2; // Argument passed in XMM register. Use fp_offset.
} else if (ArgVT.isInteger() && ArgSize <= 32 /*bytes*/) {
ArgMode = 1; // Argument passed in GPR64 register(s). Use gp_offset.
} else {
llvm_unreachable("Unhandled argument type in LowerVAARG");
}
if (ArgMode == 2) {
// Sanity Check: Make sure using fp_offset makes sense.
assert(!Subtarget.useSoftFloat() &&
!(MF.getFunction()->hasFnAttribute(Attribute::NoImplicitFloat)) &&
Subtarget.hasSSE1());
}
// Insert VAARG_64 node into the DAG
// VAARG_64 returns two values: Variable Argument Address, Chain
SDValue InstOps[] = {Chain, SrcPtr, DAG.getConstant(ArgSize, dl, MVT::i32),
DAG.getConstant(ArgMode, dl, MVT::i8),
DAG.getConstant(Align, dl, MVT::i32)};
SDVTList VTs = DAG.getVTList(getPointerTy(DAG.getDataLayout()), MVT::Other);
SDValue VAARG = DAG.getMemIntrinsicNode(X86ISD::VAARG_64, dl,
VTs, InstOps, MVT::i64,
MachinePointerInfo(SV),
/*Align=*/0,
/*Volatile=*/false,
/*ReadMem=*/true,
/*WriteMem=*/true);
Chain = VAARG.getValue(1);
// Load the next argument and return it
return DAG.getLoad(ArgVT, dl,
Chain,
VAARG,
MachinePointerInfo(),
false, false, false, 0);
}
static SDValue LowerVACOPY(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
// X86-64 va_list is a struct { i32, i32, i8*, i8* }, except on Windows,
// where a va_list is still an i8*.
assert(Subtarget.is64Bit() && "This code only handles 64-bit va_copy!");
if (Subtarget.isCallingConvWin64(
DAG.getMachineFunction().getFunction()->getCallingConv()))
// Probably a Win64 va_copy.
return DAG.expandVACopy(Op.getNode());
SDValue Chain = Op.getOperand(0);
SDValue DstPtr = Op.getOperand(1);
SDValue SrcPtr = Op.getOperand(2);
const Value *DstSV = cast<SrcValueSDNode>(Op.getOperand(3))->getValue();
const Value *SrcSV = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
SDLoc DL(Op);
return DAG.getMemcpy(Chain, DL, DstPtr, SrcPtr,
DAG.getIntPtrConstant(24, DL), 8, /*isVolatile*/false,
false, false,
MachinePointerInfo(DstSV), MachinePointerInfo(SrcSV));
}
/// Handle vector element shifts where the shift amount is a constant.
/// Takes immediate version of shift as input.
static SDValue getTargetVShiftByConstNode(unsigned Opc, SDLoc dl, MVT VT,
SDValue SrcOp, uint64_t ShiftAmt,
SelectionDAG &DAG) {
MVT ElementType = VT.getVectorElementType();
// Fold this packed shift into its first operand if ShiftAmt is 0.
if (ShiftAmt == 0)
return SrcOp;
// Check for ShiftAmt >= element width
if (ShiftAmt >= ElementType.getSizeInBits()) {
if (Opc == X86ISD::VSRAI)
ShiftAmt = ElementType.getSizeInBits() - 1;
else
return DAG.getConstant(0, dl, VT);
}
assert((Opc == X86ISD::VSHLI || Opc == X86ISD::VSRLI || Opc == X86ISD::VSRAI)
&& "Unknown target vector shift-by-constant node");
// Fold this packed vector shift into a build vector if SrcOp is a
// vector of Constants or UNDEFs, and SrcOp valuetype is the same as VT.
if (VT == SrcOp.getSimpleValueType() &&
ISD::isBuildVectorOfConstantSDNodes(SrcOp.getNode())) {
SmallVector<SDValue, 8> Elts;
unsigned NumElts = SrcOp->getNumOperands();
ConstantSDNode *ND;
switch(Opc) {
default: llvm_unreachable("Unknown opcode!");
case X86ISD::VSHLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.shl(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRLI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.lshr(ShiftAmt), dl, ElementType));
}
break;
case X86ISD::VSRAI:
for (unsigned i=0; i!=NumElts; ++i) {
SDValue CurrentOp = SrcOp->getOperand(i);
if (CurrentOp->isUndef()) {
Elts.push_back(CurrentOp);
continue;
}
ND = cast<ConstantSDNode>(CurrentOp);
const APInt &C = ND->getAPIntValue();
Elts.push_back(DAG.getConstant(C.ashr(ShiftAmt), dl, ElementType));
}
break;
}
return DAG.getBuildVector(VT, dl, Elts);
}
return DAG.getNode(Opc, dl, VT, SrcOp,
DAG.getConstant(ShiftAmt, dl, MVT::i8));
}
/// Handle vector element shifts where the shift amount may or may not be a
/// constant. Takes immediate version of shift as input.
static SDValue getTargetVShiftNode(unsigned Opc, SDLoc dl, MVT VT,
SDValue SrcOp, SDValue ShAmt,
SelectionDAG &DAG) {
MVT SVT = ShAmt.getSimpleValueType();
assert((SVT == MVT::i32 || SVT == MVT::i64) && "Unexpected value type!");
// Catch shift-by-constant.
if (ConstantSDNode *CShAmt = dyn_cast<ConstantSDNode>(ShAmt))
return getTargetVShiftByConstNode(Opc, dl, VT, SrcOp,
CShAmt->getZExtValue(), DAG);
// Change opcode to non-immediate version
switch (Opc) {
default: llvm_unreachable("Unknown target vector shift node");
case X86ISD::VSHLI: Opc = X86ISD::VSHL; break;
case X86ISD::VSRLI: Opc = X86ISD::VSRL; break;
case X86ISD::VSRAI: Opc = X86ISD::VSRA; break;
}
const X86Subtarget &Subtarget =
static_cast<const X86Subtarget &>(DAG.getSubtarget());
if (Subtarget.hasSSE41() && ShAmt.getOpcode() == ISD::ZERO_EXTEND &&
ShAmt.getOperand(0).getSimpleValueType() == MVT::i16) {
// Let the shuffle legalizer expand this shift amount node.
SDValue Op0 = ShAmt.getOperand(0);
Op0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(Op0), MVT::v8i16, Op0);
ShAmt = getShuffleVectorZeroOrUndef(Op0, 0, true, Subtarget, DAG);
} else {
// Need to build a vector containing shift amount.
// SSE/AVX packed shifts only use the lower 64-bit of the shift count.
SmallVector<SDValue, 4> ShOps;
ShOps.push_back(ShAmt);
if (SVT == MVT::i32) {
ShOps.push_back(DAG.getConstant(0, dl, SVT));
ShOps.push_back(DAG.getUNDEF(SVT));
}
ShOps.push_back(DAG.getUNDEF(SVT));
MVT BVT = SVT == MVT::i32 ? MVT::v4i32 : MVT::v2i64;
ShAmt = DAG.getBuildVector(BVT, dl, ShOps);
}
// The return type has to be a 128-bit type with the same element
// type as the input type.
MVT EltVT = VT.getVectorElementType();
MVT ShVT = MVT::getVectorVT(EltVT, 128/EltVT.getSizeInBits());
ShAmt = DAG.getBitcast(ShVT, ShAmt);
return DAG.getNode(Opc, dl, VT, SrcOp, ShAmt);
}
/// \brief Return Mask with the necessary casting or extending
/// for \p Mask according to \p MaskVT when lowering masking intrinsics
static SDValue getMaskNode(SDValue Mask, MVT MaskVT,
const X86Subtarget &Subtarget,
SelectionDAG &DAG, SDLoc dl) {
if (isAllOnesConstant(Mask))
return DAG.getTargetConstant(1, dl, MaskVT);
if (X86::isZeroNode(Mask))
return DAG.getTargetConstant(0, dl, MaskVT);
if (MaskVT.bitsGT(Mask.getSimpleValueType())) {
// Mask should be extended
Mask = DAG.getNode(ISD::ANY_EXTEND, dl,
MVT::getIntegerVT(MaskVT.getSizeInBits()), Mask);
}
if (Mask.getSimpleValueType() == MVT::i64 && Subtarget.is32Bit()) {
if (MaskVT == MVT::v64i1) {
assert(Subtarget.hasBWI() && "Expected AVX512BW target!");
// In case 32bit mode, bitcast i64 is illegal, extend/split it.
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(0, dl, MVT::i32));
Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Mask,
DAG.getConstant(1, dl, MVT::i32));
Lo = DAG.getBitcast(MVT::v32i1, Lo);
Hi = DAG.getBitcast(MVT::v32i1, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v64i1, Lo, Hi);
} else {
// MaskVT require < 64bit. Truncate mask (should succeed in any case),
// and bitcast.
MVT TruncVT = MVT::getIntegerVT(MaskVT.getSizeInBits());
return DAG.getBitcast(MaskVT,
DAG.getNode(ISD::TRUNCATE, dl, TruncVT, Mask));
}
} else {
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
// In case when MaskVT equals v2i1 or v4i1, low 2 or 4 elements
// are extracted by EXTRACT_SUBVECTOR.
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MaskVT,
DAG.getBitcast(BitcastVT, Mask),
DAG.getIntPtrConstant(0, dl));
}
}
/// \brief Return (and \p Op, \p Mask) for compare instructions or
/// (vselect \p Mask, \p Op, \p PreservedSrc) for others along with the
/// necessary casting or extending for \p Mask when lowering masking intrinsics
static SDValue getVectorMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
unsigned OpcodeSelect = ISD::VSELECT;
SDLoc dl(Op);
if (isAllOnesConstant(Mask))
return Op;
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
switch (Op.getOpcode()) {
default: break;
case X86ISD::PCMPEQM:
case X86ISD::PCMPGTM:
case X86ISD::CMPM:
case X86ISD::CMPMU:
return DAG.getNode(ISD::AND, dl, VT, Op, VMask);
case X86ISD::VFPCLASS:
case X86ISD::VFPCLASSS:
return DAG.getNode(ISD::OR, dl, VT, Op, VMask);
case X86ISD::VTRUNC:
case X86ISD::VTRUNCS:
case X86ISD::VTRUNCUS:
// We can't use ISD::VSELECT here because it is not always "Legal"
// for the destination type. For example vpmovqb require only AVX512
// and vselect that can operate on byte element type require BWI
OpcodeSelect = X86ISD::SELECT;
break;
}
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(OpcodeSelect, dl, VT, VMask, Op, PreservedSrc);
}
/// \brief Creates an SDNode for a predicated scalar operation.
/// \returns (X86vselect \p Mask, \p Op, \p PreservedSrc).
/// The mask is coming as MVT::i8 and it should be truncated
/// to MVT::i1 while lowering masking intrinsics.
/// The main difference between ScalarMaskingNode and VectorMaskingNode is using
/// "X86select" instead of "vselect". We just can't create the "vselect" node
/// for a scalar instruction.
static SDValue getScalarMaskingNode(SDValue Op, SDValue Mask,
SDValue PreservedSrc,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
if (isAllOnesConstant(Mask))
return Op;
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
// The mask should be of type MVT::i1
SDValue IMask = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Mask);
if (Op.getOpcode() == X86ISD::FSETCC)
return DAG.getNode(ISD::AND, dl, VT, Op, IMask);
if (Op.getOpcode() == X86ISD::VFPCLASS ||
Op.getOpcode() == X86ISD::VFPCLASSS)
return DAG.getNode(ISD::OR, dl, VT, Op, IMask);
if (PreservedSrc.isUndef())
PreservedSrc = getZeroVector(VT, Subtarget, DAG, dl);
return DAG.getNode(X86ISD::SELECT, dl, VT, IMask, Op, PreservedSrc);
}
static int getSEHRegistrationNodeSize(const Function *Fn) {
if (!Fn->hasPersonalityFn())
report_fatal_error(
"querying registration node size for function without personality");
// The RegNodeSize is 6 32-bit words for SEH and 4 for C++ EH. See
// WinEHStatePass for the full struct definition.
switch (classifyEHPersonality(Fn->getPersonalityFn())) {
case EHPersonality::MSVC_X86SEH: return 24;
case EHPersonality::MSVC_CXX: return 16;
default: break;
}
report_fatal_error(
"can only recover FP for 32-bit MSVC EH personality functions");
}
/// When the MSVC runtime transfers control to us, either to an outlined
/// function or when returning to a parent frame after catching an exception, we
/// recover the parent frame pointer by doing arithmetic on the incoming EBP.
/// Here's the math:
/// RegNodeBase = EntryEBP - RegNodeSize
/// ParentFP = RegNodeBase - ParentFrameOffset
/// Subtracting RegNodeSize takes us to the offset of the registration node, and
/// subtracting the offset (negative on x86) takes us back to the parent FP.
static SDValue recoverFramePointer(SelectionDAG &DAG, const Function *Fn,
SDValue EntryEBP) {
MachineFunction &MF = DAG.getMachineFunction();
SDLoc dl;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
// It's possible that the parent function no longer has a personality function
// if the exceptional code was optimized away, in which case we just return
// the incoming EBP.
if (!Fn->hasPersonalityFn())
return EntryEBP;
// Get an MCSymbol that will ultimately resolve to the frame offset of the EH
// registration, or the .set_setframe offset.
MCSymbol *OffsetSym =
MF.getMMI().getContext().getOrCreateParentFrameOffsetSymbol(
GlobalValue::getRealLinkageName(Fn->getName()));
SDValue OffsetSymVal = DAG.getMCSymbol(OffsetSym, PtrVT);
SDValue ParentFrameOffset =
DAG.getNode(ISD::LOCAL_RECOVER, dl, PtrVT, OffsetSymVal);
// Return EntryEBP + ParentFrameOffset for x64. This adjusts from RSP after
// prologue to RBP in the parent function.
const X86Subtarget &Subtarget =
static_cast<const X86Subtarget &>(DAG.getSubtarget());
if (Subtarget.is64Bit())
return DAG.getNode(ISD::ADD, dl, PtrVT, EntryEBP, ParentFrameOffset);
int RegNodeSize = getSEHRegistrationNodeSize(Fn);
// RegNodeBase = EntryEBP - RegNodeSize
// ParentFP = RegNodeBase - ParentFrameOffset
SDValue RegNodeBase = DAG.getNode(ISD::SUB, dl, PtrVT, EntryEBP,
DAG.getConstant(RegNodeSize, dl, PtrVT));
return DAG.getNode(ISD::SUB, dl, PtrVT, RegNodeBase, ParentFrameOffset);
}
static SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
MVT VT = Op.getSimpleValueType();
const IntrinsicData* IntrData = getIntrinsicWithoutChain(IntNo);
if (IntrData) {
switch(IntrData->Type) {
case INTR_TYPE_1OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1));
case INTR_TYPE_2OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2));
case INTR_TYPE_2OP_IMM8:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(2)));
case INTR_TYPE_3OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3));
case INTR_TYPE_4OP:
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Op.getOperand(1),
Op.getOperand(2), Op.getOperand(3), Op.getOperand(4));
case INTR_TYPE_1OP_MASK_RM: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue RoundingMode;
// We allways add rounding mode to the Node.
// If the rounding mode is not specified, we add the
// "current direction" mode.
if (Op.getNumOperands() == 4)
RoundingMode =
DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
else
RoundingMode = Op.getOperand(4);
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0)
if (cast<ConstantSDNode>(RoundingMode)->getZExtValue() !=
X86::STATIC_ROUNDING::CUR_DIRECTION)
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(), Src, RoundingMode),
Mask, PassThru, Subtarget, DAG);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src,
RoundingMode),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_1OP_MASK: {
SDValue Src = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
// We add rounding mode to the Node when
// - RM Opcode is specified and
// - RM is not "current direction".
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(4);
unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue passThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2),
Mask, passThru, Subtarget, DAG);
}
case INTR_TYPE_SCALAR_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src0 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// There are 2 kinds of intrinsics in this group:
// (1) With suppress-all-exceptions (sae) or rounding mode- 6 operands
// (2) With rounding mode and sae - 7 operands.
if (Op.getNumOperands() == 6) {
SDValue Sae = Op.getOperand(5);
unsigned Opc = IntrData->Opc1 ? IntrData->Opc1 : IntrData->Opc0;
return getScalarMaskingNode(DAG.getNode(Opc, dl, VT, Src1, Src2,
Sae),
Mask, Src0, Subtarget, DAG);
}
assert(Op.getNumOperands() == 7 && "Unexpected intrinsic form");
SDValue RoundingMode = Op.getOperand(5);
SDValue Sae = Op.getOperand(6);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1, Src2,
RoundingMode, Sae),
Mask, Src0, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK:
case INTR_TYPE_2OP_IMM8_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
if (IntrData->Type == INTR_TYPE_2OP_IMM8_MASK)
Src2 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src2);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(5);
unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
// TODO: Intrinsics should have fast-math-flags to propagate.
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src1,Src2),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_2OP_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// We specify 2 possible modes for intrinsics, with/without rounding
// modes.
// First, we check if the intrinsic have rounding mode (6 operands),
// if not, we set rounding mode to "current".
SDValue Rnd;
if (Op.getNumOperands() == 6)
Rnd = Op.getOperand(5);
else
Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Rnd),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_SCALAR_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Sae = Op.getOperand(6);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, Src1,
Src2, Src3, Sae),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_MASK_RM: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Imm = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
// We specify 2 possible modes for intrinsics, with/without rounding
// modes.
// First, we check if the intrinsic have rounding mode (7 operands),
// if not, we set rounding mode to "current".
SDValue Rnd;
if (Op.getNumOperands() == 7)
Rnd = Op.getOperand(6);
else
Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Imm, Rnd),
Mask, PassThru, Subtarget, DAG);
}
case INTR_TYPE_3OP_IMM8_MASK:
case INTR_TYPE_3OP_MASK:
case INSERT_SUBVEC: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue PassThru = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
if (IntrData->Type == INTR_TYPE_3OP_IMM8_MASK)
Src3 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Src3);
else if (IntrData->Type == INSERT_SUBVEC) {
// imm should be adapted to ISD::INSERT_SUBVECTOR behavior
assert(isa<ConstantSDNode>(Src3) && "Expected a ConstantSDNode here!");
unsigned Imm = cast<ConstantSDNode>(Src3)->getZExtValue();
Imm *= Src2.getSimpleValueType().getVectorNumElements();
Src3 = DAG.getTargetConstant(Imm, dl, MVT::i32);
}
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(6);
unsigned Round = cast<ConstantSDNode>(Rnd)->getZExtValue();
if (Round != X86::STATIC_ROUNDING::CUR_DIRECTION) {
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case VPERM_2OP_MASK : {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue PassThru = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
// Swap Src1 and Src2 in the node creation
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,Src2, Src1),
Mask, PassThru, Subtarget, DAG);
}
case VPERM_3OP_MASKZ:
case VPERM_3OP_MASK:{
// Src2 is the PassThru
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
MVT VT = Op.getSimpleValueType();
SDValue PassThru = SDValue();
// set PassThru element
if (IntrData->Type == VPERM_3OP_MASKZ)
PassThru = getZeroVector(VT, Subtarget, DAG, dl);
else
PassThru = DAG.getBitcast(VT, Src2);
// Swap Src1 and Src2 in the node creation
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
dl, Op.getValueType(),
Src2, Src1, Src3),
Mask, PassThru, Subtarget, DAG);
}
case FMA_OP_MASK3:
case FMA_OP_MASKZ:
case FMA_OP_MASK: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
MVT VT = Op.getSimpleValueType();
SDValue PassThru = SDValue();
// set PassThru element
if (IntrData->Type == FMA_OP_MASKZ)
PassThru = getZeroVector(VT, Subtarget, DAG, dl);
else if (IntrData->Type == FMA_OP_MASK3)
PassThru = Src3;
else
PassThru = Src1;
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
unsigned IntrWithRoundingModeOpcode = IntrData->Opc1;
if (IntrWithRoundingModeOpcode != 0) {
SDValue Rnd = Op.getOperand(5);
if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
X86::STATIC_ROUNDING::CUR_DIRECTION)
return getVectorMaskingNode(DAG.getNode(IntrWithRoundingModeOpcode,
dl, Op.getValueType(),
Src1, Src2, Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0,
dl, Op.getValueType(),
Src1, Src2, Src3),
Mask, PassThru, Subtarget, DAG);
}
case FMA_OP_SCALAR_MASK:
case FMA_OP_SCALAR_MASK3:
case FMA_OP_SCALAR_MASKZ: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Mask = Op.getOperand(4);
MVT VT = Op.getSimpleValueType();
SDValue PassThru = SDValue();
// set PassThru element
if (IntrData->Type == FMA_OP_SCALAR_MASKZ)
PassThru = getZeroVector(VT, Subtarget, DAG, dl);
else if (IntrData->Type == FMA_OP_SCALAR_MASK3)
PassThru = Src3;
else
PassThru = Src1;
SDValue Rnd = Op.getOperand(5);
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl,
Op.getValueType(), Src1, Src2,
Src3, Rnd),
Mask, PassThru, Subtarget, DAG);
}
case TERLOG_OP_MASK:
case TERLOG_OP_MASKZ: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Src4 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(4));
SDValue Mask = Op.getOperand(5);
MVT VT = Op.getSimpleValueType();
SDValue PassThru = Src1;
// Set PassThru element.
if (IntrData->Type == TERLOG_OP_MASKZ)
PassThru = getZeroVector(VT, Subtarget, DAG, dl);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3, Src4),
Mask, PassThru, Subtarget, DAG);
}
case FPCLASS: {
// FPclass intrinsics with mask
SDValue Src1 = Op.getOperand(1);
MVT VT = Src1.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue Imm = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MaskVT, Src1, Imm);
SDValue FPclassMask = getVectorMaskingNode(FPclass, Mask,
DAG.getTargetConstant(0, dl, MaskVT),
Subtarget, DAG);
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
DAG.getUNDEF(BitcastVT), FPclassMask,
DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(Op.getValueType(), Res);
}
case FPCLASSS: {
SDValue Src1 = Op.getOperand(1);
SDValue Imm = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue FPclass = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Imm);
SDValue FPclassMask = getScalarMaskingNode(FPclass, Mask,
DAG.getTargetConstant(0, dl, MVT::i1), Subtarget, DAG);
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i8, FPclassMask);
}
case CMP_MASK:
case CMP_MASK_CC: {
// Comparison intrinsics with masks.
// Example of transformation:
// (i8 (int_x86_avx512_mask_pcmpeq_q_128
// (v2i64 %a), (v2i64 %b), (i8 %mask))) ->
// (i8 (bitcast
// (v8i1 (insert_subvector undef,
// (v2i1 (and (PCMPEQM %a, %b),
// (extract_subvector
// (v8i1 (bitcast %mask)), 0))), 0))))
MVT VT = Op.getOperand(1).getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue Mask = Op.getOperand((IntrData->Type == CMP_MASK_CC) ? 4 : 3);
MVT BitcastVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
SDValue Cmp;
if (IntrData->Type == CMP_MASK_CC) {
SDValue CC = Op.getOperand(3);
CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, CC);
// We specify 2 possible opcodes for intrinsics with rounding modes.
// First, we check if the intrinsic may have non-default rounding mode,
// (IntrData->Opc1 != 0), then we check the rounding mode operand.
if (IntrData->Opc1 != 0) {
SDValue Rnd = Op.getOperand(5);
if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
X86::STATIC_ROUNDING::CUR_DIRECTION)
Cmp = DAG.getNode(IntrData->Opc1, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2), CC, Rnd);
}
//default rounding mode
if(!Cmp.getNode())
Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2), CC);
} else {
assert(IntrData->Type == CMP_MASK && "Unexpected intrinsic type!");
Cmp = DAG.getNode(IntrData->Opc0, dl, MaskVT, Op.getOperand(1),
Op.getOperand(2));
}
SDValue CmpMask = getVectorMaskingNode(Cmp, Mask,
DAG.getTargetConstant(0, dl,
MaskVT),
Subtarget, DAG);
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
DAG.getUNDEF(BitcastVT), CmpMask,
DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(Op.getValueType(), Res);
}
case CMP_MASK_SCALAR_CC: {
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue CC = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op.getOperand(3));
SDValue Mask = Op.getOperand(4);
SDValue Cmp;
if (IntrData->Opc1 != 0) {
SDValue Rnd = Op.getOperand(5);
if (cast<ConstantSDNode>(Rnd)->getZExtValue() !=
X86::STATIC_ROUNDING::CUR_DIRECTION)
Cmp = DAG.getNode(IntrData->Opc1, dl, MVT::i1, Src1, Src2, CC, Rnd);
}
//default rounding mode
if(!Cmp.getNode())
Cmp = DAG.getNode(IntrData->Opc0, dl, MVT::i1, Src1, Src2, CC);
SDValue CmpMask = getScalarMaskingNode(Cmp, Mask,
DAG.getTargetConstant(0, dl,
MVT::i1),
Subtarget, DAG);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i8, CmpMask);
}
case COMI: { // Comparison intrinsics
ISD::CondCode CC = (ISD::CondCode)IntrData->Opc1;
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
SDValue Comi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, LHS, RHS);
SDValue InvComi = DAG.getNode(IntrData->Opc0, dl, MVT::i32, RHS, LHS);
SDValue SetCC;
switch (CC) {
case ISD::SETEQ: { // (ZF = 0 and PF = 0)
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_E, dl, MVT::i8), Comi);
SDValue SetNP = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_NP, dl, MVT::i8),
Comi);
SetCC = DAG.getNode(ISD::AND, dl, MVT::i8, SetCC, SetNP);
break;
}
case ISD::SETNE: { // (ZF = 1 or PF = 1)
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_NE, dl, MVT::i8), Comi);
SDValue SetP = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_P, dl, MVT::i8),
Comi);
SetCC = DAG.getNode(ISD::OR, dl, MVT::i8, SetCC, SetP);
break;
}
case ISD::SETGT: // (CF = 0 and ZF = 0)
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_A, dl, MVT::i8), Comi);
break;
case ISD::SETLT: { // The condition is opposite to GT. Swap the operands.
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_A, dl, MVT::i8), InvComi);
break;
}
case ISD::SETGE: // CF = 0
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_AE, dl, MVT::i8), Comi);
break;
case ISD::SETLE: // The condition is opposite to GE. Swap the operands.
SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_AE, dl, MVT::i8), InvComi);
break;
default:
llvm_unreachable("Unexpected illegal condition!");
}
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case COMI_RM: { // Comparison intrinsics with Sae
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned CondVal = cast<ConstantSDNode>(Op.getOperand(3))->getZExtValue();
SDValue Sae = Op.getOperand(4);
SDValue FCmp;
if (cast<ConstantSDNode>(Sae)->getZExtValue() ==
X86::STATIC_ROUNDING::CUR_DIRECTION)
FCmp = DAG.getNode(X86ISD::FSETCC, dl, MVT::i1, LHS, RHS,
DAG.getConstant(CondVal, dl, MVT::i8));
else
FCmp = DAG.getNode(X86ISD::FSETCC, dl, MVT::i1, LHS, RHS,
DAG.getConstant(CondVal, dl, MVT::i8), Sae);
// AnyExt just uses KMOVW %kreg, %r32; ZeroExt emits "and $1, %reg"
return DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, FCmp);
}
case VSHIFT:
return getTargetVShiftNode(IntrData->Opc0, dl, Op.getSimpleValueType(),
Op.getOperand(1), Op.getOperand(2), DAG);
case VSHIFT_MASK:
return getVectorMaskingNode(getTargetVShiftNode(IntrData->Opc0, dl,
Op.getSimpleValueType(),
Op.getOperand(1),
Op.getOperand(2), DAG),
Op.getOperand(4), Op.getOperand(3), Subtarget,
DAG);
case COMPRESS_EXPAND_IN_REG: {
SDValue Mask = Op.getOperand(3);
SDValue DataToCompress = Op.getOperand(1);
SDValue PassThru = Op.getOperand(2);
if (isAllOnesConstant(Mask)) // return data as is
return Op.getOperand(1);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
DataToCompress),
Mask, PassThru, Subtarget, DAG);
}
case BROADCASTM: {
SDValue Mask = Op.getOperand(1);
MVT MaskVT = MVT::getVectorVT(MVT::i1,
Mask.getSimpleValueType().getSizeInBits());
Mask = DAG.getBitcast(MaskVT, Mask);
return DAG.getNode(IntrData->Opc0, dl, Op.getValueType(), Mask);
}
case BLEND: {
SDValue Mask = Op.getOperand(3);
MVT VT = Op.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getNode(IntrData->Opc0, dl, VT, VMask, Op.getOperand(1),
Op.getOperand(2));
}
case KUNPCK: {
MVT VT = Op.getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits()/2);
SDValue Src1 = getMaskNode(Op.getOperand(1), MaskVT, Subtarget, DAG, dl);
SDValue Src2 = getMaskNode(Op.getOperand(2), MaskVT, Subtarget, DAG, dl);
// Arguments should be swapped.
SDValue Res = DAG.getNode(IntrData->Opc0, dl,
MVT::getVectorVT(MVT::i1, VT.getSizeInBits()),
Src2, Src1);
return DAG.getBitcast(VT, Res);
}
case FIXUPIMMS:
case FIXUPIMMS_MASKZ:
case FIXUPIMM:
case FIXUPIMM_MASKZ:{
SDValue Src1 = Op.getOperand(1);
SDValue Src2 = Op.getOperand(2);
SDValue Src3 = Op.getOperand(3);
SDValue Imm = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Passthru = (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMMS ) ?
Src1 : getZeroVector(VT, Subtarget, DAG, dl);
// We specify 2 possible modes for intrinsics, with/without rounding
// modes.
// First, we check if the intrinsic have rounding mode (7 operands),
// if not, we set rounding mode to "current".
SDValue Rnd;
if (Op.getNumOperands() == 7)
Rnd = Op.getOperand(6);
else
Rnd = DAG.getConstant(X86::STATIC_ROUNDING::CUR_DIRECTION, dl, MVT::i32);
if (IntrData->Type == FIXUPIMM || IntrData->Type == FIXUPIMM_MASKZ)
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3, Imm, Rnd),
Mask, Passthru, Subtarget, DAG);
else // Scalar - FIXUPIMMS, FIXUPIMMS_MASKZ
return getScalarMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
Src1, Src2, Src3, Imm, Rnd),
Mask, Passthru, Subtarget, DAG);
}
case CONVERT_TO_MASK: {
MVT SrcVT = Op.getOperand(1).getSimpleValueType();
MVT MaskVT = MVT::getVectorVT(MVT::i1, SrcVT.getVectorNumElements());
MVT BitcastVT = MVT::getVectorVT(MVT::i1, VT.getSizeInBits());
SDValue CvtMask = DAG.getNode(IntrData->Opc0, dl, MaskVT,
Op.getOperand(1));
SDValue Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, BitcastVT,
DAG.getUNDEF(BitcastVT), CvtMask,
DAG.getIntPtrConstant(0, dl));
return DAG.getBitcast(Op.getValueType(), Res);
}
case CONVERT_MASK_TO_VEC: {
SDValue Mask = Op.getOperand(1);
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getNode(IntrData->Opc0, dl, VT, VMask);
}
case BRCST_SUBVEC_TO_VEC: {
SDValue Src = Op.getOperand(1);
SDValue Passthru = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
EVT resVT = Passthru.getValueType();
SDValue subVec = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, resVT,
DAG.getUNDEF(resVT), Src,
DAG.getIntPtrConstant(0, dl));
SDValue immVal;
if (Src.getSimpleValueType().is256BitVector() && resVT.is512BitVector())
immVal = DAG.getConstant(0x44, dl, MVT::i8);
else
immVal = DAG.getConstant(0, dl, MVT::i8);
return getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT,
subVec, subVec, immVal),
Mask, Passthru, Subtarget, DAG);
}
default:
break;
}
}
switch (IntNo) {
default: return SDValue(); // Don't custom lower most intrinsics.
case Intrinsic::x86_avx2_permd:
case Intrinsic::x86_avx2_permps:
// Operands intentionally swapped. Mask is last operand to intrinsic,
// but second operand for node/instruction.
return DAG.getNode(X86ISD::VPERMV, dl, Op.getValueType(),
Op.getOperand(2), Op.getOperand(1));
// ptest and testp intrinsics. The intrinsic these come from are designed to
// return an integer value, not just an instruction so lower it to the ptest
// or testp pattern and a setcc for the result.
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestz_256:
case Intrinsic::x86_avx_ptestc_256:
case Intrinsic::x86_avx_ptestnzc_256:
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
case Intrinsic::x86_avx_vtestc_pd_256:
case Intrinsic::x86_avx_vtestnzc_pd_256: {
bool IsTestPacked = false;
unsigned X86CC;
switch (IntNo) {
default: llvm_unreachable("Bad fallthrough in Intrinsic lowering.");
case Intrinsic::x86_avx_vtestz_ps:
case Intrinsic::x86_avx_vtestz_pd:
case Intrinsic::x86_avx_vtestz_ps_256:
case Intrinsic::x86_avx_vtestz_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestz:
case Intrinsic::x86_avx_ptestz_256:
// ZF = 1
X86CC = X86::COND_E;
break;
case Intrinsic::x86_avx_vtestc_ps:
case Intrinsic::x86_avx_vtestc_pd:
case Intrinsic::x86_avx_vtestc_ps_256:
case Intrinsic::x86_avx_vtestc_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestc:
case Intrinsic::x86_avx_ptestc_256:
// CF = 1
X86CC = X86::COND_B;
break;
case Intrinsic::x86_avx_vtestnzc_ps:
case Intrinsic::x86_avx_vtestnzc_pd:
case Intrinsic::x86_avx_vtestnzc_ps_256:
case Intrinsic::x86_avx_vtestnzc_pd_256:
IsTestPacked = true; // Fallthrough
case Intrinsic::x86_sse41_ptestnzc:
case Intrinsic::x86_avx_ptestnzc_256:
// ZF and CF = 0
X86CC = X86::COND_A;
break;
}
SDValue LHS = Op.getOperand(1);
SDValue RHS = Op.getOperand(2);
unsigned TestOpc = IsTestPacked ? X86ISD::TESTP : X86ISD::PTEST;
SDValue Test = DAG.getNode(TestOpc, dl, MVT::i32, LHS, RHS);
SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8, CC, Test);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_avx512_kortestz_w:
case Intrinsic::x86_avx512_kortestc_w: {
unsigned X86CC = (IntNo == Intrinsic::x86_avx512_kortestz_w)? X86::COND_E: X86::COND_B;
SDValue LHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(1));
SDValue RHS = DAG.getBitcast(MVT::v16i1, Op.getOperand(2));
SDValue CC = DAG.getConstant(X86CC, dl, MVT::i8);
SDValue Test = DAG.getNode(X86ISD::KORTEST, dl, MVT::i32, LHS, RHS);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i1, CC, Test);
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistria128:
case Intrinsic::x86_sse42_pcmpestria128:
case Intrinsic::x86_sse42_pcmpistric128:
case Intrinsic::x86_sse42_pcmpestric128:
case Intrinsic::x86_sse42_pcmpistrio128:
case Intrinsic::x86_sse42_pcmpestrio128:
case Intrinsic::x86_sse42_pcmpistris128:
case Intrinsic::x86_sse42_pcmpestris128:
case Intrinsic::x86_sse42_pcmpistriz128:
case Intrinsic::x86_sse42_pcmpestriz128: {
unsigned Opcode;
unsigned X86CC;
switch (IntNo) {
default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
case Intrinsic::x86_sse42_pcmpistria128:
Opcode = X86ISD::PCMPISTRI;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpestria128:
Opcode = X86ISD::PCMPESTRI;
X86CC = X86::COND_A;
break;
case Intrinsic::x86_sse42_pcmpistric128:
Opcode = X86ISD::PCMPISTRI;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpestric128:
Opcode = X86ISD::PCMPESTRI;
X86CC = X86::COND_B;
break;
case Intrinsic::x86_sse42_pcmpistrio128:
Opcode = X86ISD::PCMPISTRI;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpestrio128:
Opcode = X86ISD::PCMPESTRI;
X86CC = X86::COND_O;
break;
case Intrinsic::x86_sse42_pcmpistris128:
Opcode = X86ISD::PCMPISTRI;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpestris128:
Opcode = X86ISD::PCMPESTRI;
X86CC = X86::COND_S;
break;
case Intrinsic::x86_sse42_pcmpistriz128:
Opcode = X86ISD::PCMPISTRI;
X86CC = X86::COND_E;
break;
case Intrinsic::x86_sse42_pcmpestriz128:
Opcode = X86ISD::PCMPESTRI;
X86CC = X86::COND_E;
break;
}
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
SDValue PCMP = DAG.getNode(Opcode, dl, VTs, NewOps);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86CC, dl, MVT::i8),
SDValue(PCMP.getNode(), 1));
return DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, SetCC);
}
case Intrinsic::x86_sse42_pcmpistri128:
case Intrinsic::x86_sse42_pcmpestri128: {
unsigned Opcode;
if (IntNo == Intrinsic::x86_sse42_pcmpistri128)
Opcode = X86ISD::PCMPISTRI;
else
Opcode = X86ISD::PCMPESTRI;
SmallVector<SDValue, 5> NewOps(Op->op_begin()+1, Op->op_end());
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
return DAG.getNode(Opcode, dl, VTs, NewOps);
}
case Intrinsic::x86_seh_lsda: {
// Compute the symbol for the LSDA. We know it'll get emitted later.
MachineFunction &MF = DAG.getMachineFunction();
SDValue Op1 = Op.getOperand(1);
auto *Fn = cast<Function>(cast<GlobalAddressSDNode>(Op1)->getGlobal());
MCSymbol *LSDASym = MF.getMMI().getContext().getOrCreateLSDASymbol(
GlobalValue::getRealLinkageName(Fn->getName()));
// Generate a simple absolute symbol reference. This intrinsic is only
// supported on 32-bit Windows, which isn't PIC.
SDValue Result = DAG.getMCSymbol(LSDASym, VT);
return DAG.getNode(X86ISD::Wrapper, dl, VT, Result);
}
case Intrinsic::x86_seh_recoverfp: {
SDValue FnOp = Op.getOperand(1);
SDValue IncomingFPOp = Op.getOperand(2);
GlobalAddressSDNode *GSD = dyn_cast<GlobalAddressSDNode>(FnOp);
auto *Fn = dyn_cast_or_null<Function>(GSD ? GSD->getGlobal() : nullptr);
if (!Fn)
report_fatal_error(
"llvm.x86.seh.recoverfp must take a function as the first argument");
return recoverFramePointer(DAG, Fn, IncomingFPOp);
}
case Intrinsic::localaddress: {
// Returns one of the stack, base, or frame pointer registers, depending on
// which is used to reference local variables.
MachineFunction &MF = DAG.getMachineFunction();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned Reg;
if (RegInfo->hasBasePointer(MF))
Reg = RegInfo->getBaseRegister();
else // This function handles the SP or FP case.
Reg = RegInfo->getPtrSizedFrameRegister(MF);
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
}
}
}
static SDValue getGatherNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = cast<ConstantSDNode>(ScaleOp);
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
MVT MaskVT = MVT::getVectorVT(MVT::i1,
Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MaskVT, MVT::Other);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
if (Src.isUndef())
Src = getZeroVector(Op.getSimpleValueType(), Subtarget, DAG, dl);
SDValue Ops[] = {Src, VMask, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
SDValue RetOps[] = { SDValue(Res, 0), SDValue(Res, 2) };
return DAG.getMergeValues(RetOps, dl);
}
static SDValue getScatterNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Src, SDValue Mask, SDValue Base,
SDValue Index, SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = cast<ConstantSDNode>(ScaleOp);
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
MVT MaskVT = MVT::getVectorVT(MVT::i1,
Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
SDVTList VTs = DAG.getVTList(MaskVT, MVT::Other);
SDValue Ops[] = {Base, Scale, Index, Disp, Segment, VMask, Src, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, VTs, Ops);
return SDValue(Res, 1);
}
static SDValue getPrefetchNode(unsigned Opc, SDValue Op, SelectionDAG &DAG,
SDValue Mask, SDValue Base, SDValue Index,
SDValue ScaleOp, SDValue Chain,
const X86Subtarget &Subtarget) {
SDLoc dl(Op);
auto *C = cast<ConstantSDNode>(ScaleOp);
SDValue Scale = DAG.getTargetConstant(C->getZExtValue(), dl, MVT::i8);
SDValue Disp = DAG.getTargetConstant(0, dl, MVT::i32);
SDValue Segment = DAG.getRegister(0, MVT::i32);
MVT MaskVT =
MVT::getVectorVT(MVT::i1, Index.getSimpleValueType().getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
//SDVTList VTs = DAG.getVTList(MVT::Other);
SDValue Ops[] = {VMask, Base, Scale, Index, Disp, Segment, Chain};
SDNode *Res = DAG.getMachineNode(Opc, dl, MVT::Other, Ops);
return SDValue(Res, 0);
}
/// Handles the lowering of builtin intrinsics that read performance monitor
/// counters (x86_rdpmc).
static void getReadPerformanceCounter(SDNode *N, SDLoc DL,
SelectionDAG &DAG, const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue LO, HI;
// The ECX register is used to select the index of the performance counter
// to read.
SDValue Chain = DAG.getCopyToReg(N->getOperand(0), DL, X86::ECX,
N->getOperand(2));
SDValue rd = DAG.getNode(X86ISD::RDPMC_DAG, DL, Tys, Chain);
// Reads the content of a 64-bit performance counter and returns it in the
// registers EDX:EAX.
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
Chain = HI.getValue(1);
if (Subtarget.is64Bit()) {
// The EAX register is loaded with the low-order 32 bits. The EDX register
// is loaded with the supported high-order bits of the counter.
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
}
/// Handles the lowering of builtin intrinsics that read the time stamp counter
/// (x86_rdtsc and x86_rdtscp). This function is also used to custom lower
/// READCYCLECOUNTER nodes.
static void getReadTimeStampCounter(SDNode *N, SDLoc DL, unsigned Opcode,
SelectionDAG &DAG, const X86Subtarget &Subtarget,
SmallVectorImpl<SDValue> &Results) {
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue rd = DAG.getNode(Opcode, DL, Tys, N->getOperand(0));
SDValue LO, HI;
// The processor's time-stamp counter (a 64-bit MSR) is stored into the
// EDX:EAX registers. EDX is loaded with the high-order 32 bits of the MSR
// and the EAX register is loaded with the low-order 32 bits.
if (Subtarget.is64Bit()) {
LO = DAG.getCopyFromReg(rd, DL, X86::RAX, MVT::i64, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::RDX, MVT::i64,
LO.getValue(2));
} else {
LO = DAG.getCopyFromReg(rd, DL, X86::EAX, MVT::i32, rd.getValue(1));
HI = DAG.getCopyFromReg(LO.getValue(1), DL, X86::EDX, MVT::i32,
LO.getValue(2));
}
SDValue Chain = HI.getValue(1);
if (Opcode == X86ISD::RDTSCP_DAG) {
assert(N->getNumOperands() == 3 && "Unexpected number of operands!");
// Instruction RDTSCP loads the IA32:TSC_AUX_MSR (address C000_0103H) into
// the ECX register. Add 'ecx' explicitly to the chain.
SDValue ecx = DAG.getCopyFromReg(Chain, DL, X86::ECX, MVT::i32,
HI.getValue(2));
// Explicitly store the content of ECX at the location passed in input
// to the 'rdtscp' intrinsic.
Chain = DAG.getStore(ecx.getValue(1), DL, ecx, N->getOperand(2),
MachinePointerInfo(), false, false, 0);
}
if (Subtarget.is64Bit()) {
// The EDX register is loaded with the high-order 32 bits of the MSR, and
// the EAX register is loaded with the low-order 32 bits.
SDValue Tmp = DAG.getNode(ISD::SHL, DL, MVT::i64, HI,
DAG.getConstant(32, DL, MVT::i8));
Results.push_back(DAG.getNode(ISD::OR, DL, MVT::i64, LO, Tmp));
Results.push_back(Chain);
return;
}
// Use a buildpair to merge the two 32-bit values into a 64-bit one.
SDValue Ops[] = { LO, HI };
SDValue Pair = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Ops);
Results.push_back(Pair);
Results.push_back(Chain);
}
static SDValue LowerREADCYCLECOUNTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SmallVector<SDValue, 2> Results;
SDLoc DL(Op);
getReadTimeStampCounter(Op.getNode(), DL, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, DL);
}
static SDValue MarkEHRegistrationNode(SDValue Op, SelectionDAG &DAG) {
MachineFunction &MF = DAG.getMachineFunction();
SDValue Chain = Op.getOperand(0);
SDValue RegNode = Op.getOperand(2);
WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
if (!EHInfo)
report_fatal_error("EH registrations only live in functions using WinEH");
// Cast the operand to an alloca, and remember the frame index.
auto *FINode = dyn_cast<FrameIndexSDNode>(RegNode);
if (!FINode)
report_fatal_error("llvm.x86.seh.ehregnode expects a static alloca");
EHInfo->EHRegNodeFrameIndex = FINode->getIndex();
// Return the chain operand without making any DAG nodes.
return Chain;
}
static SDValue LowerINTRINSIC_W_CHAIN(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
const IntrinsicData* IntrData = getIntrinsicWithChain(IntNo);
if (!IntrData) {
if (IntNo == llvm::Intrinsic::x86_seh_ehregnode)
return MarkEHRegistrationNode(Op, DAG);
if (IntNo == llvm::Intrinsic::x86_flags_read_u32 ||
IntNo == llvm::Intrinsic::x86_flags_read_u64 ||
IntNo == llvm::Intrinsic::x86_flags_write_u32 ||
IntNo == llvm::Intrinsic::x86_flags_write_u64) {
// We need a frame pointer because this will get lowered to a PUSH/POP
// sequence.
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setHasCopyImplyingStackAdjustment(true);
// Don't do anything here, we will expand these intrinsics out later
// during ExpandISelPseudos in EmitInstrWithCustomInserter.
return SDValue();
}
return SDValue();
}
SDLoc dl(Op);
switch(IntrData->Type) {
default: llvm_unreachable("Unknown Intrinsic Type");
case RDSEED:
case RDRAND: {
// Emit the node with the right value type.
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Glue, MVT::Other);
SDValue Result = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
// If the value returned by RDRAND/RDSEED was valid (CF=1), return 1.
// Otherwise return the value from Rand, which is always 0, casted to i32.
SDValue Ops[] = { DAG.getZExtOrTrunc(Result, dl, Op->getValueType(1)),
DAG.getConstant(1, dl, Op->getValueType(1)),
DAG.getConstant(X86::COND_B, dl, MVT::i32),
SDValue(Result.getNode(), 1) };
SDValue isValid = DAG.getNode(X86ISD::CMOV, dl,
DAG.getVTList(Op->getValueType(1), MVT::Glue),
Ops);
// Return { result, isValid, chain }.
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(), Result, isValid,
SDValue(Result.getNode(), 2));
}
case GATHER: {
//gather(v1, mask, index, base, scale);
SDValue Chain = Op.getOperand(0);
SDValue Src = Op.getOperand(2);
SDValue Base = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Mask = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getGatherNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index, Scale,
Chain, Subtarget);
}
case SCATTER: {
//scatter(base, mask, index, v1, scale);
SDValue Chain = Op.getOperand(0);
SDValue Base = Op.getOperand(2);
SDValue Mask = Op.getOperand(3);
SDValue Index = Op.getOperand(4);
SDValue Src = Op.getOperand(5);
SDValue Scale = Op.getOperand(6);
return getScatterNode(IntrData->Opc0, Op, DAG, Src, Mask, Base, Index,
Scale, Chain, Subtarget);
}
case PREFETCH: {
SDValue Hint = Op.getOperand(6);
unsigned HintVal = cast<ConstantSDNode>(Hint)->getZExtValue();
assert(HintVal < 2 && "Wrong prefetch hint in intrinsic: should be 0 or 1");
unsigned Opcode = (HintVal ? IntrData->Opc1 : IntrData->Opc0);
SDValue Chain = Op.getOperand(0);
SDValue Mask = Op.getOperand(2);
SDValue Index = Op.getOperand(3);
SDValue Base = Op.getOperand(4);
SDValue Scale = Op.getOperand(5);
return getPrefetchNode(Opcode, Op, DAG, Mask, Base, Index, Scale, Chain,
Subtarget);
}
// Read Time Stamp Counter (RDTSC) and Processor ID (RDTSCP).
case RDTSC: {
SmallVector<SDValue, 2> Results;
getReadTimeStampCounter(Op.getNode(), dl, IntrData->Opc0, DAG, Subtarget,
Results);
return DAG.getMergeValues(Results, dl);
}
// Read Performance Monitoring Counters.
case RDPMC: {
SmallVector<SDValue, 2> Results;
getReadPerformanceCounter(Op.getNode(), dl, DAG, Subtarget, Results);
return DAG.getMergeValues(Results, dl);
}
// XTEST intrinsics.
case XTEST: {
SDVTList VTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
SDValue InTrans = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(0));
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_NE, dl, MVT::i8),
InTrans);
SDValue Ret = DAG.getNode(ISD::ZERO_EXTEND, dl, Op->getValueType(0), SetCC);
return DAG.getNode(ISD::MERGE_VALUES, dl, Op->getVTList(),
Ret, SDValue(InTrans.getNode(), 1));
}
// ADC/ADCX/SBB
case ADX: {
SDVTList CFVTs = DAG.getVTList(Op->getValueType(0), MVT::Other);
SDVTList VTs = DAG.getVTList(Op.getOperand(3)->getValueType(0), MVT::Other);
SDValue GenCF = DAG.getNode(X86ISD::ADD, dl, CFVTs, Op.getOperand(2),
DAG.getConstant(-1, dl, MVT::i8));
SDValue Res = DAG.getNode(IntrData->Opc0, dl, VTs, Op.getOperand(3),
Op.getOperand(4), GenCF.getValue(1));
SDValue Store = DAG.getStore(Op.getOperand(0), dl, Res.getValue(0),
Op.getOperand(5), MachinePointerInfo(),
false, false, 0);
SDValue SetCC = DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_B, dl, MVT::i8),
Res.getValue(1));
SDValue Results[] = { SetCC, Store };
return DAG.getMergeValues(Results, dl);
}
case COMPRESS_TO_MEM: {
SDValue Mask = Op.getOperand(4);
SDValue DataToCompress = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MVT VT = DataToCompress.getSimpleValueType();
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
if (isAllOnesConstant(Mask)) // return just a store
return DAG.getStore(Chain, dl, DataToCompress, Addr,
MemIntr->getMemOperand());
SDValue Compressed =
getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToCompress),
Mask, DAG.getUNDEF(VT), Subtarget, DAG);
return DAG.getStore(Chain, dl, Compressed, Addr,
MemIntr->getMemOperand());
}
case TRUNCATE_TO_MEM_VI8:
case TRUNCATE_TO_MEM_VI16:
case TRUNCATE_TO_MEM_VI32: {
SDValue Mask = Op.getOperand(4);
SDValue DataToTruncate = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
EVT VT = MemIntr->getMemoryVT();
if (isAllOnesConstant(Mask)) // return just a truncate store
return DAG.getTruncStore(Chain, dl, DataToTruncate, Addr, VT,
MemIntr->getMemOperand());
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getMaskedStore(Chain, dl, DataToTruncate, Addr, VMask, VT,
MemIntr->getMemOperand(), true);
}
case EXPAND_FROM_MEM: {
SDValue Mask = Op.getOperand(4);
SDValue PassThru = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MVT VT = Op.getSimpleValueType();
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
SDValue DataToExpand = DAG.getLoad(VT, dl, Chain, Addr,
MemIntr->getMemOperand());
if (isAllOnesConstant(Mask)) // return just a load
return DataToExpand;
SDValue Results[] = {
getVectorMaskingNode(DAG.getNode(IntrData->Opc0, dl, VT, DataToExpand),
Mask, PassThru, Subtarget, DAG), Chain};
return DAG.getMergeValues(Results, dl);
}
case LOADU:
case LOADA: {
SDValue Mask = Op.getOperand(4);
SDValue PassThru = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MVT VT = Op.getSimpleValueType();
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
if (isAllOnesConstant(Mask)) // return just a load
return DAG.getLoad(VT, dl, Chain, Addr, MemIntr->getMemOperand());
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getMaskedLoad(VT, dl, Chain, Addr, VMask, PassThru, VT,
MemIntr->getMemOperand(), ISD::NON_EXTLOAD);
}
case STOREU:
case STOREA: {
SDValue Mask = Op.getOperand(4);
SDValue Data = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
if (isAllOnesConstant(Mask)) // return just a store
return DAG.getStore(Chain, dl, Data, Addr, MemIntr->getMemOperand());
EVT VT = MemIntr->getMemoryVT();
MVT MaskVT = MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
SDValue VMask = getMaskNode(Mask, MaskVT, Subtarget, DAG, dl);
return DAG.getMaskedStore(Chain, dl, Data, Addr, VMask, VT,
MemIntr->getMemOperand(), false);
}
case STOREANT: {
// Store (MOVNTPD, MOVNTPS, MOVNTDQ) using non-temporal hint intrinsic implementation.
SDValue Data = Op.getOperand(3);
SDValue Addr = Op.getOperand(2);
SDValue Chain = Op.getOperand(0);
MemIntrinsicSDNode *MemIntr = dyn_cast<MemIntrinsicSDNode>(Op);
assert(MemIntr && "Expected MemIntrinsicSDNode!");
MachineMemOperand *MMO = MemIntr->getMemOperand();
MMO->setFlags(MachineMemOperand::MONonTemporal);
return DAG.getStore(Chain, dl, Data, Addr, MMO);
}
}
}
SDValue X86TargetLowering::LowerRETURNADDR(SDValue Op,
SelectionDAG &DAG) const {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setReturnAddressIsTaken(true);
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
return SDValue();
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc dl(Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
if (Depth > 0) {
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
SDValue Offset = DAG.getConstant(RegInfo->getSlotSize(), dl, PtrVT);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
DAG.getNode(ISD::ADD, dl, PtrVT,
FrameAddr, Offset),
MachinePointerInfo(), false, false, false, 0);
}
// Just load the return address.
SDValue RetAddrFI = getReturnAddressFrameIndex(DAG);
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
RetAddrFI, MachinePointerInfo(), false, false, false, 0);
}
SDValue X86TargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
X86MachineFunctionInfo *FuncInfo = MF.getInfo<X86MachineFunctionInfo>();
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
EVT VT = Op.getValueType();
MFI->setFrameAddressIsTaken(true);
if (MF.getTarget().getMCAsmInfo()->usesWindowsCFI()) {
// Depth > 0 makes no sense on targets which use Windows unwind codes. It
// is not possible to crawl up the stack without looking at the unwind codes
// simultaneously.
int FrameAddrIndex = FuncInfo->getFAIndex();
if (!FrameAddrIndex) {
// Set up a frame object for the return address.
unsigned SlotSize = RegInfo->getSlotSize();
FrameAddrIndex = MF.getFrameInfo()->CreateFixedObject(
SlotSize, /*Offset=*/0, /*IsImmutable=*/false);
FuncInfo->setFAIndex(FrameAddrIndex);
}
return DAG.getFrameIndex(FrameAddrIndex, VT);
}
unsigned FrameReg =
RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
SDLoc dl(Op); // FIXME probably not meaningful
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
assert(((FrameReg == X86::RBP && VT == MVT::i64) ||
(FrameReg == X86::EBP && VT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
while (Depth--)
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
MachinePointerInfo(),
false, false, false, 0);
return FrameAddr;
}
// FIXME? Maybe this could be a TableGen attribute on some registers and
// this table could be generated automatically from RegInfo.
unsigned X86TargetLowering::getRegisterByName(const char* RegName, EVT VT,
SelectionDAG &DAG) const {
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
const MachineFunction &MF = DAG.getMachineFunction();
unsigned Reg = StringSwitch<unsigned>(RegName)
.Case("esp", X86::ESP)
.Case("rsp", X86::RSP)
.Case("ebp", X86::EBP)
.Case("rbp", X86::RBP)
.Default(0);
if (Reg == X86::EBP || Reg == X86::RBP) {
if (!TFI.hasFP(MF))
report_fatal_error("register " + StringRef(RegName) +
" is allocatable: function has no frame pointer");
#ifndef NDEBUG
else {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FrameReg =
RegInfo->getPtrSizedFrameRegister(DAG.getMachineFunction());
assert((FrameReg == X86::EBP || FrameReg == X86::RBP) &&
"Invalid Frame Register!");
}
#endif
}
if (Reg)
return Reg;
report_fatal_error("Invalid register name global variable");
}
SDValue X86TargetLowering::LowerFRAME_TO_ARGS_OFFSET(SDValue Op,
SelectionDAG &DAG) const {
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
return DAG.getIntPtrConstant(2 * RegInfo->getSlotSize(), SDLoc(Op));
}
unsigned X86TargetLowering::getExceptionPointerRegister(
const Constant *PersonalityFn) const {
if (classifyEHPersonality(PersonalityFn) == EHPersonality::CoreCLR)
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
return Subtarget.isTarget64BitLP64() ? X86::RAX : X86::EAX;
}
unsigned X86TargetLowering::getExceptionSelectorRegister(
const Constant *PersonalityFn) const {
// Funclet personalities don't use selectors (the runtime does the selection).
assert(!isFuncletEHPersonality(classifyEHPersonality(PersonalityFn)));
return Subtarget.isTarget64BitLP64() ? X86::RDX : X86::EDX;
}
bool X86TargetLowering::needsFixedCatchObjects() const {
return Subtarget.isTargetWin64();
}
SDValue X86TargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
SDValue Chain = Op.getOperand(0);
SDValue Offset = Op.getOperand(1);
SDValue Handler = Op.getOperand(2);
SDLoc dl (Op);
EVT PtrVT = getPointerTy(DAG.getDataLayout());
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FrameReg = RegInfo->getFrameRegister(DAG.getMachineFunction());
assert(((FrameReg == X86::RBP && PtrVT == MVT::i64) ||
(FrameReg == X86::EBP && PtrVT == MVT::i32)) &&
"Invalid Frame Register!");
SDValue Frame = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT);
unsigned StoreAddrReg = (PtrVT == MVT::i64) ? X86::RCX : X86::ECX;
SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Frame,
DAG.getIntPtrConstant(RegInfo->getSlotSize(),
dl));
StoreAddr = DAG.getNode(ISD::ADD, dl, PtrVT, StoreAddr, Offset);
Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
false, false, 0);
Chain = DAG.getCopyToReg(Chain, dl, StoreAddrReg, StoreAddr);
return DAG.getNode(X86ISD::EH_RETURN, dl, MVT::Other, Chain,
DAG.getRegister(StoreAddrReg, PtrVT));
}
SDValue X86TargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
// If the subtarget is not 64bit, we may need the global base reg
// after isel expand pseudo, i.e., after CGBR pass ran.
// Therefore, ask for the GlobalBaseReg now, so that the pass
// inserts the code for us in case we need it.
// Otherwise, we will end up in a situation where we will
// reference a virtual register that is not defined!
if (!Subtarget.is64Bit()) {
const X86InstrInfo *TII = Subtarget.getInstrInfo();
(void)TII->getGlobalBaseReg(&DAG.getMachineFunction());
}
return DAG.getNode(X86ISD::EH_SJLJ_SETJMP, DL,
DAG.getVTList(MVT::i32, MVT::Other),
Op.getOperand(0), Op.getOperand(1));
}
SDValue X86TargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
return DAG.getNode(X86ISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
Op.getOperand(0), Op.getOperand(1));
}
static SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) {
return Op.getOperand(0);
}
SDValue X86TargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
SelectionDAG &DAG) const {
SDValue Root = Op.getOperand(0);
SDValue Trmp = Op.getOperand(1); // trampoline
SDValue FPtr = Op.getOperand(2); // nested function
SDValue Nest = Op.getOperand(3); // 'nest' parameter value
SDLoc dl (Op);
const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue();
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
if (Subtarget.is64Bit()) {
SDValue OutChains[6];
// Large code-model.
const unsigned char JMP64r = 0xFF; // 64-bit jmp through register opcode.
const unsigned char MOV64ri = 0xB8; // X86::MOV64ri opcode.
const unsigned char N86R10 = TRI->getEncodingValue(X86::R10) & 0x7;
const unsigned char N86R11 = TRI->getEncodingValue(X86::R11) & 0x7;
const unsigned char REX_WB = 0x40 | 0x08 | 0x01; // REX prefix
// Load the pointer to the nested function into R11.
unsigned OpCode = ((MOV64ri | N86R11) << 8) | REX_WB; // movabsq r11
SDValue Addr = Trmp;
OutChains[0] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(2, dl, MVT::i64));
OutChains[1] = DAG.getStore(Root, dl, FPtr, Addr,
MachinePointerInfo(TrmpAddr, 2),
false, false, 2);
// Load the 'nest' parameter value into R10.
// R10 is specified in X86CallingConv.td
OpCode = ((MOV64ri | N86R10) << 8) | REX_WB; // movabsq r10
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(10, dl, MVT::i64));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 10),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(12, dl, MVT::i64));
OutChains[3] = DAG.getStore(Root, dl, Nest, Addr,
MachinePointerInfo(TrmpAddr, 12),
false, false, 2);
// Jump to the nested function.
OpCode = (JMP64r << 8) | REX_WB; // jmpq *...
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(20, dl, MVT::i64));
OutChains[4] = DAG.getStore(Root, dl, DAG.getConstant(OpCode, dl, MVT::i16),
Addr, MachinePointerInfo(TrmpAddr, 20),
false, false, 0);
unsigned char ModRM = N86R11 | (4 << 3) | (3 << 6); // ...r11
Addr = DAG.getNode(ISD::ADD, dl, MVT::i64, Trmp,
DAG.getConstant(22, dl, MVT::i64));
OutChains[5] = DAG.getStore(Root, dl, DAG.getConstant(ModRM, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 22),
false, false, 0);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
} else {
const Function *Func =
cast<Function>(cast<SrcValueSDNode>(Op.getOperand(5))->getValue());
CallingConv::ID CC = Func->getCallingConv();
unsigned NestReg;
switch (CC) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::X86_StdCall: {
// Pass 'nest' parameter in ECX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::ECX;
// Check that ECX wasn't needed by an 'inreg' parameter.
FunctionType *FTy = Func->getFunctionType();
const AttributeSet &Attrs = Func->getAttributes();
if (!Attrs.isEmpty() && !Func->isVarArg()) {
unsigned InRegCount = 0;
unsigned Idx = 1;
for (FunctionType::param_iterator I = FTy->param_begin(),
E = FTy->param_end(); I != E; ++I, ++Idx)
if (Attrs.hasAttribute(Idx, Attribute::InReg)) {
auto &DL = DAG.getDataLayout();
// FIXME: should only count parameters that are lowered to integers.
InRegCount += (DL.getTypeSizeInBits(*I) + 31) / 32;
}
if (InRegCount > 2) {
report_fatal_error("Nest register in use - reduce number of inreg"
" parameters!");
}
}
break;
}
case CallingConv::X86_FastCall:
case CallingConv::X86_ThisCall:
case CallingConv::Fast:
// Pass 'nest' parameter in EAX.
// Must be kept in sync with X86CallingConv.td
NestReg = X86::EAX;
break;
}
SDValue OutChains[4];
SDValue Addr, Disp;
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(10, dl, MVT::i32));
Disp = DAG.getNode(ISD::SUB, dl, MVT::i32, FPtr, Addr);
// This is storing the opcode for MOV32ri.
const unsigned char MOV32ri = 0xB8; // X86::MOV32ri's opcode byte.
const unsigned char N86Reg = TRI->getEncodingValue(NestReg) & 0x7;
OutChains[0] = DAG.getStore(Root, dl,
DAG.getConstant(MOV32ri|N86Reg, dl, MVT::i8),
Trmp, MachinePointerInfo(TrmpAddr),
false, false, 0);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(1, dl, MVT::i32));
OutChains[1] = DAG.getStore(Root, dl, Nest, Addr,
MachinePointerInfo(TrmpAddr, 1),
false, false, 1);
const unsigned char JMP = 0xE9; // jmp <32bit dst> opcode.
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(5, dl, MVT::i32));
OutChains[2] = DAG.getStore(Root, dl, DAG.getConstant(JMP, dl, MVT::i8),
Addr, MachinePointerInfo(TrmpAddr, 5),
false, false, 1);
Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp,
DAG.getConstant(6, dl, MVT::i32));
OutChains[3] = DAG.getStore(Root, dl, Disp, Addr,
MachinePointerInfo(TrmpAddr, 6),
false, false, 1);
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains);
}
}
SDValue X86TargetLowering::LowerFLT_ROUNDS_(SDValue Op,
SelectionDAG &DAG) const {
/*
The rounding mode is in bits 11:10 of FPSR, and has the following
settings:
00 Round to nearest
01 Round to -inf
10 Round to +inf
11 Round to 0
FLT_ROUNDS, on the other hand, expects the following:
-1 Undefined
0 Round to 0
1 Round to nearest
2 Round to +inf
3 Round to -inf
To perform the conversion, we do:
(((((FPSR & 0x800) >> 11) | ((FPSR & 0x400) >> 9)) + 1) & 3)
*/
MachineFunction &MF = DAG.getMachineFunction();
const TargetFrameLowering &TFI = *Subtarget.getFrameLowering();
unsigned StackAlignment = TFI.getStackAlignment();
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
// Save FP Control Word to stack slot
int SSFI = MF.getFrameInfo()->CreateStackObject(2, StackAlignment, false);
SDValue StackSlot =
DAG.getFrameIndex(SSFI, getPointerTy(DAG.getDataLayout()));
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, SSFI),
MachineMemOperand::MOStore, 2, 2);
SDValue Ops[] = { DAG.getEntryNode(), StackSlot };
SDValue Chain = DAG.getMemIntrinsicNode(X86ISD::FNSTCW16m, DL,
DAG.getVTList(MVT::Other),
Ops, MVT::i16, MMO);
// Load FP Control Word from stack slot
SDValue CWD = DAG.getLoad(MVT::i16, DL, Chain, StackSlot,
MachinePointerInfo(), false, false, false, 0);
// Transform as necessary
SDValue CWD1 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x800, DL, MVT::i16)),
DAG.getConstant(11, DL, MVT::i8));
SDValue CWD2 =
DAG.getNode(ISD::SRL, DL, MVT::i16,
DAG.getNode(ISD::AND, DL, MVT::i16,
CWD, DAG.getConstant(0x400, DL, MVT::i16)),
DAG.getConstant(9, DL, MVT::i8));
SDValue RetVal =
DAG.getNode(ISD::AND, DL, MVT::i16,
DAG.getNode(ISD::ADD, DL, MVT::i16,
DAG.getNode(ISD::OR, DL, MVT::i16, CWD1, CWD2),
DAG.getConstant(1, DL, MVT::i16)),
DAG.getConstant(3, DL, MVT::i16));
return DAG.getNode((VT.getSizeInBits() < 16 ?
ISD::TRUNCATE : ISD::ZERO_EXTEND), DL, VT, RetVal);
}
/// \brief Lower a vector CTLZ using native supported vector CTLZ instruction.
//
// 1. i32/i64 128/256-bit vector (native support require VLX) are expended
// to 512-bit vector.
// 2. i8/i16 vector implemented using dword LZCNT vector instruction
// ( sub(trunc(lzcnt(zext32(x)))) ). In case zext32(x) is illegal,
// split the vector, perform operation on it's Lo a Hi part and
// concatenate the results.
static SDValue LowerVectorCTLZ_AVX512(SDValue Op, SelectionDAG &DAG) {
assert(Op.getOpcode() == ISD::CTLZ);
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned NumElems = VT.getVectorNumElements();
if (EltVT == MVT::i64 || EltVT == MVT::i32) {
// Extend to 512 bit vector.
assert((VT.is256BitVector() || VT.is128BitVector()) &&
"Unsupported value type for operation");
MVT NewVT = MVT::getVectorVT(EltVT, 512 / VT.getScalarSizeInBits());
SDValue Vec512 = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NewVT,
DAG.getUNDEF(NewVT),
Op.getOperand(0),
DAG.getIntPtrConstant(0, dl));
SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Vec512);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT, CtlzNode,
DAG.getIntPtrConstant(0, dl));
}
assert((EltVT == MVT::i8 || EltVT == MVT::i16) &&
"Unsupported element type");
if (16 < NumElems) {
// Split vector, it's Lo and Hi parts will be handled in next iteration.
SDValue Lo, Hi;
std::tie(Lo, Hi) = DAG.SplitVector(Op.getOperand(0), dl);
MVT OutVT = MVT::getVectorVT(EltVT, NumElems/2);
Lo = DAG.getNode(ISD::CTLZ, dl, OutVT, Lo);
Hi = DAG.getNode(ISD::CTLZ, dl, OutVT, Hi);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo, Hi);
}
MVT NewVT = MVT::getVectorVT(MVT::i32, NumElems);
assert((NewVT.is256BitVector() || NewVT.is512BitVector()) &&
"Unsupported value type for operation");
// Use native supported vector instruction vplzcntd.
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, NewVT, Op.getOperand(0));
SDValue CtlzNode = DAG.getNode(ISD::CTLZ, dl, NewVT, Op);
SDValue TruncNode = DAG.getNode(ISD::TRUNCATE, dl, VT, CtlzNode);
SDValue Delta = DAG.getConstant(32 - EltVT.getSizeInBits(), dl, VT);
return DAG.getNode(ISD::SUB, dl, VT, TruncNode, Delta);
}
// Lower CTLZ using a PSHUFB lookup table implementation.
static SDValue LowerVectorCTLZInRegLUT(SDValue Op, SDLoc DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
int NumElts = VT.getVectorNumElements();
int NumBytes = NumElts * (VT.getScalarSizeInBits() / 8);
MVT CurrVT = MVT::getVectorVT(MVT::i8, NumBytes);
// Per-nibble leading zero PSHUFB lookup table.
const int LUT[16] = {/* 0 */ 4, /* 1 */ 3, /* 2 */ 2, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 1, /* 6 */ 1, /* 7 */ 1,
/* 8 */ 0, /* 9 */ 0, /* a */ 0, /* b */ 0,
/* c */ 0, /* d */ 0, /* e */ 0, /* f */ 0};
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumBytes; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getNode(ISD::BUILD_VECTOR, DL, CurrVT, LUTVec);
// Begin by bitcasting the input to byte vector, then split those bytes
// into lo/hi nibbles and use the PSHUFB LUT to perform CLTZ on each of them.
// If the hi input nibble is zero then we add both results together, otherwise
// we just take the hi result (by masking the lo result to zero before the
// add).
SDValue Op0 = DAG.getBitcast(CurrVT, Op.getOperand(0));
SDValue Zero = getZeroVector(CurrVT, Subtarget, DAG, DL);
SDValue NibbleMask = DAG.getConstant(0xF, DL, CurrVT);
SDValue NibbleShift = DAG.getConstant(0x4, DL, CurrVT);
SDValue Lo = DAG.getNode(ISD::AND, DL, CurrVT, Op0, NibbleMask);
SDValue Hi = DAG.getNode(ISD::SRL, DL, CurrVT, Op0, NibbleShift);
SDValue HiZ = DAG.getSetCC(DL, CurrVT, Hi, Zero, ISD::SETEQ);
Lo = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Lo);
Hi = DAG.getNode(X86ISD::PSHUFB, DL, CurrVT, InRegLUT, Hi);
Lo = DAG.getNode(ISD::AND, DL, CurrVT, Lo, HiZ);
SDValue Res = DAG.getNode(ISD::ADD, DL, CurrVT, Lo, Hi);
// Merge result back from vXi8 back to VT, working on the lo/hi halves
// of the current vector width in the same way we did for the nibbles.
// If the upper half of the input element is zero then add the halves'
// leading zero counts together, otherwise just use the upper half's.
// Double the width of the result until we are at target width.
while (CurrVT != VT) {
int CurrScalarSizeInBits = CurrVT.getScalarSizeInBits();
int CurrNumElts = CurrVT.getVectorNumElements();
MVT NextSVT = MVT::getIntegerVT(CurrScalarSizeInBits * 2);
MVT NextVT = MVT::getVectorVT(NextSVT, CurrNumElts / 2);
SDValue Shift = DAG.getConstant(CurrScalarSizeInBits, DL, NextVT);
// Check if the upper half of the input element is zero.
SDValue HiZ = DAG.getSetCC(DL, CurrVT, DAG.getBitcast(CurrVT, Op0),
DAG.getBitcast(CurrVT, Zero), ISD::SETEQ);
HiZ = DAG.getBitcast(NextVT, HiZ);
// Move the upper/lower halves to the lower bits as we'll be extending to
// NextVT. Mask the lower result to zero if HiZ is true and add the results
// together.
SDValue ResNext = Res = DAG.getBitcast(NextVT, Res);
SDValue R0 = DAG.getNode(ISD::SRL, DL, NextVT, ResNext, Shift);
SDValue R1 = DAG.getNode(ISD::SRL, DL, NextVT, HiZ, Shift);
R1 = DAG.getNode(ISD::AND, DL, NextVT, ResNext, R1);
Res = DAG.getNode(ISD::ADD, DL, NextVT, R0, R1);
CurrVT = NextVT;
}
return Res;
}
static SDValue LowerVectorCTLZ(SDValue Op, SDLoc DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDValue Op0 = Op.getOperand(0);
if (Subtarget.hasAVX512())
return LowerVectorCTLZ_AVX512(Op, DAG);
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256()) {
unsigned NumElems = VT.getVectorNumElements();
// Extract each 128-bit vector, perform ctlz and concat the result.
SDValue LHS = extract128BitVector(Op0, 0, DAG, DL);
SDValue RHS = extract128BitVector(Op0, NumElems / 2, DAG, DL);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
DAG.getNode(ISD::CTLZ, DL, LHS.getValueType(), LHS),
DAG.getNode(ISD::CTLZ, DL, RHS.getValueType(), RHS));
}
assert(Subtarget.hasSSSE3() && "Expected SSSE3 support for PSHUFB");
return LowerVectorCTLZInRegLUT(Op, DL, Subtarget, DAG);
}
static SDValue LowerCTLZ(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT OpVT = VT;
unsigned NumBits = VT.getSizeInBits();
SDLoc dl(Op);
unsigned Opc = Op.getOpcode();
if (VT.isVector())
return LowerVectorCTLZ(Op, dl, Subtarget, DAG);
Op = Op.getOperand(0);
if (VT == MVT::i8) {
// Zero extend to i32 since there is not an i8 bsr.
OpVT = MVT::i32;
Op = DAG.getNode(ISD::ZERO_EXTEND, dl, OpVT, Op);
}
// Issue a bsr (scan bits in reverse) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(OpVT, MVT::i32);
Op = DAG.getNode(X86ISD::BSR, dl, VTs, Op);
if (Opc == ISD::CTLZ) {
// If src is zero (i.e. bsr sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits + NumBits - 1, dl, OpVT),
DAG.getConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)
};
Op = DAG.getNode(X86ISD::CMOV, dl, OpVT, Ops);
}
// Finally xor with NumBits-1.
Op = DAG.getNode(ISD::XOR, dl, OpVT, Op,
DAG.getConstant(NumBits - 1, dl, OpVT));
if (VT == MVT::i8)
Op = DAG.getNode(ISD::TRUNCATE, dl, MVT::i8, Op);
return Op;
}
static SDValue LowerCTTZ(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
unsigned NumBits = VT.getScalarSizeInBits();
SDLoc dl(Op);
if (VT.isVector()) {
SDValue N0 = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, dl, VT);
// lsb(x) = (x & -x)
SDValue LSB = DAG.getNode(ISD::AND, dl, VT, N0,
DAG.getNode(ISD::SUB, dl, VT, Zero, N0));
// cttz_undef(x) = (width - 1) - ctlz(lsb)
if (Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF) {
SDValue WidthMinusOne = DAG.getConstant(NumBits - 1, dl, VT);
return DAG.getNode(ISD::SUB, dl, VT, WidthMinusOne,
DAG.getNode(ISD::CTLZ, dl, VT, LSB));
}
// cttz(x) = ctpop(lsb - 1)
SDValue One = DAG.getConstant(1, dl, VT);
return DAG.getNode(ISD::CTPOP, dl, VT,
DAG.getNode(ISD::SUB, dl, VT, LSB, One));
}
assert(Op.getOpcode() == ISD::CTTZ &&
"Only scalar CTTZ requires custom lowering");
// Issue a bsf (scan bits forward) which also sets EFLAGS.
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
Op = DAG.getNode(X86ISD::BSF, dl, VTs, Op.getOperand(0));
// If src is zero (i.e. bsf sets ZF), returns NumBits.
SDValue Ops[] = {
Op,
DAG.getConstant(NumBits, dl, VT),
DAG.getConstant(X86::COND_E, dl, MVT::i8),
Op.getValue(1)
};
return DAG.getNode(X86ISD::CMOV, dl, VT, Ops);
}
/// Break a 256-bit integer operation into two new 128-bit ones and then
/// concatenate the result back.
static SDValue Lower256IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is256BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract128BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract128BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract128BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract128BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
/// Break a 512-bit integer operation into two new 256-bit ones and then
/// concatenate the result back.
static SDValue Lower512IntArith(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is512BitVector() && VT.isInteger() &&
"Unsupported value type for operation");
unsigned NumElems = VT.getVectorNumElements();
SDLoc dl(Op);
// Extract the LHS vectors
SDValue LHS = Op.getOperand(0);
SDValue LHS1 = extract256BitVector(LHS, 0, DAG, dl);
SDValue LHS2 = extract256BitVector(LHS, NumElems / 2, DAG, dl);
// Extract the RHS vectors
SDValue RHS = Op.getOperand(1);
SDValue RHS1 = extract256BitVector(RHS, 0, DAG, dl);
SDValue RHS2 = extract256BitVector(RHS, NumElems / 2, DAG, dl);
MVT EltVT = VT.getVectorElementType();
MVT NewVT = MVT::getVectorVT(EltVT, NumElems/2);
return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT,
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS1, RHS1),
DAG.getNode(Op.getOpcode(), dl, NewVT, LHS2, RHS2));
}
static SDValue LowerADD(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() == MVT::i1)
return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
Op.getOperand(0), Op.getOperand(1));
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
static SDValue LowerSUB(SDValue Op, SelectionDAG &DAG) {
if (Op.getValueType() == MVT::i1)
return DAG.getNode(ISD::XOR, SDLoc(Op), Op.getValueType(),
Op.getOperand(0), Op.getOperand(1));
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
static SDValue LowerMINMAX(SDValue Op, SelectionDAG &DAG) {
assert(Op.getSimpleValueType().is256BitVector() &&
Op.getSimpleValueType().isInteger() &&
"Only handle AVX 256-bit vector integer operation");
return Lower256IntArith(Op, DAG);
}
static SDValue LowerMUL(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
if (VT == MVT::i1)
return DAG.getNode(ISD::AND, dl, VT, Op.getOperand(0), Op.getOperand(1));
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// Lower v16i8/v32i8/v64i8 mul as sign-extension to v8i16/v16i16/v32i16
// vector pairs, multiply and truncate.
if (VT == MVT::v16i8 || VT == MVT::v32i8 || VT == MVT::v64i8) {
if (Subtarget.hasInt256()) {
// For 512-bit vectors, split into 256-bit vectors to allow the
// sign-extension to occur.
if (VT == MVT::v64i8)
return Lower512IntArith(Op, DAG);
// For 256-bit vectors, split into 128-bit vectors to allow the
// sign-extension to occur. We don't need this on AVX512BW as we can
// safely sign-extend to v32i16.
if (VT == MVT::v32i8 && !Subtarget.hasBWI())
return Lower256IntArith(Op, DAG);
MVT ExVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements());
return DAG.getNode(
ISD::TRUNCATE, dl, VT,
DAG.getNode(ISD::MUL, dl, ExVT,
DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, A),
DAG.getNode(ISD::SIGN_EXTEND, dl, ExVT, B)));
}
assert(VT == MVT::v16i8 &&
"Pre-AVX2 support only supports v16i8 multiplication");
MVT ExVT = MVT::v8i16;
// Extract the lo parts and sign extend to i16
SDValue ALo, BLo;
if (Subtarget.hasSSE41()) {
ALo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, A);
BLo = DAG.getNode(X86ISD::VSEXT, dl, ExVT, B);
} else {
const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
-1, 4, -1, 5, -1, 6, -1, 7};
ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
ALo = DAG.getBitcast(ExVT, ALo);
BLo = DAG.getBitcast(ExVT, BLo);
ALo = DAG.getNode(ISD::SRA, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
BLo = DAG.getNode(ISD::SRA, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
}
// Extract the hi parts and sign extend to i16
SDValue AHi, BHi;
if (Subtarget.hasSSE41()) {
const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
-1, -1, -1, -1, -1, -1, -1, -1};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, AHi);
BHi = DAG.getNode(X86ISD::VSEXT, dl, ExVT, BHi);
} else {
const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
-1, 12, -1, 13, -1, 14, -1, 15};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getBitcast(ExVT, AHi);
BHi = DAG.getBitcast(ExVT, BHi);
AHi = DAG.getNode(ISD::SRA, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
BHi = DAG.getNode(ISD::SRA, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
}
// Multiply, mask the lower 8bits of the lo/hi results and pack
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = DAG.getNode(ISD::AND, dl, ExVT, RLo, DAG.getConstant(255, dl, ExVT));
RHi = DAG.getNode(ISD::AND, dl, ExVT, RHi, DAG.getConstant(255, dl, ExVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
// Lower v4i32 mul as 2x shuffle, 2x pmuludq, 2x shuffle.
if (VT == MVT::v4i32) {
assert(Subtarget.hasSSE2() && !Subtarget.hasSSE41() &&
"Should not custom lower when pmuldq is available!");
// Extract the odd parts.
static const int UnpackMask[] = { 1, -1, 3, -1 };
SDValue Aodds = DAG.getVectorShuffle(VT, dl, A, A, UnpackMask);
SDValue Bodds = DAG.getVectorShuffle(VT, dl, B, B, UnpackMask);
// Multiply the even parts.
SDValue Evens = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, A, B);
// Now multiply odd parts.
SDValue Odds = DAG.getNode(X86ISD::PMULUDQ, dl, MVT::v2i64, Aodds, Bodds);
Evens = DAG.getBitcast(VT, Evens);
Odds = DAG.getBitcast(VT, Odds);
// Merge the two vectors back together with a shuffle. This expands into 2
// shuffles.
static const int ShufMask[] = { 0, 4, 2, 6 };
return DAG.getVectorShuffle(VT, dl, Evens, Odds, ShufMask);
}
assert((VT == MVT::v2i64 || VT == MVT::v4i64 || VT == MVT::v8i64) &&
"Only know how to lower V2I64/V4I64/V8I64 multiply");
// Ahi = psrlqi(a, 32);
// Bhi = psrlqi(b, 32);
//
// AloBlo = pmuludq(a, b);
// AloBhi = pmuludq(a, Bhi);
// AhiBlo = pmuludq(Ahi, b);
// AloBhi = psllqi(AloBhi, 32);
// AhiBlo = psllqi(AhiBlo, 32);
// return AloBlo + AloBhi + AhiBlo;
SDValue Ahi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, A, 32, DAG);
SDValue Bhi = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, B, 32, DAG);
SDValue AhiBlo = Ahi;
SDValue AloBhi = Bhi;
// Bit cast to 32-bit vectors for MULUDQ
MVT MulVT = (VT == MVT::v2i64) ? MVT::v4i32 :
(VT == MVT::v4i64) ? MVT::v8i32 : MVT::v16i32;
A = DAG.getBitcast(MulVT, A);
B = DAG.getBitcast(MulVT, B);
Ahi = DAG.getBitcast(MulVT, Ahi);
Bhi = DAG.getBitcast(MulVT, Bhi);
SDValue AloBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, B);
// After shifting right const values the result may be all-zero.
if (!ISD::isBuildVectorAllZeros(Ahi.getNode())) {
AhiBlo = DAG.getNode(X86ISD::PMULUDQ, dl, VT, Ahi, B);
AhiBlo = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AhiBlo, 32, DAG);
}
if (!ISD::isBuildVectorAllZeros(Bhi.getNode())) {
AloBhi = DAG.getNode(X86ISD::PMULUDQ, dl, VT, A, Bhi);
AloBhi = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, VT, AloBhi, 32, DAG);
}
SDValue Res = DAG.getNode(ISD::ADD, dl, VT, AloBlo, AloBhi);
return DAG.getNode(ISD::ADD, dl, VT, Res, AhiBlo);
}
static SDValue LowerMULH(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256())
return Lower256IntArith(Op, DAG);
// Only i8 vectors should need custom lowering after this.
assert((VT == MVT::v16i8 || (VT == MVT::v32i8 && Subtarget.hasInt256())) &&
"Unsupported vector type");
// Lower v16i8/v32i8 as extension to v8i16/v16i16 vector pairs, multiply,
// logical shift down the upper half and pack back to i8.
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
// With SSE41 we can use sign/zero extend, but for pre-SSE41 we unpack
// and then ashr/lshr the upper bits down to the lower bits before multiply.
unsigned Opcode = Op.getOpcode();
unsigned ExShift = (ISD::MULHU == Opcode ? ISD::SRL : ISD::SRA);
unsigned ExSSE41 = (ISD::MULHU == Opcode ? X86ISD::VZEXT : X86ISD::VSEXT);
// AVX2 implementations - extend xmm subvectors to ymm.
if (Subtarget.hasInt256()) {
SDValue Lo = DAG.getIntPtrConstant(0, dl);
SDValue Hi = DAG.getIntPtrConstant(VT.getVectorNumElements() / 2, dl);
if (VT == MVT::v32i8) {
SDValue ALo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, A, Lo);
SDValue BLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, B, Lo);
SDValue AHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, A, Hi);
SDValue BHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v16i8, B, Hi);
ALo = DAG.getNode(ExSSE41, dl, MVT::v16i16, ALo);
BLo = DAG.getNode(ExSSE41, dl, MVT::v16i16, BLo);
AHi = DAG.getNode(ExSSE41, dl, MVT::v16i16, AHi);
BHi = DAG.getNode(ExSSE41, dl, MVT::v16i16, BHi);
Lo = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
DAG.getNode(ISD::MUL, dl, MVT::v16i16, ALo, BLo),
DAG.getConstant(8, dl, MVT::v16i16));
Hi = DAG.getNode(ISD::SRL, dl, MVT::v16i16,
DAG.getNode(ISD::MUL, dl, MVT::v16i16, AHi, BHi),
DAG.getConstant(8, dl, MVT::v16i16));
// The ymm variant of PACKUS treats the 128-bit lanes separately, so before
// using PACKUS we need to permute the inputs to the correct lo/hi xmm lane.
const int LoMask[] = {0, 1, 2, 3, 4, 5, 6, 7,
16, 17, 18, 19, 20, 21, 22, 23};
const int HiMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
24, 25, 26, 27, 28, 29, 30, 31};
return DAG.getNode(X86ISD::PACKUS, dl, VT,
DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, LoMask),
DAG.getVectorShuffle(MVT::v16i16, dl, Lo, Hi, HiMask));
}
SDValue ExA = DAG.getNode(ExSSE41, dl, MVT::v16i16, A);
SDValue ExB = DAG.getNode(ExSSE41, dl, MVT::v16i16, B);
SDValue Mul = DAG.getNode(ISD::MUL, dl, MVT::v16i16, ExA, ExB);
SDValue MulH = DAG.getNode(ISD::SRL, dl, MVT::v16i16, Mul,
DAG.getConstant(8, dl, MVT::v16i16));
Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, MulH, Lo);
Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v8i16, MulH, Hi);
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
}
assert(VT == MVT::v16i8 &&
"Pre-AVX2 support only supports v16i8 multiplication");
MVT ExVT = MVT::v8i16;
// Extract the lo parts and zero/sign extend to i16.
SDValue ALo, BLo;
if (Subtarget.hasSSE41()) {
ALo = DAG.getNode(ExSSE41, dl, ExVT, A);
BLo = DAG.getNode(ExSSE41, dl, ExVT, B);
} else {
const int ShufMask[] = {-1, 0, -1, 1, -1, 2, -1, 3,
-1, 4, -1, 5, -1, 6, -1, 7};
ALo = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BLo = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
ALo = DAG.getBitcast(ExVT, ALo);
BLo = DAG.getBitcast(ExVT, BLo);
ALo = DAG.getNode(ExShift, dl, ExVT, ALo, DAG.getConstant(8, dl, ExVT));
BLo = DAG.getNode(ExShift, dl, ExVT, BLo, DAG.getConstant(8, dl, ExVT));
}
// Extract the hi parts and zero/sign extend to i16.
SDValue AHi, BHi;
if (Subtarget.hasSSE41()) {
const int ShufMask[] = {8, 9, 10, 11, 12, 13, 14, 15,
-1, -1, -1, -1, -1, -1, -1, -1};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getNode(ExSSE41, dl, ExVT, AHi);
BHi = DAG.getNode(ExSSE41, dl, ExVT, BHi);
} else {
const int ShufMask[] = {-1, 8, -1, 9, -1, 10, -1, 11,
-1, 12, -1, 13, -1, 14, -1, 15};
AHi = DAG.getVectorShuffle(VT, dl, A, A, ShufMask);
BHi = DAG.getVectorShuffle(VT, dl, B, B, ShufMask);
AHi = DAG.getBitcast(ExVT, AHi);
BHi = DAG.getBitcast(ExVT, BHi);
AHi = DAG.getNode(ExShift, dl, ExVT, AHi, DAG.getConstant(8, dl, ExVT));
BHi = DAG.getNode(ExShift, dl, ExVT, BHi, DAG.getConstant(8, dl, ExVT));
}
// Multiply, lshr the upper 8bits to the lower 8bits of the lo/hi results and
// pack back to v16i8.
SDValue RLo = DAG.getNode(ISD::MUL, dl, ExVT, ALo, BLo);
SDValue RHi = DAG.getNode(ISD::MUL, dl, ExVT, AHi, BHi);
RLo = DAG.getNode(ISD::SRL, dl, ExVT, RLo, DAG.getConstant(8, dl, ExVT));
RHi = DAG.getNode(ISD::SRL, dl, ExVT, RHi, DAG.getConstant(8, dl, ExVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
SDValue X86TargetLowering::LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const {
assert(Subtarget.isTargetWin64() && "Unexpected target");
EVT VT = Op.getValueType();
assert(VT.isInteger() && VT.getSizeInBits() == 128 &&
"Unexpected return type for lowering");
RTLIB::Libcall LC;
bool isSigned;
switch (Op->getOpcode()) {
default: llvm_unreachable("Unexpected request for libcall!");
case ISD::SDIV: isSigned = true; LC = RTLIB::SDIV_I128; break;
case ISD::UDIV: isSigned = false; LC = RTLIB::UDIV_I128; break;
case ISD::SREM: isSigned = true; LC = RTLIB::SREM_I128; break;
case ISD::UREM: isSigned = false; LC = RTLIB::UREM_I128; break;
case ISD::SDIVREM: isSigned = true; LC = RTLIB::SDIVREM_I128; break;
case ISD::UDIVREM: isSigned = false; LC = RTLIB::UDIVREM_I128; break;
}
SDLoc dl(Op);
SDValue InChain = DAG.getEntryNode();
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
EVT ArgVT = Op->getOperand(i).getValueType();
assert(ArgVT.isInteger() && ArgVT.getSizeInBits() == 128 &&
"Unexpected argument type for lowering");
SDValue StackPtr = DAG.CreateStackTemporary(ArgVT, 16);
Entry.Node = StackPtr;
InChain = DAG.getStore(InChain, dl, Op->getOperand(i), StackPtr, MachinePointerInfo(),
false, false, 16);
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
Entry.Ty = PointerType::get(ArgTy,0);
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
}
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
getPointerTy(DAG.getDataLayout()));
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(InChain)
.setCallee(getLibcallCallingConv(LC),
static_cast<EVT>(MVT::v2i64).getTypeForEVT(*DAG.getContext()),
Callee, std::move(Args), 0)
.setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
return DAG.getBitcast(VT, CallInfo.first);
}
static SDValue LowerMUL_LOHI(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
MVT VT = Op0.getSimpleValueType();
SDLoc dl(Op);
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector() && !Subtarget.hasInt256()) {
unsigned Opcode = Op.getOpcode();
unsigned NumElems = VT.getVectorNumElements();
MVT HalfVT = MVT::getVectorVT(VT.getScalarType(), NumElems / 2);
SDValue Lo0 = extract128BitVector(Op0, 0, DAG, dl);
SDValue Lo1 = extract128BitVector(Op1, 0, DAG, dl);
SDValue Hi0 = extract128BitVector(Op0, NumElems / 2, DAG, dl);
SDValue Hi1 = extract128BitVector(Op1, NumElems / 2, DAG, dl);
SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Lo0, Lo1);
SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(HalfVT, HalfVT), Hi0, Hi1);
SDValue Ops[] = {
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(0), Hi.getValue(0)),
DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Lo.getValue(1), Hi.getValue(1))
};
return DAG.getMergeValues(Ops, dl);
}
assert((VT == MVT::v4i32 && Subtarget.hasSSE2()) ||
(VT == MVT::v8i32 && Subtarget.hasInt256()));
// PMULxD operations multiply each even value (starting at 0) of LHS with
// the related value of RHS and produce a widen result.
// E.g., PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
//
// In other word, to have all the results, we need to perform two PMULxD:
// 1. one with the even values.
// 2. one with the odd values.
// To achieve #2, with need to place the odd values at an even position.
//
// Place the odd value at an even position (basically, shift all values 1
// step to the left):
const int Mask[] = {1, -1, 3, -1, 5, -1, 7, -1};
// <a|b|c|d> => <b|undef|d|undef>
SDValue Odd0 = DAG.getVectorShuffle(VT, dl, Op0, Op0, Mask);
// <e|f|g|h> => <f|undef|h|undef>
SDValue Odd1 = DAG.getVectorShuffle(VT, dl, Op1, Op1, Mask);
// Emit two multiplies, one for the lower 2 ints and one for the higher 2
// ints.
MVT MulVT = VT == MVT::v4i32 ? MVT::v2i64 : MVT::v4i64;
bool IsSigned = Op->getOpcode() == ISD::SMUL_LOHI;
unsigned Opcode =
(!IsSigned || !Subtarget.hasSSE41()) ? X86ISD::PMULUDQ : X86ISD::PMULDQ;
// PMULUDQ <4 x i32> <a|b|c|d>, <4 x i32> <e|f|g|h>
// => <2 x i64> <ae|cg>
SDValue Mul1 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Op0, Op1));
// PMULUDQ <4 x i32> <b|undef|d|undef>, <4 x i32> <f|undef|h|undef>
// => <2 x i64> <bf|dh>
SDValue Mul2 = DAG.getBitcast(VT, DAG.getNode(Opcode, dl, MulVT, Odd0, Odd1));
// Shuffle it back into the right order.
SDValue Highs, Lows;
if (VT == MVT::v8i32) {
const int HighMask[] = {1, 9, 3, 11, 5, 13, 7, 15};
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
const int LowMask[] = {0, 8, 2, 10, 4, 12, 6, 14};
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
} else {
const int HighMask[] = {1, 5, 3, 7};
Highs = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, HighMask);
const int LowMask[] = {0, 4, 2, 6};
Lows = DAG.getVectorShuffle(VT, dl, Mul1, Mul2, LowMask);
}
// If we have a signed multiply but no PMULDQ fix up the high parts of a
// unsigned multiply.
if (IsSigned && !Subtarget.hasSSE41()) {
SDValue ShAmt = DAG.getConstant(
31, dl,
DAG.getTargetLoweringInfo().getShiftAmountTy(VT, DAG.getDataLayout()));
SDValue T1 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRA, dl, VT, Op0, ShAmt), Op1);
SDValue T2 = DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(ISD::SRA, dl, VT, Op1, ShAmt), Op0);
SDValue Fixup = DAG.getNode(ISD::ADD, dl, VT, T1, T2);
Highs = DAG.getNode(ISD::SUB, dl, VT, Highs, Fixup);
}
// The first result of MUL_LOHI is actually the low value, followed by the
// high value.
SDValue Ops[] = {Lows, Highs};
return DAG.getMergeValues(Ops, dl);
}
// Return true if the required (according to Opcode) shift-imm form is natively
// supported by the Subtarget
static bool SupportedVectorShiftWithImm(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (VT.getScalarSizeInBits() < 16)
return false;
if (VT.is512BitVector() &&
(VT.getScalarSizeInBits() > 16 || Subtarget.hasBWI()))
return true;
bool LShift = VT.is128BitVector() ||
(VT.is256BitVector() && Subtarget.hasInt256());
bool AShift = LShift && (Subtarget.hasVLX() ||
(VT != MVT::v2i64 && VT != MVT::v4i64));
return (Opcode == ISD::SRA) ? AShift : LShift;
}
// The shift amount is a variable, but it is the same for all vector lanes.
// These instructions are defined together with shift-immediate.
static
bool SupportedVectorShiftWithBaseAmnt(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
return SupportedVectorShiftWithImm(VT, Subtarget, Opcode);
}
// Return true if the required (according to Opcode) variable-shift form is
// natively supported by the Subtarget
static bool SupportedVectorVarShift(MVT VT, const X86Subtarget &Subtarget,
unsigned Opcode) {
if (!Subtarget.hasInt256() || VT.getScalarSizeInBits() < 16)
return false;
// vXi16 supported only on AVX-512, BWI
if (VT.getScalarSizeInBits() == 16 && !Subtarget.hasBWI())
return false;
if (VT.is512BitVector() || Subtarget.hasVLX())
return true;
bool LShift = VT.is128BitVector() || VT.is256BitVector();
bool AShift = LShift && VT != MVT::v2i64 && VT != MVT::v4i64;
return (Opcode == ISD::SRA) ? AShift : LShift;
}
static SDValue LowerScalarImmediateShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned X86Opc = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
(Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
auto ArithmeticShiftRight64 = [&](uint64_t ShiftAmt) {
assert((VT == MVT::v2i64 || VT == MVT::v4i64) && "Unexpected SRA type");
MVT ExVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() * 2);
SDValue Ex = DAG.getBitcast(ExVT, R);
if (ShiftAmt >= 32) {
// Splat sign to upper i32 dst, and SRA upper i32 src to lower i32.
SDValue Upper =
getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex, 31, DAG);
SDValue Lower = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt - 32, DAG);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {5, 1, 7, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{9, 1, 11, 3, 13, 5, 15, 7});
} else {
// SRA upper i32, SHL whole i64 and select lower i32.
SDValue Upper = getTargetVShiftByConstNode(X86ISD::VSRAI, dl, ExVT, Ex,
ShiftAmt, DAG);
SDValue Lower =
getTargetVShiftByConstNode(X86ISD::VSRLI, dl, VT, R, ShiftAmt, DAG);
Lower = DAG.getBitcast(ExVT, Lower);
if (VT == MVT::v2i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower, {4, 1, 6, 3});
if (VT == MVT::v4i64)
Ex = DAG.getVectorShuffle(ExVT, dl, Upper, Lower,
{8, 1, 10, 3, 12, 5, 14, 7});
}
return DAG.getBitcast(VT, Ex);
};
// Optimize shl/srl/sra with constant shift amount.
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
if (auto *ShiftConst = BVAmt->getConstantSplatNode()) {
uint64_t ShiftAmt = ShiftConst->getZExtValue();
if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
// i64 SRA needs to be performed as partial shifts.
if ((VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64)) &&
Op.getOpcode() == ISD::SRA && !Subtarget.hasXOP())
return ArithmeticShiftRight64(ShiftAmt);
if (VT == MVT::v16i8 ||
(Subtarget.hasInt256() && VT == MVT::v32i8) ||
VT == MVT::v64i8) {
unsigned NumElts = VT.getVectorNumElements();
MVT ShiftVT = MVT::getVectorVT(MVT::i16, NumElts / 2);
// Simple i8 add case
if (Op.getOpcode() == ISD::SHL && ShiftAmt == 1)
return DAG.getNode(ISD::ADD, dl, VT, R, R);
// ashr(R, 7) === cmp_slt(R, 0)
if (Op.getOpcode() == ISD::SRA && ShiftAmt == 7) {
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
if (VT.is512BitVector()) {
assert(VT == MVT::v64i8 && "Unexpected element type!");
SDValue CMP = DAG.getNode(X86ISD::PCMPGTM, dl, MVT::v64i1, Zeros, R);
return DAG.getNode(ISD::SIGN_EXTEND, dl, VT, CMP);
}
return DAG.getNode(X86ISD::PCMPGT, dl, VT, Zeros, R);
}
// XOP can shift v16i8 directly instead of as shift v8i16 + mask.
if (VT == MVT::v16i8 && Subtarget.hasXOP())
return SDValue();
if (Op.getOpcode() == ISD::SHL) {
// Make a large shift.
SDValue SHL = getTargetVShiftByConstNode(X86ISD::VSHLI, dl, ShiftVT,
R, ShiftAmt, DAG);
SHL = DAG.getBitcast(VT, SHL);
// Zero out the rightmost bits.
return DAG.getNode(ISD::AND, dl, VT, SHL,
DAG.getConstant(uint8_t(-1U << ShiftAmt), dl, VT));
}
if (Op.getOpcode() == ISD::SRL) {
// Make a large shift.
SDValue SRL = getTargetVShiftByConstNode(X86ISD::VSRLI, dl, ShiftVT,
R, ShiftAmt, DAG);
SRL = DAG.getBitcast(VT, SRL);
// Zero out the leftmost bits.
return DAG.getNode(ISD::AND, dl, VT, SRL,
DAG.getConstant(uint8_t(-1U) >> ShiftAmt, dl, VT));
}
if (Op.getOpcode() == ISD::SRA) {
// ashr(R, Amt) === sub(xor(lshr(R, Amt), Mask), Mask)
SDValue Res = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
SDValue Mask = DAG.getConstant(128 >> ShiftAmt, dl, VT);
Res = DAG.getNode(ISD::XOR, dl, VT, Res, Mask);
Res = DAG.getNode(ISD::SUB, dl, VT, Res, Mask);
return Res;
}
llvm_unreachable("Unknown shift opcode.");
}
}
}
// Special case in 32-bit mode, where i64 is expanded into high and low parts.
if (!Subtarget.is64Bit() && !Subtarget.hasXOP() &&
(VT == MVT::v2i64 || (Subtarget.hasInt256() && VT == MVT::v4i64))) {
// Peek through any splat that was introduced for i64 shift vectorization.
int SplatIndex = -1;
if (ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt.getNode()))
if (SVN->isSplat()) {
SplatIndex = SVN->getSplatIndex();
Amt = Amt.getOperand(0);
assert(SplatIndex < (int)VT.getVectorNumElements() &&
"Splat shuffle referencing second operand");
}
if (Amt.getOpcode() != ISD::BITCAST ||
Amt.getOperand(0).getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
Amt = Amt.getOperand(0);
unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
VT.getVectorNumElements();
unsigned RatioInLog2 = Log2_32_Ceil(Ratio);
uint64_t ShiftAmt = 0;
unsigned BaseOp = (SplatIndex < 0 ? 0 : SplatIndex * Ratio);
for (unsigned i = 0; i != Ratio; ++i) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + BaseOp));
if (!C)
return SDValue();
// 6 == Log2(64)
ShiftAmt |= C->getZExtValue() << (i * (1 << (6 - RatioInLog2)));
}
// Check remaining shift amounts (if not a splat).
if (SplatIndex < 0) {
for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
uint64_t ShAmt = 0;
for (unsigned j = 0; j != Ratio; ++j) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Amt.getOperand(i + j));
if (!C)
return SDValue();
// 6 == Log2(64)
ShAmt |= C->getZExtValue() << (j * (1 << (6 - RatioInLog2)));
}
if (ShAmt != ShiftAmt)
return SDValue();
}
}
if (SupportedVectorShiftWithImm(VT, Subtarget, Op.getOpcode()))
return getTargetVShiftByConstNode(X86Opc, dl, VT, R, ShiftAmt, DAG);
if (Op.getOpcode() == ISD::SRA)
return ArithmeticShiftRight64(ShiftAmt);
}
return SDValue();
}
static SDValue LowerScalarVariableShift(SDValue Op, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
unsigned X86OpcI = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHLI :
(Op.getOpcode() == ISD::SRL) ? X86ISD::VSRLI : X86ISD::VSRAI;
unsigned X86OpcV = (Op.getOpcode() == ISD::SHL) ? X86ISD::VSHL :
(Op.getOpcode() == ISD::SRL) ? X86ISD::VSRL : X86ISD::VSRA;
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode())) {
SDValue BaseShAmt;
MVT EltVT = VT.getVectorElementType();
if (BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(Amt)) {
// Check if this build_vector node is doing a splat.
// If so, then set BaseShAmt equal to the splat value.
BaseShAmt = BV->getSplatValue();
if (BaseShAmt && BaseShAmt.isUndef())
BaseShAmt = SDValue();
} else {
if (Amt.getOpcode() == ISD::EXTRACT_SUBVECTOR)
Amt = Amt.getOperand(0);
ShuffleVectorSDNode *SVN = dyn_cast<ShuffleVectorSDNode>(Amt);
if (SVN && SVN->isSplat()) {
unsigned SplatIdx = (unsigned)SVN->getSplatIndex();
SDValue InVec = Amt.getOperand(0);
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
assert((SplatIdx < InVec.getSimpleValueType().getVectorNumElements()) &&
"Unexpected shuffle index found!");
BaseShAmt = InVec.getOperand(SplatIdx);
} else if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT) {
if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(InVec.getOperand(2))) {
if (C->getZExtValue() == SplatIdx)
BaseShAmt = InVec.getOperand(1);
}
}
if (!BaseShAmt)
// Avoid introducing an extract element from a shuffle.
BaseShAmt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, InVec,
DAG.getIntPtrConstant(SplatIdx, dl));
}
}
if (BaseShAmt.getNode()) {
assert(EltVT.bitsLE(MVT::i64) && "Unexpected element type!");
if (EltVT != MVT::i64 && EltVT.bitsGT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i64, BaseShAmt);
else if (EltVT.bitsLT(MVT::i32))
BaseShAmt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, BaseShAmt);
return getTargetVShiftNode(X86OpcI, dl, VT, R, BaseShAmt, DAG);
}
}
// Special case in 32-bit mode, where i64 is expanded into high and low parts.
if (!Subtarget.is64Bit() && VT == MVT::v2i64 &&
Amt.getOpcode() == ISD::BITCAST &&
Amt.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
Amt = Amt.getOperand(0);
unsigned Ratio = Amt.getSimpleValueType().getVectorNumElements() /
VT.getVectorNumElements();
std::vector<SDValue> Vals(Ratio);
for (unsigned i = 0; i != Ratio; ++i)
Vals[i] = Amt.getOperand(i);
for (unsigned i = Ratio; i != Amt.getNumOperands(); i += Ratio) {
for (unsigned j = 0; j != Ratio; ++j)
if (Vals[j] != Amt.getOperand(i + j))
return SDValue();
}
if (SupportedVectorShiftWithBaseAmnt(VT, Subtarget, Op.getOpcode()))
return DAG.getNode(X86OpcV, dl, VT, R, Op.getOperand(1));
}
return SDValue();
}
static SDValue LowerShift(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc dl(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
bool ConstantAmt = ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
assert(VT.isVector() && "Custom lowering only for vector shifts!");
assert(Subtarget.hasSSE2() && "Only custom lower when we have SSE2!");
if (SDValue V = LowerScalarImmediateShift(Op, DAG, Subtarget))
return V;
if (SDValue V = LowerScalarVariableShift(Op, DAG, Subtarget))
return V;
if (SupportedVectorVarShift(VT, Subtarget, Op.getOpcode()))
return Op;
// XOP has 128-bit variable logical/arithmetic shifts.
// +ve/-ve Amt = shift left/right.
if (Subtarget.hasXOP() &&
(VT == MVT::v2i64 || VT == MVT::v4i32 ||
VT == MVT::v8i16 || VT == MVT::v16i8)) {
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) {
SDValue Zero = getZeroVector(VT, Subtarget, DAG, dl);
Amt = DAG.getNode(ISD::SUB, dl, VT, Zero, Amt);
}
if (Op.getOpcode() == ISD::SHL || Op.getOpcode() == ISD::SRL)
return DAG.getNode(X86ISD::VPSHL, dl, VT, R, Amt);
if (Op.getOpcode() == ISD::SRA)
return DAG.getNode(X86ISD::VPSHA, dl, VT, R, Amt);
}
// 2i64 vector logical shifts can efficiently avoid scalarization - do the
// shifts per-lane and then shuffle the partial results back together.
if (VT == MVT::v2i64 && Op.getOpcode() != ISD::SRA) {
// Splat the shift amounts so the scalar shifts above will catch it.
SDValue Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {0, 0});
SDValue Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Amt, {1, 1});
SDValue R0 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt0);
SDValue R1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Amt1);
return DAG.getVectorShuffle(VT, dl, R0, R1, {0, 3});
}
// i64 vector arithmetic shift can be emulated with the transform:
// M = lshr(SIGN_BIT, Amt)
// ashr(R, Amt) === sub(xor(lshr(R, Amt), M), M)
if ((VT == MVT::v2i64 || (VT == MVT::v4i64 && Subtarget.hasInt256())) &&
Op.getOpcode() == ISD::SRA) {
SDValue S = DAG.getConstant(APInt::getSignBit(64), dl, VT);
SDValue M = DAG.getNode(ISD::SRL, dl, VT, S, Amt);
R = DAG.getNode(ISD::SRL, dl, VT, R, Amt);
R = DAG.getNode(ISD::XOR, dl, VT, R, M);
R = DAG.getNode(ISD::SUB, dl, VT, R, M);
return R;
}
// If possible, lower this packed shift into a vector multiply instead of
// expanding it into a sequence of scalar shifts.
// Do this only if the vector shift count is a constant build_vector.
if (ConstantAmt && Op.getOpcode() == ISD::SHL &&
(VT == MVT::v8i16 || VT == MVT::v4i32 ||
(Subtarget.hasInt256() && VT == MVT::v16i16))) {
SmallVector<SDValue, 8> Elts;
MVT SVT = VT.getVectorElementType();
unsigned SVTBits = SVT.getSizeInBits();
APInt One(SVTBits, 1);
unsigned NumElems = VT.getVectorNumElements();
for (unsigned i=0; i !=NumElems; ++i) {
SDValue Op = Amt->getOperand(i);
if (Op->isUndef()) {
Elts.push_back(Op);
continue;
}
ConstantSDNode *ND = cast<ConstantSDNode>(Op);
APInt C(SVTBits, ND->getAPIntValue().getZExtValue());
uint64_t ShAmt = C.getZExtValue();
if (ShAmt >= SVTBits) {
Elts.push_back(DAG.getUNDEF(SVT));
continue;
}
Elts.push_back(DAG.getConstant(One.shl(ShAmt), dl, SVT));
}
SDValue BV = DAG.getBuildVector(VT, dl, Elts);
return DAG.getNode(ISD::MUL, dl, VT, R, BV);
}
// Lower SHL with variable shift amount.
if (VT == MVT::v4i32 && Op->getOpcode() == ISD::SHL) {
Op = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(23, dl, VT));
Op = DAG.getNode(ISD::ADD, dl, VT, Op,
DAG.getConstant(0x3f800000U, dl, VT));
Op = DAG.getBitcast(MVT::v4f32, Op);
Op = DAG.getNode(ISD::FP_TO_SINT, dl, VT, Op);
return DAG.getNode(ISD::MUL, dl, VT, Op, R);
}
// If possible, lower this shift as a sequence of two shifts by
// constant plus a MOVSS/MOVSD instead of scalarizing it.
// Example:
// (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
//
// Could be rewritten as:
// (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
//
// The advantage is that the two shifts from the example would be
// lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
// the vector shift into four scalar shifts plus four pairs of vector
// insert/extract.
if (ConstantAmt && (VT == MVT::v8i16 || VT == MVT::v4i32)) {
unsigned TargetOpcode = X86ISD::MOVSS;
bool CanBeSimplified;
// The splat value for the first packed shift (the 'X' from the example).
SDValue Amt1 = Amt->getOperand(0);
// The splat value for the second packed shift (the 'Y' from the example).
SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) : Amt->getOperand(2);
// See if it is possible to replace this node with a sequence of
// two shifts followed by a MOVSS/MOVSD
if (VT == MVT::v4i32) {
// Check if it is legal to use a MOVSS.
CanBeSimplified = Amt2 == Amt->getOperand(2) &&
Amt2 == Amt->getOperand(3);
if (!CanBeSimplified) {
// Otherwise, check if we can still simplify this node using a MOVSD.
CanBeSimplified = Amt1 == Amt->getOperand(1) &&
Amt->getOperand(2) == Amt->getOperand(3);
TargetOpcode = X86ISD::MOVSD;
Amt2 = Amt->getOperand(2);
}
} else {
// Do similar checks for the case where the machine value type
// is MVT::v8i16.
CanBeSimplified = Amt1 == Amt->getOperand(1);
for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
CanBeSimplified = Amt2 == Amt->getOperand(i);
if (!CanBeSimplified) {
TargetOpcode = X86ISD::MOVSD;
CanBeSimplified = true;
Amt2 = Amt->getOperand(4);
for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
CanBeSimplified = Amt1 == Amt->getOperand(i);
for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
CanBeSimplified = Amt2 == Amt->getOperand(j);
}
}
if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
isa<ConstantSDNode>(Amt2)) {
// Replace this node with two shifts followed by a MOVSS/MOVSD.
MVT CastVT = MVT::v4i32;
SDValue Splat1 =
DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), dl, VT);
SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
SDValue Splat2 =
DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), dl, VT);
SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
if (TargetOpcode == X86ISD::MOVSD)
CastVT = MVT::v2i64;
SDValue BitCast1 = DAG.getBitcast(CastVT, Shift1);
SDValue BitCast2 = DAG.getBitcast(CastVT, Shift2);
SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
BitCast1, DAG);
return DAG.getBitcast(VT, Result);
}
}
// v4i32 Non Uniform Shifts.
// If the shift amount is constant we can shift each lane using the SSE2
// immediate shifts, else we need to zero-extend each lane to the lower i64
// and shift using the SSE2 variable shifts.
// The separate results can then be blended together.
if (VT == MVT::v4i32) {
unsigned Opc = Op.getOpcode();
SDValue Amt0, Amt1, Amt2, Amt3;
if (ConstantAmt) {
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {0, 0, 0, 0});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {1, 1, 1, 1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {2, 2, 2, 2});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, DAG.getUNDEF(VT), {3, 3, 3, 3});
} else {
// ISD::SHL is handled above but we include it here for completeness.
switch (Opc) {
default:
llvm_unreachable("Unknown target vector shift node");
case ISD::SHL:
Opc = X86ISD::VSHL;
break;
case ISD::SRL:
Opc = X86ISD::VSRL;
break;
case ISD::SRA:
Opc = X86ISD::VSRA;
break;
}
// The SSE2 shifts use the lower i64 as the same shift amount for
// all lanes and the upper i64 is ignored. These shuffle masks
// optimally zero-extend each lanes on SSE2/SSE41/AVX targets.
SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
Amt0 = DAG.getVectorShuffle(VT, dl, Amt, Z, {0, 4, -1, -1});
Amt1 = DAG.getVectorShuffle(VT, dl, Amt, Z, {1, 5, -1, -1});
Amt2 = DAG.getVectorShuffle(VT, dl, Amt, Z, {2, 6, -1, -1});
Amt3 = DAG.getVectorShuffle(VT, dl, Amt, Z, {3, 7, -1, -1});
}
SDValue R0 = DAG.getNode(Opc, dl, VT, R, Amt0);
SDValue R1 = DAG.getNode(Opc, dl, VT, R, Amt1);
SDValue R2 = DAG.getNode(Opc, dl, VT, R, Amt2);
SDValue R3 = DAG.getNode(Opc, dl, VT, R, Amt3);
SDValue R02 = DAG.getVectorShuffle(VT, dl, R0, R2, {0, -1, 6, -1});
SDValue R13 = DAG.getVectorShuffle(VT, dl, R1, R3, {-1, 1, -1, 7});
return DAG.getVectorShuffle(VT, dl, R02, R13, {0, 5, 2, 7});
}
if (VT == MVT::v16i8 ||
(VT == MVT::v32i8 && Subtarget.hasInt256() && !Subtarget.hasXOP())) {
MVT ExtVT = MVT::getVectorVT(MVT::i16, VT.getVectorNumElements() / 2);
unsigned ShiftOpcode = Op->getOpcode();
auto SignBitSelect = [&](MVT SelVT, SDValue Sel, SDValue V0, SDValue V1) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
if (Subtarget.hasSSE41()) {
V0 = DAG.getBitcast(VT, V0);
V1 = DAG.getBitcast(VT, V1);
Sel = DAG.getBitcast(VT, Sel);
return DAG.getBitcast(SelVT,
DAG.getNode(ISD::VSELECT, dl, VT, Sel, V0, V1));
}
// On pre-SSE41 targets we test for the sign bit by comparing to
// zero - a negative value will set all bits of the lanes to true
// and VSELECT uses that in its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue Z = getZeroVector(SelVT, Subtarget, DAG, dl);
SDValue C = DAG.getNode(X86ISD::PCMPGT, dl, SelVT, Z, Sel);
return DAG.getNode(ISD::VSELECT, dl, SelVT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 5;
// We can safely do this using i16 shifts as we're only interested in
// the 3 lower bits of each byte.
Amt = DAG.getBitcast(ExtVT, Amt);
Amt = DAG.getNode(ISD::SHL, dl, ExtVT, Amt, DAG.getConstant(5, dl, ExtVT));
Amt = DAG.getBitcast(VT, Amt);
if (Op->getOpcode() == ISD::SHL || Op->getOpcode() == ISD::SRL) {
// r = VSELECT(r, shift(r, 4), a);
SDValue M =
DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
R = SignBitSelect(VT, Amt, M, R);
return R;
}
if (Op->getOpcode() == ISD::SRA) {
// For SRA we need to unpack each byte to the higher byte of a i16 vector
// so we can correctly sign extend. We don't care what happens to the
// lower byte.
SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), Amt);
SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, DAG.getUNDEF(VT), R);
SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, DAG.getUNDEF(VT), R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
// r = VSELECT(r, shift(r, 4), a);
SDValue MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(4, dl, ExtVT));
SDValue MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(4, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 2), a);
MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(2, dl, ExtVT));
MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(2, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// a += a
ALo = DAG.getNode(ISD::ADD, dl, ExtVT, ALo, ALo);
AHi = DAG.getNode(ISD::ADD, dl, ExtVT, AHi, AHi);
// r = VSELECT(r, shift(r, 1), a);
MLo = DAG.getNode(ShiftOpcode, dl, ExtVT, RLo,
DAG.getConstant(1, dl, ExtVT));
MHi = DAG.getNode(ShiftOpcode, dl, ExtVT, RHi,
DAG.getConstant(1, dl, ExtVT));
RLo = SignBitSelect(ExtVT, ALo, MLo, RLo);
RHi = SignBitSelect(ExtVT, AHi, MHi, RHi);
// Logical shift the result back to the lower byte, leaving a zero upper
// byte
// meaning that we can safely pack with PACKUSWB.
RLo =
DAG.getNode(ISD::SRL, dl, ExtVT, RLo, DAG.getConstant(8, dl, ExtVT));
RHi =
DAG.getNode(ISD::SRL, dl, ExtVT, RHi, DAG.getConstant(8, dl, ExtVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, RLo, RHi);
}
}
// It's worth extending once and using the v8i32 shifts for 16-bit types, but
// the extra overheads to get from v16i8 to v8i32 make the existing SSE
// solution better.
if (Subtarget.hasInt256() && VT == MVT::v8i16) {
MVT ExtVT = MVT::v8i32;
unsigned ExtOpc =
Op.getOpcode() == ISD::SRA ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
R = DAG.getNode(ExtOpc, dl, ExtVT, R);
Amt = DAG.getNode(ISD::ANY_EXTEND, dl, ExtVT, Amt);
return DAG.getNode(ISD::TRUNCATE, dl, VT,
DAG.getNode(Op.getOpcode(), dl, ExtVT, R, Amt));
}
if (Subtarget.hasInt256() && !Subtarget.hasXOP() && VT == MVT::v16i16) {
MVT ExtVT = MVT::v8i32;
SDValue Z = getZeroVector(VT, Subtarget, DAG, dl);
SDValue ALo = DAG.getNode(X86ISD::UNPCKL, dl, VT, Amt, Z);
SDValue AHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, Amt, Z);
SDValue RLo = DAG.getNode(X86ISD::UNPCKL, dl, VT, R, R);
SDValue RHi = DAG.getNode(X86ISD::UNPCKH, dl, VT, R, R);
ALo = DAG.getBitcast(ExtVT, ALo);
AHi = DAG.getBitcast(ExtVT, AHi);
RLo = DAG.getBitcast(ExtVT, RLo);
RHi = DAG.getBitcast(ExtVT, RHi);
SDValue Lo = DAG.getNode(Op.getOpcode(), dl, ExtVT, RLo, ALo);
SDValue Hi = DAG.getNode(Op.getOpcode(), dl, ExtVT, RHi, AHi);
Lo = DAG.getNode(ISD::SRL, dl, ExtVT, Lo, DAG.getConstant(16, dl, ExtVT));
Hi = DAG.getNode(ISD::SRL, dl, ExtVT, Hi, DAG.getConstant(16, dl, ExtVT));
return DAG.getNode(X86ISD::PACKUS, dl, VT, Lo, Hi);
}
if (VT == MVT::v8i16) {
unsigned ShiftOpcode = Op->getOpcode();
// If we have a constant shift amount, the non-SSE41 path is best as
// avoiding bitcasts make it easier to constant fold and reduce to PBLENDW.
bool UseSSE41 = Subtarget.hasSSE41() &&
!ISD::isBuildVectorOfConstantSDNodes(Amt.getNode());
auto SignBitSelect = [&](SDValue Sel, SDValue V0, SDValue V1) {
// On SSE41 targets we make use of the fact that VSELECT lowers
// to PBLENDVB which selects bytes based just on the sign bit.
if (UseSSE41) {
MVT ExtVT = MVT::getVectorVT(MVT::i8, VT.getVectorNumElements() * 2);
V0 = DAG.getBitcast(ExtVT, V0);
V1 = DAG.getBitcast(ExtVT, V1);
Sel = DAG.getBitcast(ExtVT, Sel);
return DAG.getBitcast(
VT, DAG.getNode(ISD::VSELECT, dl, ExtVT, Sel, V0, V1));
}
// On pre-SSE41 targets we splat the sign bit - a negative value will
// set all bits of the lanes to true and VSELECT uses that in
// its OR(AND(V0,C),AND(V1,~C)) lowering.
SDValue C =
DAG.getNode(ISD::SRA, dl, VT, Sel, DAG.getConstant(15, dl, VT));
return DAG.getNode(ISD::VSELECT, dl, VT, C, V0, V1);
};
// Turn 'a' into a mask suitable for VSELECT: a = a << 12;
if (UseSSE41) {
// On SSE41 targets we need to replicate the shift mask in both
// bytes for PBLENDVB.
Amt = DAG.getNode(
ISD::OR, dl, VT,
DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(4, dl, VT)),
DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT)));
} else {
Amt = DAG.getNode(ISD::SHL, dl, VT, Amt, DAG.getConstant(12, dl, VT));
}
// r = VSELECT(r, shift(r, 8), a);
SDValue M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(8, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 4), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(4, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// r = VSELECT(r, shift(r, 2), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(2, dl, VT));
R = SignBitSelect(Amt, M, R);
// a += a
Amt = DAG.getNode(ISD::ADD, dl, VT, Amt, Amt);
// return VSELECT(r, shift(r, 1), a);
M = DAG.getNode(ShiftOpcode, dl, VT, R, DAG.getConstant(1, dl, VT));
R = SignBitSelect(Amt, M, R);
return R;
}
// Decompose 256-bit shifts into smaller 128-bit shifts.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
return SDValue();
}
static SDValue LowerRotate(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
SDValue R = Op.getOperand(0);
SDValue Amt = Op.getOperand(1);
assert(VT.isVector() && "Custom lowering only for vector rotates!");
assert(Subtarget.hasXOP() && "XOP support required for vector rotates!");
assert((Op.getOpcode() == ISD::ROTL) && "Only ROTL supported");
// XOP has 128-bit vector variable + immediate rotates.
// +ve/-ve Amt = rotate left/right.
// Split 256-bit integers.
if (VT.is256BitVector())
return Lower256IntArith(Op, DAG);
assert(VT.is128BitVector() && "Only rotate 128-bit vectors!");
// Attempt to rotate by immediate.
if (auto *BVAmt = dyn_cast<BuildVectorSDNode>(Amt)) {
if (auto *RotateConst = BVAmt->getConstantSplatNode()) {
uint64_t RotateAmt = RotateConst->getAPIntValue().getZExtValue();
assert(RotateAmt < VT.getScalarSizeInBits() && "Rotation out of range");
return DAG.getNode(X86ISD::VPROTI, DL, VT, R,
DAG.getConstant(RotateAmt, DL, MVT::i8));
}
}
// Use general rotate by variable (per-element).
return DAG.getNode(X86ISD::VPROT, DL, VT, R, Amt);
}
static SDValue LowerXALUO(SDValue Op, SelectionDAG &DAG) {
// Lower the "add/sub/mul with overflow" instruction into a regular ins plus
// a "setcc" instruction that checks the overflow flag. The "brcond" lowering
// looks for this combo and may remove the "setcc" instruction if the "setcc"
// has only one use.
SDNode *N = Op.getNode();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
unsigned BaseOp = 0;
unsigned Cond = 0;
SDLoc DL(Op);
switch (Op.getOpcode()) {
default: llvm_unreachable("Unknown ovf instruction!");
case ISD::SADDO:
// A subtract of one will be selected as a INC. Note that INC doesn't
// set CF, so we can't do this for UADDO.
if (isOneConstant(RHS)) {
BaseOp = X86ISD::INC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::ADD;
Cond = X86::COND_O;
break;
case ISD::UADDO:
BaseOp = X86ISD::ADD;
Cond = X86::COND_B;
break;
case ISD::SSUBO:
// A subtract of one will be selected as a DEC. Note that DEC doesn't
// set CF, so we can't do this for USUBO.
if (isOneConstant(RHS)) {
BaseOp = X86ISD::DEC;
Cond = X86::COND_O;
break;
}
BaseOp = X86ISD::SUB;
Cond = X86::COND_O;
break;
case ISD::USUBO:
BaseOp = X86ISD::SUB;
Cond = X86::COND_B;
break;
case ISD::SMULO:
BaseOp = N->getValueType(0) == MVT::i8 ? X86ISD::SMUL8 : X86ISD::SMUL;
Cond = X86::COND_O;
break;
case ISD::UMULO: { // i64, i8 = umulo lhs, rhs --> i64, i64, i32 umul lhs,rhs
if (N->getValueType(0) == MVT::i8) {
BaseOp = X86ISD::UMUL8;
Cond = X86::COND_O;
break;
}
SDVTList VTs = DAG.getVTList(N->getValueType(0), N->getValueType(0),
MVT::i32);
SDValue Sum = DAG.getNode(X86ISD::UMUL, DL, VTs, LHS, RHS);
SDValue SetCC =
DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(X86::COND_O, DL, MVT::i32),
SDValue(Sum.getNode(), 2));
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
}
// Also sets EFLAGS.
SDVTList VTs = DAG.getVTList(N->getValueType(0), MVT::i32);
SDValue Sum = DAG.getNode(BaseOp, DL, VTs, LHS, RHS);
SDValue SetCC =
DAG.getNode(X86ISD::SETCC, DL, N->getValueType(1),
DAG.getConstant(Cond, DL, MVT::i32),
SDValue(Sum.getNode(), 1));
return DAG.getNode(ISD::MERGE_VALUES, DL, N->getVTList(), Sum, SetCC);
}
/// Returns true if the operand type is exactly twice the native width, and
/// the corresponding cmpxchg8b or cmpxchg16b instruction is available.
/// Used to know whether to use cmpxchg8/16b when expanding atomic operations
/// (otherwise we leave them alone to become __sync_fetch_and_... calls).
bool X86TargetLowering::needsCmpXchgNb(Type *MemType) const {
unsigned OpWidth = MemType->getPrimitiveSizeInBits();
if (OpWidth == 64)
return !Subtarget.is64Bit(); // FIXME this should be Subtarget.hasCmpxchg8b
else if (OpWidth == 128)
return Subtarget.hasCmpxchg16b();
else
return false;
}
bool X86TargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
return needsCmpXchgNb(SI->getValueOperand()->getType());
}
// Note: this turns large loads into lock cmpxchg8b/16b.
// FIXME: On 32 bits x86, fild/movq might be faster than lock cmpxchg8b.
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
auto PTy = cast<PointerType>(LI->getPointerOperand()->getType());
return needsCmpXchgNb(PTy->getElementType()) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
TargetLowering::AtomicExpansionKind
X86TargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// If the operand is too big, we must see if cmpxchg8/16b is available
// and default to library calls otherwise.
if (MemType->getPrimitiveSizeInBits() > NativeWidth) {
return needsCmpXchgNb(MemType) ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
}
AtomicRMWInst::BinOp Op = AI->getOperation();
switch (Op) {
default:
llvm_unreachable("Unknown atomic operation");
case AtomicRMWInst::Xchg:
case AtomicRMWInst::Add:
case AtomicRMWInst::Sub:
// It's better to use xadd, xsub or xchg for these in all cases.
return AtomicExpansionKind::None;
case AtomicRMWInst::Or:
case AtomicRMWInst::And:
case AtomicRMWInst::Xor:
// If the atomicrmw's result isn't actually used, we can just add a "lock"
// prefix to a normal instruction for these operations.
return !AI->use_empty() ? AtomicExpansionKind::CmpXChg
: AtomicExpansionKind::None;
case AtomicRMWInst::Nand:
case AtomicRMWInst::Max:
case AtomicRMWInst::Min:
case AtomicRMWInst::UMax:
case AtomicRMWInst::UMin:
// These always require a non-trivial set of data operations on x86. We must
// use a cmpxchg loop.
return AtomicExpansionKind::CmpXChg;
}
}
LoadInst *
X86TargetLowering::lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *AI) const {
unsigned NativeWidth = Subtarget.is64Bit() ? 64 : 32;
Type *MemType = AI->getType();
// Accesses larger than the native width are turned into cmpxchg/libcalls, so
// there is no benefit in turning such RMWs into loads, and it is actually
// harmful as it introduces a mfence.
if (MemType->getPrimitiveSizeInBits() > NativeWidth)
return nullptr;
auto Builder = IRBuilder<>(AI);
Module *M = Builder.GetInsertBlock()->getParent()->getParent();
auto SynchScope = AI->getSynchScope();
// We must restrict the ordering to avoid generating loads with Release or
// ReleaseAcquire orderings.
auto Order = AtomicCmpXchgInst::getStrongestFailureOrdering(AI->getOrdering());
auto Ptr = AI->getPointerOperand();
// Before the load we need a fence. Here is an example lifted from
// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf showing why a fence
// is required:
// Thread 0:
// x.store(1, relaxed);
// r1 = y.fetch_add(0, release);
// Thread 1:
// y.fetch_add(42, acquire);
// r2 = x.load(relaxed);
// r1 = r2 = 0 is impossible, but becomes possible if the idempotent rmw is
// lowered to just a load without a fence. A mfence flushes the store buffer,
// making the optimization clearly correct.
// FIXME: it is required if isReleaseOrStronger(Order) but it is not clear
// otherwise, we might be able to be more aggressive on relaxed idempotent
// rmw. In practice, they do not look useful, so we don't try to be
// especially clever.
if (SynchScope == SingleThread)
// FIXME: we could just insert an X86ISD::MEMBARRIER here, except we are at
// the IR level, so we must wrap it in an intrinsic.
return nullptr;
if (!Subtarget.hasMFence())
// FIXME: it might make sense to use a locked operation here but on a
// different cache-line to prevent cache-line bouncing. In practice it
// is probably a small win, and x86 processors without mfence are rare
// enough that we do not bother.
return nullptr;
Function *MFence =
llvm::Intrinsic::getDeclaration(M, Intrinsic::x86_sse2_mfence);
Builder.CreateCall(MFence, {});
// Finally we can emit the atomic load.
LoadInst *Loaded = Builder.CreateAlignedLoad(Ptr,
AI->getType()->getPrimitiveSizeInBits());
Loaded->setAtomic(Order, SynchScope);
AI->replaceAllUsesWith(Loaded);
AI->eraseFromParent();
return Loaded;
}
static SDValue LowerATOMIC_FENCE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc dl(Op);
AtomicOrdering FenceOrdering = static_cast<AtomicOrdering>(
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue());
SynchronizationScope FenceScope = static_cast<SynchronizationScope>(
cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue());
// The only fence that needs an instruction is a sequentially-consistent
// cross-thread fence.
if (FenceOrdering == AtomicOrdering::SequentiallyConsistent &&
FenceScope == CrossThread) {
if (Subtarget.hasMFence())
return DAG.getNode(X86ISD::MFENCE, dl, MVT::Other, Op.getOperand(0));
SDValue Chain = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, dl, MVT::i32);
SDValue Ops[] = {
DAG.getRegister(X86::ESP, MVT::i32), // Base
DAG.getTargetConstant(1, dl, MVT::i8), // Scale
DAG.getRegister(0, MVT::i32), // Index
DAG.getTargetConstant(0, dl, MVT::i32), // Disp
DAG.getRegister(0, MVT::i32), // Segment.
Zero,
Chain
};
SDNode *Res = DAG.getMachineNode(X86::OR32mrLocked, dl, MVT::Other, Ops);
return SDValue(Res, 0);
}
// MEMBARRIER is a compiler barrier; it codegens to a no-op.
return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
}
static SDValue LowerCMP_SWAP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT T = Op.getSimpleValueType();
SDLoc DL(Op);
unsigned Reg = 0;
unsigned size = 0;
switch(T.SimpleTy) {
default: llvm_unreachable("Invalid value type!");
case MVT::i8: Reg = X86::AL; size = 1; break;
case MVT::i16: Reg = X86::AX; size = 2; break;
case MVT::i32: Reg = X86::EAX; size = 4; break;
case MVT::i64:
assert(Subtarget.is64Bit() && "Node not type legal!");
Reg = X86::RAX; size = 8;
break;
}
SDValue cpIn = DAG.getCopyToReg(Op.getOperand(0), DL, Reg,
Op.getOperand(2), SDValue());
SDValue Ops[] = { cpIn.getValue(0),
Op.getOperand(1),
Op.getOperand(3),
DAG.getTargetConstant(size, DL, MVT::i8),
cpIn.getValue(1) };
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
MachineMemOperand *MMO = cast<AtomicSDNode>(Op)->getMemOperand();
SDValue Result = DAG.getMemIntrinsicNode(X86ISD::LCMPXCHG_DAG, DL, Tys,
Ops, T, MMO);
SDValue cpOut =
DAG.getCopyFromReg(Result.getValue(0), DL, Reg, T, Result.getValue(1));
SDValue EFLAGS = DAG.getCopyFromReg(cpOut.getValue(1), DL, X86::EFLAGS,
MVT::i32, cpOut.getValue(2));
SDValue Success = DAG.getNode(X86ISD::SETCC, DL, Op->getValueType(1),
DAG.getConstant(X86::COND_E, DL, MVT::i8),
EFLAGS);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(0), cpOut);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(1), Success);
DAG.ReplaceAllUsesOfValueWith(Op.getValue(2), EFLAGS.getValue(1));
return SDValue();
}
static SDValue LowerBITCAST(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT SrcVT = Op.getOperand(0).getSimpleValueType();
MVT DstVT = Op.getSimpleValueType();
if (SrcVT == MVT::v2i32 || SrcVT == MVT::v4i16 || SrcVT == MVT::v8i8 ||
SrcVT == MVT::i64) {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
if (DstVT != MVT::f64)
// This conversion needs to be expanded.
return SDValue();
SDValue Op0 = Op->getOperand(0);
SmallVector<SDValue, 16> Elts;
SDLoc dl(Op);
unsigned NumElts;
MVT SVT;
if (SrcVT.isVector()) {
NumElts = SrcVT.getVectorNumElements();
SVT = SrcVT.getVectorElementType();
// Widen the vector in input in the case of MVT::v2i32.
// Example: from MVT::v2i32 to MVT::v4i32.
for (unsigned i = 0, e = NumElts; i != e; ++i)
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT, Op0,
DAG.getIntPtrConstant(i, dl)));
} else {
assert(SrcVT == MVT::i64 && !Subtarget.is64Bit() &&
"Unexpected source type in LowerBITCAST");
Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
DAG.getIntPtrConstant(0, dl)));
Elts.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op0,
DAG.getIntPtrConstant(1, dl)));
NumElts = 2;
SVT = MVT::i32;
}
// Explicitly mark the extra elements as Undef.
Elts.append(NumElts, DAG.getUNDEF(SVT));
EVT NewVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue BV = DAG.getBuildVector(NewVT, dl, Elts);
SDValue ToV2F64 = DAG.getBitcast(MVT::v2f64, BV);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, ToV2F64,
DAG.getIntPtrConstant(0, dl));
}
assert(Subtarget.is64Bit() && !Subtarget.hasSSE2() &&
Subtarget.hasMMX() && "Unexpected custom BITCAST");
assert((DstVT == MVT::i64 ||
(DstVT.isVector() && DstVT.getSizeInBits()==64)) &&
"Unexpected custom BITCAST");
// i64 <=> MMX conversions are Legal.
if (SrcVT==MVT::i64 && DstVT.isVector())
return Op;
if (DstVT==MVT::i64 && SrcVT.isVector())
return Op;
// MMX <=> MMX conversions are Legal.
if (SrcVT.isVector() && DstVT.isVector())
return Op;
// All other conversions need to be expanded.
return SDValue();
}
/// Compute the horizontal sum of bytes in V for the elements of VT.
///
/// Requires V to be a byte vector and VT to be an integer vector type with
/// wider elements than V's type. The width of the elements of VT determines
/// how many bytes of V are summed horizontally to produce each element of the
/// result.
static SDValue LowerHorizontalByteSum(SDValue V, MVT VT,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(V);
MVT ByteVecVT = V.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
assert(ByteVecVT.getVectorElementType() == MVT::i8 &&
"Expected value to have byte element type.");
assert(EltVT != MVT::i8 &&
"Horizontal byte sum only makes sense for wider elements!");
unsigned VecSize = VT.getSizeInBits();
assert(ByteVecVT.getSizeInBits() == VecSize && "Cannot change vector size!");
// PSADBW instruction horizontally add all bytes and leave the result in i64
// chunks, thus directly computes the pop count for v2i64 and v4i64.
if (EltVT == MVT::i64) {
SDValue Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
V = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT, V, Zeros);
return DAG.getBitcast(VT, V);
}
if (EltVT == MVT::i32) {
// We unpack the low half and high half into i32s interleaved with zeros so
// that we can use PSADBW to horizontally sum them. The most useful part of
// this is that it lines up the results of two PSADBW instructions to be
// two v2i64 vectors which concatenated are the 4 population counts. We can
// then use PACKUSWB to shrink and concatenate them into a v4i32 again.
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, DL);
SDValue Low = DAG.getNode(X86ISD::UNPCKL, DL, VT, V, Zeros);
SDValue High = DAG.getNode(X86ISD::UNPCKH, DL, VT, V, Zeros);
// Do the horizontal sums into two v2i64s.
Zeros = getZeroVector(ByteVecVT, Subtarget, DAG, DL);
MVT SadVecVT = MVT::getVectorVT(MVT::i64, VecSize / 64);
Low = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, Low), Zeros);
High = DAG.getNode(X86ISD::PSADBW, DL, SadVecVT,
DAG.getBitcast(ByteVecVT, High), Zeros);
// Merge them together.
MVT ShortVecVT = MVT::getVectorVT(MVT::i16, VecSize / 16);
V = DAG.getNode(X86ISD::PACKUS, DL, ByteVecVT,
DAG.getBitcast(ShortVecVT, Low),
DAG.getBitcast(ShortVecVT, High));
return DAG.getBitcast(VT, V);
}
// The only element type left is i16.
assert(EltVT == MVT::i16 && "Unknown how to handle type");
// To obtain pop count for each i16 element starting from the pop count for
// i8 elements, shift the i16s left by 8, sum as i8s, and then shift as i16s
// right by 8. It is important to shift as i16s as i8 vector shift isn't
// directly supported.
SDValue ShifterV = DAG.getConstant(8, DL, VT);
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
V = DAG.getNode(ISD::ADD, DL, ByteVecVT, DAG.getBitcast(ByteVecVT, Shl),
DAG.getBitcast(ByteVecVT, V));
return DAG.getNode(ISD::SRL, DL, VT, DAG.getBitcast(VT, V), ShifterV);
}
static SDValue LowerVectorCTPOPInRegLUT(SDValue Op, SDLoc DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
MVT EltVT = VT.getVectorElementType();
unsigned VecSize = VT.getSizeInBits();
// Implement a lookup table in register by using an algorithm based on:
// http://wm.ite.pl/articles/sse-popcount.html
//
// The general idea is that every lower byte nibble in the input vector is an
// index into a in-register pre-computed pop count table. We then split up the
// input vector in two new ones: (1) a vector with only the shifted-right
// higher nibbles for each byte and (2) a vector with the lower nibbles (and
// masked out higher ones) for each byte. PSHUB is used separately with both
// to index the in-register table. Next, both are added and the result is a
// i8 vector where each element contains the pop count for input byte.
//
// To obtain the pop count for elements != i8, we follow up with the same
// approach and use additional tricks as described below.
//
const int LUT[16] = {/* 0 */ 0, /* 1 */ 1, /* 2 */ 1, /* 3 */ 2,
/* 4 */ 1, /* 5 */ 2, /* 6 */ 2, /* 7 */ 3,
/* 8 */ 1, /* 9 */ 2, /* a */ 2, /* b */ 3,
/* c */ 2, /* d */ 3, /* e */ 3, /* f */ 4};
int NumByteElts = VecSize / 8;
MVT ByteVecVT = MVT::getVectorVT(MVT::i8, NumByteElts);
SDValue In = DAG.getBitcast(ByteVecVT, Op);
SmallVector<SDValue, 64> LUTVec;
for (int i = 0; i < NumByteElts; ++i)
LUTVec.push_back(DAG.getConstant(LUT[i % 16], DL, MVT::i8));
SDValue InRegLUT = DAG.getBuildVector(ByteVecVT, DL, LUTVec);
SDValue M0F = DAG.getConstant(0x0F, DL, ByteVecVT);
// High nibbles
SDValue FourV = DAG.getConstant(4, DL, ByteVecVT);
SDValue HighNibbles = DAG.getNode(ISD::SRL, DL, ByteVecVT, In, FourV);
// Low nibbles
SDValue LowNibbles = DAG.getNode(ISD::AND, DL, ByteVecVT, In, M0F);
// The input vector is used as the shuffle mask that index elements into the
// LUT. After counting low and high nibbles, add the vector to obtain the
// final pop count per i8 element.
SDValue HighPopCnt =
DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, HighNibbles);
SDValue LowPopCnt =
DAG.getNode(X86ISD::PSHUFB, DL, ByteVecVT, InRegLUT, LowNibbles);
SDValue PopCnt = DAG.getNode(ISD::ADD, DL, ByteVecVT, HighPopCnt, LowPopCnt);
if (EltVT == MVT::i8)
return PopCnt;
return LowerHorizontalByteSum(PopCnt, VT, Subtarget, DAG);
}
static SDValue LowerVectorCTPOPBitmath(SDValue Op, SDLoc DL,
const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert(VT.is128BitVector() &&
"Only 128-bit vector bitmath lowering supported.");
int VecSize = VT.getSizeInBits();
MVT EltVT = VT.getVectorElementType();
int Len = EltVT.getSizeInBits();
// This is the vectorized version of the "best" algorithm from
// http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
// with a minor tweak to use a series of adds + shifts instead of vector
// multiplications. Implemented for all integer vector types. We only use
// this when we don't have SSSE3 which allows a LUT-based lowering that is
// much faster, even faster than using native popcnt instructions.
auto GetShift = [&](unsigned OpCode, SDValue V, int Shifter) {
MVT VT = V.getSimpleValueType();
SDValue ShifterV = DAG.getConstant(Shifter, DL, VT);
return DAG.getNode(OpCode, DL, VT, V, ShifterV);
};
auto GetMask = [&](SDValue V, APInt Mask) {
MVT VT = V.getSimpleValueType();
SDValue MaskV = DAG.getConstant(Mask, DL, VT);
return DAG.getNode(ISD::AND, DL, VT, V, MaskV);
};
// We don't want to incur the implicit masks required to SRL vNi8 vectors on
// x86, so set the SRL type to have elements at least i16 wide. This is
// correct because all of our SRLs are followed immediately by a mask anyways
// that handles any bits that sneak into the high bits of the byte elements.
MVT SrlVT = Len > 8 ? VT : MVT::getVectorVT(MVT::i16, VecSize / 16);
SDValue V = Op;
// v = v - ((v >> 1) & 0x55555555...)
SDValue Srl =
DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 1));
SDValue And = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x55)));
V = DAG.getNode(ISD::SUB, DL, VT, V, And);
// v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
SDValue AndLHS = GetMask(V, APInt::getSplat(Len, APInt(8, 0x33)));
Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 2));
SDValue AndRHS = GetMask(Srl, APInt::getSplat(Len, APInt(8, 0x33)));
V = DAG.getNode(ISD::ADD, DL, VT, AndLHS, AndRHS);
// v = (v + (v >> 4)) & 0x0F0F0F0F...
Srl = DAG.getBitcast(VT, GetShift(ISD::SRL, DAG.getBitcast(SrlVT, V), 4));
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, V, Srl);
V = GetMask(Add, APInt::getSplat(Len, APInt(8, 0x0F)));
// At this point, V contains the byte-wise population count, and we are
// merely doing a horizontal sum if necessary to get the wider element
// counts.
if (EltVT == MVT::i8)
return V;
return LowerHorizontalByteSum(
DAG.getBitcast(MVT::getVectorVT(MVT::i8, VecSize / 8), V), VT, Subtarget,
DAG);
}
static SDValue LowerVectorCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
assert((VT.is512BitVector() || VT.is256BitVector() || VT.is128BitVector()) &&
"Unknown CTPOP type to handle");
SDLoc DL(Op.getNode());
SDValue Op0 = Op.getOperand(0);
if (!Subtarget.hasSSSE3()) {
// We can't use the fast LUT approach, so fall back on vectorized bitmath.
assert(VT.is128BitVector() && "Only 128-bit vectors supported in SSE!");
return LowerVectorCTPOPBitmath(Op0, DL, Subtarget, DAG);
}
if (VT.is256BitVector() && !Subtarget.hasInt256()) {
unsigned NumElems = VT.getVectorNumElements();
// Extract each 128-bit vector, compute pop count and concat the result.
SDValue LHS = extract128BitVector(Op0, 0, DAG, DL);
SDValue RHS = extract128BitVector(Op0, NumElems / 2, DAG, DL);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
}
if (VT.is512BitVector() && !Subtarget.hasBWI()) {
unsigned NumElems = VT.getVectorNumElements();
// Extract each 256-bit vector, compute pop count and concat the result.
SDValue LHS = extract256BitVector(Op0, 0, DAG, DL);
SDValue RHS = extract256BitVector(Op0, NumElems / 2, DAG, DL);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
LowerVectorCTPOPInRegLUT(LHS, DL, Subtarget, DAG),
LowerVectorCTPOPInRegLUT(RHS, DL, Subtarget, DAG));
}
return LowerVectorCTPOPInRegLUT(Op0, DL, Subtarget, DAG);
}
static SDValue LowerCTPOP(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Op.getSimpleValueType().isVector() &&
"We only do custom lowering for vector population count.");
return LowerVectorCTPOP(Op, Subtarget, DAG);
}
static SDValue LowerBITREVERSE(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getSimpleValueType();
SDValue In = Op.getOperand(0);
SDLoc DL(Op);
// For scalars, its still beneficial to transfer to/from the SIMD unit to
// perform the BITREVERSE.
if (!VT.isVector()) {
MVT VecVT = MVT::getVectorVT(VT, 128 / VT.getSizeInBits());
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VecVT, In);
Res = DAG.getNode(ISD::BITREVERSE, DL, VecVT, Res);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Res,
DAG.getIntPtrConstant(0, DL));
}
MVT SVT = VT.getVectorElementType();
int NumElts = VT.getVectorNumElements();
int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
// Decompose 256-bit ops into smaller 128-bit ops.
if (VT.is256BitVector()) {
SDValue Lo = extract128BitVector(In, 0, DAG, DL);
SDValue Hi = extract128BitVector(In, NumElts / 2, DAG, DL);
MVT HalfVT = MVT::getVectorVT(SVT, NumElts / 2);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT,
DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Lo),
DAG.getNode(ISD::BITREVERSE, DL, HalfVT, Hi));
}
assert(VT.is128BitVector() &&
"Only 128-bit vector bitreverse lowering supported.");
// VPPERM reverses the bits of a byte with the permute Op (2 << 5), and we
// perform the BSWAP in the shuffle.
// Its best to shuffle using the second operand as this will implicitly allow
// memory folding for multiple vectors.
SmallVector<SDValue, 16> MaskElts;
for (int i = 0; i != NumElts; ++i) {
for (int j = ScalarSizeInBytes - 1; j >= 0; --j) {
int SourceByte = 16 + (i * ScalarSizeInBytes) + j;
int PermuteByte = SourceByte | (2 << 5);
MaskElts.push_back(DAG.getConstant(PermuteByte, DL, MVT::i8));
}
}
SDValue Mask = DAG.getBuildVector(MVT::v16i8, DL, MaskElts);
SDValue Res = DAG.getBitcast(MVT::v16i8, In);
Res = DAG.getNode(X86ISD::VPPERM, DL, MVT::v16i8, DAG.getUNDEF(MVT::v16i8),
Res, Mask);
return DAG.getBitcast(VT, Res);
}
static SDValue lowerAtomicArithWithLOCK(SDValue N, SelectionDAG &DAG) {
unsigned NewOpc = 0;
switch (N->getOpcode()) {
case ISD::ATOMIC_LOAD_ADD:
NewOpc = X86ISD::LADD;
break;
case ISD::ATOMIC_LOAD_SUB:
NewOpc = X86ISD::LSUB;
break;
case ISD::ATOMIC_LOAD_OR:
NewOpc = X86ISD::LOR;
break;
case ISD::ATOMIC_LOAD_XOR:
NewOpc = X86ISD::LXOR;
break;
case ISD::ATOMIC_LOAD_AND:
NewOpc = X86ISD::LAND;
break;
default:
llvm_unreachable("Unknown ATOMIC_LOAD_ opcode");
}
MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
return DAG.getMemIntrinsicNode(
NewOpc, SDLoc(N), DAG.getVTList(MVT::i32, MVT::Other),
{N->getOperand(0), N->getOperand(1), N->getOperand(2)},
/*MemVT=*/N->getSimpleValueType(0), MMO);
}
/// Lower atomic_load_ops into LOCK-prefixed operations.
static SDValue lowerAtomicArith(SDValue N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Chain = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
unsigned Opc = N->getOpcode();
MVT VT = N->getSimpleValueType(0);
SDLoc DL(N);
// We can lower atomic_load_add into LXADD. However, any other atomicrmw op
// can only be lowered when the result is unused. They should have already
// been transformed into a cmpxchg loop in AtomicExpand.
if (N->hasAnyUseOfValue(0)) {
// Handle (atomic_load_sub p, v) as (atomic_load_add p, -v), to be able to
// select LXADD if LOCK_SUB can't be selected.
if (Opc == ISD::ATOMIC_LOAD_SUB) {
AtomicSDNode *AN = cast<AtomicSDNode>(N.getNode());
RHS = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), RHS);
return DAG.getAtomic(ISD::ATOMIC_LOAD_ADD, DL, VT, Chain, LHS,
RHS, AN->getMemOperand(), AN->getOrdering(),
AN->getSynchScope());
}
assert(Opc == ISD::ATOMIC_LOAD_ADD &&
"Used AtomicRMW ops other than Add should have been expanded!");
return N;
}
SDValue LockOp = lowerAtomicArithWithLOCK(N, DAG);
// RAUW the chain, but don't worry about the result, as it's unused.
assert(!N->hasAnyUseOfValue(0));
DAG.ReplaceAllUsesOfValueWith(N.getValue(1), LockOp.getValue(1));
return SDValue();
}
static SDValue LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
SDLoc dl(Node);
EVT VT = cast<AtomicSDNode>(Node)->getMemoryVT();
// Convert seq_cst store -> xchg
// Convert wide store -> swap (-> cmpxchg8b/cmpxchg16b)
// FIXME: On 32-bit, store -> fist or movq would be more efficient
// (The only way to get a 16-byte store is cmpxchg16b)
// FIXME: 16-byte ATOMIC_SWAP isn't actually hooked up at the moment.
if (cast<AtomicSDNode>(Node)->getOrdering() ==
AtomicOrdering::SequentiallyConsistent ||
!DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
cast<AtomicSDNode>(Node)->getMemoryVT(),
Node->getOperand(0),
Node->getOperand(1), Node->getOperand(2),
cast<AtomicSDNode>(Node)->getMemOperand(),
cast<AtomicSDNode>(Node)->getOrdering(),
cast<AtomicSDNode>(Node)->getSynchScope());
return Swap.getValue(1);
}
// Other atomic stores have a simple pattern.
return Op;
}
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
MVT VT = Op.getNode()->getSimpleValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
unsigned Opc;
bool ExtraOp = false;
switch (Op.getOpcode()) {
default: llvm_unreachable("Invalid code");
case ISD::ADDC: Opc = X86ISD::ADD; break;
case ISD::ADDE: Opc = X86ISD::ADC; ExtraOp = true; break;
case ISD::SUBC: Opc = X86ISD::SUB; break;
case ISD::SUBE: Opc = X86ISD::SBB; ExtraOp = true; break;
}
if (!ExtraOp)
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1));
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
Op.getOperand(1), Op.getOperand(2));
}
static SDValue LowerFSINCOS(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.isTargetDarwin() && Subtarget.is64Bit());
// For MacOSX, we want to call an alternative entry point: __sincos_stret,
// which returns the values as { float, float } (in XMM0) or
// { double, double } (which is returned in XMM0, XMM1).
SDLoc dl(Op);
SDValue Arg = Op.getOperand(0);
EVT ArgVT = Arg.getValueType();
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Arg;
Entry.Ty = ArgTy;
Entry.isSExt = false;
Entry.isZExt = false;
Args.push_back(Entry);
bool isF64 = ArgVT == MVT::f64;
// Only optimize x86_64 for now. i386 is a bit messy. For f32,
// the small struct {f32, f32} is returned in (eax, edx). For f64,
// the results are returned via SRet in memory.
const char *LibcallName = isF64 ? "__sincos_stret" : "__sincosf_stret";
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Callee =
DAG.getExternalSymbol(LibcallName, TLI.getPointerTy(DAG.getDataLayout()));
Type *RetTy = isF64
? (Type*)StructType::get(ArgTy, ArgTy, nullptr)
: (Type*)VectorType::get(ArgTy, 4);
TargetLowering::CallLoweringInfo CLI(DAG);
CLI.setDebugLoc(dl).setChain(DAG.getEntryNode())
.setCallee(CallingConv::C, RetTy, Callee, std::move(Args), 0);
std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
if (isF64)
// Returned in xmm0 and xmm1.
return CallResult.first;
// Returned in bits 0:31 and 32:64 xmm0.
SDValue SinVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(0, dl));
SDValue CosVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, ArgVT,
CallResult.first, DAG.getIntPtrConstant(1, dl));
SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, SinVal, CosVal);
}
/// Widen a vector input to a vector of NVT. The
/// input vector must have the same element type as NVT.
static SDValue ExtendToType(SDValue InOp, MVT NVT, SelectionDAG &DAG,
bool FillWithZeroes = false) {
// Check if InOp already has the right width.
MVT InVT = InOp.getSimpleValueType();
if (InVT == NVT)
return InOp;
if (InOp.isUndef())
return DAG.getUNDEF(NVT);
assert(InVT.getVectorElementType() == NVT.getVectorElementType() &&
"input and widen element type must match");
unsigned InNumElts = InVT.getVectorNumElements();
unsigned WidenNumElts = NVT.getVectorNumElements();
assert(WidenNumElts > InNumElts && WidenNumElts % InNumElts == 0 &&
"Unexpected request for vector widening");
EVT EltVT = NVT.getVectorElementType();
SDLoc dl(InOp);
if (InOp.getOpcode() == ISD::CONCAT_VECTORS &&
InOp.getNumOperands() == 2) {
SDValue N1 = InOp.getOperand(1);
if ((ISD::isBuildVectorAllZeros(N1.getNode()) && FillWithZeroes) ||
N1.isUndef()) {
InOp = InOp.getOperand(0);
InVT = InOp.getSimpleValueType();
InNumElts = InVT.getVectorNumElements();
}
}
if (ISD::isBuildVectorOfConstantSDNodes(InOp.getNode()) ||
ISD::isBuildVectorOfConstantFPSDNodes(InOp.getNode())) {
SmallVector<SDValue, 16> Ops;
for (unsigned i = 0; i < InNumElts; ++i)
Ops.push_back(InOp.getOperand(i));
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, EltVT) :
DAG.getUNDEF(EltVT);
for (unsigned i = 0; i < WidenNumElts - InNumElts; ++i)
Ops.push_back(FillVal);
return DAG.getBuildVector(NVT, dl, Ops);
}
SDValue FillVal = FillWithZeroes ? DAG.getConstant(0, dl, NVT) :
DAG.getUNDEF(NVT);
return DAG.getNode(ISD::INSERT_SUBVECTOR, dl, NVT, FillVal,
InOp, DAG.getIntPtrConstant(0, dl));
}
static SDValue LowerMSCATTER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"MGATHER/MSCATTER are supported on AVX-512 arch only");
// X86 scatter kills mask register, so its type should be added to
// the list of return values.
// If the "scatter" has 2 return values, it is already handled.
if (Op.getNode()->getNumValues() == 2)
return Op;
MaskedScatterSDNode *N = cast<MaskedScatterSDNode>(Op.getNode());
SDValue Src = N->getValue();
MVT VT = Src.getSimpleValueType();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported scatter op");
SDLoc dl(Op);
SDValue NewScatter;
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue Chain = N->getChain();
SDValue BasePtr = N->getBasePtr();
MVT MemVT = N->getMemoryVT().getSimpleVT();
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
if (MemVT.getScalarSizeInBits() < VT.getScalarSizeInBits()) {
// The v2i32 value was promoted to v2i64.
// Now we "redo" the type legalizer's work and widen the original
// v2i32 value to v4i32. The original v2i32 is retrieved from v2i64
// with a shuffle.
assert((MemVT == MVT::v2i32 && VT == MVT::v2i64) &&
"Unexpected memory type");
int ShuffleMask[] = {0, 2, -1, -1};
Src = DAG.getVectorShuffle(MVT::v4i32, dl, DAG.getBitcast(MVT::v4i32, Src),
DAG.getUNDEF(MVT::v4i32), ShuffleMask);
// Now we have 4 elements instead of 2.
// Expand the index.
MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), 4);
Index = ExtendToType(Index, NewIndexVT, DAG);
// Expand the mask with zeroes
// Mask may be <2 x i64> or <2 x i1> at this moment
assert((MaskVT == MVT::v2i1 || MaskVT == MVT::v2i64) &&
"Unexpected mask type");
MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), 4);
Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
VT = MVT::v4i32;
}
unsigned NumElts = VT.getVectorNumElements();
if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
!Index.getSimpleValueType().is512BitVector()) {
// AVX512F supports only 512-bit vectors. Or data or index should
// be 512 bit wide. If now the both index and data are 256-bit, but
// the vector contains 8 elements, we just sign-extend the index
if (IndexVT == MVT::v8i32)
// Just extend index
Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
else {
// The minimal number of elts in scatter is 8
NumElts = 8;
// Index
MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
// Use original index here, do not modify the index twice
Index = ExtendToType(N->getIndex(), NewIndexVT, DAG);
if (IndexVT.getScalarType() == MVT::i32)
Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
// Mask
// At this point we have promoted mask operand
assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
// Use the original mask here, do not modify the mask twice
Mask = ExtendToType(N->getMask(), ExtMaskVT, DAG, true);
// The value that should be stored
MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
Src = ExtendToType(Src, NewVT, DAG);
}
}
// If the mask is "wide" at this point - truncate it to i1 vector
MVT BitMaskVT = MVT::getVectorVT(MVT::i1, NumElts);
Mask = DAG.getNode(ISD::TRUNCATE, dl, BitMaskVT, Mask);
// The mask is killed by scatter, add it to the values
SDVTList VTs = DAG.getVTList(BitMaskVT, MVT::Other);
SDValue Ops[] = {Chain, Src, Mask, BasePtr, Index};
NewScatter = DAG.getMaskedScatter(VTs, N->getMemoryVT(), dl, Ops,
N->getMemOperand());
DAG.ReplaceAllUsesWith(Op, SDValue(NewScatter.getNode(), 1));
return SDValue(NewScatter.getNode(), 1);
}
static SDValue LowerMLOAD(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedLoadSDNode *N = cast<MaskedLoadSDNode>(Op.getNode());
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
SDLoc dl(Op);
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked load op.");
assert(((ScalarVT == MVT::i32 || ScalarVT == MVT::f32) ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked load op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
SDValue Src0 = N->getSrc0();
Src0 = ExtendToType(Src0, WideDataVT, DAG);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
SDValue NewLoad = DAG.getMaskedLoad(WideDataVT, dl, N->getChain(),
N->getBasePtr(), Mask, Src0,
N->getMemoryVT(), N->getMemOperand(),
N->getExtensionType());
SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
NewLoad.getValue(0),
DAG.getIntPtrConstant(0, dl));
SDValue RetOps[] = {Exract, NewLoad.getValue(1)};
return DAG.getMergeValues(RetOps, dl);
}
static SDValue LowerMSTORE(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
MaskedStoreSDNode *N = cast<MaskedStoreSDNode>(Op.getNode());
SDValue DataToStore = N->getValue();
MVT VT = DataToStore.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
SDValue Mask = N->getMask();
SDLoc dl(Op);
assert(Subtarget.hasAVX512() && !Subtarget.hasVLX() && !VT.is512BitVector() &&
"Cannot lower masked store op.");
assert(((ScalarVT == MVT::i32 || ScalarVT == MVT::f32) ||
(Subtarget.hasBWI() &&
(ScalarVT == MVT::i8 || ScalarVT == MVT::i16))) &&
"Unsupported masked store op.");
// This operation is legal for targets with VLX, but without
// VLX the vector should be widened to 512 bit
unsigned NumEltsInWideVec = 512/VT.getScalarSizeInBits();
MVT WideDataVT = MVT::getVectorVT(ScalarVT, NumEltsInWideVec);
MVT WideMaskVT = MVT::getVectorVT(MVT::i1, NumEltsInWideVec);
DataToStore = ExtendToType(DataToStore, WideDataVT, DAG);
Mask = ExtendToType(Mask, WideMaskVT, DAG, true);
return DAG.getMaskedStore(N->getChain(), dl, DataToStore, N->getBasePtr(),
Mask, N->getMemoryVT(), N->getMemOperand(),
N->isTruncatingStore());
}
static SDValue LowerMGATHER(SDValue Op, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
assert(Subtarget.hasAVX512() &&
"MGATHER/MSCATTER are supported on AVX-512 arch only");
MaskedGatherSDNode *N = cast<MaskedGatherSDNode>(Op.getNode());
SDLoc dl(Op);
MVT VT = Op.getSimpleValueType();
SDValue Index = N->getIndex();
SDValue Mask = N->getMask();
SDValue Src0 = N->getValue();
MVT IndexVT = Index.getSimpleValueType();
MVT MaskVT = Mask.getSimpleValueType();
unsigned NumElts = VT.getVectorNumElements();
assert(VT.getScalarSizeInBits() >= 32 && "Unsupported gather op");
if (!Subtarget.hasVLX() && !VT.is512BitVector() &&
!Index.getSimpleValueType().is512BitVector()) {
// AVX512F supports only 512-bit vectors. Or data or index should
// be 512 bit wide. If now the both index and data are 256-bit, but
// the vector contains 8 elements, we just sign-extend the index
if (NumElts == 8) {
Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
N->getOperand(3), Index };
DAG.UpdateNodeOperands(N, Ops);
return Op;
}
// Minimal number of elements in Gather
NumElts = 8;
// Index
MVT NewIndexVT = MVT::getVectorVT(IndexVT.getScalarType(), NumElts);
Index = ExtendToType(Index, NewIndexVT, DAG);
if (IndexVT.getScalarType() == MVT::i32)
Index = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i64, Index);
// Mask
MVT MaskBitVT = MVT::getVectorVT(MVT::i1, NumElts);
// At this point we have promoted mask operand
assert(MaskVT.getScalarSizeInBits() >= 32 && "unexpected mask type");
MVT ExtMaskVT = MVT::getVectorVT(MaskVT.getScalarType(), NumElts);
Mask = ExtendToType(Mask, ExtMaskVT, DAG, true);
Mask = DAG.getNode(ISD::TRUNCATE, dl, MaskBitVT, Mask);
// The pass-thru value
MVT NewVT = MVT::getVectorVT(VT.getScalarType(), NumElts);
Src0 = ExtendToType(Src0, NewVT, DAG);
SDValue Ops[] = { N->getChain(), Src0, Mask, N->getBasePtr(), Index };
SDValue NewGather = DAG.getMaskedGather(DAG.getVTList(NewVT, MVT::Other),
N->getMemoryVT(), dl, Ops,
N->getMemOperand());
SDValue Exract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
NewGather.getValue(0),
DAG.getIntPtrConstant(0, dl));
SDValue RetOps[] = {Exract, NewGather.getValue(1)};
return DAG.getMergeValues(RetOps, dl);
}
return Op;
}
SDValue X86TargetLowering::LowerGC_TRANSITION_START(SDValue Op,
SelectionDAG &DAG) const {
// TODO: Eventually, the lowering of these nodes should be informed by or
// deferred to the GC strategy for the function in which they appear. For
// now, however, they must be lowered to something. Since they are logically
// no-ops in the case of a null GC strategy (or a GC strategy which does not
// require special handling for these nodes), lower them as literal NOOPs for
// the time being.
SmallVector<SDValue, 2> Ops;
Ops.push_back(Op.getOperand(0));
if (Op->getGluedNode())
Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
SDLoc OpDL(Op);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
return NOOP;
}
SDValue X86TargetLowering::LowerGC_TRANSITION_END(SDValue Op,
SelectionDAG &DAG) const {
// TODO: Eventually, the lowering of these nodes should be informed by or
// deferred to the GC strategy for the function in which they appear. For
// now, however, they must be lowered to something. Since they are logically
// no-ops in the case of a null GC strategy (or a GC strategy which does not
// require special handling for these nodes), lower them as literal NOOPs for
// the time being.
SmallVector<SDValue, 2> Ops;
Ops.push_back(Op.getOperand(0));
if (Op->getGluedNode())
Ops.push_back(Op->getOperand(Op->getNumOperands() - 1));
SDLoc OpDL(Op);
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue NOOP(DAG.getMachineNode(X86::NOOP, SDLoc(Op), VTs, Ops), 0);
return NOOP;
}
/// Provide custom lowering hooks for some operations.
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, Subtarget, DAG);
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
return LowerCMP_SWAP(Op, Subtarget, DAG);
case ISD::CTPOP: return LowerCTPOP(Op, Subtarget, DAG);
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_AND: return lowerAtomicArith(Op, DAG, Subtarget);
case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG);
case ISD::BITREVERSE: return LowerBITREVERSE(Op, DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, Subtarget, DAG);
case ISD::VECTOR_SHUFFLE: return lowerVectorShuffle(Op, Subtarget, DAG);
case ISD::VSELECT: return LowerVSELECT(Op, DAG);
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op,Subtarget,DAG);
case ISD::INSERT_SUBVECTOR: return LowerINSERT_SUBVECTOR(Op, Subtarget,DAG);
case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
case ISD::ExternalSymbol: return LowerExternalSymbol(Op, DAG);
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
case ISD::SHL_PARTS:
case ISD::SRA_PARTS:
case ISD::SRL_PARTS: return LowerShiftParts(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG);
case ISD::ZERO_EXTEND: return LowerZERO_EXTEND(Op, Subtarget, DAG);
case ISD::SIGN_EXTEND: return LowerSIGN_EXTEND(Op, Subtarget, DAG);
case ISD::ANY_EXTEND: return LowerANY_EXTEND(Op, Subtarget, DAG);
case ISD::SIGN_EXTEND_VECTOR_INREG:
return LowerSIGN_EXTEND_VECTOR_INREG(Op, Subtarget, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
case ISD::LOAD: return LowerExtendedLoad(Op, Subtarget, DAG);
case ISD::FABS:
case ISD::FNEG: return LowerFABSorFNEG(Op, DAG);
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
case ISD::FGETSIGN: return LowerFGETSIGN(Op, DAG);
case ISD::SETCC: return LowerSETCC(Op, DAG);
case ISD::SETCCE: return LowerSETCCE(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::VACOPY: return LowerVACOPY(Op, Subtarget, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, Subtarget, DAG);
case ISD::INTRINSIC_VOID:
case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, Subtarget, DAG);
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::FRAME_TO_ARGS_OFFSET:
return LowerFRAME_TO_ARGS_OFFSET(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF: return LowerCTLZ(Op, Subtarget, DAG);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op, DAG);
case ISD::MUL: return LowerMUL(Op, Subtarget, DAG);
case ISD::MULHS:
case ISD::MULHU: return LowerMULH(Op, Subtarget, DAG);
case ISD::UMUL_LOHI:
case ISD::SMUL_LOHI: return LowerMUL_LOHI(Op, Subtarget, DAG);
case ISD::ROTL: return LowerRotate(Op, Subtarget, DAG);
case ISD::SRA:
case ISD::SRL:
case ISD::SHL: return LowerShift(Op, Subtarget, DAG);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO: return LowerXALUO(Op, DAG);
case ISD::READCYCLECOUNTER: return LowerREADCYCLECOUNTER(Op, Subtarget,DAG);
case ISD::BITCAST: return LowerBITCAST(Op, Subtarget, DAG);
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
case ISD::ADD: return LowerADD(Op, DAG);
case ISD::SUB: return LowerSUB(Op, DAG);
case ISD::SMAX:
case ISD::SMIN:
case ISD::UMAX:
case ISD::UMIN: return LowerMINMAX(Op, DAG);
case ISD::FSINCOS: return LowerFSINCOS(Op, Subtarget, DAG);
case ISD::MLOAD: return LowerMLOAD(Op, Subtarget, DAG);
case ISD::MSTORE: return LowerMSTORE(Op, Subtarget, DAG);
case ISD::MGATHER: return LowerMGATHER(Op, Subtarget, DAG);
case ISD::MSCATTER: return LowerMSCATTER(Op, Subtarget, DAG);
case ISD::GC_TRANSITION_START:
return LowerGC_TRANSITION_START(Op, DAG);
case ISD::GC_TRANSITION_END: return LowerGC_TRANSITION_END(Op, DAG);
case ISD::STORE: return LowerTruncatingStore(Op, Subtarget, DAG);
}
}
/// Places new result values for the node in Results (their number
/// and types must exactly match those of the original return values of
/// the node), or leaves Results empty, which indicates that the node is not
/// to be custom lowered after all.
void X86TargetLowering::LowerOperationWrapper(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
SDValue Res = LowerOperation(SDValue(N, 0), DAG);
if (!Res.getNode())
return;
assert((N->getNumValues() <= Res->getNumValues()) &&
"Lowering returned the wrong number of results!");
// Places new result values base on N result number.
// In some cases (LowerSINT_TO_FP for example) Res has more result values
// than original node, chain should be dropped(last value).
for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
Results.push_back(Res.getValue(I));
}
/// Replace a node with an illegal result type with a new node built out of
/// custom code.
void X86TargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const {
SDLoc dl(N);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
switch (N->getOpcode()) {
default:
llvm_unreachable("Do not know how to custom type legalize this operation!");
case X86ISD::AVG: {
// Legalize types for X86ISD::AVG by expanding vectors.
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
auto InVT = N->getValueType(0);
auto InVTSize = InVT.getSizeInBits();
const unsigned RegSize =
(InVTSize > 128) ? ((InVTSize > 256) ? 512 : 256) : 128;
assert((!Subtarget.hasAVX512() || RegSize < 512) &&
"512-bit vector requires AVX512");
assert((!Subtarget.hasAVX2() || RegSize < 256) &&
"256-bit vector requires AVX2");
auto ElemVT = InVT.getVectorElementType();
auto RegVT = EVT::getVectorVT(*DAG.getContext(), ElemVT,
RegSize / ElemVT.getSizeInBits());
assert(RegSize % InVT.getSizeInBits() == 0);
unsigned NumConcat = RegSize / InVT.getSizeInBits();
SmallVector<SDValue, 16> Ops(NumConcat, DAG.getUNDEF(InVT));
Ops[0] = N->getOperand(0);
SDValue InVec0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
Ops[0] = N->getOperand(1);
SDValue InVec1 = DAG.getNode(ISD::CONCAT_VECTORS, dl, RegVT, Ops);
SDValue Res = DAG.getNode(X86ISD::AVG, dl, RegVT, InVec0, InVec1);
Results.push_back(DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, InVT, Res,
DAG.getIntPtrConstant(0, dl)));
return;
}
// We might have generated v2f32 FMIN/FMAX operations. Widen them to v4f32.
case X86ISD::FMINC:
case X86ISD::FMIN:
case X86ISD::FMAXC:
case X86ISD::FMAX: {
EVT VT = N->getValueType(0);
assert(VT == MVT::v2f32 && "Unexpected type (!= v2f32) on FMIN/FMAX.");
SDValue UNDEF = DAG.getUNDEF(VT);
SDValue LHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(0), UNDEF);
SDValue RHS = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v4f32,
N->getOperand(1), UNDEF);
Results.push_back(DAG.getNode(N->getOpcode(), dl, MVT::v4f32, LHS, RHS));
return;
}
case ISD::SIGN_EXTEND_INREG:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUBC:
case ISD::SUBE:
// We don't want to expand or promote these.
return;
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
case ISD::SDIVREM:
case ISD::UDIVREM: {
SDValue V = LowerWin64_i128OP(SDValue(N,0), DAG);
Results.push_back(V);
return;
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
bool IsSigned = N->getOpcode() == ISD::FP_TO_SINT;
std::pair<SDValue,SDValue> Vals =
FP_TO_INTHelper(SDValue(N, 0), DAG, IsSigned, /*IsReplace=*/ true);
SDValue FIST = Vals.first, StackSlot = Vals.second;
if (FIST.getNode()) {
EVT VT = N->getValueType(0);
// Return a load from the stack slot.
if (StackSlot.getNode())
Results.push_back(DAG.getLoad(VT, dl, FIST, StackSlot,
MachinePointerInfo(),
false, false, false, 0));
else
Results.push_back(FIST);
}
return;
}
case ISD::UINT_TO_FP: {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
if (N->getOperand(0).getValueType() != MVT::v2i32 ||
N->getValueType(0) != MVT::v2f32)
return;
SDValue ZExtIn = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v2i64,
N->getOperand(0));
SDValue VBias =
DAG.getConstantFP(BitsToDouble(0x4330000000000000ULL), dl, MVT::v2f64);
SDValue Or = DAG.getNode(ISD::OR, dl, MVT::v2i64, ZExtIn,
DAG.getBitcast(MVT::v2i64, VBias));
Or = DAG.getBitcast(MVT::v2f64, Or);
// TODO: Are there any fast-math-flags to propagate here?
SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::v2f64, Or, VBias);
Results.push_back(DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, Sub));
return;
}
case ISD::FP_ROUND: {
if (!TLI.isTypeLegal(N->getOperand(0).getValueType()))
return;
SDValue V = DAG.getNode(X86ISD::VFPROUND, dl, MVT::v4f32, N->getOperand(0));
Results.push_back(V);
return;
}
case ISD::FP_EXTEND: {
// Right now, only MVT::v2f32 has OperationAction for FP_EXTEND.
// No other ValueType for FP_EXTEND should reach this point.
assert(N->getValueType(0) == MVT::v2f32 &&
"Do not know how to legalize this Node");
return;
}
case ISD::INTRINSIC_W_CHAIN: {
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
switch (IntNo) {
default : llvm_unreachable("Do not know how to custom type "
"legalize this intrinsic operation!");
case Intrinsic::x86_rdtsc:
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
case Intrinsic::x86_rdtscp:
return getReadTimeStampCounter(N, dl, X86ISD::RDTSCP_DAG, DAG, Subtarget,
Results);
case Intrinsic::x86_rdpmc:
return getReadPerformanceCounter(N, dl, DAG, Subtarget, Results);
}
}
case ISD::INTRINSIC_WO_CHAIN: {
if (SDValue V = LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), Subtarget, DAG))
Results.push_back(V);
return;
}
case ISD::READCYCLECOUNTER: {
return getReadTimeStampCounter(N, dl, X86ISD::RDTSC_DAG, DAG, Subtarget,
Results);
}
case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: {
EVT T = N->getValueType(0);
assert((T == MVT::i64 || T == MVT::i128) && "can only expand cmpxchg pair");
bool Regs64bit = T == MVT::i128;
MVT HalfT = Regs64bit ? MVT::i64 : MVT::i32;
SDValue cpInL, cpInH;
cpInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(0, dl, HalfT));
cpInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(2),
DAG.getConstant(1, dl, HalfT));
cpInL = DAG.getCopyToReg(N->getOperand(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
cpInL, SDValue());
cpInH = DAG.getCopyToReg(cpInL.getValue(0), dl,
Regs64bit ? X86::RDX : X86::EDX,
cpInH, cpInL.getValue(1));
SDValue swapInL, swapInH;
swapInL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(0, dl, HalfT));
swapInH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, HalfT, N->getOperand(3),
DAG.getConstant(1, dl, HalfT));
swapInH =
DAG.getCopyToReg(cpInH.getValue(0), dl, Regs64bit ? X86::RCX : X86::ECX,
swapInH, cpInH.getValue(1));
// If the current function needs the base pointer, RBX,
// we shouldn't use cmpxchg directly.
// Indeed the lowering of that instruction will clobber
// that register and since RBX will be a reserved register
// the register allocator will not make sure its value will
// be properly saved and restored around this live-range.
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
SDValue Result;
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
unsigned BasePtr = TRI->getBaseRegister();
MachineMemOperand *MMO = cast<AtomicSDNode>(N)->getMemOperand();
if (TRI->hasBasePointer(DAG.getMachineFunction()) &&
(BasePtr == X86::RBX || BasePtr == X86::EBX)) {
// ISel prefers the LCMPXCHG64 variant.
// If that assert breaks, that means it is not the case anymore,
// and we need to teach LCMPXCHG8_SAVE_EBX_DAG how to save RBX,
// not just EBX. This is a matter of accepting i64 input for that
// pseudo, and restoring into the register of the right wide
// in expand pseudo. Everything else should just work.
assert(((Regs64bit == (BasePtr == X86::RBX)) || BasePtr == X86::EBX) &&
"Saving only half of the RBX");
unsigned Opcode = Regs64bit ? X86ISD::LCMPXCHG16_SAVE_RBX_DAG
: X86ISD::LCMPXCHG8_SAVE_EBX_DAG;
SDValue RBXSave = DAG.getCopyFromReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX,
HalfT, swapInH.getValue(1));
SDValue Ops[] = {/*Chain*/ RBXSave.getValue(1), N->getOperand(1), swapInL,
RBXSave,
/*Glue*/ RBXSave.getValue(2)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
} else {
unsigned Opcode =
Regs64bit ? X86ISD::LCMPXCHG16_DAG : X86ISD::LCMPXCHG8_DAG;
swapInL = DAG.getCopyToReg(swapInH.getValue(0), dl,
Regs64bit ? X86::RBX : X86::EBX, swapInL,
swapInH.getValue(1));
SDValue Ops[] = {swapInL.getValue(0), N->getOperand(1),
swapInL.getValue(1)};
Result = DAG.getMemIntrinsicNode(Opcode, dl, Tys, Ops, T, MMO);
}
SDValue cpOutL = DAG.getCopyFromReg(Result.getValue(0), dl,
Regs64bit ? X86::RAX : X86::EAX,
HalfT, Result.getValue(1));
SDValue cpOutH = DAG.getCopyFromReg(cpOutL.getValue(1), dl,
Regs64bit ? X86::RDX : X86::EDX,
HalfT, cpOutL.getValue(2));
SDValue OpsF[] = { cpOutL.getValue(0), cpOutH.getValue(0)};
SDValue EFLAGS = DAG.getCopyFromReg(cpOutH.getValue(1), dl, X86::EFLAGS,
MVT::i32, cpOutH.getValue(2));
SDValue Success =
DAG.getNode(X86ISD::SETCC, dl, MVT::i8,
DAG.getConstant(X86::COND_E, dl, MVT::i8), EFLAGS);
Success = DAG.getZExtOrTrunc(Success, dl, N->getValueType(1));
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, T, OpsF));
Results.push_back(Success);
Results.push_back(EFLAGS.getValue(1));
return;
}
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD: {
// Delegate to generic TypeLegalization. Situations we can really handle
// should have already been dealt with by AtomicExpandPass.cpp.
break;
}
case ISD::BITCAST: {
assert(Subtarget.hasSSE2() && "Requires at least SSE2!");
EVT DstVT = N->getValueType(0);
EVT SrcVT = N->getOperand(0)->getValueType(0);
if (SrcVT != MVT::f64 ||
(DstVT != MVT::v2i32 && DstVT != MVT::v4i16 && DstVT != MVT::v8i8))
return;
unsigned NumElts = DstVT.getVectorNumElements();
EVT SVT = DstVT.getVectorElementType();
EVT WiderVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumElts * 2);
SDValue Expanded = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
MVT::v2f64, N->getOperand(0));
SDValue ToVecInt = DAG.getBitcast(WiderVT, Expanded);
if (ExperimentalVectorWideningLegalization) {
// If we are legalizing vectors by widening, we already have the desired
// legal vector type, just return it.
Results.push_back(ToVecInt);
return;
}
SmallVector<SDValue, 8> Elts;
for (unsigned i = 0, e = NumElts; i != e; ++i)
Elts.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, SVT,
ToVecInt, DAG.getIntPtrConstant(i, dl)));
Results.push_back(DAG.getBuildVector(DstVT, dl, Elts));
}
}
}
const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
switch ((X86ISD::NodeType)Opcode) {
case X86ISD::FIRST_NUMBER: break;
case X86ISD::BSF: return "X86ISD::BSF";
case X86ISD::BSR: return "X86ISD::BSR";
case X86ISD::SHLD: return "X86ISD::SHLD";
case X86ISD::SHRD: return "X86ISD::SHRD";
case X86ISD::FAND: return "X86ISD::FAND";
case X86ISD::FANDN: return "X86ISD::FANDN";
case X86ISD::FOR: return "X86ISD::FOR";
case X86ISD::FXOR: return "X86ISD::FXOR";
case X86ISD::FILD: return "X86ISD::FILD";
case X86ISD::FILD_FLAG: return "X86ISD::FILD_FLAG";
case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM";
case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM";
case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM";
case X86ISD::FLD: return "X86ISD::FLD";
case X86ISD::FST: return "X86ISD::FST";
case X86ISD::CALL: return "X86ISD::CALL";
case X86ISD::RDTSC_DAG: return "X86ISD::RDTSC_DAG";
case X86ISD::RDTSCP_DAG: return "X86ISD::RDTSCP_DAG";
case X86ISD::RDPMC_DAG: return "X86ISD::RDPMC_DAG";
case X86ISD::BT: return "X86ISD::BT";
case X86ISD::CMP: return "X86ISD::CMP";
case X86ISD::COMI: return "X86ISD::COMI";
case X86ISD::UCOMI: return "X86ISD::UCOMI";
case X86ISD::CMPM: return "X86ISD::CMPM";
case X86ISD::CMPMU: return "X86ISD::CMPMU";
case X86ISD::CMPM_RND: return "X86ISD::CMPM_RND";
case X86ISD::SETCC: return "X86ISD::SETCC";
case X86ISD::SETCC_CARRY: return "X86ISD::SETCC_CARRY";
case X86ISD::FSETCC: return "X86ISD::FSETCC";
case X86ISD::CMOV: return "X86ISD::CMOV";
case X86ISD::BRCOND: return "X86ISD::BRCOND";
case X86ISD::RET_FLAG: return "X86ISD::RET_FLAG";
case X86ISD::IRET: return "X86ISD::IRET";
case X86ISD::REP_STOS: return "X86ISD::REP_STOS";
case X86ISD::REP_MOVS: return "X86ISD::REP_MOVS";
case X86ISD::GlobalBaseReg: return "X86ISD::GlobalBaseReg";
case X86ISD::Wrapper: return "X86ISD::Wrapper";
case X86ISD::WrapperRIP: return "X86ISD::WrapperRIP";
case X86ISD::MOVDQ2Q: return "X86ISD::MOVDQ2Q";
case X86ISD::MMX_MOVD2W: return "X86ISD::MMX_MOVD2W";
case X86ISD::MMX_MOVW2D: return "X86ISD::MMX_MOVW2D";
case X86ISD::PEXTRB: return "X86ISD::PEXTRB";
case X86ISD::PEXTRW: return "X86ISD::PEXTRW";
case X86ISD::INSERTPS: return "X86ISD::INSERTPS";
case X86ISD::PINSRB: return "X86ISD::PINSRB";
case X86ISD::PINSRW: return "X86ISD::PINSRW";
case X86ISD::MMX_PINSRW: return "X86ISD::MMX_PINSRW";
case X86ISD::PSHUFB: return "X86ISD::PSHUFB";
case X86ISD::ANDNP: return "X86ISD::ANDNP";
case X86ISD::BLENDI: return "X86ISD::BLENDI";
case X86ISD::SHRUNKBLEND: return "X86ISD::SHRUNKBLEND";
case X86ISD::ADDUS: return "X86ISD::ADDUS";
case X86ISD::SUBUS: return "X86ISD::SUBUS";
case X86ISD::HADD: return "X86ISD::HADD";
case X86ISD::HSUB: return "X86ISD::HSUB";
case X86ISD::FHADD: return "X86ISD::FHADD";
case X86ISD::FHSUB: return "X86ISD::FHSUB";
case X86ISD::ABS: return "X86ISD::ABS";
case X86ISD::CONFLICT: return "X86ISD::CONFLICT";
case X86ISD::FMAX: return "X86ISD::FMAX";
case X86ISD::FMAX_RND: return "X86ISD::FMAX_RND";
case X86ISD::FMIN: return "X86ISD::FMIN";
case X86ISD::FMIN_RND: return "X86ISD::FMIN_RND";
case X86ISD::FMAXC: return "X86ISD::FMAXC";
case X86ISD::FMINC: return "X86ISD::FMINC";
case X86ISD::FRSQRT: return "X86ISD::FRSQRT";
case X86ISD::FRSQRTS: return "X86ISD::FRSQRTS";
case X86ISD::FRCP: return "X86ISD::FRCP";
case X86ISD::FRCPS: return "X86ISD::FRCPS";
case X86ISD::EXTRQI: return "X86ISD::EXTRQI";
case X86ISD::INSERTQI: return "X86ISD::INSERTQI";
case X86ISD::TLSADDR: return "X86ISD::TLSADDR";
case X86ISD::TLSBASEADDR: return "X86ISD::TLSBASEADDR";
case X86ISD::TLSCALL: return "X86ISD::TLSCALL";
case X86ISD::EH_SJLJ_SETJMP: return "X86ISD::EH_SJLJ_SETJMP";
case X86ISD::EH_SJLJ_LONGJMP: return "X86ISD::EH_SJLJ_LONGJMP";
case X86ISD::EH_RETURN: return "X86ISD::EH_RETURN";
case X86ISD::TC_RETURN: return "X86ISD::TC_RETURN";
case X86ISD::FNSTCW16m: return "X86ISD::FNSTCW16m";
case X86ISD::FNSTSW16r: return "X86ISD::FNSTSW16r";
case X86ISD::LCMPXCHG_DAG: return "X86ISD::LCMPXCHG_DAG";
case X86ISD::LCMPXCHG8_DAG: return "X86ISD::LCMPXCHG8_DAG";
case X86ISD::LCMPXCHG16_DAG: return "X86ISD::LCMPXCHG16_DAG";
case X86ISD::LCMPXCHG8_SAVE_EBX_DAG:
return "X86ISD::LCMPXCHG8_SAVE_EBX_DAG";
case X86ISD::LCMPXCHG16_SAVE_RBX_DAG:
return "X86ISD::LCMPXCHG16_SAVE_RBX_DAG";
case X86ISD::LADD: return "X86ISD::LADD";
case X86ISD::LSUB: return "X86ISD::LSUB";
case X86ISD::LOR: return "X86ISD::LOR";
case X86ISD::LXOR: return "X86ISD::LXOR";
case X86ISD::LAND: return "X86ISD::LAND";
case X86ISD::VZEXT_MOVL: return "X86ISD::VZEXT_MOVL";
case X86ISD::VZEXT_LOAD: return "X86ISD::VZEXT_LOAD";
case X86ISD::VZEXT: return "X86ISD::VZEXT";
case X86ISD::VSEXT: return "X86ISD::VSEXT";
case X86ISD::VTRUNC: return "X86ISD::VTRUNC";
case X86ISD::VTRUNCS: return "X86ISD::VTRUNCS";
case X86ISD::VTRUNCUS: return "X86ISD::VTRUNCUS";
case X86ISD::VINSERT: return "X86ISD::VINSERT";
case X86ISD::VFPEXT: return "X86ISD::VFPEXT";
case X86ISD::VFPROUND: return "X86ISD::VFPROUND";
case X86ISD::CVTDQ2PD: return "X86ISD::CVTDQ2PD";
case X86ISD::CVTUDQ2PD: return "X86ISD::CVTUDQ2PD";
case X86ISD::CVT2MASK: return "X86ISD::CVT2MASK";
case X86ISD::VSHLDQ: return "X86ISD::VSHLDQ";
case X86ISD::VSRLDQ: return "X86ISD::VSRLDQ";
case X86ISD::VSHL: return "X86ISD::VSHL";
case X86ISD::VSRL: return "X86ISD::VSRL";
case X86ISD::VSRA: return "X86ISD::VSRA";
case X86ISD::VSHLI: return "X86ISD::VSHLI";
case X86ISD::VSRLI: return "X86ISD::VSRLI";
case X86ISD::VSRAI: return "X86ISD::VSRAI";
case X86ISD::VROTLI: return "X86ISD::VROTLI";
case X86ISD::VROTRI: return "X86ISD::VROTRI";
case X86ISD::VPPERM: return "X86ISD::VPPERM";
case X86ISD::CMPP: return "X86ISD::CMPP";
case X86ISD::PCMPEQ: return "X86ISD::PCMPEQ";
case X86ISD::PCMPGT: return "X86ISD::PCMPGT";
case X86ISD::PCMPEQM: return "X86ISD::PCMPEQM";
case X86ISD::PCMPGTM: return "X86ISD::PCMPGTM";
case X86ISD::ADD: return "X86ISD::ADD";
case X86ISD::SUB: return "X86ISD::SUB";
case X86ISD::ADC: return "X86ISD::ADC";
case X86ISD::SBB: return "X86ISD::SBB";
case X86ISD::SMUL: return "X86ISD::SMUL";
case X86ISD::UMUL: return "X86ISD::UMUL";
case X86ISD::SMUL8: return "X86ISD::SMUL8";
case X86ISD::UMUL8: return "X86ISD::UMUL8";
case X86ISD::SDIVREM8_SEXT_HREG: return "X86ISD::SDIVREM8_SEXT_HREG";
case X86ISD::UDIVREM8_ZEXT_HREG: return "X86ISD::UDIVREM8_ZEXT_HREG";
case X86ISD::INC: return "X86ISD::INC";
case X86ISD::DEC: return "X86ISD::DEC";
case X86ISD::OR: return "X86ISD::OR";
case X86ISD::XOR: return "X86ISD::XOR";
case X86ISD::AND: return "X86ISD::AND";
case X86ISD::BEXTR: return "X86ISD::BEXTR";
case X86ISD::MUL_IMM: return "X86ISD::MUL_IMM";
case X86ISD::MOVMSK: return "X86ISD::MOVMSK";
case X86ISD::PTEST: return "X86ISD::PTEST";
case X86ISD::TESTP: return "X86ISD::TESTP";
case X86ISD::TESTM: return "X86ISD::TESTM";
case X86ISD::TESTNM: return "X86ISD::TESTNM";
case X86ISD::KORTEST: return "X86ISD::KORTEST";
case X86ISD::KTEST: return "X86ISD::KTEST";
case X86ISD::PACKSS: return "X86ISD::PACKSS";
case X86ISD::PACKUS: return "X86ISD::PACKUS";
case X86ISD::PALIGNR: return "X86ISD::PALIGNR";
case X86ISD::VALIGN: return "X86ISD::VALIGN";
case X86ISD::PSHUFD: return "X86ISD::PSHUFD";
case X86ISD::PSHUFHW: return "X86ISD::PSHUFHW";
case X86ISD::PSHUFLW: return "X86ISD::PSHUFLW";
case X86ISD::SHUFP: return "X86ISD::SHUFP";
case X86ISD::SHUF128: return "X86ISD::SHUF128";
case X86ISD::MOVLHPS: return "X86ISD::MOVLHPS";
case X86ISD::MOVLHPD: return "X86ISD::MOVLHPD";
case X86ISD::MOVHLPS: return "X86ISD::MOVHLPS";
case X86ISD::MOVLPS: return "X86ISD::MOVLPS";
case X86ISD::MOVLPD: return "X86ISD::MOVLPD";
case X86ISD::MOVDDUP: return "X86ISD::MOVDDUP";
case X86ISD::MOVSHDUP: return "X86ISD::MOVSHDUP";
case X86ISD::MOVSLDUP: return "X86ISD::MOVSLDUP";
case X86ISD::MOVSD: return "X86ISD::MOVSD";
case X86ISD::MOVSS: return "X86ISD::MOVSS";
case X86ISD::UNPCKL: return "X86ISD::UNPCKL";
case X86ISD::UNPCKH: return "X86ISD::UNPCKH";
case X86ISD::VBROADCAST: return "X86ISD::VBROADCAST";
case X86ISD::VBROADCASTM: return "X86ISD::VBROADCASTM";
case X86ISD::SUBV_BROADCAST: return "X86ISD::SUBV_BROADCAST";
case X86ISD::VEXTRACT: return "X86ISD::VEXTRACT";
case X86ISD::VPERMILPV: return "X86ISD::VPERMILPV";
case X86ISD::VPERMILPI: return "X86ISD::VPERMILPI";
case X86ISD::VPERM2X128: return "X86ISD::VPERM2X128";
case X86ISD::VPERMV: return "X86ISD::VPERMV";
case X86ISD::VPERMV3: return "X86ISD::VPERMV3";
case X86ISD::VPERMIV3: return "X86ISD::VPERMIV3";
case X86ISD::VPERMI: return "X86ISD::VPERMI";
case X86ISD::VPTERNLOG: return "X86ISD::VPTERNLOG";
case X86ISD::VFIXUPIMM: return "X86ISD::VFIXUPIMM";
case X86ISD::VFIXUPIMMS: return "X86ISD::VFIXUPIMMS";
case X86ISD::VRANGE: return "X86ISD::VRANGE";
case X86ISD::PMULUDQ: return "X86ISD::PMULUDQ";
case X86ISD::PMULDQ: return "X86ISD::PMULDQ";
case X86ISD::PSADBW: return "X86ISD::PSADBW";
case X86ISD::DBPSADBW: return "X86ISD::DBPSADBW";
case X86ISD::VASTART_SAVE_XMM_REGS: return "X86ISD::VASTART_SAVE_XMM_REGS";
case X86ISD::VAARG_64: return "X86ISD::VAARG_64";
case X86ISD::WIN_ALLOCA: return "X86ISD::WIN_ALLOCA";
case X86ISD::MEMBARRIER: return "X86ISD::MEMBARRIER";
case X86ISD::MFENCE: return "X86ISD::MFENCE";
case X86ISD::SFENCE: return "X86ISD::SFENCE";
case X86ISD::LFENCE: return "X86ISD::LFENCE";
case X86ISD::SEG_ALLOCA: return "X86ISD::SEG_ALLOCA";
case X86ISD::SAHF: return "X86ISD::SAHF";
case X86ISD::RDRAND: return "X86ISD::RDRAND";
case X86ISD::RDSEED: return "X86ISD::RDSEED";
case X86ISD::VPMADDUBSW: return "X86ISD::VPMADDUBSW";
case X86ISD::VPMADDWD: return "X86ISD::VPMADDWD";
case X86ISD::VPROT: return "X86ISD::VPROT";
case X86ISD::VPROTI: return "X86ISD::VPROTI";
case X86ISD::VPSHA: return "X86ISD::VPSHA";
case X86ISD::VPSHL: return "X86ISD::VPSHL";
case X86ISD::VPCOM: return "X86ISD::VPCOM";
case X86ISD::VPCOMU: return "X86ISD::VPCOMU";
case X86ISD::FMADD: return "X86ISD::FMADD";
case X86ISD::FMSUB: return "X86ISD::FMSUB";
case X86ISD::FNMADD: return "X86ISD::FNMADD";
case X86ISD::FNMSUB: return "X86ISD::FNMSUB";
case X86ISD::FMADDSUB: return "X86ISD::FMADDSUB";
case X86ISD::FMSUBADD: return "X86ISD::FMSUBADD";
case X86ISD::FMADD_RND: return "X86ISD::FMADD_RND";
case X86ISD::FNMADD_RND: return "X86ISD::FNMADD_RND";
case X86ISD::FMSUB_RND: return "X86ISD::FMSUB_RND";
case X86ISD::FNMSUB_RND: return "X86ISD::FNMSUB_RND";
case X86ISD::FMADDSUB_RND: return "X86ISD::FMADDSUB_RND";
case X86ISD::FMSUBADD_RND: return "X86ISD::FMSUBADD_RND";
case X86ISD::VPMADD52H: return "X86ISD::VPMADD52H";
case X86ISD::VPMADD52L: return "X86ISD::VPMADD52L";
case X86ISD::VRNDSCALE: return "X86ISD::VRNDSCALE";
case X86ISD::VREDUCE: return "X86ISD::VREDUCE";
case X86ISD::VGETMANT: return "X86ISD::VGETMANT";
case X86ISD::PCMPESTRI: return "X86ISD::PCMPESTRI";
case X86ISD::PCMPISTRI: return "X86ISD::PCMPISTRI";
case X86ISD::XTEST: return "X86ISD::XTEST";
case X86ISD::COMPRESS: return "X86ISD::COMPRESS";
case X86ISD::EXPAND: return "X86ISD::EXPAND";
case X86ISD::SELECT: return "X86ISD::SELECT";
case X86ISD::ADDSUB: return "X86ISD::ADDSUB";
case X86ISD::RCP28: return "X86ISD::RCP28";
case X86ISD::EXP2: return "X86ISD::EXP2";
case X86ISD::RSQRT28: return "X86ISD::RSQRT28";
case X86ISD::FADD_RND: return "X86ISD::FADD_RND";
case X86ISD::FSUB_RND: return "X86ISD::FSUB_RND";
case X86ISD::FMUL_RND: return "X86ISD::FMUL_RND";
case X86ISD::FDIV_RND: return "X86ISD::FDIV_RND";
case X86ISD::FSQRT_RND: return "X86ISD::FSQRT_RND";
case X86ISD::FGETEXP_RND: return "X86ISD::FGETEXP_RND";
case X86ISD::SCALEF: return "X86ISD::SCALEF";
case X86ISD::SCALEFS: return "X86ISD::SCALEFS";
case X86ISD::ADDS: return "X86ISD::ADDS";
case X86ISD::SUBS: return "X86ISD::SUBS";
case X86ISD::AVG: return "X86ISD::AVG";
case X86ISD::MULHRS: return "X86ISD::MULHRS";
case X86ISD::SINT_TO_FP_RND: return "X86ISD::SINT_TO_FP_RND";
case X86ISD::UINT_TO_FP_RND: return "X86ISD::UINT_TO_FP_RND";
case X86ISD::FP_TO_SINT_RND: return "X86ISD::FP_TO_SINT_RND";
case X86ISD::FP_TO_UINT_RND: return "X86ISD::FP_TO_UINT_RND";
case X86ISD::VFPCLASS: return "X86ISD::VFPCLASS";
case X86ISD::VFPCLASSS: return "X86ISD::VFPCLASSS";
case X86ISD::MULTISHIFT: return "X86ISD::MULTISHIFT";
case X86ISD::SCALAR_FP_TO_SINT_RND: return "X86ISD::SCALAR_FP_TO_SINT_RND";
case X86ISD::SCALAR_FP_TO_UINT_RND: return "X86ISD::SCALAR_FP_TO_UINT_RND";
}
return nullptr;
}
/// Return true if the addressing mode represented by AM is legal for this
/// target, for a load/store of the specified type.
bool X86TargetLowering::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// X86 supports extremely general addressing modes.
CodeModel::Model M = getTargetMachine().getCodeModel();
Reloc::Model R = getTargetMachine().getRelocationModel();
// X86 allows a sign-extended 32-bit immediate field as a displacement.
if (!X86::isOffsetSuitableForCodeModel(AM.BaseOffs, M, AM.BaseGV != nullptr))
return false;
if (AM.BaseGV) {
unsigned GVFlags = Subtarget.classifyGlobalReference(AM.BaseGV);
// If a reference to this global requires an extra load, we can't fold it.
if (isGlobalStubReference(GVFlags))
return false;
// If BaseGV requires a register for the PIC base, we cannot also have a
// BaseReg specified.
if (AM.HasBaseReg && isGlobalRelativeToPICBase(GVFlags))
return false;
// If lower 4G is not available, then we must use rip-relative addressing.
if ((M != CodeModel::Small || R != Reloc::Static) &&
Subtarget.is64Bit() && (AM.BaseOffs || AM.Scale > 1))
return false;
}
switch (AM.Scale) {
case 0:
case 1:
case 2:
case 4:
case 8:
// These scales always work.
break;
case 3:
case 5:
case 9:
// These scales are formed with basereg+scalereg. Only accept if there is
// no basereg yet.
if (AM.HasBaseReg)
return false;
break;
default: // Other stuff never works.
return false;
}
return true;
}
bool X86TargetLowering::isVectorShiftByScalarCheap(Type *Ty) const {
unsigned Bits = Ty->getScalarSizeInBits();
// 8-bit shifts are always expensive, but versions with a scalar amount aren't
// particularly cheaper than those without.
if (Bits == 8)
return false;
// On AVX2 there are new vpsllv[dq] instructions (and other shifts), that make
// variable shifts just as cheap as scalar ones.
if (Subtarget.hasInt256() && (Bits == 32 || Bits == 64))
return false;
// Otherwise, it's significantly cheaper to shift by a scalar amount than by a
// fully general vector.
return true;
}
bool X86TargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
return false;
if (!isTypeLegal(EVT::getEVT(Ty1)))
return false;
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
// Assuming the caller doesn't have a zeroext or signext return parameter,
// truncation all the way down to i1 is valid.
return true;
}
bool X86TargetLowering::isLegalICmpImmediate(int64_t Imm) const {
return isInt<32>(Imm);
}
bool X86TargetLowering::isLegalAddImmediate(int64_t Imm) const {
// Can also use sub to handle negated immediates.
return isInt<32>(Imm);
}
bool X86TargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
if (!VT1.isInteger() || !VT2.isInteger())
return false;
unsigned NumBits1 = VT1.getSizeInBits();
unsigned NumBits2 = VT2.getSizeInBits();
return NumBits1 > NumBits2;
}
bool X86TargetLowering::isZExtFree(Type *Ty1, Type *Ty2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return Ty1->isIntegerTy(32) && Ty2->isIntegerTy(64) && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(EVT VT1, EVT VT2) const {
// x86-64 implicitly zero-extends 32-bit results in 64-bit registers.
return VT1 == MVT::i32 && VT2 == MVT::i64 && Subtarget.is64Bit();
}
bool X86TargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
EVT VT1 = Val.getValueType();
if (isZExtFree(VT1, VT2))
return true;
if (Val.getOpcode() != ISD::LOAD)
return false;
if (!VT1.isSimple() || !VT1.isInteger() ||
!VT2.isSimple() || !VT2.isInteger())
return false;
switch (VT1.getSimpleVT().SimpleTy) {
default: break;
case MVT::i8:
case MVT::i16:
case MVT::i32:
// X86 has 8, 16, and 32-bit zero-extending loads.
return true;
}
return false;
}
bool X86TargetLowering::isVectorLoadExtDesirable(SDValue) const { return true; }
bool
X86TargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
if (!Subtarget.hasAnyFMA())
return false;
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
case MVT::f64:
return true;
default:
break;
}
return false;
}
bool X86TargetLowering::isNarrowingProfitable(EVT VT1, EVT VT2) const {
// i16 instructions are longer (0x66 prefix) and potentially slower.
return !(VT1 == MVT::i32 && VT2 == MVT::i16);
}
/// Targets can use this to indicate that they only support *some*
/// VECTOR_SHUFFLE operations, those with specific masks.
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
/// are assumed to be legal.
bool
X86TargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
EVT VT) const {
if (!VT.isSimple())
return false;
// Not for i1 vectors
if (VT.getSimpleVT().getScalarType() == MVT::i1)
return false;
// Very little shuffling can be done for 64-bit vectors right now.
if (VT.getSimpleVT().getSizeInBits() == 64)
return false;
// We only care that the types being shuffled are legal. The lowering can
// handle any possible shuffle mask that results.
return isTypeLegal(VT.getSimpleVT());
}
bool
X86TargetLowering::isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
EVT VT) const {
// Just delegate to the generic legality, clear masks aren't special.
return isShuffleMaskLegal(Mask, VT);
}
//===----------------------------------------------------------------------===//
// X86 Scheduler Hooks
//===----------------------------------------------------------------------===//
/// Utility function to emit xbegin specifying the start of an RTM region.
static MachineBasicBlock *emitXBegin(MachineInstr *MI, MachineBasicBlock *MBB,
const TargetInstrInfo *TII) {
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// For the v = xbegin(), we generate
//
// thisMBB:
// xbegin sinkMBB
//
// mainMBB:
// eax = -1
//
// sinkMBB:
// v = eax
MachineBasicBlock *thisMBB = MBB;
MachineFunction *MF = MBB->getParent();
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// thisMBB:
// xbegin sinkMBB
// # fallthrough to mainMBB
// # abortion to sinkMBB
BuildMI(thisMBB, DL, TII->get(X86::XBEGIN_4)).addMBB(sinkMBB);
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(sinkMBB);
// mainMBB:
// EAX = -1
BuildMI(mainMBB, DL, TII->get(X86::MOV32ri), X86::EAX).addImm(-1);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
// EAX is live into the sinkMBB
sinkMBB->addLiveIn(X86::EAX);
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
.addReg(X86::EAX);
MI->eraseFromParent();
return sinkMBB;
}
// FIXME: When we get size specific XMM0 registers, i.e. XMM0_V16I8
// or XMM0_V32I8 in AVX all of this code can be replaced with that
// in the .td file.
static MachineBasicBlock *emitPCMPSTRM(MachineInstr *MI, MachineBasicBlock *BB,
const TargetInstrInfo *TII) {
unsigned Opc;
switch (MI->getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::PCMPISTRM128REG: Opc = X86::PCMPISTRM128rr; break;
case X86::VPCMPISTRM128REG: Opc = X86::VPCMPISTRM128rr; break;
case X86::PCMPISTRM128MEM: Opc = X86::PCMPISTRM128rm; break;
case X86::VPCMPISTRM128MEM: Opc = X86::VPCMPISTRM128rm; break;
case X86::PCMPESTRM128REG: Opc = X86::PCMPESTRM128rr; break;
case X86::VPCMPESTRM128REG: Opc = X86::VPCMPESTRM128rr; break;
case X86::PCMPESTRM128MEM: Opc = X86::PCMPESTRM128rm; break;
case X86::VPCMPESTRM128MEM: Opc = X86::VPCMPESTRM128rm; break;
}
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
unsigned NumArgs = MI->getNumOperands();
for (unsigned i = 1; i < NumArgs; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!(Op.isReg() && Op.isImplicit()))
MIB.addOperand(Op);
}
if (MI->hasOneMemOperand())
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
BuildMI(*BB, MI, dl,
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
.addReg(X86::XMM0);
MI->eraseFromParent();
return BB;
}
// FIXME: Custom handling because TableGen doesn't support multiple implicit
// defs in an instruction pattern
static MachineBasicBlock *emitPCMPSTRI(MachineInstr *MI, MachineBasicBlock *BB,
const TargetInstrInfo *TII) {
unsigned Opc;
switch (MI->getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::PCMPISTRIREG: Opc = X86::PCMPISTRIrr; break;
case X86::VPCMPISTRIREG: Opc = X86::VPCMPISTRIrr; break;
case X86::PCMPISTRIMEM: Opc = X86::PCMPISTRIrm; break;
case X86::VPCMPISTRIMEM: Opc = X86::VPCMPISTRIrm; break;
case X86::PCMPESTRIREG: Opc = X86::PCMPESTRIrr; break;
case X86::VPCMPESTRIREG: Opc = X86::VPCMPESTRIrr; break;
case X86::PCMPESTRIMEM: Opc = X86::PCMPESTRIrm; break;
case X86::VPCMPESTRIMEM: Opc = X86::VPCMPESTRIrm; break;
}
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(Opc));
unsigned NumArgs = MI->getNumOperands(); // remove the results
for (unsigned i = 1; i < NumArgs; ++i) {
MachineOperand &Op = MI->getOperand(i);
if (!(Op.isReg() && Op.isImplicit()))
MIB.addOperand(Op);
}
if (MI->hasOneMemOperand())
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
BuildMI(*BB, MI, dl,
TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
.addReg(X86::ECX);
MI->eraseFromParent();
return BB;
}
static MachineBasicBlock *emitWRPKRU(MachineInstr *MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget) {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// insert input VAL into EAX
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EAX)
.addReg(MI->getOperand(0).getReg());
// insert zero to ECX
BuildMI(*BB, MI, dl, TII->get(X86::XOR32rr), X86::ECX)
.addReg(X86::ECX)
.addReg(X86::ECX);
// insert zero to EDX
BuildMI(*BB, MI, dl, TII->get(X86::XOR32rr), X86::EDX)
.addReg(X86::EDX)
.addReg(X86::EDX);
// insert WRPKRU instruction
BuildMI(*BB, MI, dl, TII->get(X86::WRPKRUr));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
static MachineBasicBlock *emitRDPKRU(MachineInstr *MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget) {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// insert zero to ECX
BuildMI(*BB, MI, dl, TII->get(X86::XOR32rr), X86::ECX)
.addReg(X86::ECX)
.addReg(X86::ECX);
// insert RDPKRU instruction
BuildMI(*BB, MI, dl, TII->get(X86::RDPKRUr));
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg())
.addReg(X86::EAX);
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
static MachineBasicBlock *emitMonitor(MachineInstr *MI, MachineBasicBlock *BB,
const X86Subtarget &Subtarget,
unsigned Opc) {
DebugLoc dl = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
// Address into RAX/EAX, other two args into ECX, EDX.
unsigned MemOpc = Subtarget.is64Bit() ? X86::LEA64r : X86::LEA32r;
unsigned MemReg = Subtarget.is64Bit() ? X86::RAX : X86::EAX;
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(MemOpc), MemReg);
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.addOperand(MI->getOperand(i));
unsigned ValOps = X86::AddrNumOperands;
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::ECX)
.addReg(MI->getOperand(ValOps).getReg());
BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), X86::EDX)
.addReg(MI->getOperand(ValOps+1).getReg());
// The instruction doesn't actually take any operands though.
BuildMI(*BB, MI, dl, TII->get(Opc));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAARG64WithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const {
// Emit va_arg instruction on X86-64.
// Operands to this pseudo-instruction:
// 0 ) Output : destination address (reg)
// 1-5) Input : va_list address (addr, i64mem)
// 6 ) ArgSize : Size (in bytes) of vararg type
// 7 ) ArgMode : 0=overflow only, 1=use gp_offset, 2=use fp_offset
// 8 ) Align : Alignment of type
// 9 ) EFLAGS (implicit-def)
assert(MI->getNumOperands() == 10 && "VAARG_64 should have 10 operands!");
static_assert(X86::AddrNumOperands == 5,
"VAARG_64 assumes 5 address operands");
unsigned DestReg = MI->getOperand(0).getReg();
MachineOperand &Base = MI->getOperand(1);
MachineOperand &Scale = MI->getOperand(2);
MachineOperand &Index = MI->getOperand(3);
MachineOperand &Disp = MI->getOperand(4);
MachineOperand &Segment = MI->getOperand(5);
unsigned ArgSize = MI->getOperand(6).getImm();
unsigned ArgMode = MI->getOperand(7).getImm();
unsigned Align = MI->getOperand(8).getImm();
// Memory Reference
assert(MI->hasOneMemOperand() && "Expected VAARG_64 to have one memoperand");
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
// Machine Information
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
const TargetRegisterClass *AddrRegClass = getRegClassFor(MVT::i64);
const TargetRegisterClass *OffsetRegClass = getRegClassFor(MVT::i32);
DebugLoc DL = MI->getDebugLoc();
// struct va_list {
// i32 gp_offset
// i32 fp_offset
// i64 overflow_area (address)
// i64 reg_save_area (address)
// }
// sizeof(va_list) = 24
// alignment(va_list) = 8
unsigned TotalNumIntRegs = 6;
unsigned TotalNumXMMRegs = 8;
bool UseGPOffset = (ArgMode == 1);
bool UseFPOffset = (ArgMode == 2);
unsigned MaxOffset = TotalNumIntRegs * 8 +
(UseFPOffset ? TotalNumXMMRegs * 16 : 0);
/* Align ArgSize to a multiple of 8 */
unsigned ArgSizeA8 = (ArgSize + 7) & ~7;
bool NeedsAlign = (Align > 8);
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *overflowMBB;
MachineBasicBlock *offsetMBB;
MachineBasicBlock *endMBB;
unsigned OffsetDestReg = 0; // Argument address computed by offsetMBB
unsigned OverflowDestReg = 0; // Argument address computed by overflowMBB
unsigned OffsetReg = 0;
if (!UseGPOffset && !UseFPOffset) {
// If we only pull from the overflow region, we don't create a branch.
// We don't need to alter control flow.
OffsetDestReg = 0; // unused
OverflowDestReg = DestReg;
offsetMBB = nullptr;
overflowMBB = thisMBB;
endMBB = thisMBB;
} else {
// First emit code to check if gp_offset (or fp_offset) is below the bound.
// If so, pull the argument from reg_save_area. (branch to offsetMBB)
// If not, pull from overflow_area. (branch to overflowMBB)
//
// thisMBB
// | .
// | .
// offsetMBB overflowMBB
// | .
// | .
// endMBB
// Registers for the PHI in endMBB
OffsetDestReg = MRI.createVirtualRegister(AddrRegClass);
OverflowDestReg = MRI.createVirtualRegister(AddrRegClass);
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *MF = MBB->getParent();
overflowMBB = MF->CreateMachineBasicBlock(LLVM_BB);
offsetMBB = MF->CreateMachineBasicBlock(LLVM_BB);
endMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineFunction::iterator MBBIter = ++MBB->getIterator();
// Insert the new basic blocks
MF->insert(MBBIter, offsetMBB);
MF->insert(MBBIter, overflowMBB);
MF->insert(MBBIter, endMBB);
// Transfer the remainder of MBB and its successor edges to endMBB.
endMBB->splice(endMBB->begin(), thisMBB,
std::next(MachineBasicBlock::iterator(MI)), thisMBB->end());
endMBB->transferSuccessorsAndUpdatePHIs(thisMBB);
// Make offsetMBB and overflowMBB successors of thisMBB
thisMBB->addSuccessor(offsetMBB);
thisMBB->addSuccessor(overflowMBB);
// endMBB is a successor of both offsetMBB and overflowMBB
offsetMBB->addSuccessor(endMBB);
overflowMBB->addSuccessor(endMBB);
// Load the offset value into a register
OffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(thisMBB, DL, TII->get(X86::MOV32rm), OffsetReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Check if there is enough room left to pull this argument.
BuildMI(thisMBB, DL, TII->get(X86::CMP32ri))
.addReg(OffsetReg)
.addImm(MaxOffset + 8 - ArgSizeA8);
// Branch to "overflowMBB" if offset >= max
// Fall through to "offsetMBB" otherwise
BuildMI(thisMBB, DL, TII->get(X86::GetCondBranchFromCond(X86::COND_AE)))
.addMBB(overflowMBB);
}
// In offsetMBB, emit code to use the reg_save_area.
if (offsetMBB) {
assert(OffsetReg != 0);
// Read the reg_save_area address.
unsigned RegSaveReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::MOV64rm), RegSaveReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 16)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// Zero-extend the offset
unsigned OffsetReg64 = MRI.createVirtualRegister(AddrRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::SUBREG_TO_REG), OffsetReg64)
.addImm(0)
.addReg(OffsetReg)
.addImm(X86::sub_32bit);
// Add the offset to the reg_save_area to get the final address.
BuildMI(offsetMBB, DL, TII->get(X86::ADD64rr), OffsetDestReg)
.addReg(OffsetReg64)
.addReg(RegSaveReg);
// Compute the offset for the next argument
unsigned NextOffsetReg = MRI.createVirtualRegister(OffsetRegClass);
BuildMI(offsetMBB, DL, TII->get(X86::ADD32ri), NextOffsetReg)
.addReg(OffsetReg)
.addImm(UseFPOffset ? 16 : 8);
// Store it back into the va_list.
BuildMI(offsetMBB, DL, TII->get(X86::MOV32mr))
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, UseFPOffset ? 4 : 0)
.addOperand(Segment)
.addReg(NextOffsetReg)
.setMemRefs(MMOBegin, MMOEnd);
// Jump to endMBB
BuildMI(offsetMBB, DL, TII->get(X86::JMP_1))
.addMBB(endMBB);
}
//
// Emit code to use overflow area
//
// Load the overflow_area address into a register.
unsigned OverflowAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::MOV64rm), OverflowAddrReg)
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 8)
.addOperand(Segment)
.setMemRefs(MMOBegin, MMOEnd);
// If we need to align it, do so. Otherwise, just copy the address
// to OverflowDestReg.
if (NeedsAlign) {
// Align the overflow address
assert(isPowerOf2_32(Align) && "Alignment must be a power of 2");
unsigned TmpReg = MRI.createVirtualRegister(AddrRegClass);
// aligned_addr = (addr + (align-1)) & ~(align-1)
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), TmpReg)
.addReg(OverflowAddrReg)
.addImm(Align-1);
BuildMI(overflowMBB, DL, TII->get(X86::AND64ri32), OverflowDestReg)
.addReg(TmpReg)
.addImm(~(uint64_t)(Align-1));
} else {
BuildMI(overflowMBB, DL, TII->get(TargetOpcode::COPY), OverflowDestReg)
.addReg(OverflowAddrReg);
}
// Compute the next overflow address after this argument.
// (the overflow address should be kept 8-byte aligned)
unsigned NextAddrReg = MRI.createVirtualRegister(AddrRegClass);
BuildMI(overflowMBB, DL, TII->get(X86::ADD64ri32), NextAddrReg)
.addReg(OverflowDestReg)
.addImm(ArgSizeA8);
// Store the new overflow address.
BuildMI(overflowMBB, DL, TII->get(X86::MOV64mr))
.addOperand(Base)
.addOperand(Scale)
.addOperand(Index)
.addDisp(Disp, 8)
.addOperand(Segment)
.addReg(NextAddrReg)
.setMemRefs(MMOBegin, MMOEnd);
// If we branched, emit the PHI to the front of endMBB.
if (offsetMBB) {
BuildMI(*endMBB, endMBB->begin(), DL,
TII->get(X86::PHI), DestReg)
.addReg(OffsetDestReg).addMBB(offsetMBB)
.addReg(OverflowDestReg).addMBB(overflowMBB);
}
// Erase the pseudo instruction
MI->eraseFromParent();
return endMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitVAStartSaveXMMRegsWithCustomInserter(
MachineInstr *MI,
MachineBasicBlock *MBB) const {
// Emit code to save XMM registers to the stack. The ABI says that the
// number of registers to save is given in %al, so it's theoretically
// possible to do an indirect jump trick to avoid saving all of them,
// however this code takes a simpler approach and just executes all
// of the stores if %al is non-zero. It's less code, and it's probably
// easier on the hardware branch predictor, and stores aren't all that
// expensive anyway.
// Create the new basic blocks. One block contains all the XMM stores,
// and one block is the final destination regardless of whether any
// stores were performed.
const BasicBlock *LLVM_BB = MBB->getBasicBlock();
MachineFunction *F = MBB->getParent();
MachineFunction::iterator MBBIter = ++MBB->getIterator();
MachineBasicBlock *XMMSaveMBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *EndMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(MBBIter, XMMSaveMBB);
F->insert(MBBIter, EndMBB);
// Transfer the remainder of MBB and its successor edges to EndMBB.
EndMBB->splice(EndMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
EndMBB->transferSuccessorsAndUpdatePHIs(MBB);
// The original block will now fall through to the XMM save block.
MBB->addSuccessor(XMMSaveMBB);
// The XMMSaveMBB will fall through to the end block.
XMMSaveMBB->addSuccessor(EndMBB);
// Now add the instructions.
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
unsigned CountReg = MI->getOperand(0).getReg();
int64_t RegSaveFrameIndex = MI->getOperand(1).getImm();
int64_t VarArgsFPOffset = MI->getOperand(2).getImm();
if (!Subtarget.isCallingConvWin64(F->getFunction()->getCallingConv())) {
// If %al is 0, branch around the XMM save block.
BuildMI(MBB, DL, TII->get(X86::TEST8rr)).addReg(CountReg).addReg(CountReg);
BuildMI(MBB, DL, TII->get(X86::JE_1)).addMBB(EndMBB);
MBB->addSuccessor(EndMBB);
}
// Make sure the last operand is EFLAGS, which gets clobbered by the branch
// that was just emitted, but clearly shouldn't be "saved".
assert((MI->getNumOperands() <= 3 ||
!MI->getOperand(MI->getNumOperands() - 1).isReg() ||
MI->getOperand(MI->getNumOperands() - 1).getReg() == X86::EFLAGS)
&& "Expected last argument to be EFLAGS");
unsigned MOVOpc = Subtarget.hasFp256() ? X86::VMOVAPSmr : X86::MOVAPSmr;
// In the XMM save block, save all the XMM argument registers.
for (int i = 3, e = MI->getNumOperands() - 1; i != e; ++i) {
int64_t Offset = (i - 3) * 16 + VarArgsFPOffset;
MachineMemOperand *MMO = F->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*F, RegSaveFrameIndex, Offset),
MachineMemOperand::MOStore,
/*Size=*/16, /*Align=*/16);
BuildMI(XMMSaveMBB, DL, TII->get(MOVOpc))
.addFrameIndex(RegSaveFrameIndex)
.addImm(/*Scale=*/1)
.addReg(/*IndexReg=*/0)
.addImm(/*Disp=*/Offset)
.addReg(/*Segment=*/0)
.addReg(MI->getOperand(i).getReg())
.addMemOperand(MMO);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return EndMBB;
}
// The EFLAGS operand of SelectItr might be missing a kill marker
// because there were multiple uses of EFLAGS, and ISel didn't know
// which to mark. Figure out whether SelectItr should have had a
// kill marker, and set it if it should. Returns the correct kill
// marker value.
static bool checkAndUpdateEFLAGSKill(MachineBasicBlock::iterator SelectItr,
MachineBasicBlock* BB,
const TargetRegisterInfo* TRI) {
// Scan forward through BB for a use/def of EFLAGS.
MachineBasicBlock::iterator miI(std::next(SelectItr));
for (MachineBasicBlock::iterator miE = BB->end(); miI != miE; ++miI) {
const MachineInstr& mi = *miI;
if (mi.readsRegister(X86::EFLAGS))
return false;
if (mi.definesRegister(X86::EFLAGS))
break; // Should have kill-flag - update below.
}
// If we hit the end of the block, check whether EFLAGS is live into a
// successor.
if (miI == BB->end()) {
for (MachineBasicBlock::succ_iterator sItr = BB->succ_begin(),
sEnd = BB->succ_end();
sItr != sEnd; ++sItr) {
MachineBasicBlock* succ = *sItr;
if (succ->isLiveIn(X86::EFLAGS))
return false;
}
}
// We found a def, or hit the end of the basic block and EFLAGS wasn't live
// out. SelectMI should have a kill flag on EFLAGS.
SelectItr->addRegisterKilled(X86::EFLAGS, TRI);
return true;
}
// Return true if it is OK for this CMOV pseudo-opcode to be cascaded
// together with other CMOV pseudo-opcodes into a single basic-block with
// conditional jump around it.
static bool isCMOVPseudo(MachineInstr *MI) {
switch (MI->getOpcode()) {
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64:
case X86::CMOV_V4F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
case X86::CMOV_V16F32:
case X86::CMOV_V8F32:
case X86::CMOV_V8F64:
case X86::CMOV_V8I64:
case X86::CMOV_V8I1:
case X86::CMOV_V16I1:
case X86::CMOV_V32I1:
case X86::CMOV_V64I1:
return true;
default:
return false;
}
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSelect(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// To "insert" a SELECT_CC instruction, we actually have to insert the
// diamond control-flow pattern. The incoming instruction knows the
// destination vreg to set, the condition code register to branch on, the
// true/false values to select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = ++BB->getIterator();
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
// This code lowers all pseudo-CMOV instructions. Generally it lowers these
// as described above, by inserting a BB, and then making a PHI at the join
// point to select the true and false operands of the CMOV in the PHI.
//
// The code also handles two different cases of multiple CMOV opcodes
// in a row.
//
// Case 1:
// In this case, there are multiple CMOVs in a row, all which are based on
// the same condition setting (or the exact opposite condition setting).
// In this case we can lower all the CMOVs using a single inserted BB, and
// then make a number of PHIs at the join point to model the CMOVs. The only
// trickiness here, is that in a case like:
//
// t2 = CMOV cond1 t1, f1
// t3 = CMOV cond1 t2, f2
//
// when rewriting this into PHIs, we have to perform some renaming on the
// temps since you cannot have a PHI operand refer to a PHI result earlier
// in the same block. The "simple" but wrong lowering would be:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t2(BB1), f2(BB2)
//
// but clearly t2 is not defined in BB1, so that is incorrect. The proper
// renaming is to note that on the path through BB1, t2 is really just a
// copy of t1, and do that renaming, properly generating:
//
// t2 = PHI t1(BB1), f1(BB2)
// t3 = PHI t1(BB1), f2(BB2)
//
// Case 2, we lower cascaded CMOVs such as
//
// (CMOV (CMOV F, T, cc1), T, cc2)
//
// to two successives branches. For that, we look for another CMOV as the
// following instruction.
//
// Without this, we would add a PHI between the two jumps, which ends up
// creating a few copies all around. For instance, for
//
// (sitofp (zext (fcmp une)))
//
// we would generate:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// movaps %xmm0, %xmm1
// jne .LBB5_2
// xorps %xmm1, %xmm1
// .LBB5_2:
// jp .LBB5_4
// movaps %xmm1, %xmm0
// .LBB5_4:
// retq
//
// because this custom-inserter would have generated:
//
// A
// | \
// | B
// | /
// C
// | \
// | D
// | /
// E
//
// A: X = ...; Y = ...
// B: empty
// C: Z = PHI [X, A], [Y, B]
// D: empty
// E: PHI [X, C], [Z, D]
//
// If we lower both CMOVs in a single step, we can instead generate:
//
// A
// | \
// | C
// | /|
// |/ |
// | |
// | D
// | /
// E
//
// A: X = ...; Y = ...
// D: empty
// E: PHI [X, A], [X, C], [Y, D]
//
// Which, in our sitofp/fcmp example, gives us something like:
//
// ucomiss %xmm1, %xmm0
// movss <1.0f>, %xmm0
// jne .LBB5_4
// jp .LBB5_4
// xorps %xmm0, %xmm0
// .LBB5_4:
// retq
//
MachineInstr *CascadedCMOV = nullptr;
MachineInstr *LastCMOV = MI;
X86::CondCode CC = X86::CondCode(MI->getOperand(3).getImm());
X86::CondCode OppCC = X86::GetOppositeBranchCondition(CC);
MachineBasicBlock::iterator NextMIIt =
std::next(MachineBasicBlock::iterator(MI));
// Check for case 1, where there are multiple CMOVs with the same condition
// first. Of the two cases of multiple CMOV lowerings, case 1 reduces the
// number of jumps the most.
if (isCMOVPseudo(MI)) {
// See if we have a string of CMOVS with the same condition.
while (NextMIIt != BB->end() &&
isCMOVPseudo(NextMIIt) &&
(NextMIIt->getOperand(3).getImm() == CC ||
NextMIIt->getOperand(3).getImm() == OppCC)) {
LastCMOV = &*NextMIIt;
++NextMIIt;
}
}
// This checks for case 2, but only do this if we didn't already find
// case 1, as indicated by LastCMOV == MI.
if (LastCMOV == MI &&
NextMIIt != BB->end() && NextMIIt->getOpcode() == MI->getOpcode() &&
NextMIIt->getOperand(2).getReg() == MI->getOperand(2).getReg() &&
NextMIIt->getOperand(1).getReg() == MI->getOperand(0).getReg() &&
NextMIIt->getOperand(1).isKill()) {
CascadedCMOV = &*NextMIIt;
}
MachineBasicBlock *jcc1MBB = nullptr;
// If we have a cascaded CMOV, we lower it to two successive branches to
// the same block. EFLAGS is used by both, so mark it as live in the second.
if (CascadedCMOV) {
jcc1MBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, jcc1MBB);
jcc1MBB->addLiveIn(X86::EFLAGS);
}
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// If the EFLAGS register isn't dead in the terminator, then claim that it's
// live into the sink and copy blocks.
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
MachineInstr *LastEFLAGSUser = CascadedCMOV ? CascadedCMOV : LastCMOV;
if (!LastEFLAGSUser->killsRegister(X86::EFLAGS) &&
!checkAndUpdateEFLAGSKill(LastEFLAGSUser, BB, TRI)) {
copy0MBB->addLiveIn(X86::EFLAGS);
sinkMBB->addLiveIn(X86::EFLAGS);
}
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(LastCMOV)), BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add the true and fallthrough blocks as its successors.
if (CascadedCMOV) {
// The fallthrough block may be jcc1MBB, if we have a cascaded CMOV.
BB->addSuccessor(jcc1MBB);
// In that case, jcc1MBB will itself fallthrough the copy0MBB, and
// jump to the sinkMBB.
jcc1MBB->addSuccessor(copy0MBB);
jcc1MBB->addSuccessor(sinkMBB);
} else {
BB->addSuccessor(copy0MBB);
}
// The true block target of the first (or only) branch is always sinkMBB.
BB->addSuccessor(sinkMBB);
// Create the conditional branch instruction.
unsigned Opc = X86::GetCondBranchFromCond(CC);
BuildMI(BB, DL, TII->get(Opc)).addMBB(sinkMBB);
if (CascadedCMOV) {
unsigned Opc2 = X86::GetCondBranchFromCond(
(X86::CondCode)CascadedCMOV->getOperand(3).getImm());
BuildMI(jcc1MBB, DL, TII->get(Opc2)).addMBB(sinkMBB);
}
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
copy0MBB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
MachineBasicBlock::iterator MIItBegin = MachineBasicBlock::iterator(MI);
MachineBasicBlock::iterator MIItEnd =
std::next(MachineBasicBlock::iterator(LastCMOV));
MachineBasicBlock::iterator SinkInsertionPoint = sinkMBB->begin();
DenseMap<unsigned, std::pair<unsigned, unsigned>> RegRewriteTable;
MachineInstrBuilder MIB;
// As we are creating the PHIs, we have to be careful if there is more than
// one. Later CMOVs may reference the results of earlier CMOVs, but later
// PHIs have to reference the individual true/false inputs from earlier PHIs.
// That also means that PHI construction must work forward from earlier to
// later, and that the code must maintain a mapping from earlier PHI's
// destination registers, and the registers that went into the PHI.
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; ++MIIt) {
unsigned DestReg = MIIt->getOperand(0).getReg();
unsigned Op1Reg = MIIt->getOperand(1).getReg();
unsigned Op2Reg = MIIt->getOperand(2).getReg();
// If this CMOV we are generating is the opposite condition from
// the jump we generated, then we have to swap the operands for the
// PHI that is going to be generated.
if (MIIt->getOperand(3).getImm() == OppCC)
std::swap(Op1Reg, Op2Reg);
if (RegRewriteTable.find(Op1Reg) != RegRewriteTable.end())
Op1Reg = RegRewriteTable[Op1Reg].first;
if (RegRewriteTable.find(Op2Reg) != RegRewriteTable.end())
Op2Reg = RegRewriteTable[Op2Reg].second;
MIB = BuildMI(*sinkMBB, SinkInsertionPoint, DL,
TII->get(X86::PHI), DestReg)
.addReg(Op1Reg).addMBB(copy0MBB)
.addReg(Op2Reg).addMBB(thisMBB);
// Add this PHI to the rewrite table.
RegRewriteTable[DestReg] = std::make_pair(Op1Reg, Op2Reg);
}
// If we have a cascaded CMOV, the second Jcc provides the same incoming
// value as the first Jcc (the True operand of the SELECT_CC/CMOV nodes).
if (CascadedCMOV) {
MIB.addReg(MI->getOperand(2).getReg()).addMBB(jcc1MBB);
// Copy the PHI result to the register defined by the second CMOV.
BuildMI(*sinkMBB, std::next(MachineBasicBlock::iterator(MIB.getInstr())),
DL, TII->get(TargetOpcode::COPY),
CascadedCMOV->getOperand(0).getReg())
.addReg(MI->getOperand(0).getReg());
CascadedCMOV->eraseFromParent();
}
// Now remove the CMOV(s).
for (MachineBasicBlock::iterator MIIt = MIItBegin; MIIt != MIItEnd; )
(MIIt++)->eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredAtomicFP(MachineInstr *MI,
MachineBasicBlock *BB) const {
// Combine the following atomic floating-point modification pattern:
// a.store(reg OP a.load(acquire), release)
// Transform them into:
// OPss (%gpr), %xmm
// movss %xmm, (%gpr)
// Or sd equivalent for 64-bit operations.
unsigned MOp, FOp;
switch (MI->getOpcode()) {
default: llvm_unreachable("unexpected instr type for EmitLoweredAtomicFP");
case X86::RELEASE_FADD32mr:
FOp = X86::ADDSSrm;
MOp = X86::MOVSSmr;
break;
case X86::RELEASE_FADD64mr:
FOp = X86::ADDSDrm;
MOp = X86::MOVSDmr;
break;
}
const X86InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned ValOpIdx = X86::AddrNumOperands;
unsigned VSrc = MI->getOperand(ValOpIdx).getReg();
MachineInstrBuilder MIB =
BuildMI(*BB, MI, DL, TII->get(FOp),
MRI.createVirtualRegister(MRI.getRegClass(VSrc)))
.addReg(VSrc);
for (int i = 0; i < X86::AddrNumOperands; ++i) {
MachineOperand &Operand = MI->getOperand(i);
// Clear any kill flags on register operands as we'll create a second
// instruction using the same address operands.
if (Operand.isReg())
Operand.setIsKill(false);
MIB.addOperand(Operand);
}
MachineInstr *FOpMI = MIB;
MIB = BuildMI(*BB, MI, DL, TII->get(MOp));
for (int i = 0; i < X86::AddrNumOperands; ++i)
MIB.addOperand(MI->getOperand(i));
MIB.addReg(FOpMI->getOperand(0).getReg(), RegState::Kill);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredSegAlloca(MachineInstr *MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
const BasicBlock *LLVM_BB = BB->getBasicBlock();
assert(MF->shouldSplitStack());
const bool Is64Bit = Subtarget.is64Bit();
const bool IsLP64 = Subtarget.isTarget64BitLP64();
const unsigned TlsReg = Is64Bit ? X86::FS : X86::GS;
const unsigned TlsOffset = IsLP64 ? 0x70 : Is64Bit ? 0x40 : 0x30;
// BB:
// ... [Till the alloca]
// If stacklet is not large enough, jump to mallocMBB
//
// bumpMBB:
// Allocate by subtracting from RSP
// Jump to continueMBB
//
// mallocMBB:
// Allocate by call to runtime
//
// continueMBB:
// ...
// [rest of original BB]
//
MachineBasicBlock *mallocMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *bumpMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *continueMBB = MF->CreateMachineBasicBlock(LLVM_BB);
MachineRegisterInfo &MRI = MF->getRegInfo();
const TargetRegisterClass *AddrRegClass =
getRegClassFor(getPointerTy(MF->getDataLayout()));
unsigned mallocPtrVReg = MRI.createVirtualRegister(AddrRegClass),
bumpSPPtrVReg = MRI.createVirtualRegister(AddrRegClass),
tmpSPVReg = MRI.createVirtualRegister(AddrRegClass),
SPLimitVReg = MRI.createVirtualRegister(AddrRegClass),
sizeVReg = MI->getOperand(1).getReg(),
physSPReg = IsLP64 || Subtarget.isTargetNaCl64() ? X86::RSP : X86::ESP;
MachineFunction::iterator MBBIter = ++BB->getIterator();
MF->insert(MBBIter, bumpMBB);
MF->insert(MBBIter, mallocMBB);
MF->insert(MBBIter, continueMBB);
continueMBB->splice(continueMBB->begin(), BB,
std::next(MachineBasicBlock::iterator(MI)), BB->end());
continueMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add code to the main basic block to check if the stack limit has been hit,
// and if so, jump to mallocMBB otherwise to bumpMBB.
BuildMI(BB, DL, TII->get(TargetOpcode::COPY), tmpSPVReg).addReg(physSPReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::SUB64rr:X86::SUB32rr), SPLimitVReg)
.addReg(tmpSPVReg).addReg(sizeVReg);
BuildMI(BB, DL, TII->get(IsLP64 ? X86::CMP64mr:X86::CMP32mr))
.addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg)
.addReg(SPLimitVReg);
BuildMI(BB, DL, TII->get(X86::JG_1)).addMBB(mallocMBB);
// bumpMBB simply decreases the stack pointer, since we know the current
// stacklet has enough space.
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), physSPReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(TargetOpcode::COPY), bumpSPPtrVReg)
.addReg(SPLimitVReg);
BuildMI(bumpMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Calls into a routine in libgcc to allocate more space from the heap.
const uint32_t *RegMask =
Subtarget.getRegisterInfo()->getCallPreservedMask(*MF, CallingConv::C);
if (IsLP64) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV64rr), X86::RDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::RDI, RegState::Implicit)
.addReg(X86::RAX, RegState::ImplicitDefine);
} else if (Is64Bit) {
BuildMI(mallocMBB, DL, TII->get(X86::MOV32rr), X86::EDI)
.addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALL64pcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EDI, RegState::Implicit)
.addReg(X86::EAX, RegState::ImplicitDefine);
} else {
BuildMI(mallocMBB, DL, TII->get(X86::SUB32ri), physSPReg).addReg(physSPReg)
.addImm(12);
BuildMI(mallocMBB, DL, TII->get(X86::PUSH32r)).addReg(sizeVReg);
BuildMI(mallocMBB, DL, TII->get(X86::CALLpcrel32))
.addExternalSymbol("__morestack_allocate_stack_space")
.addRegMask(RegMask)
.addReg(X86::EAX, RegState::ImplicitDefine);
}
if (!Is64Bit)
BuildMI(mallocMBB, DL, TII->get(X86::ADD32ri), physSPReg).addReg(physSPReg)
.addImm(16);
BuildMI(mallocMBB, DL, TII->get(TargetOpcode::COPY), mallocPtrVReg)
.addReg(IsLP64 ? X86::RAX : X86::EAX);
BuildMI(mallocMBB, DL, TII->get(X86::JMP_1)).addMBB(continueMBB);
// Set up the CFG correctly.
BB->addSuccessor(bumpMBB);
BB->addSuccessor(mallocMBB);
mallocMBB->addSuccessor(continueMBB);
bumpMBB->addSuccessor(continueMBB);
// Take care of the PHI nodes.
BuildMI(*continueMBB, continueMBB->begin(), DL, TII->get(X86::PHI),
MI->getOperand(0).getReg())
.addReg(mallocPtrVReg).addMBB(mallocMBB)
.addReg(bumpSPPtrVReg).addMBB(bumpMBB);
// Delete the original pseudo instruction.
MI->eraseFromParent();
// And we're done.
return continueMBB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchRet(MachineInstr *MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
MachineBasicBlock *TargetMBB = MI->getOperand(0).getMBB();
DebugLoc DL = MI->getDebugLoc();
assert(!isAsynchronousEHPersonality(
classifyEHPersonality(MF->getFunction()->getPersonalityFn())) &&
"SEH does not use catchret!");
// Only 32-bit EH needs to worry about manually restoring stack pointers.
if (!Subtarget.is32Bit())
return BB;
// C++ EH creates a new target block to hold the restore code, and wires up
// the new block to the return destination with a normal JMP_4.
MachineBasicBlock *RestoreMBB =
MF->CreateMachineBasicBlock(BB->getBasicBlock());
assert(BB->succ_size() == 1);
MF->insert(std::next(BB->getIterator()), RestoreMBB);
RestoreMBB->transferSuccessorsAndUpdatePHIs(BB);
BB->addSuccessor(RestoreMBB);
MI->getOperand(0).setMBB(RestoreMBB);
auto RestoreMBBI = RestoreMBB->begin();
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::EH_RESTORE));
BuildMI(*RestoreMBB, RestoreMBBI, DL, TII.get(X86::JMP_4)).addMBB(TargetMBB);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredCatchPad(MachineInstr *MI,
MachineBasicBlock *BB) const {
MachineFunction *MF = BB->getParent();
const Constant *PerFn = MF->getFunction()->getPersonalityFn();
bool IsSEH = isAsynchronousEHPersonality(classifyEHPersonality(PerFn));
// Only 32-bit SEH requires special handling for catchpad.
if (IsSEH && Subtarget.is32Bit()) {
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
BuildMI(*BB, MI, DL, TII.get(X86::EH_RESTORE));
}
MI->eraseFromParent();
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSAddr(MachineInstr *MI,
MachineBasicBlock *BB) const {
// So, here we replace TLSADDR with the sequence:
// adjust_stackdown -> TLSADDR -> adjust_stackup.
// We need this because TLSADDR is lowered into calls
// inside MC, therefore without the two markers shrink-wrapping
// may push the prologue/epilogue pass them.
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
MachineFunction &MF = *BB->getParent();
// Emit CALLSEQ_START right before the instruction.
unsigned AdjStackDown = TII.getCallFrameSetupOpcode();
MachineInstrBuilder CallseqStart =
BuildMI(MF, DL, TII.get(AdjStackDown)).addImm(0).addImm(0);
BB->insert(MachineBasicBlock::iterator(MI), CallseqStart);
// Emit CALLSEQ_END right after the instruction.
// We don't call erase from parent because we want to keep the
// original instruction around.
unsigned AdjStackUp = TII.getCallFrameDestroyOpcode();
MachineInstrBuilder CallseqEnd =
BuildMI(MF, DL, TII.get(AdjStackUp)).addImm(0).addImm(0);
BB->insertAfter(MachineBasicBlock::iterator(MI), CallseqEnd);
return BB;
}
MachineBasicBlock *
X86TargetLowering::EmitLoweredTLSCall(MachineInstr *MI,
MachineBasicBlock *BB) const {
// This is pretty easy. We're taking the value that we received from
// our load from the relocation, sticking it in either RDI (x86-64)
// or EAX and doing an indirect call. The return value will then
// be in the normal return register.
MachineFunction *F = BB->getParent();
const X86InstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
assert(Subtarget.isTargetDarwin() && "Darwin only instr emitted?");
assert(MI->getOperand(3).isGlobal() && "This should be a global");
// Get a register mask for the lowered call.
// FIXME: The 32-bit calls have non-standard calling conventions. Use a
// proper register mask.
const uint32_t *RegMask =
Subtarget.is64Bit() ?
Subtarget.getRegisterInfo()->getDarwinTLSCallPreservedMask() :
Subtarget.getRegisterInfo()->getCallPreservedMask(*F, CallingConv::C);
if (Subtarget.is64Bit()) {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV64rm), X86::RDI)
.addReg(X86::RIP)
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL64m));
addDirectMem(MIB, X86::RDI);
MIB.addReg(X86::RAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else if (F->getTarget().getRelocationModel() != Reloc::PIC_) {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV32rm), X86::EAX)
.addReg(0)
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
} else {
MachineInstrBuilder MIB = BuildMI(*BB, MI, DL,
TII->get(X86::MOV32rm), X86::EAX)
.addReg(TII->getGlobalBaseReg(F))
.addImm(0).addReg(0)
.addGlobalAddress(MI->getOperand(3).getGlobal(), 0,
MI->getOperand(3).getTargetFlags())
.addReg(0);
MIB = BuildMI(*BB, MI, DL, TII->get(X86::CALL32m));
addDirectMem(MIB, X86::EAX);
MIB.addReg(X86::EAX, RegState::ImplicitDefine).addRegMask(RegMask);
}
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator I = ++MBB->getIterator();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
unsigned DstReg;
unsigned MemOpndSlot = 0;
unsigned CurOp = 0;
DstReg = MI->getOperand(CurOp++).getReg();
const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
assert(RC->hasType(MVT::i32) && "Invalid destination!");
unsigned mainDstReg = MRI.createVirtualRegister(RC);
unsigned restoreDstReg = MRI.createVirtualRegister(RC);
MemOpndSlot = CurOp;
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
// For v = setjmp(buf), we generate
//
// thisMBB:
// buf[LabelOffset] = restoreMBB <-- takes address of restoreMBB
// SjLjSetup restoreMBB
//
// mainMBB:
// v_main = 0
//
// sinkMBB:
// v = phi(main, restore)
//
// restoreMBB:
// if base pointer being used, load it from frame
// v_restore = 1
MachineBasicBlock *thisMBB = MBB;
MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
MachineBasicBlock *restoreMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(I, mainMBB);
MF->insert(I, sinkMBB);
MF->push_back(restoreMBB);
restoreMBB->setHasAddressTaken();
MachineInstrBuilder MIB;
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), MBB,
std::next(MachineBasicBlock::iterator(MI)), MBB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
// thisMBB:
unsigned PtrStoreOpc = 0;
unsigned LabelReg = 0;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
Reloc::Model RM = MF->getTarget().getRelocationModel();
bool UseImmLabel = (MF->getTarget().getCodeModel() == CodeModel::Small) &&
(RM == Reloc::Static || RM == Reloc::DynamicNoPIC);
// Prepare IP either in reg or imm.
if (!UseImmLabel) {
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mr : X86::MOV32mr;
const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
LabelReg = MRI.createVirtualRegister(PtrRC);
if (Subtarget.is64Bit()) {
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA64r), LabelReg)
.addReg(X86::RIP)
.addImm(0)
.addReg(0)
.addMBB(restoreMBB)
.addReg(0);
} else {
const X86InstrInfo *XII = static_cast<const X86InstrInfo*>(TII);
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::LEA32r), LabelReg)
.addReg(XII->getGlobalBaseReg(MF))
.addImm(0)
.addReg(0)
.addMBB(restoreMBB, Subtarget.classifyBlockAddressReference())
.addReg(0);
}
} else
PtrStoreOpc = (PVT == MVT::i64) ? X86::MOV64mi32 : X86::MOV32mi;
// Store IP
MIB = BuildMI(*thisMBB, MI, DL, TII->get(PtrStoreOpc));
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI->getOperand(MemOpndSlot + i), LabelOffset);
else
MIB.addOperand(MI->getOperand(MemOpndSlot + i));
}
if (!UseImmLabel)
MIB.addReg(LabelReg);
else
MIB.addMBB(restoreMBB);
MIB.setMemRefs(MMOBegin, MMOEnd);
// Setup
MIB = BuildMI(*thisMBB, MI, DL, TII->get(X86::EH_SjLj_Setup))
.addMBB(restoreMBB);
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
MIB.addRegMask(RegInfo->getNoPreservedMask());
thisMBB->addSuccessor(mainMBB);
thisMBB->addSuccessor(restoreMBB);
// mainMBB:
// EAX = 0
BuildMI(mainMBB, DL, TII->get(X86::MOV32r0), mainDstReg);
mainMBB->addSuccessor(sinkMBB);
// sinkMBB:
BuildMI(*sinkMBB, sinkMBB->begin(), DL,
TII->get(X86::PHI), DstReg)
.addReg(mainDstReg).addMBB(mainMBB)
.addReg(restoreDstReg).addMBB(restoreMBB);
// restoreMBB:
if (RegInfo->hasBasePointer(*MF)) {
const bool Uses64BitFramePtr =
Subtarget.isTarget64BitLP64() || Subtarget.isTargetNaCl64();
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
X86FI->setRestoreBasePointer(MF);
unsigned FramePtr = RegInfo->getFrameRegister(*MF);
unsigned BasePtr = RegInfo->getBaseRegister();
unsigned Opm = Uses64BitFramePtr ? X86::MOV64rm : X86::MOV32rm;
addRegOffset(BuildMI(restoreMBB, DL, TII->get(Opm), BasePtr),
FramePtr, true, X86FI->getRestoreBasePointerOffset())
.setMIFlag(MachineInstr::FrameSetup);
}
BuildMI(restoreMBB, DL, TII->get(X86::MOV32ri), restoreDstReg).addImm(1);
BuildMI(restoreMBB, DL, TII->get(X86::JMP_1)).addMBB(sinkMBB);
restoreMBB->addSuccessor(sinkMBB);
MI->eraseFromParent();
return sinkMBB;
}
MachineBasicBlock *
X86TargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const {
DebugLoc DL = MI->getDebugLoc();
MachineFunction *MF = MBB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo &MRI = MF->getRegInfo();
// Memory Reference
MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
MVT PVT = getPointerTy(MF->getDataLayout());
assert((PVT == MVT::i64 || PVT == MVT::i32) &&
"Invalid Pointer Size!");
const TargetRegisterClass *RC =
(PVT == MVT::i64) ? &X86::GR64RegClass : &X86::GR32RegClass;
unsigned Tmp = MRI.createVirtualRegister(RC);
// Since FP is only updated here but NOT referenced, it's treated as GPR.
const X86RegisterInfo *RegInfo = Subtarget.getRegisterInfo();
unsigned FP = (PVT == MVT::i64) ? X86::RBP : X86::EBP;
unsigned SP = RegInfo->getStackRegister();
MachineInstrBuilder MIB;
const int64_t LabelOffset = 1 * PVT.getStoreSize();
const int64_t SPOffset = 2 * PVT.getStoreSize();
unsigned PtrLoadOpc = (PVT == MVT::i64) ? X86::MOV64rm : X86::MOV32rm;
unsigned IJmpOpc = (PVT == MVT::i64) ? X86::JMP64r : X86::JMP32r;
// Reload FP
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), FP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i)
MIB.addOperand(MI->getOperand(i));
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload IP
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), Tmp);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI->getOperand(i), LabelOffset);
else
MIB.addOperand(MI->getOperand(i));
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Reload SP
MIB = BuildMI(*MBB, MI, DL, TII->get(PtrLoadOpc), SP);
for (unsigned i = 0; i < X86::AddrNumOperands; ++i) {
if (i == X86::AddrDisp)
MIB.addDisp(MI->getOperand(i), SPOffset);
else
MIB.addOperand(MI->getOperand(i));
}
MIB.setMemRefs(MMOBegin, MMOEnd);
// Jump
BuildMI(*MBB, MI, DL, TII->get(IJmpOpc)).addReg(Tmp);
MI->eraseFromParent();
return MBB;
}
// Replace 213-type (isel default) FMA3 instructions with 231-type for
// accumulator loops. Writing back to the accumulator allows the coalescer
// to remove extra copies in the loop.
// FIXME: Do this on AVX512. We don't support 231 variants yet (PR23937).
MachineBasicBlock *
X86TargetLowering::emitFMA3Instr(MachineInstr *MI,
MachineBasicBlock *MBB) const {
MachineOperand &AddendOp = MI->getOperand(3);
// Bail out early if the addend isn't a register - we can't switch these.
if (!AddendOp.isReg())
return MBB;
MachineFunction &MF = *MBB->getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
// Check whether the addend is defined by a PHI:
assert(MRI.hasOneDef(AddendOp.getReg()) && "Multiple defs in SSA?");
MachineInstr &AddendDef = *MRI.def_instr_begin(AddendOp.getReg());
if (!AddendDef.isPHI())
return MBB;
// Look for the following pattern:
// loop:
// %addend = phi [%entry, 0], [%loop, %result]
// ...
// %result<tied1> = FMA213 %m2<tied0>, %m1, %addend
// Replace with:
// loop:
// %addend = phi [%entry, 0], [%loop, %result]
// ...
// %result<tied1> = FMA231 %addend<tied0>, %m1, %m2
for (unsigned i = 1, e = AddendDef.getNumOperands(); i < e; i += 2) {
assert(AddendDef.getOperand(i).isReg());
MachineOperand PHISrcOp = AddendDef.getOperand(i);
MachineInstr &PHISrcInst = *MRI.def_instr_begin(PHISrcOp.getReg());
if (&PHISrcInst == MI) {
// Found a matching instruction.
unsigned NewFMAOpc = 0;
switch (MI->getOpcode()) {
case X86::VFMADDPDr213r: NewFMAOpc = X86::VFMADDPDr231r; break;
case X86::VFMADDPSr213r: NewFMAOpc = X86::VFMADDPSr231r; break;
case X86::VFMADDSDr213r: NewFMAOpc = X86::VFMADDSDr231r; break;
case X86::VFMADDSSr213r: NewFMAOpc = X86::VFMADDSSr231r; break;
case X86::VFMSUBPDr213r: NewFMAOpc = X86::VFMSUBPDr231r; break;
case X86::VFMSUBPSr213r: NewFMAOpc = X86::VFMSUBPSr231r; break;
case X86::VFMSUBSDr213r: NewFMAOpc = X86::VFMSUBSDr231r; break;
case X86::VFMSUBSSr213r: NewFMAOpc = X86::VFMSUBSSr231r; break;
case X86::VFNMADDPDr213r: NewFMAOpc = X86::VFNMADDPDr231r; break;
case X86::VFNMADDPSr213r: NewFMAOpc = X86::VFNMADDPSr231r; break;
case X86::VFNMADDSDr213r: NewFMAOpc = X86::VFNMADDSDr231r; break;
case X86::VFNMADDSSr213r: NewFMAOpc = X86::VFNMADDSSr231r; break;
case X86::VFNMSUBPDr213r: NewFMAOpc = X86::VFNMSUBPDr231r; break;
case X86::VFNMSUBPSr213r: NewFMAOpc = X86::VFNMSUBPSr231r; break;
case X86::VFNMSUBSDr213r: NewFMAOpc = X86::VFNMSUBSDr231r; break;
case X86::VFNMSUBSSr213r: NewFMAOpc = X86::VFNMSUBSSr231r; break;
case X86::VFMADDSUBPDr213r: NewFMAOpc = X86::VFMADDSUBPDr231r; break;
case X86::VFMADDSUBPSr213r: NewFMAOpc = X86::VFMADDSUBPSr231r; break;
case X86::VFMSUBADDPDr213r: NewFMAOpc = X86::VFMSUBADDPDr231r; break;
case X86::VFMSUBADDPSr213r: NewFMAOpc = X86::VFMSUBADDPSr231r; break;
case X86::VFMADDPDr213rY: NewFMAOpc = X86::VFMADDPDr231rY; break;
case X86::VFMADDPSr213rY: NewFMAOpc = X86::VFMADDPSr231rY; break;
case X86::VFMSUBPDr213rY: NewFMAOpc = X86::VFMSUBPDr231rY; break;
case X86::VFMSUBPSr213rY: NewFMAOpc = X86::VFMSUBPSr231rY; break;
case X86::VFNMADDPDr213rY: NewFMAOpc = X86::VFNMADDPDr231rY; break;
case X86::VFNMADDPSr213rY: NewFMAOpc = X86::VFNMADDPSr231rY; break;
case X86::VFNMSUBPDr213rY: NewFMAOpc = X86::VFNMSUBPDr231rY; break;
case X86::VFNMSUBPSr213rY: NewFMAOpc = X86::VFNMSUBPSr231rY; break;
case X86::VFMADDSUBPDr213rY: NewFMAOpc = X86::VFMADDSUBPDr231rY; break;
case X86::VFMADDSUBPSr213rY: NewFMAOpc = X86::VFMADDSUBPSr231rY; break;
case X86::VFMSUBADDPDr213rY: NewFMAOpc = X86::VFMSUBADDPDr231rY; break;
case X86::VFMSUBADDPSr213rY: NewFMAOpc = X86::VFMSUBADDPSr231rY; break;
default: llvm_unreachable("Unrecognized FMA variant.");
}
const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
MachineInstrBuilder MIB =
BuildMI(MF, MI->getDebugLoc(), TII.get(NewFMAOpc))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(3))
.addOperand(MI->getOperand(2))
.addOperand(MI->getOperand(1));
MBB->insert(MachineBasicBlock::iterator(MI), MIB);
MI->eraseFromParent();
}
}
return MBB;
}
MachineBasicBlock *
X86TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
switch (MI->getOpcode()) {
default: llvm_unreachable("Unexpected instr type to insert");
case X86::TAILJMPd64:
case X86::TAILJMPr64:
case X86::TAILJMPm64:
case X86::TAILJMPd64_REX:
case X86::TAILJMPr64_REX:
case X86::TAILJMPm64_REX:
llvm_unreachable("TAILJMP64 would not be touched here.");
case X86::TCRETURNdi64:
case X86::TCRETURNri64:
case X86::TCRETURNmi64:
return BB;
case X86::TLS_addr32:
case X86::TLS_addr64:
case X86::TLS_base_addr32:
case X86::TLS_base_addr64:
return EmitLoweredTLSAddr(MI, BB);
case X86::CATCHRET:
return EmitLoweredCatchRet(MI, BB);
case X86::CATCHPAD:
return EmitLoweredCatchPad(MI, BB);
case X86::SEG_ALLOCA_32:
case X86::SEG_ALLOCA_64:
return EmitLoweredSegAlloca(MI, BB);
case X86::TLSCall_32:
case X86::TLSCall_64:
return EmitLoweredTLSCall(MI, BB);
case X86::CMOV_FR32:
case X86::CMOV_FR64:
case X86::CMOV_FR128:
case X86::CMOV_GR8:
case X86::CMOV_GR16:
case X86::CMOV_GR32:
case X86::CMOV_RFP32:
case X86::CMOV_RFP64:
case X86::CMOV_RFP80:
case X86::CMOV_V2F64:
case X86::CMOV_V2I64:
case X86::CMOV_V4F32:
case X86::CMOV_V4F64:
case X86::CMOV_V4I64:
case X86::CMOV_V16F32:
case X86::CMOV_V8F32:
case X86::CMOV_V8F64:
case X86::CMOV_V8I64:
case X86::CMOV_V8I1:
case X86::CMOV_V16I1:
case X86::CMOV_V32I1:
case X86::CMOV_V64I1:
return EmitLoweredSelect(MI, BB);
case X86::RDFLAGS32:
case X86::RDFLAGS64: {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
unsigned PushF =
MI->getOpcode() == X86::RDFLAGS32 ? X86::PUSHF32 : X86::PUSHF64;
unsigned Pop =
MI->getOpcode() == X86::RDFLAGS32 ? X86::POP32r : X86::POP64r;
MachineInstr *Push = BuildMI(*BB, MI, DL, TII->get(PushF));
// Permit reads of the FLAGS register without it being defined.
// This intrinsic exists to read external processor state in flags, such as
// the trap flag, interrupt flag, and direction flag, none of which are
// modeled by the backend.
Push->getOperand(2).setIsUndef();
BuildMI(*BB, MI, DL, TII->get(Pop), MI->getOperand(0).getReg());
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::WRFLAGS32:
case X86::WRFLAGS64: {
DebugLoc DL = MI->getDebugLoc();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
unsigned Push =
MI->getOpcode() == X86::WRFLAGS32 ? X86::PUSH32r : X86::PUSH64r;
unsigned PopF =
MI->getOpcode() == X86::WRFLAGS32 ? X86::POPF32 : X86::POPF64;
BuildMI(*BB, MI, DL, TII->get(Push)).addReg(MI->getOperand(0).getReg());
BuildMI(*BB, MI, DL, TII->get(PopF));
MI->eraseFromParent(); // The pseudo is gone now.
return BB;
}
case X86::RELEASE_FADD32mr:
case X86::RELEASE_FADD64mr:
return EmitLoweredAtomicFP(MI, BB);
case X86::FP32_TO_INT16_IN_MEM:
case X86::FP32_TO_INT32_IN_MEM:
case X86::FP32_TO_INT64_IN_MEM:
case X86::FP64_TO_INT16_IN_MEM:
case X86::FP64_TO_INT32_IN_MEM:
case X86::FP64_TO_INT64_IN_MEM:
case X86::FP80_TO_INT16_IN_MEM:
case X86::FP80_TO_INT32_IN_MEM:
case X86::FP80_TO_INT64_IN_MEM: {
MachineFunction *F = BB->getParent();
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
DebugLoc DL = MI->getDebugLoc();
// Change the floating point control register to use "round towards zero"
// mode when truncating to an integer value.
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2, false);
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FNSTCW16m)), CWFrameIdx);
// Load the old value of the high byte of the control word...
unsigned OldCW =
F->getRegInfo().createVirtualRegister(&X86::GR16RegClass);
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16rm), OldCW),
CWFrameIdx);
// Set the high part to be round to zero...
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mi)), CWFrameIdx)
.addImm(0xC7F);
// Reload the modified control word now...
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
// Restore the memory image of control word to original value
addFrameReference(BuildMI(*BB, MI, DL, TII->get(X86::MOV16mr)), CWFrameIdx)
.addReg(OldCW);
// Get the X86 opcode to use.
unsigned Opc;
switch (MI->getOpcode()) {
default: llvm_unreachable("illegal opcode!");
case X86::FP32_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m32; break;
case X86::FP32_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m32; break;
case X86::FP32_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m32; break;
case X86::FP64_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m64; break;
case X86::FP64_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m64; break;
case X86::FP64_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m64; break;
case X86::FP80_TO_INT16_IN_MEM: Opc = X86::IST_Fp16m80; break;
case X86::FP80_TO_INT32_IN_MEM: Opc = X86::IST_Fp32m80; break;
case X86::FP80_TO_INT64_IN_MEM: Opc = X86::IST_Fp64m80; break;
}
X86AddressMode AM = getAddressFromInstr(MI, 0);
addFullAddress(BuildMI(*BB, MI, DL, TII->get(Opc)), AM)
.addReg(MI->getOperand(X86::AddrNumOperands).getReg());
// Reload the original control word now.
addFrameReference(BuildMI(*BB, MI, DL,
TII->get(X86::FLDCW16m)), CWFrameIdx);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
// String/text processing lowering.
case X86::PCMPISTRM128REG:
case X86::VPCMPISTRM128REG:
case X86::PCMPISTRM128MEM:
case X86::VPCMPISTRM128MEM:
case X86::PCMPESTRM128REG:
case X86::VPCMPESTRM128REG:
case X86::PCMPESTRM128MEM:
case X86::VPCMPESTRM128MEM:
assert(Subtarget.hasSSE42() &&
"Target must have SSE4.2 or AVX features enabled");
return emitPCMPSTRM(MI, BB, Subtarget.getInstrInfo());
// String/text processing lowering.
case X86::PCMPISTRIREG:
case X86::VPCMPISTRIREG:
case X86::PCMPISTRIMEM:
case X86::VPCMPISTRIMEM:
case X86::PCMPESTRIREG:
case X86::VPCMPESTRIREG:
case X86::PCMPESTRIMEM:
case X86::VPCMPESTRIMEM:
assert(Subtarget.hasSSE42() &&
"Target must have SSE4.2 or AVX features enabled");
return emitPCMPSTRI(MI, BB, Subtarget.getInstrInfo());
// Thread synchronization.
case X86::MONITOR:
return emitMonitor(MI, BB, Subtarget, X86::MONITORrrr);
case X86::MONITORX:
return emitMonitor(MI, BB, Subtarget, X86::MONITORXrrr);
// PKU feature
case X86::WRPKRU:
return emitWRPKRU(MI, BB, Subtarget);
case X86::RDPKRU:
return emitRDPKRU(MI, BB, Subtarget);
// xbegin
case X86::XBEGIN:
return emitXBegin(MI, BB, Subtarget.getInstrInfo());
case X86::VASTART_SAVE_XMM_REGS:
return EmitVAStartSaveXMMRegsWithCustomInserter(MI, BB);
case X86::VAARG_64:
return EmitVAARG64WithCustomInserter(MI, BB);
case X86::EH_SjLj_SetJmp32:
case X86::EH_SjLj_SetJmp64:
return emitEHSjLjSetJmp(MI, BB);
case X86::EH_SjLj_LongJmp32:
case X86::EH_SjLj_LongJmp64:
return emitEHSjLjLongJmp(MI, BB);
case TargetOpcode::STATEPOINT:
// As an implementation detail, STATEPOINT shares the STACKMAP format at
// this point in the process. We diverge later.
return emitPatchPoint(MI, BB);
case TargetOpcode::STACKMAP:
case TargetOpcode::PATCHPOINT:
return emitPatchPoint(MI, BB);
case X86::VFMADDPDr213r:
case X86::VFMADDPSr213r:
case X86::VFMADDSDr213r:
case X86::VFMADDSSr213r:
case X86::VFMSUBPDr213r:
case X86::VFMSUBPSr213r:
case X86::VFMSUBSDr213r:
case X86::VFMSUBSSr213r:
case X86::VFNMADDPDr213r:
case X86::VFNMADDPSr213r:
case X86::VFNMADDSDr213r:
case X86::VFNMADDSSr213r:
case X86::VFNMSUBPDr213r:
case X86::VFNMSUBPSr213r:
case X86::VFNMSUBSDr213r:
case X86::VFNMSUBSSr213r:
case X86::VFMADDSUBPDr213r:
case X86::VFMADDSUBPSr213r:
case X86::VFMSUBADDPDr213r:
case X86::VFMSUBADDPSr213r:
case X86::VFMADDPDr213rY:
case X86::VFMADDPSr213rY:
case X86::VFMSUBPDr213rY:
case X86::VFMSUBPSr213rY:
case X86::VFNMADDPDr213rY:
case X86::VFNMADDPSr213rY:
case X86::VFNMSUBPDr213rY:
case X86::VFNMSUBPSr213rY:
case X86::VFMADDSUBPDr213rY:
case X86::VFMADDSUBPSr213rY:
case X86::VFMSUBADDPDr213rY:
case X86::VFMSUBADDPSr213rY:
return emitFMA3Instr(MI, BB);
case X86::LCMPXCHG8B_SAVE_EBX:
case X86::LCMPXCHG16B_SAVE_RBX: {
unsigned BasePtr =
MI->getOpcode() == X86::LCMPXCHG8B_SAVE_EBX ? X86::EBX : X86::RBX;
if (!BB->isLiveIn(BasePtr))
BB->addLiveIn(BasePtr);
return BB;
}
}
}
//===----------------------------------------------------------------------===//
// X86 Optimization Hooks
//===----------------------------------------------------------------------===//
void X86TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
unsigned BitWidth = KnownZero.getBitWidth();
unsigned Opc = Op.getOpcode();
assert((Opc >= ISD::BUILTIN_OP_END ||
Opc == ISD::INTRINSIC_WO_CHAIN ||
Opc == ISD::INTRINSIC_W_CHAIN ||
Opc == ISD::INTRINSIC_VOID) &&
"Should use MaskedValueIsZero if you don't know whether Op"
" is a target node!");
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
switch (Opc) {
default: break;
case X86ISD::ADD:
case X86ISD::SUB:
case X86ISD::ADC:
case X86ISD::SBB:
case X86ISD::SMUL:
case X86ISD::UMUL:
case X86ISD::INC:
case X86ISD::DEC:
case X86ISD::OR:
case X86ISD::XOR:
case X86ISD::AND:
// These nodes' second result is a boolean.
if (Op.getResNo() == 0)
break;
// Fallthrough
case X86ISD::SETCC:
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
break;
case X86ISD::MOVMSK: {
unsigned NumLoBits = Op.getOperand(0).getValueType().getVectorNumElements();
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - NumLoBits);
break;
}
}
}
unsigned X86TargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op,
const SelectionDAG &,
unsigned Depth) const {
// SETCC_CARRY sets the dest to ~0 for true or 0 for false.
if (Op.getOpcode() == X86ISD::SETCC_CARRY)
return Op.getValueType().getScalarSizeInBits();
// Fallback case.
return 1;
}
/// Returns true (and the GlobalValue and the offset) if the node is a
/// GlobalAddress + offset.
bool X86TargetLowering::isGAPlusOffset(SDNode *N,
const GlobalValue* &GA,
int64_t &Offset) const {
if (N->getOpcode() == X86ISD::Wrapper) {
if (isa<GlobalAddressSDNode>(N->getOperand(0))) {
GA = cast<GlobalAddressSDNode>(N->getOperand(0))->getGlobal();
Offset = cast<GlobalAddressSDNode>(N->getOperand(0))->getOffset();
return true;
}
}
return TargetLowering::isGAPlusOffset(N, GA, Offset);
}
/// Performs shuffle combines for 256-bit vectors.
/// FIXME: This could be expanded to support 512 bit vectors as well.
static SDValue combineShuffle256(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
SDValue V1 = SVOp->getOperand(0);
SDValue V2 = SVOp->getOperand(1);
MVT VT = SVOp->getSimpleValueType(0);
unsigned NumElems = VT.getVectorNumElements();
if (V1.getOpcode() == ISD::CONCAT_VECTORS &&
V2.getOpcode() == ISD::CONCAT_VECTORS) {
//
// 0,0,0,...
// |
// V UNDEF BUILD_VECTOR UNDEF
// \ / \ /
// CONCAT_VECTOR CONCAT_VECTOR
// \ /
// \ /
// RESULT: V + zero extended
//
if (V2.getOperand(0).getOpcode() != ISD::BUILD_VECTOR ||
!V2.getOperand(1).isUndef() || !V1.getOperand(1).isUndef())
return SDValue();
if (!ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()))
return SDValue();
// To match the shuffle mask, the first half of the mask should
// be exactly the first vector, and all the rest a splat with the
// first element of the second one.
for (unsigned i = 0; i != NumElems/2; ++i)
if (!isUndefOrEqual(SVOp->getMaskElt(i), i) ||
!isUndefOrEqual(SVOp->getMaskElt(i+NumElems/2), NumElems))
return SDValue();
// If V1 is coming from a vector load then just fold to a VZEXT_LOAD.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(V1.getOperand(0))) {
if (Ld->hasNUsesOfValue(1, 0)) {
SDVTList Tys = DAG.getVTList(MVT::v4i64, MVT::Other);
SDValue Ops[] = { Ld->getChain(), Ld->getBasePtr() };
SDValue ResNode =
DAG.getMemIntrinsicNode(X86ISD::VZEXT_LOAD, dl, Tys, Ops,
Ld->getMemoryVT(),
Ld->getPointerInfo(),
Ld->getAlignment(),
false/*isVolatile*/, true/*ReadMem*/,
false/*WriteMem*/);
// Make sure the newly-created LOAD is in the same position as Ld in
// terms of dependency. We create a TokenFactor for Ld and ResNode,
// and update uses of Ld's output chain to use the TokenFactor.
if (Ld->hasAnyUseOfValue(1)) {
SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
SDValue(Ld, 1), SDValue(ResNode.getNode(), 1));
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), NewChain);
DAG.UpdateNodeOperands(NewChain.getNode(), SDValue(Ld, 1),
SDValue(ResNode.getNode(), 1));
}
return DAG.getBitcast(VT, ResNode);
}
}
// Emit a zeroed vector and insert the desired subvector on its
// first half.
SDValue Zeros = getZeroVector(VT, Subtarget, DAG, dl);
SDValue InsV = insert128BitVector(Zeros, V1.getOperand(0), 0, DAG, dl);
return DCI.CombineTo(N, InsV);
}
return SDValue();
}
// Attempt to match a combined shuffle mask against supported unary shuffle
// instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
// TODO: Investigate using isShuffleEquivalent() instead of Mask.equals().
static bool matchUnaryVectorShuffle(MVT SrcVT, ArrayRef<int> Mask,
const X86Subtarget &Subtarget,
unsigned &Shuffle, MVT &ShuffleVT) {
bool FloatDomain = SrcVT.isFloatingPoint();
// Match a 128-bit integer vector against a VZEXT_MOVL (MOVQ) instruction.
if (!FloatDomain && SrcVT.is128BitVector() && Mask.size() == 2 &&
Mask[0] == 0 && Mask[1] < 0) {
Shuffle = X86ISD::VZEXT_MOVL;
ShuffleVT = MVT::v2i64;
return true;
}
if (!FloatDomain)
return false;
// Check if we have SSE3 which will let us use MOVDDUP etc. The
// instructions are no slower than UNPCKLPD but has the option to
// fold the input operand into even an unaligned memory load.
if (SrcVT.is128BitVector() && Subtarget.hasSSE3()) {
if (Mask.equals({0, 0})) {
Shuffle = X86ISD::MOVDDUP;
ShuffleVT = MVT::v2f64;
return true;
}
if (Mask.equals({0, 0, 2, 2})) {
Shuffle = X86ISD::MOVSLDUP;
ShuffleVT = MVT::v4f32;
return true;
}
if (Mask.equals({1, 1, 3, 3})) {
Shuffle = X86ISD::MOVSHDUP;
ShuffleVT = MVT::v4f32;
return true;
}
}
if (SrcVT.is256BitVector()) {
assert(Subtarget.hasAVX() && "AVX required for 256-bit vector shuffles");
if (Mask.equals({0, 0, 2, 2})) {
Shuffle = X86ISD::MOVDDUP;
ShuffleVT = MVT::v4f64;
return true;
}
if (Mask.equals({0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVSLDUP;
ShuffleVT = MVT::v8f32;
return true;
}
if (Mask.equals({1, 1, 3, 3, 5, 5, 7, 7})) {
Shuffle = X86ISD::MOVSHDUP;
ShuffleVT = MVT::v8f32;
return true;
}
}
if (SrcVT.is512BitVector()) {
assert(Subtarget.hasAVX512() &&
"AVX512 required for 512-bit vector shuffles");
if (Mask.equals({0, 0, 2, 2, 4, 4, 6, 6})) {
Shuffle = X86ISD::MOVDDUP;
ShuffleVT = MVT::v8f64;
return true;
}
if (Mask.equals({0, 0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, 12, 12, 14, 14})) {
Shuffle = X86ISD::MOVSLDUP;
ShuffleVT = MVT::v16f32;
return true;
}
if (Mask.equals({1, 1, 3, 3, 5, 5, 7, 7, 9, 9, 11, 11, 13, 13, 15, 15})) {
Shuffle = X86ISD::MOVSHDUP;
ShuffleVT = MVT::v16f32;
return true;
}
}
return false;
}
// Attempt to match a combined unary shuffle mask against supported binary
// shuffle instructions.
// TODO: Investigate sharing more of this with shuffle lowering.
// TODO: Investigate using isShuffleEquivalent() instead of Mask.equals().
static bool matchBinaryVectorShuffle(MVT SrcVT, ArrayRef<int> Mask,
unsigned &Shuffle, MVT &ShuffleVT) {
bool FloatDomain = SrcVT.isFloatingPoint();
if (SrcVT.is128BitVector()) {
if (Mask.equals({0, 0}) && FloatDomain) {
Shuffle = X86ISD::MOVLHPS;
ShuffleVT = MVT::v4f32;
return true;
}
if (Mask.equals({1, 1}) && FloatDomain) {
Shuffle = X86ISD::MOVHLPS;
ShuffleVT = MVT::v4f32;
return true;
}
if (Mask.equals({0, 0, 1, 1}) && FloatDomain) {
Shuffle = X86ISD::UNPCKL;
ShuffleVT = MVT::v4f32;
return true;
}
if (Mask.equals({2, 2, 3, 3}) && FloatDomain) {
Shuffle = X86ISD::UNPCKH;
ShuffleVT = MVT::v4f32;
return true;
}
if (Mask.equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
Mask.equals({0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7})) {
Shuffle = X86ISD::UNPCKL;
ShuffleVT = Mask.size() == 8 ? MVT::v8i16 : MVT::v16i8;
return true;
}
if (Mask.equals({4, 4, 5, 5, 6, 6, 7, 7}) ||
Mask.equals(
{8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15, 15})) {
Shuffle = X86ISD::UNPCKH;
ShuffleVT = Mask.size() == 8 ? MVT::v8i16 : MVT::v16i8;
return true;
}
}
return false;
}
/// \brief Combine an arbitrary chain of shuffles into a single instruction if
/// possible.
///
/// This is the leaf of the recursive combine below. When we have found some
/// chain of single-use x86 shuffle instructions and accumulated the combined
/// shuffle mask represented by them, this will try to pattern match that mask
/// into either a single instruction if there is a special purpose instruction
/// for this operation, or into a PSHUFB instruction which is a fully general
/// instruction but should only be used to replace chains over a certain depth.
static bool combineX86ShuffleChain(SDValue Input, SDValue Root,
ArrayRef<int> Mask, int Depth,
bool HasPSHUFB, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
assert(!Mask.empty() && "Cannot combine an empty shuffle mask!");
// Find the operand that enters the chain. Note that multiple uses are OK
// here, we're not going to remove the operand we find.
Input = peekThroughBitcasts(Input);
MVT VT = Input.getSimpleValueType();
MVT RootVT = Root.getSimpleValueType();
SDLoc DL(Root);
SDValue Res;
unsigned NumMaskElts = Mask.size();
if (NumMaskElts == 1) {
assert(Mask[0] == 0 && "Invalid shuffle index found!");
DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Input),
/*AddTo*/ true);
return true;
}
unsigned RootSizeInBits = RootVT.getSizeInBits();
unsigned MaskEltSizeInBits = RootSizeInBits / NumMaskElts;
// TODO - handle 128/256-bit wide vector shuffles.
if (MaskEltSizeInBits > 64)
return false;
// Don't combine if we are a AVX512/EVEX target and the mask element size
// is different from the root element size - this would prevent writemasks
// from being reused.
// TODO - check for writemasks usage instead of always preventing combining.
// TODO - attempt to narrow Mask back to writemask size.
if (RootVT.getScalarSizeInBits() != MaskEltSizeInBits &&
(RootSizeInBits == 512 ||
(Subtarget.hasVLX() && RootSizeInBits >= 128))) {
return false;
}
// Attempt to match the mask against known shuffle patterns.
MVT ShuffleVT;
unsigned Shuffle;
if (matchUnaryVectorShuffle(VT, Mask, Subtarget, Shuffle, ShuffleVT)) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return false; // Nothing to do!
Res = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Res.getNode());
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res);
DCI.AddToWorklist(Res.getNode());
DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
/*AddTo*/ true);
return true;
}
if (matchBinaryVectorShuffle(VT, Mask, Shuffle, ShuffleVT)) {
if (Depth == 1 && Root.getOpcode() == Shuffle)
return false; // Nothing to do!
Res = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Res.getNode());
Res = DAG.getNode(Shuffle, DL, ShuffleVT, Res, Res);
DCI.AddToWorklist(Res.getNode());
DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
/*AddTo*/ true);
return true;
}
// Attempt to blend with zero.
if (VT.getVectorNumElements() <= 8 &&
((Subtarget.hasSSE41() && VT.is128BitVector()) ||
(Subtarget.hasAVX() && VT.is256BitVector()))) {
// Convert VT to a type compatible with X86ISD::BLENDI.
// TODO - add 16i16 support (requires lane duplication).
MVT ShuffleVT = VT;
if (Subtarget.hasAVX2()) {
if (VT == MVT::v4i64)
ShuffleVT = MVT::v8i32;
else if (VT == MVT::v2i64)
ShuffleVT = MVT::v4i32;
} else {
if (VT == MVT::v2i64 || VT == MVT::v4i32)
ShuffleVT = MVT::v8i16;
else if (VT == MVT::v4i64)
ShuffleVT = MVT::v4f64;
else if (VT == MVT::v8i32)
ShuffleVT = MVT::v8f32;
}
if (isSequentialOrUndefOrZeroInRange(Mask, /*Pos*/ 0, /*Size*/ NumMaskElts,
/*Low*/ 0) &&
NumMaskElts <= ShuffleVT.getVectorNumElements()) {
unsigned BlendMask = 0;
unsigned ShuffleSize = ShuffleVT.getVectorNumElements();
unsigned MaskRatio = ShuffleSize / NumMaskElts;
if (Depth == 1 && Root.getOpcode() == X86ISD::BLENDI)
return false;
for (unsigned i = 0; i != ShuffleSize; ++i)
if (Mask[i / MaskRatio] < 0)
BlendMask |= 1u << i;
SDValue Zero = getZeroVector(ShuffleVT, Subtarget, DAG, DL);
Res = DAG.getBitcast(ShuffleVT, Input);
DCI.AddToWorklist(Res.getNode());
Res = DAG.getNode(X86ISD::BLENDI, DL, ShuffleVT, Res, Zero,
DAG.getConstant(BlendMask, DL, MVT::i8));
DCI.AddToWorklist(Res.getNode());
DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
/*AddTo*/ true);
return true;
}
}
// Don't try to re-form single instruction chains under any circumstances now
// that we've done encoding canonicalization for them.
if (Depth < 2)
return false;
// If we have 3 or more shuffle instructions or a chain involving PSHUFB, we
// can replace them with a single PSHUFB instruction profitably. Intel's
// manuals suggest only using PSHUFB if doing so replacing 5 instructions, but
// in practice PSHUFB tends to be *very* fast so we're more aggressive.
if ((Depth >= 3 || HasPSHUFB) &&
((VT.is128BitVector() && Subtarget.hasSSSE3()) ||
(VT.is256BitVector() && Subtarget.hasAVX2()) ||
(VT.is512BitVector() && Subtarget.hasBWI()))) {
SmallVector<SDValue, 16> PSHUFBMask;
int NumBytes = VT.getSizeInBits() / 8;
int Ratio = NumBytes / NumMaskElts;
for (int i = 0; i < NumBytes; ++i) {
int M = Mask[i / Ratio];
if (M == SM_SentinelUndef) {
PSHUFBMask.push_back(DAG.getUNDEF(MVT::i8));
continue;
}
if (M == SM_SentinelZero) {
PSHUFBMask.push_back(DAG.getConstant(255, DL, MVT::i8));
continue;
}
M = Ratio * M + i % Ratio;
// Check that we are not crossing lanes.
if ((M / 16) != (i / 16))
return false;
PSHUFBMask.push_back(DAG.getConstant(M, DL, MVT::i8));
}
MVT ByteVT = MVT::getVectorVT(MVT::i8, NumBytes);
Res = DAG.getBitcast(ByteVT, Input);
DCI.AddToWorklist(Res.getNode());
SDValue PSHUFBMaskOp = DAG.getBuildVector(ByteVT, DL, PSHUFBMask);
DCI.AddToWorklist(PSHUFBMaskOp.getNode());
Res = DAG.getNode(X86ISD::PSHUFB, DL, ByteVT, Res, PSHUFBMaskOp);
DCI.AddToWorklist(Res.getNode());
DCI.CombineTo(Root.getNode(), DAG.getBitcast(RootVT, Res),
/*AddTo*/ true);
return true;
}
// Failed to find any combines.
return false;
}
/// \brief Fully generic combining of x86 shuffle instructions.
///
/// This should be the last combine run over the x86 shuffle instructions. Once
/// they have been fully optimized, this will recursively consider all chains
/// of single-use shuffle instructions, build a generic model of the cumulative
/// shuffle operation, and check for simpler instructions which implement this
/// operation. We use this primarily for two purposes:
///
/// 1) Collapse generic shuffles to specialized single instructions when
/// equivalent. In most cases, this is just an encoding size win, but
/// sometimes we will collapse multiple generic shuffles into a single
/// special-purpose shuffle.
/// 2) Look for sequences of shuffle instructions with 3 or more total
/// instructions, and replace them with the slightly more expensive SSSE3
/// PSHUFB instruction if available. We do this as the last combining step
/// to ensure we avoid using PSHUFB if we can implement the shuffle with
/// a suitable short sequence of other instructions. The PHUFB will either
/// use a register or have to read from memory and so is slightly (but only
/// slightly) more expensive than the other shuffle instructions.
///
/// Because this is inherently a quadratic operation (for each shuffle in
/// a chain, we recurse up the chain), the depth is limited to 8 instructions.
/// This should never be an issue in practice as the shuffle lowering doesn't
/// produce sequences of more than 8 instructions.
///
/// FIXME: We will currently miss some cases where the redundant shuffling
/// would simplify under the threshold for PSHUFB formation because of
/// combine-ordering. To fix this, we should do the redundant instruction
/// combining in this recursive walk.
static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
ArrayRef<int> RootMask,
int Depth, bool HasPSHUFB,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// Bound the depth of our recursive combine because this is ultimately
// quadratic in nature.
if (Depth > 8)
return false;
// Directly rip through bitcasts to find the underlying operand.
while (Op.getOpcode() == ISD::BITCAST && Op.getOperand(0).hasOneUse())
Op = Op.getOperand(0);
MVT VT = Op.getSimpleValueType();
if (!VT.isVector())
return false; // Bail if we hit a non-vector.
assert(Root.getSimpleValueType().isVector() &&
"Shuffles operate on vector types!");
assert(VT.getSizeInBits() == Root.getSimpleValueType().getSizeInBits() &&
"Can only combine shuffles of the same vector register size.");
// Extract target shuffle mask and resolve sentinels and inputs.
SDValue Input0, Input1;
SmallVector<int, 16> OpMask;
if (!resolveTargetShuffleInputs(Op, Input0, Input1, OpMask))
return false;
assert(VT.getVectorNumElements() == OpMask.size() &&
"Different mask size from vector size!");
assert(((RootMask.size() > OpMask.size() &&
RootMask.size() % OpMask.size() == 0) ||
(OpMask.size() > RootMask.size() &&
OpMask.size() % RootMask.size() == 0) ||
OpMask.size() == RootMask.size()) &&
"The smaller number of elements must divide the larger.");
int MaskWidth = std::max<int>(OpMask.size(), RootMask.size());
int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
assert(((RootRatio == 1 && OpRatio == 1) ||
(RootRatio == 1) != (OpRatio == 1)) &&
"Must not have a ratio for both incoming and op masks!");
SmallVector<int, 16> Mask;
Mask.reserve(MaskWidth);
// Merge this shuffle operation's mask into our accumulated mask. Note that
// this shuffle's mask will be the first applied to the input, followed by the
// root mask to get us all the way to the root value arrangement. The reason
// for this order is that we are recursing up the operation chain.
for (int i = 0; i < MaskWidth; ++i) {
int RootIdx = i / RootRatio;
if (RootMask[RootIdx] < 0) {
// This is a zero or undef lane, we're done.
Mask.push_back(RootMask[RootIdx]);
continue;
}
int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
int OpIdx = RootMaskedIdx / OpRatio;
if (OpMask[OpIdx] < 0) {
// The incoming lanes are zero or undef, it doesn't matter which ones we
// are using.
Mask.push_back(OpMask[OpIdx]);
continue;
}
// Ok, we have non-zero lanes, map them through.
Mask.push_back(OpMask[OpIdx] * OpRatio +
RootMaskedIdx % OpRatio);
}
// Handle the all undef/zero cases early.
if (llvm::all_of(Mask, [](int Idx) { return Idx == SM_SentinelUndef; })) {
DCI.CombineTo(Root.getNode(), DAG.getUNDEF(Root.getValueType()));
return true;
}
if (llvm::all_of(Mask, [](int Idx) { return Idx < 0; })) {
// TODO - should we handle the mixed zero/undef case as well? Just returning
// a zero mask will lose information on undef elements possibly reducing
// future combine possibilities.
DCI.CombineTo(Root.getNode(), getZeroVector(Root.getSimpleValueType(),
Subtarget, DAG, SDLoc(Root)));
return true;
}
int MaskSize = Mask.size();
bool UseInput0 = std::any_of(Mask.begin(), Mask.end(),
[MaskSize](int Idx) { return 0 <= Idx && Idx < MaskSize; });
bool UseInput1 = std::any_of(Mask.begin(), Mask.end(),
[MaskSize](int Idx) { return MaskSize <= Idx; });
// At the moment we can only combine unary shuffle mask cases.
if (UseInput0 && UseInput1)
return false;
else if (UseInput1) {
std::swap(Input0, Input1);
ShuffleVectorSDNode::commuteMask(Mask);
}
assert(Input0 && "Shuffle with no inputs detected");
// TODO - generalize this to support any variable mask shuffle.
HasPSHUFB |= (Op.getOpcode() == X86ISD::PSHUFB);
// See if we can recurse into Input0 (if it's a target shuffle).
if (Op->isOnlyUserOf(Input0.getNode()) &&
combineX86ShufflesRecursively(Input0, Root, Mask, Depth + 1, HasPSHUFB,
DAG, DCI, Subtarget))
return true;
// Minor canonicalization of the accumulated shuffle mask to make it easier
// to match below. All this does is detect masks with sequential pairs of
// elements, and shrink them to the half-width mask. It does this in a loop
// so it will reduce the size of the mask to the minimal width mask which
// performs an equivalent shuffle.
SmallVector<int, 16> WidenedMask;
while (Mask.size() > 1 && canWidenShuffleElements(Mask, WidenedMask)) {
Mask = std::move(WidenedMask);
WidenedMask.clear();
}
return combineX86ShuffleChain(Input0, Root, Mask, Depth, HasPSHUFB, DAG, DCI,
Subtarget);
}
/// \brief Get the PSHUF-style mask from PSHUF node.
///
/// This is a very minor wrapper around getTargetShuffleMask to easy forming v4
/// PSHUF-style masks that can be reused with such instructions.
static SmallVector<int, 4> getPSHUFShuffleMask(SDValue N) {
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
SmallVector<SDValue, 2> Ops;
bool IsUnary;
bool HaveMask =
getTargetShuffleMask(N.getNode(), VT, false, Ops, Mask, IsUnary);
(void)HaveMask;
assert(HaveMask);
// If we have more than 128-bits, only the low 128-bits of shuffle mask
// matter. Check that the upper masks are repeats and remove them.
if (VT.getSizeInBits() > 128) {
int LaneElts = 128 / VT.getScalarSizeInBits();
#ifndef NDEBUG
for (int i = 1, NumLanes = VT.getSizeInBits() / 128; i < NumLanes; ++i)
for (int j = 0; j < LaneElts; ++j)
assert(Mask[j] == Mask[i * LaneElts + j] - (LaneElts * i) &&
"Mask doesn't repeat in high 128-bit lanes!");
#endif
Mask.resize(LaneElts);
}
switch (N.getOpcode()) {
case X86ISD::PSHUFD:
return Mask;
case X86ISD::PSHUFLW:
Mask.resize(4);
return Mask;
case X86ISD::PSHUFHW:
Mask.erase(Mask.begin(), Mask.begin() + 4);
for (int &M : Mask)
M -= 4;
return Mask;
default:
llvm_unreachable("No valid shuffle instruction found!");
}
}
/// \brief Search for a combinable shuffle across a chain ending in pshufd.
///
/// We walk up the chain and look for a combinable shuffle, skipping over
/// shuffles that we could hoist this shuffle's transformation past without
/// altering anything.
static SDValue
combineRedundantDWordShuffle(SDValue N, MutableArrayRef<int> Mask,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert(N.getOpcode() == X86ISD::PSHUFD &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
// Walk up a single-use chain looking for a combinable shuffle. Keep a stack
// of the shuffles in the chain so that we can form a fresh chain to replace
// this one.
SmallVector<SDValue, 8> Chain;
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
// instructions.
continue;
case X86ISD::PSHUFD:
// Found another dword shuffle.
break;
case X86ISD::PSHUFLW:
// Check that the low words (being shuffled) are the identity in the
// dword shuffle, and the high words are self-contained.
if (Mask[0] != 0 || Mask[1] != 1 ||
!(Mask[2] >= 2 && Mask[2] < 4 && Mask[3] >= 2 && Mask[3] < 4))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::PSHUFHW:
// Check that the high words (being shuffled) are the identity in the
// dword shuffle, and the low words are self-contained.
if (Mask[2] != 2 || Mask[3] != 3 ||
!(Mask[0] >= 0 && Mask[0] < 2 && Mask[1] >= 0 && Mask[1] < 2))
return SDValue();
Chain.push_back(V);
continue;
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
// For either i8 -> i16 or i16 -> i32 unpacks, we can combine a dword
// shuffle into a preceding word shuffle.
if (V.getSimpleValueType().getVectorElementType() != MVT::i8 &&
V.getSimpleValueType().getVectorElementType() != MVT::i16)
return SDValue();
// Search for a half-shuffle which we can combine with.
unsigned CombineOp =
V.getOpcode() == X86ISD::UNPCKL ? X86ISD::PSHUFLW : X86ISD::PSHUFHW;
if (V.getOperand(0) != V.getOperand(1) ||
!V->isOnlyUserOf(V.getOperand(0).getNode()))
return SDValue();
Chain.push_back(V);
V = V.getOperand(0);
do {
switch (V.getOpcode()) {
default:
return SDValue(); // Nothing to combine.
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOp)
break;
Chain.push_back(V);
// Fallthrough!
case ISD::BITCAST:
V = V.getOperand(0);
continue;
}
break;
} while (V.hasOneUse());
break;
}
// Break out of the loop if we break out of the switch.
break;
}
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
return SDValue();
// Merge this node's mask and our incoming mask.
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
for (int &M : Mask)
M = VMask[M];
V = DAG.getNode(V.getOpcode(), DL, V.getValueType(), V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Rebuild the chain around this new shuffle.
while (!Chain.empty()) {
SDValue W = Chain.pop_back_val();
if (V.getValueType() != W.getOperand(0).getValueType())
V = DAG.getBitcast(W.getOperand(0).getValueType(), V);
switch (W.getOpcode()) {
default:
llvm_unreachable("Only PSHUF and UNPCK instructions get here!");
case X86ISD::UNPCKL:
case X86ISD::UNPCKH:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, V);
break;
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
V = DAG.getNode(W.getOpcode(), DL, W.getValueType(), V, W.getOperand(1));
break;
}
}
if (V.getValueType() != N.getValueType())
V = DAG.getBitcast(N.getValueType(), V);
// Return the new chain to replace N.
return V;
}
/// \brief Search for a combinable shuffle across a chain ending in pshuflw or
/// pshufhw.
///
/// We walk up the chain, skipping shuffles of the other half and looking
/// through shuffles which switch halves trying to find a shuffle of the same
/// pair of dwords.
static bool combineRedundantHalfShuffle(SDValue N, MutableArrayRef<int> Mask,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
assert(
(N.getOpcode() == X86ISD::PSHUFLW || N.getOpcode() == X86ISD::PSHUFHW) &&
"Called with something other than an x86 128-bit half shuffle!");
SDLoc DL(N);
unsigned CombineOpcode = N.getOpcode();
// Walk up a single-use chain looking for a combinable shuffle.
SDValue V = N.getOperand(0);
for (; V.hasOneUse(); V = V.getOperand(0)) {
switch (V.getOpcode()) {
default:
return false; // Nothing combined!
case ISD::BITCAST:
// Skip bitcasts as we always know the type for the target specific
// instructions.
continue;
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
if (V.getOpcode() == CombineOpcode)
break;
// Other-half shuffles are no-ops.
continue;
}
// Break out of the loop if we break out of the switch.
break;
}
if (!V.hasOneUse())
// We fell out of the loop without finding a viable combining instruction.
return false;
// Combine away the bottom node as its shuffle will be accumulated into
// a preceding shuffle.
DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
// Record the old value.
SDValue Old = V;
// Merge this node's mask and our incoming mask (adjusted to account for all
// the pshufd instructions encountered).
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
for (int &M : Mask)
M = VMask[M];
V = DAG.getNode(V.getOpcode(), DL, MVT::v8i16, V.getOperand(0),
getV4X86ShuffleImm8ForMask(Mask, DL, DAG));
// Check that the shuffles didn't cancel each other out. If not, we need to
// combine to the new one.
if (Old != V)
// Replace the combinable shuffle with the combined one, updating all users
// so that we re-evaluate the chain here.
DCI.CombineTo(Old.getNode(), V, /*AddTo*/ true);
return true;
}
/// \brief Try to combine x86 target specific shuffles.
static SDValue combineTargetShuffle(SDValue N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
MVT VT = N.getSimpleValueType();
SmallVector<int, 4> Mask;
switch (N.getOpcode()) {
case X86ISD::PSHUFD:
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
Mask = getPSHUFShuffleMask(N);
assert(Mask.size() == 4);
break;
case X86ISD::UNPCKL: {
// Combine X86ISD::UNPCKL and ISD::VECTOR_SHUFFLE into X86ISD::UNPCKH, in
// which X86ISD::UNPCKL has a ISD::UNDEF operand, and ISD::VECTOR_SHUFFLE
// moves upper half elements into the lower half part. For example:
//
// t2: v16i8 = vector_shuffle<8,9,10,11,12,13,14,15,u,u,u,u,u,u,u,u> t1,
// undef:v16i8
// t3: v16i8 = X86ISD::UNPCKL undef:v16i8, t2
//
// will be combined to:
//
// t3: v16i8 = X86ISD::UNPCKH undef:v16i8, t1
// This is only for 128-bit vectors. From SSE4.1 onward this combine may not
// happen due to advanced instructions.
if (!VT.is128BitVector())
return SDValue();
auto Op0 = N.getOperand(0);
auto Op1 = N.getOperand(1);
if (Op0.isUndef() && Op1.getNode()->getOpcode() == ISD::VECTOR_SHUFFLE) {
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Op1.getNode())->getMask();
unsigned NumElts = VT.getVectorNumElements();
SmallVector<int, 8> ExpectedMask(NumElts, -1);
std::iota(ExpectedMask.begin(), ExpectedMask.begin() + NumElts / 2,
NumElts / 2);
auto ShufOp = Op1.getOperand(0);
if (isShuffleEquivalent(Op1, ShufOp, Mask, ExpectedMask))
return DAG.getNode(X86ISD::UNPCKH, DL, VT, N.getOperand(0), ShufOp);
}
return SDValue();
}
case X86ISD::BLENDI: {
SDValue V0 = N->getOperand(0);
SDValue V1 = N->getOperand(1);
assert(VT == V0.getSimpleValueType() && VT == V1.getSimpleValueType() &&
"Unexpected input vector types");
// Canonicalize a v2f64 blend with a mask of 2 by swapping the vector
// operands and changing the mask to 1. This saves us a bunch of
// pattern-matching possibilities related to scalar math ops in SSE/AVX.
// x86InstrInfo knows how to commute this back after instruction selection
// if it would help register allocation.
// TODO: If optimizing for size or a processor that doesn't suffer from
// partial register update stalls, this should be transformed into a MOVSD
// instruction because a MOVSD is 1-2 bytes smaller than a BLENDPD.
if (VT == MVT::v2f64)
if (auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(2)))
if (Mask->getZExtValue() == 2 && !isShuffleFoldableLoad(V0)) {
SDValue NewMask = DAG.getConstant(1, DL, MVT::i8);
return DAG.getNode(X86ISD::BLENDI, DL, VT, V1, V0, NewMask);
}
// Attempt to merge blend(insertps(x,y),zero).
if (V0.getOpcode() == X86ISD::INSERTPS ||
V1.getOpcode() == X86ISD::INSERTPS) {
assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
// Determine which elements are known to be zero.
SmallVector<int, 8> TargetMask;
SmallVector<SDValue, 2> BlendOps;
if (!setTargetShuffleZeroElements(N, TargetMask, BlendOps))
return SDValue();
// Helper function to take inner insertps node and attempt to
// merge the blend with zero into its zero mask.
auto MergeInsertPSAndBlend = [&](SDValue V, int Offset) {
if (V.getOpcode() != X86ISD::INSERTPS)
return SDValue();
SDValue Op0 = V.getOperand(0);
SDValue Op1 = V.getOperand(1);
SDValue Op2 = V.getOperand(2);
unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
// Check each element of the blend node's target mask - must either
// be zeroable (and update the zero mask) or selects the element from
// the inner insertps node.
for (int i = 0; i != 4; ++i)
if (TargetMask[i] < 0)
InsertPSMask |= (1u << i);
else if (TargetMask[i] != (i + Offset))
return SDValue();
return DAG.getNode(X86ISD::INSERTPS, DL, MVT::v4f32, Op0, Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
};
if (SDValue V = MergeInsertPSAndBlend(V0, 0))
return V;
if (SDValue V = MergeInsertPSAndBlend(V1, 4))
return V;
}
return SDValue();
}
case X86ISD::INSERTPS: {
assert(VT == MVT::v4f32 && "INSERTPS ValueType must be MVT::v4f32");
SDValue Op0 = N.getOperand(0);
SDValue Op1 = N.getOperand(1);
SDValue Op2 = N.getOperand(2);
unsigned InsertPSMask = cast<ConstantSDNode>(Op2)->getZExtValue();
unsigned SrcIdx = (InsertPSMask >> 6) & 0x3;
unsigned DstIdx = (InsertPSMask >> 4) & 0x3;
unsigned ZeroMask = InsertPSMask & 0xF;
// If we zero out all elements from Op0 then we don't need to reference it.
if (((ZeroMask | (1u << DstIdx)) == 0xF) && !Op0.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, DAG.getUNDEF(VT), Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
// If we zero out the element from Op1 then we don't need to reference it.
if ((ZeroMask & (1u << DstIdx)) && !Op1.isUndef())
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getConstant(InsertPSMask, DL, MVT::i8));
// Attempt to merge insertps Op1 with an inner target shuffle node.
SmallVector<int, 8> TargetMask1;
SmallVector<SDValue, 2> Ops1;
if (setTargetShuffleZeroElements(Op1, TargetMask1, Ops1)) {
int M = TargetMask1[SrcIdx];
if (isUndefOrZero(M)) {
// Zero/UNDEF insertion - zero out element and remove dependency.
InsertPSMask |= (1u << DstIdx);
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, DAG.getUNDEF(VT),
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
// Update insertps mask srcidx and reference the source input directly.
assert(0 <= M && M < 8 && "Shuffle index out of range");
InsertPSMask = (InsertPSMask & 0x3f) | ((M & 0x3) << 6);
Op1 = Ops1[M < 4 ? 0 : 1];
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
}
// Attempt to merge insertps Op0 with an inner target shuffle node.
SmallVector<int, 8> TargetMask0;
SmallVector<SDValue, 2> Ops0;
if (!setTargetShuffleZeroElements(Op0, TargetMask0, Ops0))
return SDValue();
bool Updated = false;
bool UseInput00 = false;
bool UseInput01 = false;
for (int i = 0; i != 4; ++i) {
int M = TargetMask0[i];
if ((InsertPSMask & (1u << i)) || (i == (int)DstIdx)) {
// No change if element is already zero or the inserted element.
continue;
} else if (isUndefOrZero(M)) {
// If the target mask is undef/zero then we must zero the element.
InsertPSMask |= (1u << i);
Updated = true;
continue;
}
// The input vector element must be inline.
if (M != i && M != (i + 4))
return SDValue();
// Determine which inputs of the target shuffle we're using.
UseInput00 |= (0 <= M && M < 4);
UseInput01 |= (4 <= M);
}
// If we're not using both inputs of the target shuffle then use the
// referenced input directly.
if (UseInput00 && !UseInput01) {
Updated = true;
Op0 = Ops0[0];
} else if (!UseInput00 && UseInput01) {
Updated = true;
Op0 = Ops0[1];
}
if (Updated)
return DAG.getNode(X86ISD::INSERTPS, DL, VT, Op0, Op1,
DAG.getConstant(InsertPSMask, DL, MVT::i8));
return SDValue();
}
default:
return SDValue();
}
// Nuke no-op shuffles that show up after combining.
if (isNoopShuffleMask(Mask))
return DCI.CombineTo(N.getNode(), N.getOperand(0), /*AddTo*/ true);
// Look for simplifications involving one or two shuffle instructions.
SDValue V = N.getOperand(0);
switch (N.getOpcode()) {
default:
break;
case X86ISD::PSHUFLW:
case X86ISD::PSHUFHW:
assert(VT.getVectorElementType() == MVT::i16 && "Bad word shuffle type!");
if (combineRedundantHalfShuffle(N, Mask, DAG, DCI))
return SDValue(); // We combined away this shuffle, so we're done.
// See if this reduces to a PSHUFD which is no more expensive and can
// combine with more operations. Note that it has to at least flip the
// dwords as otherwise it would have been removed as a no-op.
if (makeArrayRef(Mask).equals({2, 3, 0, 1})) {
int DMask[] = {0, 1, 2, 3};
int DOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 2;
DMask[DOffset + 0] = DOffset + 1;
DMask[DOffset + 1] = DOffset + 0;
MVT DVT = MVT::getVectorVT(MVT::i32, VT.getVectorNumElements() / 2);
V = DAG.getBitcast(DVT, V);
DCI.AddToWorklist(V.getNode());
V = DAG.getNode(X86ISD::PSHUFD, DL, DVT, V,
getV4X86ShuffleImm8ForMask(DMask, DL, DAG));
DCI.AddToWorklist(V.getNode());
return DAG.getBitcast(VT, V);
}
// Look for shuffle patterns which can be implemented as a single unpack.
// FIXME: This doesn't handle the location of the PSHUFD generically, and
// only works when we have a PSHUFD followed by two half-shuffles.
if (Mask[0] == Mask[1] && Mask[2] == Mask[3] &&
(V.getOpcode() == X86ISD::PSHUFLW ||
V.getOpcode() == X86ISD::PSHUFHW) &&
V.getOpcode() != N.getOpcode() &&
V.hasOneUse()) {
SDValue D = V.getOperand(0);
while (D.getOpcode() == ISD::BITCAST && D.hasOneUse())
D = D.getOperand(0);
if (D.getOpcode() == X86ISD::PSHUFD && D.hasOneUse()) {
SmallVector<int, 4> VMask = getPSHUFShuffleMask(V);
SmallVector<int, 4> DMask = getPSHUFShuffleMask(D);
int NOffset = N.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int VOffset = V.getOpcode() == X86ISD::PSHUFLW ? 0 : 4;
int WordMask[8];
for (int i = 0; i < 4; ++i) {
WordMask[i + NOffset] = Mask[i] + NOffset;
WordMask[i + VOffset] = VMask[i] + VOffset;
}
// Map the word mask through the DWord mask.
int MappedMask[8];
for (int i = 0; i < 8; ++i)
MappedMask[i] = 2 * DMask[WordMask[i] / 2] + WordMask[i] % 2;
if (makeArrayRef(MappedMask).equals({0, 0, 1, 1, 2, 2, 3, 3}) ||
makeArrayRef(MappedMask).equals({4, 4, 5, 5, 6, 6, 7, 7})) {
// We can replace all three shuffles with an unpack.
V = DAG.getBitcast(VT, D.getOperand(0));
DCI.AddToWorklist(V.getNode());
return DAG.getNode(MappedMask[0] == 0 ? X86ISD::UNPCKL
: X86ISD::UNPCKH,
DL, VT, V, V);
}
}
}
break;
case X86ISD::PSHUFD:
if (SDValue NewN = combineRedundantDWordShuffle(N, Mask, DAG, DCI))
return NewN;
break;
}
return SDValue();
}
/// \brief Try to combine a shuffle into a target-specific add-sub node.
///
/// We combine this directly on the abstract vector shuffle nodes so it is
/// easier to generically match. We also insert dummy vector shuffle nodes for
/// the operands which explicitly discard the lanes which are unused by this
/// operation to try to flow through the rest of the combiner the fact that
/// they're unused.
static SDValue combineShuffleToAddSub(SDNode *N, const X86Subtarget &Subtarget,
SelectionDAG &DAG) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
if ((!Subtarget.hasSSE3() || (VT != MVT::v4f32 && VT != MVT::v2f64)) &&
(!Subtarget.hasAVX() || (VT != MVT::v8f32 && VT != MVT::v4f64)))
return SDValue();
// We only handle target-independent shuffles.
// FIXME: It would be easy and harmless to use the target shuffle mask
// extraction tool to support more.
if (N->getOpcode() != ISD::VECTOR_SHUFFLE)
return SDValue();
auto *SVN = cast<ShuffleVectorSDNode>(N);
SmallVector<int, 8> Mask;
for (int M : SVN->getMask())
Mask.push_back(M);
SDValue V1 = N->getOperand(0);
SDValue V2 = N->getOperand(1);
// We require the first shuffle operand to be the FSUB node, and the second to
// be the FADD node.
if (V1.getOpcode() == ISD::FADD && V2.getOpcode() == ISD::FSUB) {
ShuffleVectorSDNode::commuteMask(Mask);
std::swap(V1, V2);
} else if (V1.getOpcode() != ISD::FSUB || V2.getOpcode() != ISD::FADD)
return SDValue();
// If there are other uses of these operations we can't fold them.
if (!V1->hasOneUse() || !V2->hasOneUse())
return SDValue();
// Ensure that both operations have the same operands. Note that we can
// commute the FADD operands.
SDValue LHS = V1->getOperand(0), RHS = V1->getOperand(1);
if ((V2->getOperand(0) != LHS || V2->getOperand(1) != RHS) &&
(V2->getOperand(0) != RHS || V2->getOperand(1) != LHS))
return SDValue();
// We're looking for blends between FADD and FSUB nodes. We insist on these
// nodes being lined up in a specific expected pattern.
if (!(isShuffleEquivalent(V1, V2, Mask, {0, 3}) ||
isShuffleEquivalent(V1, V2, Mask, {0, 5, 2, 7}) ||
isShuffleEquivalent(V1, V2, Mask, {0, 9, 2, 11, 4, 13, 6, 15})))
return SDValue();
return DAG.getNode(X86ISD::ADDSUB, DL, VT, LHS, RHS);
}
static SDValue combineShuffle(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
// Don't create instructions with illegal types after legalize types has run.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!DCI.isBeforeLegalize() && !TLI.isTypeLegal(VT.getVectorElementType()))
return SDValue();
// If we have legalized the vector types, look for blends of FADD and FSUB
// nodes that we can fuse into an ADDSUB node.
if (TLI.isTypeLegal(VT))
if (SDValue AddSub = combineShuffleToAddSub(N, Subtarget, DAG))
return AddSub;
// Combine 256-bit vector shuffles. This is only profitable when in AVX mode
if (TLI.isTypeLegal(VT) && Subtarget.hasFp256() && VT.is256BitVector() &&
N->getOpcode() == ISD::VECTOR_SHUFFLE)
return combineShuffle256(N, DAG, DCI, Subtarget);
// During Type Legalization, when promoting illegal vector types,
// the backend might introduce new shuffle dag nodes and bitcasts.
//
// This code performs the following transformation:
// fold: (shuffle (bitcast (BINOP A, B)), Undef, <Mask>) ->
// (shuffle (BINOP (bitcast A), (bitcast B)), Undef, <Mask>)
//
// We do this only if both the bitcast and the BINOP dag nodes have
// one use. Also, perform this transformation only if the new binary
// operation is legal. This is to avoid introducing dag nodes that
// potentially need to be further expanded (or custom lowered) into a
// less optimal sequence of dag nodes.
if (!DCI.isBeforeLegalize() && DCI.isBeforeLegalizeOps() &&
N->getOpcode() == ISD::VECTOR_SHUFFLE &&
N->getOperand(0).getOpcode() == ISD::BITCAST &&
N->getOperand(1).isUndef() && N->getOperand(0).hasOneUse()) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue BC0 = N0.getOperand(0);
EVT SVT = BC0.getValueType();
unsigned Opcode = BC0.getOpcode();
unsigned NumElts = VT.getVectorNumElements();
if (BC0.hasOneUse() && SVT.isVector() &&
SVT.getVectorNumElements() * 2 == NumElts &&
TLI.isOperationLegal(Opcode, VT)) {
bool CanFold = false;
switch (Opcode) {
default : break;
case ISD::ADD :
case ISD::FADD :
case ISD::SUB :
case ISD::FSUB :
case ISD::MUL :
case ISD::FMUL :
CanFold = true;
}
unsigned SVTNumElts = SVT.getVectorNumElements();
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = SVTNumElts; i != e && CanFold; ++i)
CanFold = SVOp->getMaskElt(i) == (int)(i * 2);
for (unsigned i = SVTNumElts, e = NumElts; i != e && CanFold; ++i)
CanFold = SVOp->getMaskElt(i) < 0;
if (CanFold) {
SDValue BC00 = DAG.getBitcast(VT, BC0.getOperand(0));
SDValue BC01 = DAG.getBitcast(VT, BC0.getOperand(1));
SDValue NewBinOp = DAG.getNode(BC0.getOpcode(), dl, VT, BC00, BC01);
return DAG.getVectorShuffle(VT, dl, NewBinOp, N1, &SVOp->getMask()[0]);
}
}
}
// Combine a vector_shuffle that is equal to build_vector load1, load2, load3,
// load4, <0, 1, 2, 3> into a 128-bit load if the load addresses are
// consecutive, non-overlapping, and in the right order.
SmallVector<SDValue, 16> Elts;
for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
Elts.push_back(getShuffleScalarElt(N, i, DAG, 0));
if (SDValue LD = EltsFromConsecutiveLoads(VT, Elts, dl, DAG, true))
return LD;
if (isTargetShuffle(N->getOpcode())) {
if (SDValue Shuffle =
combineTargetShuffle(SDValue(N, 0), DAG, DCI, Subtarget))
return Shuffle;
// Try recursively combining arbitrary sequences of x86 shuffle
// instructions into higher-order shuffles. We do this after combining
// specific PSHUF instruction sequences into their minimal form so that we
// can evaluate how many specialized shuffle instructions are involved in
// a particular chain.
SmallVector<int, 1> NonceMask; // Just a placeholder.
NonceMask.push_back(0);
if (combineX86ShufflesRecursively(SDValue(N, 0), SDValue(N, 0), NonceMask,
/*Depth*/ 1, /*HasPSHUFB*/ false, DAG,
DCI, Subtarget))
return SDValue(); // This routine will use CombineTo to replace N.
}
return SDValue();
}
/// Check if a vector extract from a target-specific shuffle of a load can be
/// folded into a single element load.
/// Similar handling for VECTOR_SHUFFLE is performed by DAGCombiner, but
/// shuffles have been custom lowered so we need to handle those here.
static SDValue XFormVExtractWithShuffleIntoLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
SDValue InVec = N->getOperand(0);
SDValue EltNo = N->getOperand(1);
EVT EltVT = N->getValueType(0);
if (!isa<ConstantSDNode>(EltNo))
return SDValue();
EVT OriginalVT = InVec.getValueType();
if (InVec.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
EVT BCVT = InVec.getOperand(0).getValueType();
if (!BCVT.isVector() ||
BCVT.getVectorNumElements() != OriginalVT.getVectorNumElements())
return SDValue();
InVec = InVec.getOperand(0);
}
EVT CurrentVT = InVec.getValueType();
if (!isTargetShuffle(InVec.getOpcode()))
return SDValue();
// Don't duplicate a load with other uses.
if (!InVec.hasOneUse())
return SDValue();
SmallVector<int, 16> ShuffleMask;
SmallVector<SDValue, 2> ShuffleOps;
bool UnaryShuffle;
if (!getTargetShuffleMask(InVec.getNode(), CurrentVT.getSimpleVT(), true,
ShuffleOps, ShuffleMask, UnaryShuffle))
return SDValue();
// Select the input vector, guarding against out of range extract vector.
unsigned NumElems = CurrentVT.getVectorNumElements();
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
int Idx = (Elt > (int)NumElems) ? SM_SentinelUndef : ShuffleMask[Elt];
if (Idx == SM_SentinelZero)
return EltVT.isInteger() ? DAG.getConstant(0, SDLoc(N), EltVT)
: DAG.getConstantFP(+0.0, SDLoc(N), EltVT);
if (Idx == SM_SentinelUndef)
return DAG.getUNDEF(EltVT);
assert(0 <= Idx && Idx < (int)(2 * NumElems) && "Shuffle index out of range");
SDValue LdNode = (Idx < (int)NumElems) ? ShuffleOps[0]
: ShuffleOps[1];
// If inputs to shuffle are the same for both ops, then allow 2 uses
unsigned AllowedUses =
(ShuffleOps.size() > 1 && ShuffleOps[0] == ShuffleOps[1]) ? 2 : 1;
if (LdNode.getOpcode() == ISD::BITCAST) {
// Don't duplicate a load with other uses.
if (!LdNode.getNode()->hasNUsesOfValue(AllowedUses, 0))
return SDValue();
AllowedUses = 1; // only allow 1 load use if we have a bitcast
LdNode = LdNode.getOperand(0);
}
if (!ISD::isNormalLoad(LdNode.getNode()))
return SDValue();
LoadSDNode *LN0 = cast<LoadSDNode>(LdNode);
if (!LN0 ||!LN0->hasNUsesOfValue(AllowedUses, 0) || LN0->isVolatile())
return SDValue();
// If there's a bitcast before the shuffle, check if the load type and
// alignment is valid.
unsigned Align = LN0->getAlignment();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NewAlign = DAG.getDataLayout().getABITypeAlignment(
EltVT.getTypeForEVT(*DAG.getContext()));
if (NewAlign > Align || !TLI.isOperationLegalOrCustom(ISD::LOAD, EltVT))
return SDValue();
// All checks match so transform back to vector_shuffle so that DAG combiner
// can finish the job
SDLoc dl(N);
// Create shuffle node taking into account the case that its a unary shuffle
SDValue Shuffle = (UnaryShuffle) ? DAG.getUNDEF(CurrentVT) : ShuffleOps[1];
Shuffle = DAG.getVectorShuffle(CurrentVT, dl,
ShuffleOps[0], Shuffle,
&ShuffleMask[0]);
Shuffle = DAG.getBitcast(OriginalVT, Shuffle);
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, N->getValueType(0), Shuffle,
EltNo);
}
static SDValue combineBitcast(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
// Detect bitcasts between i32 to x86mmx low word. Since MMX types are
// special and don't usually play with other vector types, it's better to
// handle them early to be sure we emit efficient code by avoiding
// store-load conversions.
if (VT == MVT::x86mmx && N0.getOpcode() == ISD::BUILD_VECTOR &&
N0.getValueType() == MVT::v2i32 &&
isNullConstant(N0.getOperand(1))) {
SDValue N00 = N0->getOperand(0);
if (N00.getValueType() == MVT::i32)
return DAG.getNode(X86ISD::MMX_MOVW2D, SDLoc(N00), VT, N00);
}
// Convert a bitcasted integer logic operation that has one bitcasted
// floating-point operand and one constant operand into a floating-point
// logic operation. This may create a load of the constant, but that is
// cheaper than materializing the constant in an integer register and
// transferring it to an SSE register or transferring the SSE operand to
// integer register and back.
unsigned FPOpcode;
switch (N0.getOpcode()) {
case ISD::AND: FPOpcode = X86ISD::FAND; break;
case ISD::OR: FPOpcode = X86ISD::FOR; break;
case ISD::XOR: FPOpcode = X86ISD::FXOR; break;
default: return SDValue();
}
if (((Subtarget.hasSSE1() && VT == MVT::f32) ||
(Subtarget.hasSSE2() && VT == MVT::f64)) &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
N0.getOperand(0).getOpcode() == ISD::BITCAST &&
N0.getOperand(0).getOperand(0).getValueType() == VT) {
SDValue N000 = N0.getOperand(0).getOperand(0);
SDValue FPConst = DAG.getBitcast(VT, N0.getOperand(1));
return DAG.getNode(FPOpcode, SDLoc(N0), VT, N000, FPConst);
}
return SDValue();
}
/// Detect vector gather/scatter index generation and convert it from being a
/// bunch of shuffles and extracts into a somewhat faster sequence.
/// For i686, the best sequence is apparently storing the value and loading
/// scalars back, while for x64 we should use 64-bit extracts and shifts.
static SDValue combineExtractVectorElt(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (SDValue NewOp = XFormVExtractWithShuffleIntoLoad(N, DAG, DCI))
return NewOp;
SDValue InputVector = N->getOperand(0);
SDLoc dl(InputVector);
// Detect mmx to i32 conversion through a v2i32 elt extract.
if (InputVector.getOpcode() == ISD::BITCAST && InputVector.hasOneUse() &&
N->getValueType(0) == MVT::i32 &&
InputVector.getValueType() == MVT::v2i32 &&
isa<ConstantSDNode>(N->getOperand(1)) &&
N->getConstantOperandVal(1) == 0) {
SDValue MMXSrc = InputVector.getNode()->getOperand(0);
// The bitcast source is a direct mmx result.
if (MMXSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, dl, MVT::i32, MMXSrc);
}
EVT VT = N->getValueType(0);
if (VT == MVT::i1 && isa<ConstantSDNode>(N->getOperand(1)) &&
InputVector.getOpcode() == ISD::BITCAST &&
isa<ConstantSDNode>(InputVector.getOperand(0))) {
uint64_t ExtractedElt =
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
uint64_t InputValue =
cast<ConstantSDNode>(InputVector.getOperand(0))->getZExtValue();
uint64_t Res = (InputValue >> ExtractedElt) & 1;
return DAG.getConstant(Res, dl, MVT::i1);
}
// Only operate on vectors of 4 elements, where the alternative shuffling
// gets to be more expensive.
if (InputVector.getValueType() != MVT::v4i32)
return SDValue();
// Check whether every use of InputVector is an EXTRACT_VECTOR_ELT with a
// single use which is a sign-extend or zero-extend, and all elements are
// used.
SmallVector<SDNode *, 4> Uses;
unsigned ExtractedElements = 0;
for (SDNode::use_iterator UI = InputVector.getNode()->use_begin(),
UE = InputVector.getNode()->use_end(); UI != UE; ++UI) {
if (UI.getUse().getResNo() != InputVector.getResNo())
return SDValue();
SDNode *Extract = *UI;
if (Extract->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
return SDValue();
if (Extract->getValueType(0) != MVT::i32)
return SDValue();
if (!Extract->hasOneUse())
return SDValue();
if (Extract->use_begin()->getOpcode() != ISD::SIGN_EXTEND &&
Extract->use_begin()->getOpcode() != ISD::ZERO_EXTEND)
return SDValue();
if (!isa<ConstantSDNode>(Extract->getOperand(1)))
return SDValue();
// Record which element was extracted.
ExtractedElements |=
1 << cast<ConstantSDNode>(Extract->getOperand(1))->getZExtValue();
Uses.push_back(Extract);
}
// If not all the elements were used, this may not be worthwhile.
if (ExtractedElements != 15)
return SDValue();
// Ok, we've now decided to do the transformation.
// If 64-bit shifts are legal, use the extract-shift sequence,
// otherwise bounce the vector off the cache.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Vals[4];
if (TLI.isOperationLegal(ISD::SRA, MVT::i64)) {
SDValue Cst = DAG.getBitcast(MVT::v2i64, InputVector);
auto &DL = DAG.getDataLayout();
EVT VecIdxTy = DAG.getTargetLoweringInfo().getVectorIdxTy(DL);
SDValue BottomHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
DAG.getConstant(0, dl, VecIdxTy));
SDValue TopHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Cst,
DAG.getConstant(1, dl, VecIdxTy));
SDValue ShAmt = DAG.getConstant(
32, dl, DAG.getTargetLoweringInfo().getShiftAmountTy(MVT::i64, DL));
Vals[0] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BottomHalf);
Vals[1] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
DAG.getNode(ISD::SRA, dl, MVT::i64, BottomHalf, ShAmt));
Vals[2] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, TopHalf);
Vals[3] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
DAG.getNode(ISD::SRA, dl, MVT::i64, TopHalf, ShAmt));
} else {
// Store the value to a temporary stack slot.
SDValue StackPtr = DAG.CreateStackTemporary(InputVector.getValueType());
SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, InputVector, StackPtr,
MachinePointerInfo(), false, false, 0);
EVT ElementType = InputVector.getValueType().getVectorElementType();
unsigned EltSize = ElementType.getSizeInBits() / 8;
// Replace each use (extract) with a load of the appropriate element.
for (unsigned i = 0; i < 4; ++i) {
uint64_t Offset = EltSize * i;
auto PtrVT = TLI.getPointerTy(DAG.getDataLayout());
SDValue OffsetVal = DAG.getConstant(Offset, dl, PtrVT);
SDValue ScalarAddr =
DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, OffsetVal);
// Load the scalar.
Vals[i] = DAG.getLoad(ElementType, dl, Ch,
ScalarAddr, MachinePointerInfo(),
false, false, false, 0);
}
}
// Replace the extracts
for (SmallVectorImpl<SDNode *>::iterator UI = Uses.begin(),
UE = Uses.end(); UI != UE; ++UI) {
SDNode *Extract = *UI;
SDValue Idx = Extract->getOperand(1);
uint64_t IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
DAG.ReplaceAllUsesOfValueWith(SDValue(Extract, 0), Vals[IdxVal]);
}
// The replacement was made in place; don't return anything.
return SDValue();
}
/// Do target-specific dag combines on SELECT and VSELECT nodes.
static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue Cond = N->getOperand(0);
// Get the LHS/RHS of the select.
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
EVT VT = LHS.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If we have SSE[12] support, try to form min/max nodes. SSE min/max
// instructions match the semantics of the common C idiom x<y?x:y but not
// x<=y?x:y, because of how they handle negative zero (which can be
// ignored in unsafe-math mode).
// We also try to create v2f32 min/max nodes, which we later widen to v4f32.
if (Cond.getOpcode() == ISD::SETCC && VT.isFloatingPoint() &&
VT != MVT::f80 && VT != MVT::f128 &&
(TLI.isTypeLegal(VT) || VT == MVT::v2f32) &&
(Subtarget.hasSSE2() ||
(Subtarget.hasSSE1() && VT.getScalarType() == MVT::f32))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
unsigned Opcode = 0;
// Check for x CC y ? x : y.
if (DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
switch (CC) {
default: break;
case ISD::SETULT:
// Converting this to a min would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETOLE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETULE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETOGE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGT:
// Converting this to a max would handle NaNs incorrectly, and swapping
// the operands would cause it to handle comparisons between positive
// and negative zero incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)) {
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETUGE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMAX;
break;
}
// Check for x CC y ? y : x -- a min/max with reversed arms.
} else if (DAG.isEqualTo(LHS, Cond.getOperand(1)) &&
DAG.isEqualTo(RHS, Cond.getOperand(0))) {
switch (CC) {
default: break;
case ISD::SETOGE:
// Converting this to a min would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGT:
// Converting this to a min would handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
(!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS)))
break;
Opcode = X86ISD::FMIN;
break;
case ISD::SETUGE:
// Converting this to a min would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOGT:
case ISD::SETGT:
case ISD::SETGE:
Opcode = X86ISD::FMIN;
break;
case ISD::SETULT:
// Converting this to a max would handle NaNs incorrectly.
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
Opcode = X86ISD::FMAX;
break;
case ISD::SETOLE:
// Converting this to a max would handle comparisons between positive
// and negative zero incorrectly, and swapping the operands would
// cause it to handle NaNs incorrectly.
if (!DAG.getTarget().Options.UnsafeFPMath &&
!DAG.isKnownNeverZero(LHS) && !DAG.isKnownNeverZero(RHS)) {
if (!DAG.isKnownNeverNaN(LHS) || !DAG.isKnownNeverNaN(RHS))
break;
std::swap(LHS, RHS);
}
Opcode = X86ISD::FMAX;
break;
case ISD::SETULE:
// Converting this to a max would handle both negative zeros and NaNs
// incorrectly, but we can swap the operands to fix both.
std::swap(LHS, RHS);
case ISD::SETOLT:
case ISD::SETLT:
case ISD::SETLE:
Opcode = X86ISD::FMAX;
break;
}
}
if (Opcode)
return DAG.getNode(Opcode, DL, N->getValueType(0), LHS, RHS);
}
EVT CondVT = Cond.getValueType();
if (Subtarget.hasAVX512() && VT.isVector() && CondVT.isVector() &&
CondVT.getVectorElementType() == MVT::i1) {
// v16i8 (select v16i1, v16i8, v16i8) does not have a proper
// lowering on KNL. In this case we convert it to
// v16i8 (select v16i8, v16i8, v16i8) and use AVX instruction.
// The same situation for all 128 and 256-bit vectors of i8 and i16.
// Since SKX these selects have a proper lowering.
EVT OpVT = LHS.getValueType();
if ((OpVT.is128BitVector() || OpVT.is256BitVector()) &&
(OpVT.getVectorElementType() == MVT::i8 ||
OpVT.getVectorElementType() == MVT::i16) &&
!(Subtarget.hasBWI() && Subtarget.hasVLX())) {
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, OpVT, Cond);
DCI.AddToWorklist(Cond.getNode());
return DAG.getNode(N->getOpcode(), DL, OpVT, Cond, LHS, RHS);
}
}
// If this is a select between two integer constants, try to do some
// optimizations.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(LHS)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(RHS))
// Don't do this for crazy integer types.
if (DAG.getTargetLoweringInfo().isTypeLegal(LHS.getValueType())) {
// If this is efficiently invertible, canonicalize the LHSC/RHSC values
// so that TrueC (the true value) is larger than FalseC.
bool NeedsCondInvert = false;
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue()) &&
// Efficiently invertible.
(Cond.getOpcode() == ISD::SETCC || // setcc -> invertible.
(Cond.getOpcode() == ISD::XOR && // xor(X, C) -> invertible.
isa<ConstantSDNode>(Cond.getOperand(1))))) {
NeedsCondInvert = true;
std::swap(TrueC, FalseC);
}
// Optimize C ? 8 : 0 -> zext(C) << 3. Likewise for any pow2/0.
if (FalseC->getAPIntValue() == 0 &&
TrueC->getAPIntValue().isPowerOf2()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, DL, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, LHS.getValueType(), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
return DAG.getNode(ISD::SHL, DL, LHS.getValueType(), Cond,
DAG.getConstant(ShAmt, DL, MVT::i8));
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, DL, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
return DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
if (NeedsCondInvert) // Invert the condition if needed.
Cond = DAG.getNode(ISD::XOR, DL, Cond.getValueType(), Cond,
DAG.getConstant(1, DL, Cond.getValueType()));
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, DL,
Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
return Cond;
}
}
}
}
// Canonicalize max and min:
// (x > y) ? x : y -> (x >= y) ? x : y
// (x < y) ? x : y -> (x <= y) ? x : y
// This allows use of COND_S / COND_NS (see TranslateX86CC) which eliminates
// the need for an extra compare
// against zero. e.g.
// (x - y) > 0 : (x - y) ? 0 -> (x - y) >= 0 : (x - y) ? 0
// subl %esi, %edi
// testl %edi, %edi
// movl $0, %eax
// cmovgl %edi, %eax
// =>
// xorl %eax, %eax
// subl %esi, $edi
// cmovsl %eax, %edi
if (N->getOpcode() == ISD::SELECT && Cond.getOpcode() == ISD::SETCC &&
DAG.isEqualTo(LHS, Cond.getOperand(0)) &&
DAG.isEqualTo(RHS, Cond.getOperand(1))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
switch (CC) {
default: break;
case ISD::SETLT:
case ISD::SETGT: {
ISD::CondCode NewCC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGE;
Cond = DAG.getSetCC(SDLoc(Cond), Cond.getValueType(),
Cond.getOperand(0), Cond.getOperand(1), NewCC);
return DAG.getNode(ISD::SELECT, DL, VT, Cond, LHS, RHS);
}
}
}
// Early exit check
if (!TLI.isTypeLegal(VT))
return SDValue();
// Match VSELECTs into subs with unsigned saturation.
if (N->getOpcode() == ISD::VSELECT && Cond.getOpcode() == ISD::SETCC &&
// psubus is available in SSE2 and AVX2 for i8 and i16 vectors.
((Subtarget.hasSSE2() && (VT == MVT::v16i8 || VT == MVT::v8i16)) ||
(Subtarget.hasAVX2() && (VT == MVT::v32i8 || VT == MVT::v16i16)))) {
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
// Check if one of the arms of the VSELECT is a zero vector. If it's on the
// left side invert the predicate to simplify logic below.
SDValue Other;
if (ISD::isBuildVectorAllZeros(LHS.getNode())) {
Other = RHS;
CC = ISD::getSetCCInverse(CC, true);
} else if (ISD::isBuildVectorAllZeros(RHS.getNode())) {
Other = LHS;
}
if (Other.getNode() && Other->getNumOperands() == 2 &&
DAG.isEqualTo(Other->getOperand(0), Cond.getOperand(0))) {
SDValue OpLHS = Other->getOperand(0), OpRHS = Other->getOperand(1);
SDValue CondRHS = Cond->getOperand(1);
// Look for a general sub with unsigned saturation first.
// x >= y ? x-y : 0 --> subus x, y
// x > y ? x-y : 0 --> subus x, y
if ((CC == ISD::SETUGE || CC == ISD::SETUGT) &&
Other->getOpcode() == ISD::SUB && DAG.isEqualTo(OpRHS, CondRHS))
return DAG.getNode(X86ISD::SUBUS, DL, VT, OpLHS, OpRHS);
if (auto *OpRHSBV = dyn_cast<BuildVectorSDNode>(OpRHS))
if (auto *OpRHSConst = OpRHSBV->getConstantSplatNode()) {
if (auto *CondRHSBV = dyn_cast<BuildVectorSDNode>(CondRHS))
if (auto *CondRHSConst = CondRHSBV->getConstantSplatNode())
// If the RHS is a constant we have to reverse the const
// canonicalization.
// x > C-1 ? x+-C : 0 --> subus x, C
if (CC == ISD::SETUGT && Other->getOpcode() == ISD::ADD &&
CondRHSConst->getAPIntValue() ==
(-OpRHSConst->getAPIntValue() - 1))
return DAG.getNode(
X86ISD::SUBUS, DL, VT, OpLHS,
DAG.getConstant(-OpRHSConst->getAPIntValue(), DL, VT));
// Another special case: If C was a sign bit, the sub has been
// canonicalized into a xor.
// FIXME: Would it be better to use computeKnownBits to determine
// whether it's safe to decanonicalize the xor?
// x s< 0 ? x^C : 0 --> subus x, C
if (CC == ISD::SETLT && Other->getOpcode() == ISD::XOR &&
ISD::isBuildVectorAllZeros(CondRHS.getNode()) &&
OpRHSConst->getAPIntValue().isSignBit())
// Note that we have to rebuild the RHS constant here to ensure we
// don't rely on particular values of undef lanes.
return DAG.getNode(
X86ISD::SUBUS, DL, VT, OpLHS,
DAG.getConstant(OpRHSConst->getAPIntValue(), DL, VT));
}
}
}
// Simplify vector selection if condition value type matches vselect
// operand type
if (N->getOpcode() == ISD::VSELECT && CondVT == VT) {
assert(Cond.getValueType().isVector() &&
"vector select expects a vector selector!");
bool TValIsAllOnes = ISD::isBuildVectorAllOnes(LHS.getNode());
bool FValIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
// Try invert the condition if true value is not all 1s and false value
// is not all 0s.
if (!TValIsAllOnes && !FValIsAllZeros &&
// Check if the selector will be produced by CMPP*/PCMP*
Cond.getOpcode() == ISD::SETCC &&
// Check if SETCC has already been promoted
TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT) ==
CondVT) {
bool TValIsAllZeros = ISD::isBuildVectorAllZeros(LHS.getNode());
bool FValIsAllOnes = ISD::isBuildVectorAllOnes(RHS.getNode());
if (TValIsAllZeros || FValIsAllOnes) {
SDValue CC = Cond.getOperand(2);
ISD::CondCode NewCC =
ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
Cond.getOperand(0).getValueType().isInteger());
Cond = DAG.getSetCC(DL, CondVT, Cond.getOperand(0), Cond.getOperand(1), NewCC);
std::swap(LHS, RHS);
TValIsAllOnes = FValIsAllOnes;
FValIsAllZeros = TValIsAllZeros;
}
}
if (TValIsAllOnes || FValIsAllZeros) {
SDValue Ret;
if (TValIsAllOnes && FValIsAllZeros)
Ret = Cond;
else if (TValIsAllOnes)
Ret =
DAG.getNode(ISD::OR, DL, CondVT, Cond, DAG.getBitcast(CondVT, RHS));
else if (FValIsAllZeros)
Ret = DAG.getNode(ISD::AND, DL, CondVT, Cond,
DAG.getBitcast(CondVT, LHS));
return DAG.getBitcast(VT, Ret);
}
}
// If this is a *dynamic* select (non-constant condition) and we can match
// this node with one of the variable blend instructions, restructure the
// condition so that the blends can use the high bit of each element and use
// SimplifyDemandedBits to simplify the condition operand.
if (N->getOpcode() == ISD::VSELECT && DCI.isBeforeLegalizeOps() &&
!DCI.isBeforeLegalize() &&
!ISD::isBuildVectorOfConstantSDNodes(Cond.getNode())) {
unsigned BitWidth = Cond.getValueType().getScalarSizeInBits();
// Don't optimize vector selects that map to mask-registers.
if (BitWidth == 1)
return SDValue();
// We can only handle the cases where VSELECT is directly legal on the
// subtarget. We custom lower VSELECT nodes with constant conditions and
// this makes it hard to see whether a dynamic VSELECT will correctly
// lower, so we both check the operation's status and explicitly handle the
// cases where a *dynamic* blend will fail even though a constant-condition
// blend could be custom lowered.
// FIXME: We should find a better way to handle this class of problems.
// Potentially, we should combine constant-condition vselect nodes
// pre-legalization into shuffles and not mark as many types as custom
// lowered.
if (!TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
return SDValue();
// FIXME: We don't support i16-element blends currently. We could and
// should support them by making *all* the bits in the condition be set
// rather than just the high bit and using an i8-element blend.
if (VT.getVectorElementType() == MVT::i16)
return SDValue();
// Dynamic blending was only available from SSE4.1 onward.
if (VT.is128BitVector() && !Subtarget.hasSSE41())
return SDValue();
// Byte blends are only available in AVX2
if (VT == MVT::v32i8 && !Subtarget.hasAVX2())
return SDValue();
assert(BitWidth >= 8 && BitWidth <= 64 && "Invalid mask size");
APInt DemandedMask = APInt::getHighBitsSet(BitWidth, 1);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps());
if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
TLO)) {
// If we changed the computation somewhere in the DAG, this change
// will affect all users of Cond.
// Make sure it is fine and update all the nodes so that we do not
// use the generic VSELECT anymore. Otherwise, we may perform
// wrong optimizations as we messed up with the actual expectation
// for the vector boolean values.
if (Cond != TLO.Old) {
// Check all uses of that condition operand to check whether it will be
// consumed by non-BLEND instructions, which may depend on all bits are
// set properly.
for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
I != E; ++I)
if (I->getOpcode() != ISD::VSELECT)
// TODO: Add other opcodes eventually lowered into BLEND.
return SDValue();
// Update all the users of the condition, before committing the change,
// so that the VSELECT optimizations that expect the correct vector
// boolean value will not be triggered.
for (SDNode::use_iterator I = Cond->use_begin(), E = Cond->use_end();
I != E; ++I)
DAG.ReplaceAllUsesOfValueWith(
SDValue(*I, 0),
DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(*I), I->getValueType(0),
Cond, I->getOperand(1), I->getOperand(2)));
DCI.CommitTargetLoweringOpt(TLO);
return SDValue();
}
// At this point, only Cond is changed. Change the condition
// just for N to keep the opportunity to optimize all other
// users their own way.
DAG.ReplaceAllUsesOfValueWith(
SDValue(N, 0),
DAG.getNode(X86ISD::SHRUNKBLEND, SDLoc(N), N->getValueType(0),
TLO.New, N->getOperand(1), N->getOperand(2)));
return SDValue();
}
}
return SDValue();
}
/// Combine:
/// (brcond/cmov/setcc .., (cmp (atomic_load_add x, 1), 0), COND_S)
/// to:
/// (brcond/cmov/setcc .., (LADD x, 1), COND_LE)
/// i.e., reusing the EFLAGS produced by the LOCKed instruction.
/// Note that this is only legal for some op/cc combinations.
static SDValue combineSetCCAtomicArith(SDValue Cmp, X86::CondCode &CC,
SelectionDAG &DAG) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// This only applies to variations of the common case:
// (icmp slt x, 0) -> (icmp sle (add x, 1), 0)
// (icmp sge x, 0) -> (icmp sgt (add x, 1), 0)
// (icmp sle x, 0) -> (icmp slt (sub x, 1), 0)
// (icmp sgt x, 0) -> (icmp sge (sub x, 1), 0)
// Using the proper condcodes (see below), overflow is checked for.
// FIXME: We can generalize both constraints:
// - XOR/OR/AND (if they were made to survive AtomicExpand)
// - LHS != 1
// if the result is compared.
SDValue CmpLHS = Cmp.getOperand(0);
SDValue CmpRHS = Cmp.getOperand(1);
if (!CmpLHS.hasOneUse())
return SDValue();
auto *CmpRHSC = dyn_cast<ConstantSDNode>(CmpRHS);
if (!CmpRHSC || CmpRHSC->getZExtValue() != 0)
return SDValue();
const unsigned Opc = CmpLHS.getOpcode();
if (Opc != ISD::ATOMIC_LOAD_ADD && Opc != ISD::ATOMIC_LOAD_SUB)
return SDValue();
SDValue OpRHS = CmpLHS.getOperand(2);
auto *OpRHSC = dyn_cast<ConstantSDNode>(OpRHS);
if (!OpRHSC)
return SDValue();
APInt Addend = OpRHSC->getAPIntValue();
if (Opc == ISD::ATOMIC_LOAD_SUB)
Addend = -Addend;
if (CC == X86::COND_S && Addend == 1)
CC = X86::COND_LE;
else if (CC == X86::COND_NS && Addend == 1)
CC = X86::COND_G;
else if (CC == X86::COND_G && Addend == -1)
CC = X86::COND_GE;
else if (CC == X86::COND_LE && Addend == -1)
CC = X86::COND_L;
else
return SDValue();
SDValue LockOp = lowerAtomicArithWithLOCK(CmpLHS, DAG);
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(0),
DAG.getUNDEF(CmpLHS.getValueType()));
DAG.ReplaceAllUsesOfValueWith(CmpLHS.getValue(1), LockOp.getValue(1));
return LockOp;
}
// Check whether a boolean test is testing a boolean value generated by
// X86ISD::SETCC. If so, return the operand of that SETCC and proper condition
// code.
//
// Simplify the following patterns:
// (Op (CMP (SETCC Cond EFLAGS) 1) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 0) NEQ)
// to (Op EFLAGS Cond)
//
// (Op (CMP (SETCC Cond EFLAGS) 0) EQ) or
// (Op (CMP (SETCC Cond EFLAGS) 1) NEQ)
// to (Op EFLAGS !Cond)
//
// where Op could be BRCOND or CMOV.
//
static SDValue checkBoolTestSetCCCombine(SDValue Cmp, X86::CondCode &CC) {
// This combine only operates on CMP-like nodes.
if (!(Cmp.getOpcode() == X86ISD::CMP ||
(Cmp.getOpcode() == X86ISD::SUB && !Cmp->hasAnyUseOfValue(0))))
return SDValue();
// Quit if not used as a boolean value.
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
// Check CMP operands. One of them should be 0 or 1 and the other should be
// an SetCC or extended from it.
SDValue Op1 = Cmp.getOperand(0);
SDValue Op2 = Cmp.getOperand(1);
SDValue SetCC;
const ConstantSDNode* C = nullptr;
bool needOppositeCond = (CC == X86::COND_E);
bool checkAgainstTrue = false; // Is it a comparison against 1?
if ((C = dyn_cast<ConstantSDNode>(Op1)))
SetCC = Op2;
else if ((C = dyn_cast<ConstantSDNode>(Op2)))
SetCC = Op1;
else // Quit if all operands are not constants.
return SDValue();
if (C->getZExtValue() == 1) {
needOppositeCond = !needOppositeCond;
checkAgainstTrue = true;
} else if (C->getZExtValue() != 0)
// Quit if the constant is neither 0 or 1.
return SDValue();
bool truncatedToBoolWithAnd = false;
// Skip (zext $x), (trunc $x), or (and $x, 1) node.
while (SetCC.getOpcode() == ISD::ZERO_EXTEND ||
SetCC.getOpcode() == ISD::TRUNCATE ||
SetCC.getOpcode() == ISD::AND) {
if (SetCC.getOpcode() == ISD::AND) {
int OpIdx = -1;
if (isOneConstant(SetCC.getOperand(0)))
OpIdx = 1;
if (isOneConstant(SetCC.getOperand(1)))
OpIdx = 0;
if (OpIdx == -1)
break;
SetCC = SetCC.getOperand(OpIdx);
truncatedToBoolWithAnd = true;
} else
SetCC = SetCC.getOperand(0);
}
switch (SetCC.getOpcode()) {
case X86ISD::SETCC_CARRY:
// Since SETCC_CARRY gives output based on R = CF ? ~0 : 0, it's unsafe to
// simplify it if the result of SETCC_CARRY is not canonicalized to 0 or 1,
// i.e. it's a comparison against true but the result of SETCC_CARRY is not
// truncated to i1 using 'and'.
if (checkAgainstTrue && !truncatedToBoolWithAnd)
break;
assert(X86::CondCode(SetCC.getConstantOperandVal(0)) == X86::COND_B &&
"Invalid use of SETCC_CARRY!");
// FALL THROUGH
case X86ISD::SETCC:
// Set the condition code or opposite one if necessary.
CC = X86::CondCode(SetCC.getConstantOperandVal(0));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(1);
case X86ISD::CMOV: {
// Check whether false/true value has canonical one, i.e. 0 or 1.
ConstantSDNode *FVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(0));
ConstantSDNode *TVal = dyn_cast<ConstantSDNode>(SetCC.getOperand(1));
// Quit if true value is not a constant.
if (!TVal)
return SDValue();
// Quit if false value is not a constant.
if (!FVal) {
SDValue Op = SetCC.getOperand(0);
// Skip 'zext' or 'trunc' node.
if (Op.getOpcode() == ISD::ZERO_EXTEND ||
Op.getOpcode() == ISD::TRUNCATE)
Op = Op.getOperand(0);
// A special case for rdrand/rdseed, where 0 is set if false cond is
// found.
if ((Op.getOpcode() != X86ISD::RDRAND &&
Op.getOpcode() != X86ISD::RDSEED) || Op.getResNo() != 0)
return SDValue();
}
// Quit if false value is not the constant 0 or 1.
bool FValIsFalse = true;
if (FVal && FVal->getZExtValue() != 0) {
if (FVal->getZExtValue() != 1)
return SDValue();
// If FVal is 1, opposite cond is needed.
needOppositeCond = !needOppositeCond;
FValIsFalse = false;
}
// Quit if TVal is not the constant opposite of FVal.
if (FValIsFalse && TVal->getZExtValue() != 1)
return SDValue();
if (!FValIsFalse && TVal->getZExtValue() != 0)
return SDValue();
CC = X86::CondCode(SetCC.getConstantOperandVal(2));
if (needOppositeCond)
CC = X86::GetOppositeBranchCondition(CC);
return SetCC.getOperand(3);
}
}
return SDValue();
}
/// Check whether Cond is an AND/OR of SETCCs off of the same EFLAGS.
/// Match:
/// (X86or (X86setcc) (X86setcc))
/// (X86cmp (and (X86setcc) (X86setcc)), 0)
static bool checkBoolTestAndOrSetCCCombine(SDValue Cond, X86::CondCode &CC0,
X86::CondCode &CC1, SDValue &Flags,
bool &isAnd) {
if (Cond->getOpcode() == X86ISD::CMP) {
if (!isNullConstant(Cond->getOperand(1)))
return false;
Cond = Cond->getOperand(0);
}
isAnd = false;
SDValue SetCC0, SetCC1;
switch (Cond->getOpcode()) {
default: return false;
case ISD::AND:
case X86ISD::AND:
isAnd = true;
// fallthru
case ISD::OR:
case X86ISD::OR:
SetCC0 = Cond->getOperand(0);
SetCC1 = Cond->getOperand(1);
break;
};
// Make sure we have SETCC nodes, using the same flags value.
if (SetCC0.getOpcode() != X86ISD::SETCC ||
SetCC1.getOpcode() != X86ISD::SETCC ||
SetCC0->getOperand(1) != SetCC1->getOperand(1))
return false;
CC0 = (X86::CondCode)SetCC0->getConstantOperandVal(0);
CC1 = (X86::CondCode)SetCC1->getConstantOperandVal(0);
Flags = SetCC0->getOperand(1);
return true;
}
/// Optimize an EFLAGS definition used according to the condition code \p CC
/// into a simpler EFLAGS value, potentially returning a new \p CC and replacing
/// uses of chain values.
static SDValue combineSetCCEFLAGS(SDValue EFLAGS, X86::CondCode &CC,
SelectionDAG &DAG) {
if (SDValue R = checkBoolTestSetCCCombine(EFLAGS, CC))
return R;
return combineSetCCAtomicArith(EFLAGS, CC, DAG);
}
/// Optimize X86ISD::CMOV [LHS, RHS, CONDCODE (e.g. X86::COND_NE), CONDVAL]
static SDValue combineCMov(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
// If the flag operand isn't dead, don't touch this CMOV.
if (N->getNumValues() == 2 && !SDValue(N, 1).use_empty())
return SDValue();
SDValue FalseOp = N->getOperand(0);
SDValue TrueOp = N->getOperand(1);
X86::CondCode CC = (X86::CondCode)N->getConstantOperandVal(2);
SDValue Cond = N->getOperand(3);
if (CC == X86::COND_E || CC == X86::COND_NE) {
switch (Cond.getOpcode()) {
default: break;
case X86ISD::BSR:
case X86ISD::BSF:
// If operand of BSR / BSF are proven never zero, then ZF cannot be set.
if (DAG.isKnownNeverZero(Cond.getOperand(0)))
return (CC == X86::COND_E) ? FalseOp : TrueOp;
}
}
// Try to simplify the EFLAGS and condition code operands.
// We can't always do this as FCMOV only supports a subset of X86 cond.
if (SDValue Flags = combineSetCCEFLAGS(Cond, CC, DAG)) {
if (FalseOp.getValueType() != MVT::f80 || hasFPCMov(CC)) {
SDValue Ops[] = {FalseOp, TrueOp, DAG.getConstant(CC, DL, MVT::i8),
Flags};
return DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
}
}
// If this is a select between two integer constants, try to do some
// optimizations. Note that the operands are ordered the opposite of SELECT
// operands.
if (ConstantSDNode *TrueC = dyn_cast<ConstantSDNode>(TrueOp)) {
if (ConstantSDNode *FalseC = dyn_cast<ConstantSDNode>(FalseOp)) {
// Canonicalize the TrueC/FalseC values so that TrueC (the true value) is
// larger than FalseC (the false value).
if (TrueC->getAPIntValue().ult(FalseC->getAPIntValue())) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueC, FalseC);
std::swap(TrueOp, FalseOp);
}
// Optimize C ? 8 : 0 -> zext(setcc(C)) << 3. Likewise for any pow2/0.
// This is efficient for any integer data type (including i8/i16) and
// shift amount.
if (FalseC->getAPIntValue() == 0 && TrueC->getAPIntValue().isPowerOf2()) {
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, DL, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, TrueC->getValueType(0), Cond);
unsigned ShAmt = TrueC->getAPIntValue().logBase2();
Cond = DAG.getNode(ISD::SHL, DL, Cond.getValueType(), Cond,
DAG.getConstant(ShAmt, DL, MVT::i8));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
// Optimize Cond ? cst+1 : cst -> zext(setcc(C)+cst. This is efficient
// for any integer data type, including i8/i16.
if (FalseC->getAPIntValue()+1 == TrueC->getAPIntValue()) {
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, DL, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL,
FalseC->getValueType(0), Cond);
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
// Optimize cases that will turn into an LEA instruction. This requires
// an i32 or i64 and an efficient multiplier (1, 2, 3, 4, 5, 8, 9).
if (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i64) {
uint64_t Diff = TrueC->getZExtValue()-FalseC->getZExtValue();
if (N->getValueType(0) == MVT::i32) Diff = (unsigned)Diff;
bool isFastMultiplier = false;
if (Diff < 10) {
switch ((unsigned char)Diff) {
default: break;
case 1: // result = add base, cond
case 2: // result = lea base( , cond*2)
case 3: // result = lea base(cond, cond*2)
case 4: // result = lea base( , cond*4)
case 5: // result = lea base(cond, cond*4)
case 8: // result = lea base( , cond*8)
case 9: // result = lea base(cond, cond*8)
isFastMultiplier = true;
break;
}
}
if (isFastMultiplier) {
APInt Diff = TrueC->getAPIntValue()-FalseC->getAPIntValue();
Cond = DAG.getNode(X86ISD::SETCC, DL, MVT::i8,
DAG.getConstant(CC, DL, MVT::i8), Cond);
// Zero extend the condition if needed.
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, FalseC->getValueType(0),
Cond);
// Scale the condition by the difference.
if (Diff != 1)
Cond = DAG.getNode(ISD::MUL, DL, Cond.getValueType(), Cond,
DAG.getConstant(Diff, DL, Cond.getValueType()));
// Add the base if non-zero.
if (FalseC->getAPIntValue() != 0)
Cond = DAG.getNode(ISD::ADD, DL, Cond.getValueType(), Cond,
SDValue(FalseC, 0));
if (N->getNumValues() == 2) // Dead flag value?
return DCI.CombineTo(N, Cond, SDValue());
return Cond;
}
}
}
}
// Handle these cases:
// (select (x != c), e, c) -> select (x != c), e, x),
// (select (x == c), c, e) -> select (x == c), x, e)
// where the c is an integer constant, and the "select" is the combination
// of CMOV and CMP.
//
// The rationale for this change is that the conditional-move from a constant
// needs two instructions, however, conditional-move from a register needs
// only one instruction.
//
// CAVEAT: By replacing a constant with a symbolic value, it may obscure
// some instruction-combining opportunities. This opt needs to be
// postponed as late as possible.
//
if (!DCI.isBeforeLegalize() && !DCI.isBeforeLegalizeOps()) {
// the DCI.xxxx conditions are provided to postpone the optimization as
// late as possible.
ConstantSDNode *CmpAgainst = nullptr;
if ((Cond.getOpcode() == X86ISD::CMP || Cond.getOpcode() == X86ISD::SUB) &&
(CmpAgainst = dyn_cast<ConstantSDNode>(Cond.getOperand(1))) &&
!isa<ConstantSDNode>(Cond.getOperand(0))) {
if (CC == X86::COND_NE &&
CmpAgainst == dyn_cast<ConstantSDNode>(FalseOp)) {
CC = X86::GetOppositeBranchCondition(CC);
std::swap(TrueOp, FalseOp);
}
if (CC == X86::COND_E &&
CmpAgainst == dyn_cast<ConstantSDNode>(TrueOp)) {
SDValue Ops[] = { FalseOp, Cond.getOperand(0),
DAG.getConstant(CC, DL, MVT::i8), Cond };
return DAG.getNode(X86ISD::CMOV, DL, N->getVTList (), Ops);
}
}
}
// Fold and/or of setcc's to double CMOV:
// (CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
// (CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
//
// This combine lets us generate:
// cmovcc1 (jcc1 if we don't have CMOV)
// cmovcc2 (same)
// instead of:
// setcc1
// setcc2
// and/or
// cmovne (jne if we don't have CMOV)
// When we can't use the CMOV instruction, it might increase branch
// mispredicts.
// When we can use CMOV, or when there is no mispredict, this improves
// throughput and reduces register pressure.
//
if (CC == X86::COND_NE) {
SDValue Flags;
X86::CondCode CC0, CC1;
bool isAndSetCC;
if (checkBoolTestAndOrSetCCCombine(Cond, CC0, CC1, Flags, isAndSetCC)) {
if (isAndSetCC) {
std::swap(FalseOp, TrueOp);
CC0 = X86::GetOppositeBranchCondition(CC0);
CC1 = X86::GetOppositeBranchCondition(CC1);
}
SDValue LOps[] = {FalseOp, TrueOp, DAG.getConstant(CC0, DL, MVT::i8),
Flags};
SDValue LCMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), LOps);
SDValue Ops[] = {LCMOV, TrueOp, DAG.getConstant(CC1, DL, MVT::i8), Flags};
SDValue CMOV = DAG.getNode(X86ISD::CMOV, DL, N->getVTList(), Ops);
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), SDValue(CMOV.getNode(), 1));
return CMOV;
}
}
return SDValue();
}
/// Optimize a single multiply with constant into two operations in order to
/// implement it with two cheaper instructions, e.g. LEA + SHL, LEA + LEA.
static SDValue combineMul(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// An imul is usually smaller than the alternative sequence.
if (DAG.getMachineFunction().getFunction()->optForMinSize())
return SDValue();
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
return SDValue();
EVT VT = N->getValueType(0);
if (VT != MVT::i64 && VT != MVT::i32)
return SDValue();
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!C)
return SDValue();
uint64_t MulAmt = C->getZExtValue();
if (isPowerOf2_64(MulAmt) || MulAmt == 3 || MulAmt == 5 || MulAmt == 9)
return SDValue();
uint64_t MulAmt1 = 0;
uint64_t MulAmt2 = 0;
if ((MulAmt % 9) == 0) {
MulAmt1 = 9;
MulAmt2 = MulAmt / 9;
} else if ((MulAmt % 5) == 0) {
MulAmt1 = 5;
MulAmt2 = MulAmt / 5;
} else if ((MulAmt % 3) == 0) {
MulAmt1 = 3;
MulAmt2 = MulAmt / 3;
}
SDLoc DL(N);
SDValue NewMul;
if (MulAmt2 &&
(isPowerOf2_64(MulAmt2) || MulAmt2 == 3 || MulAmt2 == 5 || MulAmt2 == 9)){
if (isPowerOf2_64(MulAmt2) &&
!(N->hasOneUse() && N->use_begin()->getOpcode() == ISD::ADD))
// If second multiplifer is pow2, issue it first. We want the multiply by
// 3, 5, or 9 to be folded into the addressing mode unless the lone use
// is an add.
std::swap(MulAmt1, MulAmt2);
if (isPowerOf2_64(MulAmt1))
NewMul = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt1), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, N->getOperand(0),
DAG.getConstant(MulAmt1, DL, VT));
if (isPowerOf2_64(MulAmt2))
NewMul = DAG.getNode(ISD::SHL, DL, VT, NewMul,
DAG.getConstant(Log2_64(MulAmt2), DL, MVT::i8));
else
NewMul = DAG.getNode(X86ISD::MUL_IMM, DL, VT, NewMul,
DAG.getConstant(MulAmt2, DL, VT));
}
if (!NewMul) {
assert(MulAmt != 0 && MulAmt != (VT == MVT::i64 ? UINT64_MAX : UINT32_MAX)
&& "Both cases that could cause potential overflows should have "
"already been handled.");
if (isPowerOf2_64(MulAmt - 1))
// (mul x, 2^N + 1) => (add (shl x, N), x)
NewMul = DAG.getNode(ISD::ADD, DL, VT, N->getOperand(0),
DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt - 1), DL,
MVT::i8)));
else if (isPowerOf2_64(MulAmt + 1))
// (mul x, 2^N - 1) => (sub (shl x, N), x)
NewMul = DAG.getNode(ISD::SUB, DL, VT, DAG.getNode(ISD::SHL, DL, VT,
N->getOperand(0),
DAG.getConstant(Log2_64(MulAmt + 1),
DL, MVT::i8)), N->getOperand(0));
}
if (NewMul)
// Do not add new nodes to DAG combiner worklist.
DCI.CombineTo(N, NewMul, false);
return SDValue();
}
static SDValue combineShiftLeft(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
EVT VT = N0.getValueType();
// fold (shl (and (setcc_c), c1), c2) -> (and setcc_c, (c1 << c2))
// since the result of setcc_c is all zero's or all ones.
if (VT.isInteger() && !VT.isVector() &&
N1C && N0.getOpcode() == ISD::AND &&
N0.getOperand(1).getOpcode() == ISD::Constant) {
SDValue N00 = N0.getOperand(0);
APInt Mask = cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue();
APInt ShAmt = N1C->getAPIntValue();
Mask = Mask.shl(ShAmt);
bool MaskOK = false;
// We can handle cases concerning bit-widening nodes containing setcc_c if
// we carefully interrogate the mask to make sure we are semantics
// preserving.
// The transform is not safe if the result of C1 << C2 exceeds the bitwidth
// of the underlying setcc_c operation if the setcc_c was zero extended.
// Consider the following example:
// zext(setcc_c) -> i32 0x0000FFFF
// c1 -> i32 0x0000FFFF
// c2 -> i32 0x00000001
// (shl (and (setcc_c), c1), c2) -> i32 0x0001FFFE
// (and setcc_c, (c1 << c2)) -> i32 0x0000FFFE
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if (N00.getOpcode() == ISD::SIGN_EXTEND &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = true;
} else if ((N00.getOpcode() == ISD::ZERO_EXTEND ||
N00.getOpcode() == ISD::ANY_EXTEND) &&
N00.getOperand(0).getOpcode() == X86ISD::SETCC_CARRY) {
MaskOK = Mask.isIntN(N00.getOperand(0).getValueSizeInBits());
}
if (MaskOK && Mask != 0) {
SDLoc DL(N);
return DAG.getNode(ISD::AND, DL, VT, N00, DAG.getConstant(Mask, DL, VT));
}
}
// Hardware support for vector shifts is sparse which makes us scalarize the
// vector operations in many cases. Also, on sandybridge ADD is faster than
// shl.
// (shl V, 1) -> add V,V
if (auto *N1BV = dyn_cast<BuildVectorSDNode>(N1))
if (auto *N1SplatC = N1BV->getConstantSplatNode()) {
assert(N0.getValueType().isVector() && "Invalid vector shift type");
// We shift all of the values by one. In many cases we do not have
// hardware support for this operation. This is better expressed as an ADD
// of two values.
if (N1SplatC->getAPIntValue() == 1)
return DAG.getNode(ISD::ADD, SDLoc(N), VT, N0, N0);
}
return SDValue();
}
static SDValue combineShiftRightAlgebraic(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N0.getValueType();
unsigned Size = VT.getSizeInBits();
// fold (ashr (shl, a, [56,48,32,24,16]), SarConst)
// into (shl, (sext (a), [56,48,32,24,16] - SarConst)) or
// into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
// depending on sign of (SarConst - [56,48,32,24,16])
// sexts in X86 are MOVs. The MOVs have the same code size
// as above SHIFTs (only SHIFT on 1 has lower code size).
// However the MOVs have 2 advantages to a SHIFT:
// 1. MOVs can write to a register that differs from source
// 2. MOVs accept memory operands
if (!VT.isInteger() || VT.isVector() || N1.getOpcode() != ISD::Constant ||
N0.getOpcode() != ISD::SHL || !N0.hasOneUse() ||
N0.getOperand(1).getOpcode() != ISD::Constant)
return SDValue();
SDValue N00 = N0.getOperand(0);
SDValue N01 = N0.getOperand(1);
APInt ShlConst = (cast<ConstantSDNode>(N01))->getAPIntValue();
APInt SarConst = (cast<ConstantSDNode>(N1))->getAPIntValue();
EVT CVT = N1.getValueType();
if (SarConst.isNegative())
return SDValue();
for (MVT SVT : MVT::integer_valuetypes()) {
unsigned ShiftSize = SVT.getSizeInBits();
// skipping types without corresponding sext/zext and
// ShlConst that is not one of [56,48,32,24,16]
if (ShiftSize < 8 || ShiftSize > 64 || ShlConst != Size - ShiftSize)
continue;
SDLoc DL(N);
SDValue NN =
DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, N00, DAG.getValueType(SVT));
SarConst = SarConst - (Size - ShiftSize);
if (SarConst == 0)
return NN;
else if (SarConst.isNegative())
return DAG.getNode(ISD::SHL, DL, VT, NN,
DAG.getConstant(-SarConst, DL, CVT));
else
return DAG.getNode(ISD::SRA, DL, VT, NN,
DAG.getConstant(SarConst, DL, CVT));
}
return SDValue();
}
/// \brief Returns a vector of 0s if the node in input is a vector logical
/// shift by a constant amount which is known to be bigger than or equal
/// to the vector element size in bits.
static SDValue performShiftToAllZeros(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (VT != MVT::v2i64 && VT != MVT::v4i32 && VT != MVT::v8i16 &&
(!Subtarget.hasInt256() ||
(VT != MVT::v4i64 && VT != MVT::v8i32 && VT != MVT::v16i16)))
return SDValue();
SDValue Amt = N->getOperand(1);
SDLoc DL(N);
if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Amt))
if (auto *AmtSplat = AmtBV->getConstantSplatNode()) {
APInt ShiftAmt = AmtSplat->getAPIntValue();
unsigned MaxAmount =
VT.getSimpleVT().getVectorElementType().getSizeInBits();
// SSE2/AVX2 logical shifts always return a vector of 0s
// if the shift amount is bigger than or equal to
// the element size. The constant shift amount will be
// encoded as a 8-bit immediate.
if (ShiftAmt.trunc(8).uge(MaxAmount))
return getZeroVector(VT.getSimpleVT(), Subtarget, DAG, DL);
}
return SDValue();
}
static SDValue combineShift(SDNode* N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (N->getOpcode() == ISD::SHL)
if (SDValue V = combineShiftLeft(N, DAG))
return V;
if (N->getOpcode() == ISD::SRA)
if (SDValue V = combineShiftRightAlgebraic(N, DAG))
return V;
// Try to fold this logical shift into a zero vector.
if (N->getOpcode() != ISD::SRA)
if (SDValue V = performShiftToAllZeros(N, DAG, Subtarget))
return V;
return SDValue();
}
/// Recognize the distinctive (AND (setcc ...) (setcc ..)) where both setccs
/// reference the same FP CMP, and rewrite for CMPEQSS and friends. Likewise for
/// OR -> CMPNEQSS.
static SDValue combineCompareEqual(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned opcode;
// SSE1 supports CMP{eq|ne}SS, and SSE2 added CMP{eq|ne}SD, but
// we're requiring SSE2 for both.
if (Subtarget.hasSSE2() && isAndOrOfSetCCs(SDValue(N, 0U), opcode)) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue CMP0 = N0->getOperand(1);
SDValue CMP1 = N1->getOperand(1);
SDLoc DL(N);
// The SETCCs should both refer to the same CMP.
if (CMP0.getOpcode() != X86ISD::CMP || CMP0 != CMP1)
return SDValue();
SDValue CMP00 = CMP0->getOperand(0);
SDValue CMP01 = CMP0->getOperand(1);
EVT VT = CMP00.getValueType();
if (VT == MVT::f32 || VT == MVT::f64) {
bool ExpectingFlags = false;
// Check for any users that want flags:
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
!ExpectingFlags && UI != UE; ++UI)
switch (UI->getOpcode()) {
default:
case ISD::BR_CC:
case ISD::BRCOND:
case ISD::SELECT:
ExpectingFlags = true;
break;
case ISD::CopyToReg:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
break;
}
if (!ExpectingFlags) {
enum X86::CondCode cc0 = (enum X86::CondCode)N0.getConstantOperandVal(0);
enum X86::CondCode cc1 = (enum X86::CondCode)N1.getConstantOperandVal(0);
if (cc1 == X86::COND_E || cc1 == X86::COND_NE) {
X86::CondCode tmp = cc0;
cc0 = cc1;
cc1 = tmp;
}
if ((cc0 == X86::COND_E && cc1 == X86::COND_NP) ||
(cc0 == X86::COND_NE && cc1 == X86::COND_P)) {
// FIXME: need symbolic constants for these magic numbers.
// See X86ATTInstPrinter.cpp:printSSECC().
unsigned x86cc = (cc0 == X86::COND_E) ? 0 : 4;
if (Subtarget.hasAVX512()) {
SDValue FSetCC = DAG.getNode(X86ISD::FSETCC, DL, MVT::i1, CMP00,
CMP01,
DAG.getConstant(x86cc, DL, MVT::i8));
if (N->getValueType(0) != MVT::i1)
return DAG.getNode(ISD::ZERO_EXTEND, DL, N->getValueType(0),
FSetCC);
return FSetCC;
}
SDValue OnesOrZeroesF = DAG.getNode(X86ISD::FSETCC, DL,
CMP00.getValueType(), CMP00, CMP01,
DAG.getConstant(x86cc, DL,
MVT::i8));
bool is64BitFP = (CMP00.getValueType() == MVT::f64);
MVT IntVT = is64BitFP ? MVT::i64 : MVT::i32;
if (is64BitFP && !Subtarget.is64Bit()) {
// On a 32-bit target, we cannot bitcast the 64-bit float to a
// 64-bit integer, since that's not a legal type. Since
// OnesOrZeroesF is all ones of all zeroes, we don't need all the
// bits, but can do this little dance to extract the lowest 32 bits
// and work with those going forward.
SDValue Vector64 = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, MVT::v2f64,
OnesOrZeroesF);
SDValue Vector32 = DAG.getBitcast(MVT::v4f32, Vector64);
OnesOrZeroesF = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32,
Vector32, DAG.getIntPtrConstant(0, DL));
IntVT = MVT::i32;
}
SDValue OnesOrZeroesI = DAG.getBitcast(IntVT, OnesOrZeroesF);
SDValue ANDed = DAG.getNode(ISD::AND, DL, IntVT, OnesOrZeroesI,
DAG.getConstant(1, DL, IntVT));
SDValue OneBitOfTruth = DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
ANDed);
return OneBitOfTruth;
}
}
}
}
return SDValue();
}
/// Try to fold: (and (xor X, -1), Y) -> (andnp X, Y).
static SDValue combineANDXORWithAllOnesIntoANDNP(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == ISD::AND);
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
if (VT != MVT::v2i64 && VT != MVT::v4i64)
return SDValue();
// Canonicalize XOR to the left.
if (N1.getOpcode() == ISD::XOR)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::XOR)
return SDValue();
SDValue N00 = N0->getOperand(0);
SDValue N01 = N0->getOperand(1);
N01 = peekThroughBitcasts(N01);
// Either match a direct AllOnes for 128 and 256-bit vectors, or an
// insert_subvector building a 256-bit AllOnes vector.
if (!ISD::isBuildVectorAllOnes(N01.getNode())) {
if (!VT.is256BitVector() || N01->getOpcode() != ISD::INSERT_SUBVECTOR)
return SDValue();
SDValue V1 = N01->getOperand(0);
SDValue V2 = N01->getOperand(1);
if (V1.getOpcode() != ISD::INSERT_SUBVECTOR ||
!V1.getOperand(0).isUndef() ||
!ISD::isBuildVectorAllOnes(V1.getOperand(1).getNode()) ||
!ISD::isBuildVectorAllOnes(V2.getNode()))
return SDValue();
}
return DAG.getNode(X86ISD::ANDNP, DL, VT, N00, N1);
}
// On AVX/AVX2 the type v8i1 is legalized to v8i16, which is an XMM sized
// register. In most cases we actually compare or select YMM-sized registers
// and mixing the two types creates horrible code. This method optimizes
// some of the transition sequences.
static SDValue WidenMaskArithmetic(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.is256BitVector())
return SDValue();
assert((N->getOpcode() == ISD::ANY_EXTEND ||
N->getOpcode() == ISD::ZERO_EXTEND ||
N->getOpcode() == ISD::SIGN_EXTEND) && "Invalid Node");
SDValue Narrow = N->getOperand(0);
EVT NarrowVT = Narrow->getValueType(0);
if (!NarrowVT.is128BitVector())
return SDValue();
if (Narrow->getOpcode() != ISD::XOR &&
Narrow->getOpcode() != ISD::AND &&
Narrow->getOpcode() != ISD::OR)
return SDValue();
SDValue N0 = Narrow->getOperand(0);
SDValue N1 = Narrow->getOperand(1);
SDLoc DL(Narrow);
// The Left side has to be a trunc.
if (N0.getOpcode() != ISD::TRUNCATE)
return SDValue();
// The type of the truncated inputs.
EVT WideVT = N0->getOperand(0)->getValueType(0);
if (WideVT != VT)
return SDValue();
// The right side has to be a 'trunc' or a constant vector.
bool RHSTrunc = N1.getOpcode() == ISD::TRUNCATE;
ConstantSDNode *RHSConstSplat = nullptr;
if (auto *RHSBV = dyn_cast<BuildVectorSDNode>(N1))
RHSConstSplat = RHSBV->getConstantSplatNode();
if (!RHSTrunc && !RHSConstSplat)
return SDValue();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (!TLI.isOperationLegalOrPromote(Narrow->getOpcode(), WideVT))
return SDValue();
// Set N0 and N1 to hold the inputs to the new wide operation.
N0 = N0->getOperand(0);
if (RHSConstSplat) {
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, WideVT.getVectorElementType(),
SDValue(RHSConstSplat, 0));
N1 = DAG.getSplatBuildVector(WideVT, DL, N1);
} else if (RHSTrunc) {
N1 = N1->getOperand(0);
}
// Generate the wide operation.
SDValue Op = DAG.getNode(Narrow->getOpcode(), DL, WideVT, N0, N1);
unsigned Opcode = N->getOpcode();
switch (Opcode) {
case ISD::ANY_EXTEND:
return Op;
case ISD::ZERO_EXTEND: {
unsigned InBits = NarrowVT.getScalarSizeInBits();
APInt Mask = APInt::getAllOnesValue(InBits);
Mask = Mask.zext(VT.getScalarSizeInBits());
return DAG.getNode(ISD::AND, DL, VT,
Op, DAG.getConstant(Mask, DL, VT));
}
case ISD::SIGN_EXTEND:
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT,
Op, DAG.getValueType(NarrowVT));
default:
llvm_unreachable("Unexpected opcode");
}
}
static SDValue combineVectorZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
// A vector zext_in_reg may be represented as a shuffle,
// feeding into a bitcast (this represents anyext) feeding into
// an and with a mask.
// We'd like to try to combine that into a shuffle with zero
// plus a bitcast, removing the and.
if (N0.getOpcode() != ISD::BITCAST ||
N0.getOperand(0).getOpcode() != ISD::VECTOR_SHUFFLE)
return SDValue();
// The other side of the AND should be a splat of 2^C, where C
// is the number of bits in the source type.
N1 = peekThroughBitcasts(N1);
if (N1.getOpcode() != ISD::BUILD_VECTOR)
return SDValue();
BuildVectorSDNode *Vector = cast<BuildVectorSDNode>(N1);
ShuffleVectorSDNode *Shuffle = cast<ShuffleVectorSDNode>(N0.getOperand(0));
EVT SrcType = Shuffle->getValueType(0);
// We expect a single-source shuffle
if (!Shuffle->getOperand(1)->isUndef())
return SDValue();
unsigned SrcSize = SrcType.getScalarSizeInBits();
unsigned NumElems = SrcType.getVectorNumElements();
APInt SplatValue, SplatUndef;
unsigned SplatBitSize;
bool HasAnyUndefs;
if (!Vector->isConstantSplat(SplatValue, SplatUndef,
SplatBitSize, HasAnyUndefs))
return SDValue();
unsigned ResSize = N1.getValueType().getScalarSizeInBits();
// Make sure the splat matches the mask we expect
if (SplatBitSize > ResSize ||
(SplatValue + 1).exactLogBase2() != (int)SrcSize)
return SDValue();
// Make sure the input and output size make sense
if (SrcSize >= ResSize || ResSize % SrcSize)
return SDValue();
// We expect a shuffle of the form <0, u, u, u, 1, u, u, u...>
// The number of u's between each two values depends on the ratio between
// the source and dest type.
unsigned ZextRatio = ResSize / SrcSize;
bool IsZext = true;
for (unsigned i = 0; i != NumElems; ++i) {
if (i % ZextRatio) {
if (Shuffle->getMaskElt(i) > 0) {
// Expected undef
IsZext = false;
break;
}
} else {
if (Shuffle->getMaskElt(i) != (int)(i / ZextRatio)) {
// Expected element number
IsZext = false;
break;
}
}
}
if (!IsZext)
return SDValue();
// Ok, perform the transformation - replace the shuffle with
// a shuffle of the form <0, k, k, k, 1, k, k, k> with zero
// (instead of undef) where the k elements come from the zero vector.
SmallVector<int, 8> Mask;
for (unsigned i = 0; i != NumElems; ++i)
if (i % ZextRatio)
Mask.push_back(NumElems);
else
Mask.push_back(i / ZextRatio);
SDValue NewShuffle = DAG.getVectorShuffle(Shuffle->getValueType(0), DL,
Shuffle->getOperand(0), DAG.getConstant(0, DL, SrcType), Mask);
return DAG.getBitcast(N0.getValueType(), NewShuffle);
}
/// If both input operands of a logic op are being cast from floating point
/// types, try to convert this into a floating point logic node to avoid
/// unnecessary moves from SSE to integer registers.
static SDValue convertIntLogicToFPLogic(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
unsigned FPOpcode = ISD::DELETED_NODE;
if (N->getOpcode() == ISD::AND)
FPOpcode = X86ISD::FAND;
else if (N->getOpcode() == ISD::OR)
FPOpcode = X86ISD::FOR;
else if (N->getOpcode() == ISD::XOR)
FPOpcode = X86ISD::FXOR;
assert(FPOpcode != ISD::DELETED_NODE &&
"Unexpected input node for FP logic conversion");
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST &&
((Subtarget.hasSSE1() && VT == MVT::i32) ||
(Subtarget.hasSSE2() && VT == MVT::i64))) {
SDValue N00 = N0.getOperand(0);
SDValue N10 = N1.getOperand(0);
EVT N00Type = N00.getValueType();
EVT N10Type = N10.getValueType();
if (N00Type.isFloatingPoint() && N10Type.isFloatingPoint()) {
SDValue FPLogic = DAG.getNode(FPOpcode, DL, N00Type, N00, N10);
return DAG.getBitcast(VT, FPLogic);
}
}
return SDValue();
}
static SDValue combineAnd(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue Zext = combineVectorZext(N, DAG, DCI, Subtarget))
return Zext;
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = combineANDXORWithAllOnesIntoANDNP(N, DAG))
return R;
EVT VT = N->getValueType(0);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
// Create BEXTR instructions
// BEXTR is ((X >> imm) & (2**size-1))
if (VT != MVT::i32 && VT != MVT::i64)
return SDValue();
if (!Subtarget.hasBMI() && !Subtarget.hasTBM())
return SDValue();
if (N0.getOpcode() != ISD::SRA && N0.getOpcode() != ISD::SRL)
return SDValue();
ConstantSDNode *MaskNode = dyn_cast<ConstantSDNode>(N1);
ConstantSDNode *ShiftNode = dyn_cast<ConstantSDNode>(N0.getOperand(1));
if (MaskNode && ShiftNode) {
uint64_t Mask = MaskNode->getZExtValue();
uint64_t Shift = ShiftNode->getZExtValue();
if (isMask_64(Mask)) {
uint64_t MaskSize = countPopulation(Mask);
if (Shift + MaskSize <= VT.getSizeInBits())
return DAG.getNode(X86ISD::BEXTR, DL, VT, N0.getOperand(0),
DAG.getConstant(Shift | (MaskSize << 8), DL,
VT));
}
}
return SDValue();
}
// Try to fold:
// (or (and (m, y), (pandn m, x)))
// into:
// (vselect m, x, y)
// As a special case, try to fold:
// (or (and (m, (sub 0, x)), (pandn m, x)))
// into:
// (sub (xor X, M), M)
static SDValue combineLogicBlendIntoPBLENDV(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == ISD::OR);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
if (!((VT == MVT::v2i64) || (VT == MVT::v4i64 && Subtarget.hasInt256())))
return SDValue();
assert(Subtarget.hasSSE2() && "Unexpected i64 vector without SSE2!");
// Canonicalize pandn to RHS
if (N0.getOpcode() == X86ISD::ANDNP)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != X86ISD::ANDNP)
return SDValue();
SDValue Mask = N1.getOperand(0);
SDValue X = N1.getOperand(1);
SDValue Y;
if (N0.getOperand(0) == Mask)
Y = N0.getOperand(1);
if (N0.getOperand(1) == Mask)
Y = N0.getOperand(0);
// Check to see if the mask appeared in both the AND and ANDNP.
if (!Y.getNode())
return SDValue();
// Validate that X, Y, and Mask are bitcasts, and see through them.
Mask = peekThroughBitcasts(Mask);
X = peekThroughBitcasts(X);
Y = peekThroughBitcasts(Y);
EVT MaskVT = Mask.getValueType();
// Validate that the Mask operand is a vector sra node.
// FIXME: what to do for bytes, since there is a psignb/pblendvb, but
// there is no psrai.b
unsigned EltBits = MaskVT.getVectorElementType().getSizeInBits();
unsigned SraAmt = ~0;
if (Mask.getOpcode() == ISD::SRA) {
if (auto *AmtBV = dyn_cast<BuildVectorSDNode>(Mask.getOperand(1)))
if (auto *AmtConst = AmtBV->getConstantSplatNode())
SraAmt = AmtConst->getZExtValue();
} else if (Mask.getOpcode() == X86ISD::VSRAI) {
SDValue SraC = Mask.getOperand(1);
SraAmt = cast<ConstantSDNode>(SraC)->getZExtValue();
}
if ((SraAmt + 1) != EltBits)
return SDValue();
SDLoc DL(N);
// Try to match:
// (or (and (M, (sub 0, X)), (pandn M, X)))
// which is a special case of vselect:
// (vselect M, (sub 0, X), X)
// Per:
// http://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
// We know that, if fNegate is 0 or 1:
// (fNegate ? -v : v) == ((v ^ -fNegate) + fNegate)
//
// Here, we have a mask, M (all 1s or 0), and, similarly, we know that:
// ((M & 1) ? -X : X) == ((X ^ -(M & 1)) + (M & 1))
// ( M ? -X : X) == ((X ^ M ) + (M & 1))
// This lets us transform our vselect to:
// (add (xor X, M), (and M, 1))
// And further to:
// (sub (xor X, M), M)
if (X.getValueType() == MaskVT && Y.getValueType() == MaskVT) {
auto IsNegV = [](SDNode *N, SDValue V) {
return N->getOpcode() == ISD::SUB && N->getOperand(1) == V &&
ISD::isBuildVectorAllZeros(N->getOperand(0).getNode());
};
SDValue V;
if (IsNegV(Y.getNode(), X))
V = X;
else if (IsNegV(X.getNode(), Y))
V = Y;
if (V) {
assert(EltBits == 8 || EltBits == 16 || EltBits == 32);
SDValue SubOp1 = DAG.getNode(ISD::XOR, DL, MaskVT, V, Mask);
SDValue SubOp2 = Mask;
// If the negate was on the false side of the select, then
// the operands of the SUB need to be swapped. PR 27251.
// This is because the pattern being matched above is
// (vselect M, (sub (0, X), X) -> (sub (xor X, M), M)
// but if the pattern matched was
// (vselect M, X, (sub (0, X))), that is really negation of the pattern
// above, -(vselect M, (sub 0, X), X), and therefore the replacement
// pattern also needs to be a negation of the replacement pattern above.
// And -(sub X, Y) is just sub (Y, X), so swapping the operands of the
// sub accomplishes the negation of the replacement pattern.
if (V == Y)
std::swap(SubOp1, SubOp2);
return DAG.getBitcast(VT,
DAG.getNode(ISD::SUB, DL, MaskVT, SubOp1, SubOp2));
}
}
// PBLENDVB is only available on SSE 4.1.
if (!Subtarget.hasSSE41())
return SDValue();
MVT BlendVT = (VT == MVT::v4i64) ? MVT::v32i8 : MVT::v16i8;
X = DAG.getBitcast(BlendVT, X);
Y = DAG.getBitcast(BlendVT, Y);
Mask = DAG.getBitcast(BlendVT, Mask);
Mask = DAG.getNode(ISD::VSELECT, DL, BlendVT, Mask, Y, X);
return DAG.getBitcast(VT, Mask);
}
static SDValue combineOr(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue R = combineCompareEqual(N, DAG, DCI, Subtarget))
return R;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
if (SDValue R = combineLogicBlendIntoPBLENDV(N, DAG, Subtarget))
return R;
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT VT = N->getValueType(0);
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
return SDValue();
// fold (or (x << c) | (y >> (64 - c))) ==> (shld64 x, y, c)
bool OptForSize = DAG.getMachineFunction().getFunction()->optForSize();
// SHLD/SHRD instructions have lower register pressure, but on some
// platforms they have higher latency than the equivalent
// series of shifts/or that would otherwise be generated.
// Don't fold (or (x << c) | (y >> (64 - c))) if SHLD/SHRD instructions
// have higher latencies and we are not optimizing for size.
if (!OptForSize && Subtarget.isSHLDSlow())
return SDValue();
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
std::swap(N0, N1);
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
return SDValue();
if (!N0.hasOneUse() || !N1.hasOneUse())
return SDValue();
SDValue ShAmt0 = N0.getOperand(1);
if (ShAmt0.getValueType() != MVT::i8)
return SDValue();
SDValue ShAmt1 = N1.getOperand(1);
if (ShAmt1.getValueType() != MVT::i8)
return SDValue();
if (ShAmt0.getOpcode() == ISD::TRUNCATE)
ShAmt0 = ShAmt0.getOperand(0);
if (ShAmt1.getOpcode() == ISD::TRUNCATE)
ShAmt1 = ShAmt1.getOperand(0);
SDLoc DL(N);
unsigned Opc = X86ISD::SHLD;
SDValue Op0 = N0.getOperand(0);
SDValue Op1 = N1.getOperand(0);
if (ShAmt0.getOpcode() == ISD::SUB) {
Opc = X86ISD::SHRD;
std::swap(Op0, Op1);
std::swap(ShAmt0, ShAmt1);
}
unsigned Bits = VT.getSizeInBits();
if (ShAmt1.getOpcode() == ISD::SUB) {
SDValue Sum = ShAmt1.getOperand(0);
if (ConstantSDNode *SumC = dyn_cast<ConstantSDNode>(Sum)) {
SDValue ShAmt1Op1 = ShAmt1.getOperand(1);
if (ShAmt1Op1.getNode()->getOpcode() == ISD::TRUNCATE)
ShAmt1Op1 = ShAmt1Op1.getOperand(0);
if (SumC->getSExtValue() == Bits && ShAmt1Op1 == ShAmt0)
return DAG.getNode(Opc, DL, VT,
Op0, Op1,
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
}
} else if (ConstantSDNode *ShAmt1C = dyn_cast<ConstantSDNode>(ShAmt1)) {
ConstantSDNode *ShAmt0C = dyn_cast<ConstantSDNode>(ShAmt0);
if (ShAmt0C &&
ShAmt0C->getSExtValue() + ShAmt1C->getSExtValue() == Bits)
return DAG.getNode(Opc, DL, VT,
N0.getOperand(0), N1.getOperand(0),
DAG.getNode(ISD::TRUNCATE, DL,
MVT::i8, ShAmt0));
}
return SDValue();
}
// Generate NEG and CMOV for integer abs.
static SDValue combineIntegerAbs(SDNode *N, SelectionDAG &DAG) {
EVT VT = N->getValueType(0);
// Since X86 does not have CMOV for 8-bit integer, we don't convert
// 8-bit integer abs to NEG and CMOV.
if (VT.isInteger() && VT.getSizeInBits() == 8)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDLoc DL(N);
// Check pattern of XOR(ADD(X,Y), Y) where Y is SRA(X, size(X)-1)
// and change it to SUB and CMOV.
if (VT.isInteger() && N->getOpcode() == ISD::XOR &&
N0.getOpcode() == ISD::ADD &&
N0.getOperand(1) == N1 &&
N1.getOpcode() == ISD::SRA &&
N1.getOperand(0) == N0.getOperand(0))
if (ConstantSDNode *Y1C = dyn_cast<ConstantSDNode>(N1.getOperand(1)))
if (Y1C->getAPIntValue() == VT.getSizeInBits()-1) {
// Generate SUB & CMOV.
SDValue Neg = DAG.getNode(X86ISD::SUB, DL, DAG.getVTList(VT, MVT::i32),
DAG.getConstant(0, DL, VT), N0.getOperand(0));
SDValue Ops[] = { N0.getOperand(0), Neg,
DAG.getConstant(X86::COND_GE, DL, MVT::i8),
SDValue(Neg.getNode(), 1) };
return DAG.getNode(X86ISD::CMOV, DL, DAG.getVTList(VT, MVT::Glue), Ops);
}
return SDValue();
}
/// Try to turn tests against the signbit in the form of:
/// XOR(TRUNCATE(SRL(X, size(X)-1)), 1)
/// into:
/// SETGT(X, -1)
static SDValue foldXorTruncShiftIntoCmp(SDNode *N, SelectionDAG &DAG) {
// This is only worth doing if the output type is i8 or i1.
EVT ResultType = N->getValueType(0);
if (ResultType != MVT::i8 && ResultType != MVT::i1)
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
// We should be performing an xor against a truncated shift.
if (N0.getOpcode() != ISD::TRUNCATE || !N0.hasOneUse())
return SDValue();
// Make sure we are performing an xor against one.
if (!isOneConstant(N1))
return SDValue();
// SetCC on x86 zero extends so only act on this if it's a logical shift.
SDValue Shift = N0.getOperand(0);
if (Shift.getOpcode() != ISD::SRL || !Shift.hasOneUse())
return SDValue();
// Make sure we are truncating from one of i16, i32 or i64.
EVT ShiftTy = Shift.getValueType();
if (ShiftTy != MVT::i16 && ShiftTy != MVT::i32 && ShiftTy != MVT::i64)
return SDValue();
// Make sure the shift amount extracts the sign bit.
if (!isa<ConstantSDNode>(Shift.getOperand(1)) ||
Shift.getConstantOperandVal(1) != ShiftTy.getSizeInBits() - 1)
return SDValue();
// Create a greater-than comparison against -1.
// N.B. Using SETGE against 0 works but we want a canonical looking
// comparison, using SETGT matches up with what TranslateX86CC.
SDLoc DL(N);
SDValue ShiftOp = Shift.getOperand(0);
EVT ShiftOpTy = ShiftOp.getValueType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT SetCCResultType = TLI.getSetCCResultType(DAG.getDataLayout(),
*DAG.getContext(), ResultType);
SDValue Cond = DAG.getSetCC(DL, SetCCResultType, ShiftOp,
DAG.getConstant(-1, DL, ShiftOpTy), ISD::SETGT);
if (SetCCResultType != ResultType)
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, ResultType, Cond);
return Cond;
}
/// Turn vector tests of the signbit in the form of:
/// xor (sra X, elt_size(X)-1), -1
/// into:
/// pcmpgt X, -1
///
/// This should be called before type legalization because the pattern may not
/// persist after that.
static SDValue foldVectorXorShiftIntoCmp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.isSimple())
return SDValue();
switch (VT.getSimpleVT().SimpleTy) {
default: return SDValue();
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32: if (!Subtarget.hasSSE2()) return SDValue(); break;
case MVT::v2i64: if (!Subtarget.hasSSE42()) return SDValue(); break;
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64: if (!Subtarget.hasAVX2()) return SDValue(); break;
}
// There must be a shift right algebraic before the xor, and the xor must be a
// 'not' operation.
SDValue Shift = N->getOperand(0);
SDValue Ones = N->getOperand(1);
if (Shift.getOpcode() != ISD::SRA || !Shift.hasOneUse() ||
!ISD::isBuildVectorAllOnes(Ones.getNode()))
return SDValue();
// The shift should be smearing the sign bit across each vector element.
auto *ShiftBV = dyn_cast<BuildVectorSDNode>(Shift.getOperand(1));
if (!ShiftBV)
return SDValue();
EVT ShiftEltTy = Shift.getValueType().getVectorElementType();
auto *ShiftAmt = ShiftBV->getConstantSplatNode();
if (!ShiftAmt || ShiftAmt->getZExtValue() != ShiftEltTy.getSizeInBits() - 1)
return SDValue();
// Create a greater-than comparison against -1. We don't use the more obvious
// greater-than-or-equal-to-zero because SSE/AVX don't have that instruction.
return DAG.getNode(X86ISD::PCMPGT, SDLoc(N), VT, Shift.getOperand(0), Ones);
}
static SDValue combineXor(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
if (SDValue Cmp = foldVectorXorShiftIntoCmp(N, DAG, Subtarget))
return Cmp;
if (DCI.isBeforeLegalizeOps())
return SDValue();
if (SDValue RV = foldXorTruncShiftIntoCmp(N, DAG))
return RV;
if (Subtarget.hasCMov())
if (SDValue RV = combineIntegerAbs(N, DAG))
return RV;
if (SDValue FPLogic = convertIntLogicToFPLogic(N, DAG, Subtarget))
return FPLogic;
return SDValue();
}
/// This function detects the AVG pattern between vectors of unsigned i8/i16,
/// which is c = (a + b + 1) / 2, and replace this operation with the efficient
/// X86ISD::AVG instruction.
static SDValue detectAVGPattern(SDValue In, EVT VT, SelectionDAG &DAG,
const X86Subtarget &Subtarget, SDLoc DL) {
if (!VT.isVector() || !VT.isSimple())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT ScalarVT = VT.getVectorElementType();
if (!((ScalarVT == MVT::i8 || ScalarVT == MVT::i16) &&
isPowerOf2_32(NumElems)))
return SDValue();
// InScalarVT is the intermediate type in AVG pattern and it should be greater
// than the original input type (i8/i16).
EVT InScalarVT = InVT.getVectorElementType();
if (InScalarVT.getSizeInBits() <= ScalarVT.getSizeInBits())
return SDValue();
if (Subtarget.hasAVX512()) {
if (VT.getSizeInBits() > 512)
return SDValue();
} else if (Subtarget.hasAVX2()) {
if (VT.getSizeInBits() > 256)
return SDValue();
} else {
if (VT.getSizeInBits() > 128)
return SDValue();
}
// Detect the following pattern:
//
// %1 = zext <N x i8> %a to <N x i32>
// %2 = zext <N x i8> %b to <N x i32>
// %3 = add nuw nsw <N x i32> %1, <i32 1 x N>
// %4 = add nuw nsw <N x i32> %3, %2
// %5 = lshr <N x i32> %N, <i32 1 x N>
// %6 = trunc <N x i32> %5 to <N x i8>
//
// In AVX512, the last instruction can also be a trunc store.
if (In.getOpcode() != ISD::SRL)
return SDValue();
// A lambda checking the given SDValue is a constant vector and each element
// is in the range [Min, Max].
auto IsConstVectorInRange = [](SDValue V, unsigned Min, unsigned Max) {
BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || !BV->isConstant())
return false;
for (unsigned i = 0, e = V.getNumOperands(); i < e; i++) {
ConstantSDNode *C = dyn_cast<ConstantSDNode>(V.getOperand(i));
if (!C)
return false;
uint64_t Val = C->getZExtValue();
if (Val < Min || Val > Max)
return false;
}
return true;
};
// Check if each element of the vector is left-shifted by one.
auto LHS = In.getOperand(0);
auto RHS = In.getOperand(1);
if (!IsConstVectorInRange(RHS, 1, 1))
return SDValue();
if (LHS.getOpcode() != ISD::ADD)
return SDValue();
// Detect a pattern of a + b + 1 where the order doesn't matter.
SDValue Operands[3];
Operands[0] = LHS.getOperand(0);
Operands[1] = LHS.getOperand(1);
// Take care of the case when one of the operands is a constant vector whose
// element is in the range [1, 256].
if (IsConstVectorInRange(Operands[1], 1, ScalarVT == MVT::i8 ? 256 : 65536) &&
Operands[0].getOpcode() == ISD::ZERO_EXTEND &&
Operands[0].getOperand(0).getValueType() == VT) {
// The pattern is detected. Subtract one from the constant vector, then
// demote it and emit X86ISD::AVG instruction.
SDValue VecOnes = DAG.getConstant(1, DL, InVT);
Operands[1] = DAG.getNode(ISD::SUB, DL, InVT, Operands[1], VecOnes);
Operands[1] = DAG.getNode(ISD::TRUNCATE, DL, VT, Operands[1]);
return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
Operands[1]);
}
if (Operands[0].getOpcode() == ISD::ADD)
std::swap(Operands[0], Operands[1]);
else if (Operands[1].getOpcode() != ISD::ADD)
return SDValue();
Operands[2] = Operands[1].getOperand(0);
Operands[1] = Operands[1].getOperand(1);
// Now we have three operands of two additions. Check that one of them is a
// constant vector with ones, and the other two are promoted from i8/i16.
for (int i = 0; i < 3; ++i) {
if (!IsConstVectorInRange(Operands[i], 1, 1))
continue;
std::swap(Operands[i], Operands[2]);
// Check if Operands[0] and Operands[1] are results of type promotion.
for (int j = 0; j < 2; ++j)
if (Operands[j].getOpcode() != ISD::ZERO_EXTEND ||
Operands[j].getOperand(0).getValueType() != VT)
return SDValue();
// The pattern is detected, emit X86ISD::AVG instruction.
return DAG.getNode(X86ISD::AVG, DL, VT, Operands[0].getOperand(0),
Operands[1].getOperand(0));
}
return SDValue();
}
static SDValue combineLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
LoadSDNode *Ld = cast<LoadSDNode>(N);
EVT RegVT = Ld->getValueType(0);
EVT MemVT = Ld->getMemoryVT();
SDLoc dl(Ld);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// For chips with slow 32-byte unaligned loads, break the 32-byte operation
// into two 16-byte operations.
ISD::LoadExtType Ext = Ld->getExtensionType();
bool Fast;
unsigned AddressSpace = Ld->getAddressSpace();
unsigned Alignment = Ld->getAlignment();
if (RegVT.is256BitVector() && !DCI.isBeforeLegalizeOps() &&
Ext == ISD::NON_EXTLOAD &&
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), RegVT,
AddressSpace, Alignment, &Fast) && !Fast) {
unsigned NumElems = RegVT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
SDValue Ptr = Ld->getBasePtr();
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(),
NumElems/2);
SDValue Load1 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
Ld->getPointerInfo(), Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
Alignment);
Ptr = DAG.getMemBasePlusOffset(Ptr, 16, dl);
SDValue Load2 = DAG.getLoad(HalfVT, dl, Ld->getChain(), Ptr,
Ld->getPointerInfo(), Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
std::min(16U, Alignment));
SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
Load1.getValue(1),
Load2.getValue(1));
SDValue NewVec = DAG.getUNDEF(RegVT);
NewVec = insert128BitVector(NewVec, Load1, 0, DAG, dl);
NewVec = insert128BitVector(NewVec, Load2, NumElems / 2, DAG, dl);
return DCI.CombineTo(N, NewVec, TF, true);
}
return SDValue();
}
/// If V is a build vector of boolean constants and exactly one of those
/// constants is true, return the operand index of that true element.
/// Otherwise, return -1.
static int getOneTrueElt(SDValue V) {
// This needs to be a build vector of booleans.
// TODO: Checking for the i1 type matches the IR definition for the mask,
// but the mask check could be loosened to i8 or other types. That might
// also require checking more than 'allOnesValue'; eg, the x86 HW
// instructions only require that the MSB is set for each mask element.
// The ISD::MSTORE comments/definition do not specify how the mask operand
// is formatted.
auto *BV = dyn_cast<BuildVectorSDNode>(V);
if (!BV || BV->getValueType(0).getVectorElementType() != MVT::i1)
return -1;
int TrueIndex = -1;
unsigned NumElts = BV->getValueType(0).getVectorNumElements();
for (unsigned i = 0; i < NumElts; ++i) {
const SDValue &Op = BV->getOperand(i);
if (Op.isUndef())
continue;
auto *ConstNode = dyn_cast<ConstantSDNode>(Op);
if (!ConstNode)
return -1;
if (ConstNode->getAPIntValue().isAllOnesValue()) {
// If we already found a one, this is too many.
if (TrueIndex >= 0)
return -1;
TrueIndex = i;
}
}
return TrueIndex;
}
/// Given a masked memory load/store operation, return true if it has one mask
/// bit set. If it has one mask bit set, then also return the memory address of
/// the scalar element to load/store, the vector index to insert/extract that
/// scalar element, and the alignment for the scalar memory access.
static bool getParamsForOneTrueMaskedElt(MaskedLoadStoreSDNode *MaskedOp,
SelectionDAG &DAG, SDValue &Addr,
SDValue &Index, unsigned &Alignment) {
int TrueMaskElt = getOneTrueElt(MaskedOp->getMask());
if (TrueMaskElt < 0)
return false;
// Get the address of the one scalar element that is specified by the mask
// using the appropriate offset from the base pointer.
EVT EltVT = MaskedOp->getMemoryVT().getVectorElementType();
Addr = MaskedOp->getBasePtr();
if (TrueMaskElt != 0) {
unsigned Offset = TrueMaskElt * EltVT.getStoreSize();
Addr = DAG.getMemBasePlusOffset(Addr, Offset, SDLoc(MaskedOp));
}
Index = DAG.getIntPtrConstant(TrueMaskElt, SDLoc(MaskedOp));
Alignment = MinAlign(MaskedOp->getAlignment(), EltVT.getStoreSize());
return true;
}
/// If exactly one element of the mask is set for a non-extending masked load,
/// it is a scalar load and vector insert.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue
reduceMaskedLoadToScalarLoad(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(ML, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Load the one scalar element that is specified by the mask using the
// appropriate offset from the base pointer.
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
EVT EltVT = VT.getVectorElementType();
SDValue Load = DAG.getLoad(EltVT, DL, ML->getChain(), Addr,
ML->getPointerInfo(), ML->isVolatile(),
ML->isNonTemporal(), ML->isInvariant(), Alignment);
// Insert the loaded element into the appropriate place in the vector.
SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT, ML->getSrc0(),
Load, VecIndex);
return DCI.CombineTo(ML, Insert, Load.getValue(1), true);
}
static SDValue
combineMaskedLoadConstantMask(MaskedLoadSDNode *ML, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
if (!ISD::isBuildVectorOfConstantSDNodes(ML->getMask().getNode()))
return SDValue();
SDLoc DL(ML);
EVT VT = ML->getValueType(0);
// If we are loading the first and last elements of a vector, it is safe and
// always faster to load the whole vector. Replace the masked load with a
// vector load and select.
unsigned NumElts = VT.getVectorNumElements();
BuildVectorSDNode *MaskBV = cast<BuildVectorSDNode>(ML->getMask());
bool LoadFirstElt = !isNullConstant(MaskBV->getOperand(0));
bool LoadLastElt = !isNullConstant(MaskBV->getOperand(NumElts - 1));
if (LoadFirstElt && LoadLastElt) {
SDValue VecLd = DAG.getLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
ML->getMemOperand());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), VecLd, ML->getSrc0());
return DCI.CombineTo(ML, Blend, VecLd.getValue(1), true);
}
// Convert a masked load with a constant mask into a masked load and a select.
// This allows the select operation to use a faster kind of select instruction
// (for example, vblendvps -> vblendps).
// Don't try this if the pass-through operand is already undefined. That would
// cause an infinite loop because that's what we're about to create.
if (ML->getSrc0().isUndef())
return SDValue();
// The new masked load has an undef pass-through operand. The select uses the
// original pass-through operand.
SDValue NewML = DAG.getMaskedLoad(VT, DL, ML->getChain(), ML->getBasePtr(),
ML->getMask(), DAG.getUNDEF(VT),
ML->getMemoryVT(), ML->getMemOperand(),
ML->getExtensionType());
SDValue Blend = DAG.getSelect(DL, VT, ML->getMask(), NewML, ML->getSrc0());
return DCI.CombineTo(ML, Blend, NewML.getValue(1), true);
}
static SDValue combineMaskedLoad(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
MaskedLoadSDNode *Mld = cast<MaskedLoadSDNode>(N);
if (Mld->getExtensionType() == ISD::NON_EXTLOAD) {
if (SDValue ScalarLoad = reduceMaskedLoadToScalarLoad(Mld, DAG, DCI))
return ScalarLoad;
// TODO: Do some AVX512 subsets benefit from this transform?
if (!Subtarget.hasAVX512())
if (SDValue Blend = combineMaskedLoadConstantMask(Mld, DAG, DCI))
return Blend;
}
if (Mld->getExtensionType() != ISD::SEXTLOAD)
return SDValue();
// Resolve extending loads.
EVT VT = Mld->getValueType(0);
unsigned NumElems = VT.getVectorNumElements();
EVT LdVT = Mld->getMemoryVT();
SDLoc dl(Mld);
assert(LdVT != VT && "Cannot extend to the same type");
unsigned ToSz = VT.getVectorElementType().getSizeInBits();
unsigned FromSz = LdVT.getVectorElementType().getSizeInBits();
// From/To sizes and ElemCount must be pow of two.
assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
"Unexpected size for extending masked load");
unsigned SizeRatio = ToSz / FromSz;
assert(SizeRatio * NumElems * FromSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
LdVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
// Convert Src0 value.
SDValue WideSrc0 = DAG.getBitcast(WideVecVT, Mld->getSrc0());
if (!Mld->getSrc0().isUndef()) {
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
"WideVecVT should be legal");
WideSrc0 = DAG.getVectorShuffle(WideVecVT, dl, WideSrc0,
DAG.getUNDEF(WideVecVT), &ShuffleVec[0]);
}
// Prepare the new mask.
SDValue NewMask;
SDValue Mask = Mld->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type.
NewMask = DAG.getBitcast(WideVecVT, Mask);
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
for (unsigned i = NumElems; i != NumElems * SizeRatio; ++i)
ShuffleVec[i] = NumElems * SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
&ShuffleVec[0]);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
unsigned MaskNumElts = VT.getVectorNumElements();
EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
WidenNumElts);
unsigned NumConcat = WidenNumElts / MaskNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
Ops[0] = Mask;
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = ZeroVal;
NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
}
SDValue WideLd = DAG.getMaskedLoad(WideVecVT, dl, Mld->getChain(),
Mld->getBasePtr(), NewMask, WideSrc0,
Mld->getMemoryVT(), Mld->getMemOperand(),
ISD::NON_EXTLOAD);
SDValue NewVec = DAG.getNode(X86ISD::VSEXT, dl, VT, WideLd);
return DCI.CombineTo(N, NewVec, WideLd.getValue(1), true);
}
/// If exactly one element of the mask is set for a non-truncating masked store,
/// it is a vector extract and scalar store.
/// Note: It is expected that the degenerate cases of an all-zeros or all-ones
/// mask have already been optimized in IR, so we don't bother with those here.
static SDValue reduceMaskedStoreToScalarStore(MaskedStoreSDNode *MS,
SelectionDAG &DAG) {
// TODO: This is not x86-specific, so it could be lifted to DAGCombiner.
// However, some target hooks may need to be added to know when the transform
// is profitable. Endianness would also have to be considered.
SDValue Addr, VecIndex;
unsigned Alignment;
if (!getParamsForOneTrueMaskedElt(MS, DAG, Addr, VecIndex, Alignment))
return SDValue();
// Extract the one scalar element that is actually being stored.
SDLoc DL(MS);
EVT VT = MS->getValue().getValueType();
EVT EltVT = VT.getVectorElementType();
SDValue Extract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT,
MS->getValue(), VecIndex);
// Store that element at the appropriate offset from the base pointer.
return DAG.getStore(MS->getChain(), DL, Extract, Addr, MS->getPointerInfo(),
MS->isVolatile(), MS->isNonTemporal(), Alignment);
}
static SDValue combineMaskedStore(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
MaskedStoreSDNode *Mst = cast<MaskedStoreSDNode>(N);
if (!Mst->isTruncatingStore())
return reduceMaskedStoreToScalarStore(Mst, DAG);
// Resolve truncating stores.
EVT VT = Mst->getValue().getValueType();
unsigned NumElems = VT.getVectorNumElements();
EVT StVT = Mst->getMemoryVT();
SDLoc dl(Mst);
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromSz = VT.getVectorElementType().getSizeInBits();
unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// The truncating store is legal in some cases. For example
// vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
// are designated for truncate store.
// In this case we don't need any further transformations.
if (TLI.isTruncStoreLegal(VT, StVT))
return SDValue();
// From/To sizes and ElemCount must be pow of two.
assert (isPowerOf2_32(NumElems * FromSz * ToSz) &&
"Unexpected size for truncating masked store");
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
assert (((NumElems * FromSz) % ToSz) == 0 &&
"Unexpected ratio for truncating masked store");
unsigned SizeRatio = FromSz / ToSz;
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle.
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
StVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue WideVec = DAG.getBitcast(WideVecVT, Mst->getValue());
SmallVector<int, 16> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
assert(DAG.getTargetLoweringInfo().isTypeLegal(WideVecVT) &&
"WideVecVT should be legal");
SDValue TruncatedVal = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
&ShuffleVec[0]);
SDValue NewMask;
SDValue Mask = Mst->getMask();
if (Mask.getValueType() == VT) {
// Mask and original value have the same type.
NewMask = DAG.getBitcast(WideVecVT, Mask);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
for (unsigned i = NumElems; i != NumElems*SizeRatio; ++i)
ShuffleVec[i] = NumElems*SizeRatio;
NewMask = DAG.getVectorShuffle(WideVecVT, dl, NewMask,
DAG.getConstant(0, dl, WideVecVT),
&ShuffleVec[0]);
} else {
assert(Mask.getValueType().getVectorElementType() == MVT::i1);
unsigned WidenNumElts = NumElems*SizeRatio;
unsigned MaskNumElts = VT.getVectorNumElements();
EVT NewMaskVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1,
WidenNumElts);
unsigned NumConcat = WidenNumElts / MaskNumElts;
SmallVector<SDValue, 16> Ops(NumConcat);
SDValue ZeroVal = DAG.getConstant(0, dl, Mask.getValueType());
Ops[0] = Mask;
for (unsigned i = 1; i != NumConcat; ++i)
Ops[i] = ZeroVal;
NewMask = DAG.getNode(ISD::CONCAT_VECTORS, dl, NewMaskVT, Ops);
}
return DAG.getMaskedStore(Mst->getChain(), dl, TruncatedVal,
Mst->getBasePtr(), NewMask, StVT,
Mst->getMemOperand(), false);
}
static SDValue combineStore(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
StoreSDNode *St = cast<StoreSDNode>(N);
EVT VT = St->getValue().getValueType();
EVT StVT = St->getMemoryVT();
SDLoc dl(St);
SDValue StoredVal = St->getOperand(1);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// If we are saving a concatenation of two XMM registers and 32-byte stores
// are slow, such as on Sandy Bridge, perform two 16-byte stores.
bool Fast;
unsigned AddressSpace = St->getAddressSpace();
unsigned Alignment = St->getAlignment();
if (VT.is256BitVector() && StVT == VT &&
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
AddressSpace, Alignment, &Fast) &&
!Fast) {
unsigned NumElems = VT.getVectorNumElements();
if (NumElems < 2)
return SDValue();
SDValue Value0 = extract128BitVector(StoredVal, 0, DAG, dl);
SDValue Value1 = extract128BitVector(StoredVal, NumElems / 2, DAG, dl);
SDValue Ptr0 = St->getBasePtr();
SDValue Ptr1 = DAG.getMemBasePlusOffset(Ptr0, 16, dl);
SDValue Ch0 = DAG.getStore(St->getChain(), dl, Value0, Ptr0,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), Alignment);
SDValue Ch1 = DAG.getStore(St->getChain(), dl, Value1, Ptr1,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(),
std::min(16U, Alignment));
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Ch0, Ch1);
}
// Optimize trunc store (of multiple scalars) to shuffle and store.
// First, pack all of the elements in one place. Next, store to memory
// in fewer chunks.
if (St->isTruncatingStore() && VT.isVector()) {
// Check if we can detect an AVG pattern from the truncation. If yes,
// replace the trunc store by a normal store with the result of X86ISD::AVG
// instruction.
if (SDValue Avg = detectAVGPattern(St->getValue(), St->getMemoryVT(), DAG,
Subtarget, dl))
return DAG.getStore(St->getChain(), dl, Avg, St->getBasePtr(),
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
unsigned NumElems = VT.getVectorNumElements();
assert(StVT != VT && "Cannot truncate to the same type");
unsigned FromSz = VT.getVectorElementType().getSizeInBits();
unsigned ToSz = StVT.getVectorElementType().getSizeInBits();
// The truncating store is legal in some cases. For example
// vpmovqb, vpmovqw, vpmovqd, vpmovdb, vpmovdw
// are designated for truncate store.
// In this case we don't need any further transformations.
if (TLI.isTruncStoreLegalOrCustom(VT, StVT))
return SDValue();
// From, To sizes and ElemCount must be pow of two
if (!isPowerOf2_32(NumElems * FromSz * ToSz)) return SDValue();
// We are going to use the original vector elt for storing.
// Accumulated smaller vector elements must be a multiple of the store size.
if (0 != (NumElems * FromSz) % ToSz) return SDValue();
unsigned SizeRatio = FromSz / ToSz;
assert(SizeRatio * NumElems * ToSz == VT.getSizeInBits());
// Create a type on which we perform the shuffle
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(),
StVT.getScalarType(), NumElems*SizeRatio);
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue WideVec = DAG.getBitcast(WideVecVT, St->getValue());
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i != NumElems; ++i)
ShuffleVec[i] = i * SizeRatio;
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT))
return SDValue();
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, dl, WideVec,
DAG.getUNDEF(WideVecVT),
&ShuffleVec[0]);
// At this point all of the data is stored at the bottom of the
// register. We now need to save it to mem.
// Find the largest store unit
MVT StoreType = MVT::i8;
for (MVT Tp : MVT::integer_valuetypes()) {
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToSz)
StoreType = Tp;
}
// On 32bit systems, we can't save 64bit integers. Try bitcasting to F64.
if (TLI.isTypeLegal(MVT::f64) && StoreType.getSizeInBits() < 64 &&
(64 <= NumElems * ToSz))
StoreType = MVT::f64;
// Bitcast the original vector into a vector of store-size units
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
StoreType, VT.getSizeInBits()/StoreType.getSizeInBits());
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
SDValue ShuffWide = DAG.getBitcast(StoreVecVT, Shuff);
SmallVector<SDValue, 8> Chains;
SDValue Ptr = St->getBasePtr();
// Perform one or more big stores into memory.
for (unsigned i=0, e=(ToSz*NumElems)/StoreType.getSizeInBits(); i!=e; ++i) {
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
StoreType, ShuffWide,
DAG.getIntPtrConstant(i, dl));
SDValue Ch = DAG.getStore(St->getChain(), dl, SubVec, Ptr,
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
Ptr = DAG.getMemBasePlusOffset(Ptr, StoreType.getStoreSize(), dl);
Chains.push_back(Ch);
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
}
// Turn load->store of MMX types into GPR load/stores. This avoids clobbering
// the FP state in cases where an emms may be missing.
// A preferable solution to the general problem is to figure out the right
// places to insert EMMS. This qualifies as a quick hack.
// Similarly, turn load->store of i64 into double load/stores in 32-bit mode.
if (VT.getSizeInBits() != 64)
return SDValue();
const Function *F = DAG.getMachineFunction().getFunction();
bool NoImplicitFloatOps = F->hasFnAttribute(Attribute::NoImplicitFloat);
bool F64IsLegal =
!Subtarget.useSoftFloat() && !NoImplicitFloatOps && Subtarget.hasSSE2();
if ((VT.isVector() ||
(VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit())) &&
isa<LoadSDNode>(St->getValue()) &&
!cast<LoadSDNode>(St->getValue())->isVolatile() &&
St->getChain().hasOneUse() && !St->isVolatile()) {
SDNode* LdVal = St->getValue().getNode();
LoadSDNode *Ld = nullptr;
int TokenFactorIndex = -1;
SmallVector<SDValue, 8> Ops;
SDNode* ChainVal = St->getChain().getNode();
// Must be a store of a load. We currently handle two cases: the load
// is a direct child, and it's under an intervening TokenFactor. It is
// possible to dig deeper under nested TokenFactors.
if (ChainVal == LdVal)
Ld = cast<LoadSDNode>(St->getChain());
else if (St->getValue().hasOneUse() &&
ChainVal->getOpcode() == ISD::TokenFactor) {
for (unsigned i = 0, e = ChainVal->getNumOperands(); i != e; ++i) {
if (ChainVal->getOperand(i).getNode() == LdVal) {
TokenFactorIndex = i;
Ld = cast<LoadSDNode>(St->getValue());
} else
Ops.push_back(ChainVal->getOperand(i));
}
}
if (!Ld || !ISD::isNormalLoad(Ld))
return SDValue();
// If this is not the MMX case, i.e. we are just turning i64 load/store
// into f64 load/store, avoid the transformation if there are multiple
// uses of the loaded value.
if (!VT.isVector() && !Ld->hasNUsesOfValue(1, 0))
return SDValue();
SDLoc LdDL(Ld);
SDLoc StDL(N);
// If we are a 64-bit capable x86, lower to a single movq load/store pair.
// Otherwise, if it's legal to use f64 SSE instructions, use f64 load/store
// pair instead.
if (Subtarget.is64Bit() || F64IsLegal) {
MVT LdVT = Subtarget.is64Bit() ? MVT::i64 : MVT::f64;
SDValue NewLd = DAG.getLoad(LdVT, LdDL, Ld->getChain(), Ld->getBasePtr(),
Ld->getPointerInfo(), Ld->isVolatile(),
Ld->isNonTemporal(), Ld->isInvariant(),
Ld->getAlignment());
SDValue NewChain = NewLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(NewChain);
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
}
return DAG.getStore(NewChain, StDL, NewLd, St->getBasePtr(),
St->getPointerInfo(),
St->isVolatile(), St->isNonTemporal(),
St->getAlignment());
}
// Otherwise, lower to two pairs of 32-bit loads / stores.
SDValue LoAddr = Ld->getBasePtr();
SDValue HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, LdDL);
SDValue LoLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), LoAddr,
Ld->getPointerInfo(),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->isInvariant(), Ld->getAlignment());
SDValue HiLd = DAG.getLoad(MVT::i32, LdDL, Ld->getChain(), HiAddr,
Ld->getPointerInfo().getWithOffset(4),
Ld->isVolatile(), Ld->isNonTemporal(),
Ld->isInvariant(),
MinAlign(Ld->getAlignment(), 4));
SDValue NewChain = LoLd.getValue(1);
if (TokenFactorIndex != -1) {
Ops.push_back(LoLd);
Ops.push_back(HiLd);
NewChain = DAG.getNode(ISD::TokenFactor, LdDL, MVT::Other, Ops);
}
LoAddr = St->getBasePtr();
HiAddr = DAG.getMemBasePlusOffset(LoAddr, 4, StDL);
SDValue LoSt = DAG.getStore(NewChain, StDL, LoLd, LoAddr,
St->getPointerInfo(),
St->isVolatile(), St->isNonTemporal(),
St->getAlignment());
SDValue HiSt = DAG.getStore(NewChain, StDL, HiLd, HiAddr,
St->getPointerInfo().getWithOffset(4),
St->isVolatile(),
St->isNonTemporal(),
MinAlign(St->getAlignment(), 4));
return DAG.getNode(ISD::TokenFactor, StDL, MVT::Other, LoSt, HiSt);
}
// This is similar to the above case, but here we handle a scalar 64-bit
// integer store that is extracted from a vector on a 32-bit target.
// If we have SSE2, then we can treat it like a floating-point double
// to get past legalization. The execution dependencies fixup pass will
// choose the optimal machine instruction for the store if this really is
// an integer or v2f32 rather than an f64.
if (VT == MVT::i64 && F64IsLegal && !Subtarget.is64Bit() &&
St->getOperand(1).getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
SDValue OldExtract = St->getOperand(1);
SDValue ExtOp0 = OldExtract.getOperand(0);
unsigned VecSize = ExtOp0.getValueSizeInBits();
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, VecSize / 64);
SDValue BitCast = DAG.getBitcast(VecVT, ExtOp0);
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
BitCast, OldExtract.getOperand(1));
return DAG.getStore(St->getChain(), dl, NewExtract, St->getBasePtr(),
St->getPointerInfo(), St->isVolatile(),
St->isNonTemporal(), St->getAlignment());
}
return SDValue();
}
/// Return 'true' if this vector operation is "horizontal"
/// and return the operands for the horizontal operation in LHS and RHS. A
/// horizontal operation performs the binary operation on successive elements
/// of its first operand, then on successive elements of its second operand,
/// returning the resulting values in a vector. For example, if
/// A = < float a0, float a1, float a2, float a3 >
/// and
/// B = < float b0, float b1, float b2, float b3 >
/// then the result of doing a horizontal operation on A and B is
/// A horizontal-op B = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >.
/// In short, LHS and RHS are inspected to see if LHS op RHS is of the form
/// A horizontal-op B, for some already available A and B, and if so then LHS is
/// set to A, RHS to B, and the routine returns 'true'.
/// Note that the binary operation should have the property that if one of the
/// operands is UNDEF then the result is UNDEF.
static bool isHorizontalBinOp(SDValue &LHS, SDValue &RHS, bool IsCommutative) {
// Look for the following pattern: if
// A = < float a0, float a1, float a2, float a3 >
// B = < float b0, float b1, float b2, float b3 >
// and
// LHS = VECTOR_SHUFFLE A, B, <0, 2, 4, 6>
// RHS = VECTOR_SHUFFLE A, B, <1, 3, 5, 7>
// then LHS op RHS = < a0 op a1, a2 op a3, b0 op b1, b2 op b3 >
// which is A horizontal-op B.
// At least one of the operands should be a vector shuffle.
if (LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
RHS.getOpcode() != ISD::VECTOR_SHUFFLE)
return false;
MVT VT = LHS.getSimpleValueType();
assert((VT.is128BitVector() || VT.is256BitVector()) &&
"Unsupported vector type for horizontal add/sub");
// Handle 128 and 256-bit vector lengths. AVX defines horizontal add/sub to
// operate independently on 128-bit lanes.
unsigned NumElts = VT.getVectorNumElements();
unsigned NumLanes = VT.getSizeInBits()/128;
unsigned NumLaneElts = NumElts / NumLanes;
assert((NumLaneElts % 2 == 0) &&
"Vector type should have an even number of elements in each lane");
unsigned HalfLaneElts = NumLaneElts/2;
// View LHS in the form
// LHS = VECTOR_SHUFFLE A, B, LMask
// If LHS is not a shuffle then pretend it is the shuffle
// LHS = VECTOR_SHUFFLE LHS, undef, <0, 1, ..., N-1>
// NOTE: in what follows a default initialized SDValue represents an UNDEF of
// type VT.
SDValue A, B;
SmallVector<int, 16> LMask(NumElts);
if (LHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (!LHS.getOperand(0).isUndef())
A = LHS.getOperand(0);
if (!LHS.getOperand(1).isUndef())
B = LHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(LHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), LMask.begin());
} else {
if (!LHS.isUndef())
A = LHS;
for (unsigned i = 0; i != NumElts; ++i)
LMask[i] = i;
}
// Likewise, view RHS in the form
// RHS = VECTOR_SHUFFLE C, D, RMask
SDValue C, D;
SmallVector<int, 16> RMask(NumElts);
if (RHS.getOpcode() == ISD::VECTOR_SHUFFLE) {
if (!RHS.getOperand(0).isUndef())
C = RHS.getOperand(0);
if (!RHS.getOperand(1).isUndef())
D = RHS.getOperand(1);
ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(RHS.getNode())->getMask();
std::copy(Mask.begin(), Mask.end(), RMask.begin());
} else {
if (!RHS.isUndef())
C = RHS;
for (unsigned i = 0; i != NumElts; ++i)
RMask[i] = i;
}
// Check that the shuffles are both shuffling the same vectors.
if (!(A == C && B == D) && !(A == D && B == C))
return false;
// If everything is UNDEF then bail out: it would be better to fold to UNDEF.
if (!A.getNode() && !B.getNode())
return false;
// If A and B occur in reverse order in RHS, then "swap" them (which means
// rewriting the mask).
if (A != C)
ShuffleVectorSDNode::commuteMask(RMask);
// At this point LHS and RHS are equivalent to
// LHS = VECTOR_SHUFFLE A, B, LMask
// RHS = VECTOR_SHUFFLE A, B, RMask
// Check that the masks correspond to performing a horizontal operation.
for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
for (unsigned i = 0; i != NumLaneElts; ++i) {
int LIdx = LMask[i+l], RIdx = RMask[i+l];
// Ignore any UNDEF components.
if (LIdx < 0 || RIdx < 0 ||
(!A.getNode() && (LIdx < (int)NumElts || RIdx < (int)NumElts)) ||
(!B.getNode() && (LIdx >= (int)NumElts || RIdx >= (int)NumElts)))
continue;
// Check that successive elements are being operated on. If not, this is
// not a horizontal operation.
unsigned Src = (i/HalfLaneElts); // each lane is split between srcs
int Index = 2*(i%HalfLaneElts) + NumElts*Src + l;
if (!(LIdx == Index && RIdx == Index + 1) &&
!(IsCommutative && LIdx == Index + 1 && RIdx == Index))
return false;
}
}
LHS = A.getNode() ? A : B; // If A is 'UNDEF', use B for it.
RHS = B.getNode() ? B : A; // If B is 'UNDEF', use A for it.
return true;
}
/// Do target-specific dag combines on floating-point adds/subs.
static SDValue combineFaddFsub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
bool IsFadd = N->getOpcode() == ISD::FADD;
assert((IsFadd || N->getOpcode() == ISD::FSUB) && "Wrong opcode");
// Try to synthesize horizontal add/sub from adds/subs of shuffles.
if (((Subtarget.hasSSE3() && (VT == MVT::v4f32 || VT == MVT::v2f64)) ||
(Subtarget.hasFp256() && (VT == MVT::v8f32 || VT == MVT::v4f64))) &&
isHorizontalBinOp(LHS, RHS, IsFadd)) {
auto NewOpcode = IsFadd ? X86ISD::FHADD : X86ISD::FHSUB;
return DAG.getNode(NewOpcode, SDLoc(N), VT, LHS, RHS);
}
return SDValue();
}
/// Truncate a group of v4i32 into v16i8/v8i16 using X86ISD::PACKUS.
static SDValue
combineVectorTruncationWithPACKUS(SDNode *N, SelectionDAG &DAG,
SmallVector<SDValue, 8> &Regs) {
assert(Regs.size() > 0 && (Regs[0].getValueType() == MVT::v4i32 ||
Regs[0].getValueType() == MVT::v2i64));
EVT OutVT = N->getValueType(0);
EVT OutSVT = OutVT.getVectorElementType();
EVT InVT = Regs[0].getValueType();
EVT InSVT = InVT.getVectorElementType();
SDLoc DL(N);
// First, use mask to unset all bits that won't appear in the result.
assert((OutSVT == MVT::i8 || OutSVT == MVT::i16) &&
"OutSVT can only be either i8 or i16.");
APInt Mask =
APInt::getLowBitsSet(InSVT.getSizeInBits(), OutSVT.getSizeInBits());
SDValue MaskVal = DAG.getConstant(Mask, DL, InVT);
for (auto &Reg : Regs)
Reg = DAG.getNode(ISD::AND, DL, InVT, MaskVal, Reg);
MVT UnpackedVT, PackedVT;
if (OutSVT == MVT::i8) {
UnpackedVT = MVT::v8i16;
PackedVT = MVT::v16i8;
} else {
UnpackedVT = MVT::v4i32;
PackedVT = MVT::v8i16;
}
// In each iteration, truncate the type by a half size.
auto RegNum = Regs.size();
for (unsigned j = 1, e = InSVT.getSizeInBits() / OutSVT.getSizeInBits();
j < e; j *= 2, RegNum /= 2) {
for (unsigned i = 0; i < RegNum; i++)
Regs[i] = DAG.getBitcast(UnpackedVT, Regs[i]);
for (unsigned i = 0; i < RegNum / 2; i++)
Regs[i] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[i * 2],
Regs[i * 2 + 1]);
}
// If the type of the result is v8i8, we need do one more X86ISD::PACKUS, and
// then extract a subvector as the result since v8i8 is not a legal type.
if (OutVT == MVT::v8i8) {
Regs[0] = DAG.getNode(X86ISD::PACKUS, DL, PackedVT, Regs[0], Regs[0]);
Regs[0] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, Regs[0],
DAG.getIntPtrConstant(0, DL));
return Regs[0];
} else if (RegNum > 1) {
Regs.resize(RegNum);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
} else
return Regs[0];
}
/// Truncate a group of v4i32 into v8i16 using X86ISD::PACKSS.
static SDValue
combineVectorTruncationWithPACKSS(SDNode *N, SelectionDAG &DAG,
SmallVector<SDValue, 8> &Regs) {
assert(Regs.size() > 0 && Regs[0].getValueType() == MVT::v4i32);
EVT OutVT = N->getValueType(0);
SDLoc DL(N);
// Shift left by 16 bits, then arithmetic-shift right by 16 bits.
SDValue ShAmt = DAG.getConstant(16, DL, MVT::i32);
for (auto &Reg : Regs) {
Reg = getTargetVShiftNode(X86ISD::VSHLI, DL, MVT::v4i32, Reg, ShAmt, DAG);
Reg = getTargetVShiftNode(X86ISD::VSRAI, DL, MVT::v4i32, Reg, ShAmt, DAG);
}
for (unsigned i = 0, e = Regs.size() / 2; i < e; i++)
Regs[i] = DAG.getNode(X86ISD::PACKSS, DL, MVT::v8i16, Regs[i * 2],
Regs[i * 2 + 1]);
if (Regs.size() > 2) {
Regs.resize(Regs.size() / 2);
return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Regs);
} else
return Regs[0];
}
/// This function transforms truncation from vXi32/vXi64 to vXi8/vXi16 into
/// X86ISD::PACKUS/X86ISD::PACKSS operations. We do it here because after type
/// legalization the truncation will be translated into a BUILD_VECTOR with each
/// element that is extracted from a vector and then truncated, and it is
/// diffcult to do this optimization based on them.
static SDValue combineVectorTruncation(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT OutVT = N->getValueType(0);
if (!OutVT.isVector())
return SDValue();
SDValue In = N->getOperand(0);
if (!In.getValueType().isSimple())
return SDValue();
EVT InVT = In.getValueType();
unsigned NumElems = OutVT.getVectorNumElements();
// TODO: On AVX2, the behavior of X86ISD::PACKUS is different from that on
// SSE2, and we need to take care of it specially.
// AVX512 provides vpmovdb.
if (!Subtarget.hasSSE2() || Subtarget.hasAVX2())
return SDValue();
EVT OutSVT = OutVT.getVectorElementType();
EVT InSVT = InVT.getVectorElementType();
if (!((InSVT == MVT::i32 || InSVT == MVT::i64) &&
(OutSVT == MVT::i8 || OutSVT == MVT::i16) && isPowerOf2_32(NumElems) &&
NumElems >= 8))
return SDValue();
// SSSE3's pshufb results in less instructions in the cases below.
if (Subtarget.hasSSSE3() && NumElems == 8 &&
((OutSVT == MVT::i8 && InSVT != MVT::i64) ||
(InSVT == MVT::i32 && OutSVT == MVT::i16)))
return SDValue();
SDLoc DL(N);
// Split a long vector into vectors of legal type.
unsigned RegNum = InVT.getSizeInBits() / 128;
SmallVector<SDValue, 8> SubVec(RegNum);
unsigned NumSubRegElts = 128 / InSVT.getSizeInBits();
EVT SubRegVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubRegElts);
for (unsigned i = 0; i < RegNum; i++)
SubVec[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SubRegVT, In,
DAG.getIntPtrConstant(i * NumSubRegElts, DL));
// SSE2 provides PACKUS for only 2 x v8i16 -> v16i8 and SSE4.1 provides PACKUS
// for 2 x v4i32 -> v8i16. For SSSE3 and below, we need to use PACKSS to
// truncate 2 x v4i32 to v8i16.
if (Subtarget.hasSSE41() || OutSVT == MVT::i8)
return combineVectorTruncationWithPACKUS(N, DAG, SubVec);
else if (InSVT == MVT::i32)
return combineVectorTruncationWithPACKSS(N, DAG, SubVec);
else
return SDValue();
}
static SDValue combineTruncate(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue Src = N->getOperand(0);
SDLoc DL(N);
// Try to detect AVG pattern first.
if (SDValue Avg = detectAVGPattern(Src, VT, DAG, Subtarget, DL))
return Avg;
// The bitcast source is a direct mmx result.
// Detect bitcasts between i32 to x86mmx
if (Src.getOpcode() == ISD::BITCAST && VT == MVT::i32) {
SDValue BCSrc = Src.getOperand(0);
if (BCSrc.getValueType() == MVT::x86mmx)
return DAG.getNode(X86ISD::MMX_MOVD2W, DL, MVT::i32, BCSrc);
}
return combineVectorTruncation(N, DAG, Subtarget);
}
/// Do target-specific dag combines on floating point negations.
static SDValue combineFneg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
SDValue Arg = N->getOperand(0);
SDLoc DL(N);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
// If we're negating a FMUL node on a target with FMA, then we can avoid the
// use of a constant by performing (-0 - A*B) instead.
// FIXME: Check rounding control flags as well once it becomes available.
if (Arg.getOpcode() == ISD::FMUL && (SVT == MVT::f32 || SVT == MVT::f64) &&
Arg->getFlags()->hasNoSignedZeros() && Subtarget.hasAnyFMA()) {
SDValue Zero = DAG.getConstantFP(0.0, DL, VT);
return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Zero);
}
// If we're negating a FMA node, then we can adjust the
// instruction to include the extra negation.
if (Arg.hasOneUse()) {
switch (Arg.getOpcode()) {
case X86ISD::FMADD:
return DAG.getNode(X86ISD::FNMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FMSUB:
return DAG.getNode(X86ISD::FNMADD, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FNMADD:
return DAG.getNode(X86ISD::FMSUB, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
case X86ISD::FNMSUB:
return DAG.getNode(X86ISD::FMADD, DL, VT, Arg.getOperand(0),
Arg.getOperand(1), Arg.getOperand(2));
}
}
return SDValue();
}
static SDValue lowerX86FPLogicOp(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (VT.is512BitVector() && !Subtarget.hasDQI()) {
// VXORPS, VORPS, VANDPS, VANDNPS are supported only under DQ extention.
// These logic operations may be executed in the integer domain.
SDLoc dl(N);
MVT IntScalar = MVT::getIntegerVT(VT.getScalarSizeInBits());
MVT IntVT = MVT::getVectorVT(IntScalar, VT.getVectorNumElements());
SDValue Op0 = DAG.getBitcast(IntVT, N->getOperand(0));
SDValue Op1 = DAG.getBitcast(IntVT, N->getOperand(1));
unsigned IntOpcode = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("Unexpected FP logic op");
case X86ISD::FOR: IntOpcode = ISD::OR; break;
case X86ISD::FXOR: IntOpcode = ISD::XOR; break;
case X86ISD::FAND: IntOpcode = ISD::AND; break;
case X86ISD::FANDN: IntOpcode = X86ISD::ANDNP; break;
}
SDValue IntOp = DAG.getNode(IntOpcode, dl, IntVT, Op0, Op1);
return DAG.getBitcast(VT, IntOp);
}
return SDValue();
}
/// Do target-specific dag combines on X86ISD::FOR and X86ISD::FXOR nodes.
static SDValue combineFOr(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
assert(N->getOpcode() == X86ISD::FOR || N->getOpcode() == X86ISD::FXOR);
// F[X]OR(0.0, x) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
// F[X]OR(x, 0.0) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FMIN and X86ISD::FMAX nodes.
static SDValue combineFMinFMax(SDNode *N, SelectionDAG &DAG) {
assert(N->getOpcode() == X86ISD::FMIN || N->getOpcode() == X86ISD::FMAX);
// Only perform optimizations if UnsafeMath is used.
if (!DAG.getTarget().Options.UnsafeFPMath)
return SDValue();
// If we run in unsafe-math mode, then convert the FMAX and FMIN nodes
// into FMINC and FMAXC, which are Commutative operations.
unsigned NewOp = 0;
switch (N->getOpcode()) {
default: llvm_unreachable("unknown opcode");
case X86ISD::FMIN: NewOp = X86ISD::FMINC; break;
case X86ISD::FMAX: NewOp = X86ISD::FMAXC; break;
}
return DAG.getNode(NewOp, SDLoc(N), N->getValueType(0),
N->getOperand(0), N->getOperand(1));
}
static SDValue combineFMinNumFMaxNum(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
if (Subtarget.useSoftFloat())
return SDValue();
// TODO: Check for global or instruction-level "nnan". In that case, we
// should be able to lower to FMAX/FMIN alone.
// TODO: If an operand is already known to be a NaN or not a NaN, this
// should be an optional swap and FMAX/FMIN.
EVT VT = N->getValueType(0);
if (!((Subtarget.hasSSE1() && (VT == MVT::f32 || VT == MVT::v4f32)) ||
(Subtarget.hasSSE2() && (VT == MVT::f64 || VT == MVT::v2f64)) ||
(Subtarget.hasAVX() && (VT == MVT::v8f32 || VT == MVT::v4f64))))
return SDValue();
// This takes at least 3 instructions, so favor a library call when operating
// on a scalar and minimizing code size.
if (!VT.isVector() && DAG.getMachineFunction().getFunction()->optForMinSize())
return SDValue();
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
SDLoc DL(N);
EVT SetCCType = DAG.getTargetLoweringInfo().getSetCCResultType(
DAG.getDataLayout(), *DAG.getContext(), VT);
// There are 4 possibilities involving NaN inputs, and these are the required
// outputs:
// Op1
// Num NaN
// ----------------
// Num | Max | Op0 |
// Op0 ----------------
// NaN | Op1 | NaN |
// ----------------
//
// The SSE FP max/min instructions were not designed for this case, but rather
// to implement:
// Min = Op1 < Op0 ? Op1 : Op0
// Max = Op1 > Op0 ? Op1 : Op0
//
// So they always return Op0 if either input is a NaN. However, we can still
// use those instructions for fmaxnum by selecting away a NaN input.
// If either operand is NaN, the 2nd source operand (Op0) is passed through.
auto MinMaxOp = N->getOpcode() == ISD::FMAXNUM ? X86ISD::FMAX : X86ISD::FMIN;
SDValue MinOrMax = DAG.getNode(MinMaxOp, DL, VT, Op1, Op0);
SDValue IsOp0Nan = DAG.getSetCC(DL, SetCCType , Op0, Op0, ISD::SETUO);
// If Op0 is a NaN, select Op1. Otherwise, select the max. If both operands
// are NaN, the NaN value of Op1 is the result.
auto SelectOpcode = VT.isVector() ? ISD::VSELECT : ISD::SELECT;
return DAG.getNode(SelectOpcode, DL, VT, IsOp0Nan, Op1, MinOrMax);
}
/// Do target-specific dag combines on X86ISD::FAND nodes.
static SDValue combineFAnd(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FAND(0.0, x) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(0);
// FAND(x, 0.0) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
/// Do target-specific dag combines on X86ISD::FANDN nodes
static SDValue combineFAndn(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// FANDN(0.0, x) -> x
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
// FANDN(x, 0.0) -> 0.0
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N->getOperand(1)))
if (C->getValueAPF().isPosZero())
return N->getOperand(1);
return lowerX86FPLogicOp(N, DAG, Subtarget);
}
static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI) {
// BT ignores high bits in the bit index operand.
SDValue Op1 = N->getOperand(1);
if (Op1.hasOneUse()) {
unsigned BitWidth = Op1.getValueSizeInBits();
APInt DemandedMask = APInt::getLowBitsSet(BitWidth, Log2_32(BitWidth));
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
return SDValue();
}
static SDValue combineVZextMovl(SDNode *N, SelectionDAG &DAG) {
SDValue Op = peekThroughBitcasts(N->getOperand(0));
EVT VT = N->getValueType(0), OpVT = Op.getValueType();
if (Op.getOpcode() == X86ISD::VZEXT_LOAD &&
VT.getVectorElementType().getSizeInBits() ==
OpVT.getVectorElementType().getSizeInBits()) {
return DAG.getBitcast(VT, Op);
}
return SDValue();
}
static SDValue combineSignExtendInReg(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
if (!VT.isVector())
return SDValue();
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
EVT ExtraVT = cast<VTSDNode>(N1)->getVT();
SDLoc dl(N);
// The SIGN_EXTEND_INREG to v4i64 is expensive operation on the
// both SSE and AVX2 since there is no sign-extended shift right
// operation on a vector with 64-bit elements.
//(sext_in_reg (v4i64 anyext (v4i32 x )), ExtraVT) ->
// (v4i64 sext (v4i32 sext_in_reg (v4i32 x , ExtraVT)))
if (VT == MVT::v4i64 && (N0.getOpcode() == ISD::ANY_EXTEND ||
N0.getOpcode() == ISD::SIGN_EXTEND)) {
SDValue N00 = N0.getOperand(0);
// EXTLOAD has a better solution on AVX2,
// it may be replaced with X86ISD::VSEXT node.
if (N00.getOpcode() == ISD::LOAD && Subtarget.hasInt256())
if (!ISD::isNormalLoad(N00.getNode()))
return SDValue();
if (N00.getValueType() == MVT::v4i32 && ExtraVT.getSizeInBits() < 128) {
SDValue Tmp = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, MVT::v4i32,
N00, N1);
return DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i64, Tmp);
}
}
return SDValue();
}
/// sext(add_nsw(x, C)) --> add(sext(x), C_sext)
/// Promoting a sign extension ahead of an 'add nsw' exposes opportunities
/// to combine math ops, use an LEA, or use a complex addressing mode. This can
/// eliminate extend, add, and shift instructions.
static SDValue promoteSextBeforeAddNSW(SDNode *Sext, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// TODO: This should be valid for other integer types.
EVT VT = Sext->getValueType(0);
if (VT != MVT::i64)
return SDValue();
// We need an 'add nsw' feeding into the 'sext'.
SDValue Add = Sext->getOperand(0);
if (Add.getOpcode() != ISD::ADD || !Add->getFlags()->hasNoSignedWrap())
return SDValue();
// Having a constant operand to the 'add' ensures that we are not increasing
// the instruction count because the constant is extended for free below.
// A constant operand can also become the displacement field of an LEA.
auto *AddOp1 = dyn_cast<ConstantSDNode>(Add.getOperand(1));
if (!AddOp1)
return SDValue();
// Don't make the 'add' bigger if there's no hope of combining it with some
// other 'add' or 'shl' instruction.
// TODO: It may be profitable to generate simpler LEA instructions in place
// of single 'add' instructions, but the cost model for selecting an LEA
// currently has a high threshold.
bool HasLEAPotential = false;
for (auto *User : Sext->uses()) {
if (User->getOpcode() == ISD::ADD || User->getOpcode() == ISD::SHL) {
HasLEAPotential = true;
break;
}
}
if (!HasLEAPotential)
return SDValue();
// Everything looks good, so pull the 'sext' ahead of the 'add'.
int64_t AddConstant = AddOp1->getSExtValue();
SDValue AddOp0 = Add.getOperand(0);
SDValue NewSext = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(Sext), VT, AddOp0);
SDValue NewConstant = DAG.getConstant(AddConstant, SDLoc(Add), VT);
// The wider add is guaranteed to not wrap because both operands are
// sign-extended.
SDNodeFlags Flags;
Flags.setNoSignedWrap(true);
return DAG.getNode(ISD::ADD, SDLoc(Add), VT, NewSext, NewConstant, &Flags);
}
/// (i8,i32 {s/z}ext ({s/u}divrem (i8 x, i8 y)) ->
/// (i8,i32 ({s/u}divrem_sext_hreg (i8 x, i8 y)
/// This exposes the {s/z}ext to the sdivrem lowering, so that it directly
/// extends from AH (which we otherwise need to do contortions to access).
static SDValue getDivRem8(SDNode *N, SelectionDAG &DAG) {
SDValue N0 = N->getOperand(0);
auto OpcodeN = N->getOpcode();
auto OpcodeN0 = N0.getOpcode();
if (!((OpcodeN == ISD::SIGN_EXTEND && OpcodeN0 == ISD::SDIVREM) ||
(OpcodeN == ISD::ZERO_EXTEND && OpcodeN0 == ISD::UDIVREM)))
return SDValue();
EVT VT = N->getValueType(0);
EVT InVT = N0.getValueType();
if (N0.getResNo() != 1 || InVT != MVT::i8 || VT != MVT::i32)
return SDValue();
SDVTList NodeTys = DAG.getVTList(MVT::i8, VT);
auto DivRemOpcode = OpcodeN0 == ISD::SDIVREM ? X86ISD::SDIVREM8_SEXT_HREG
: X86ISD::UDIVREM8_ZEXT_HREG;
SDValue R = DAG.getNode(DivRemOpcode, SDLoc(N), NodeTys, N0.getOperand(0),
N0.getOperand(1));
DAG.ReplaceAllUsesOfValueWith(N0.getValue(0), R.getValue(0));
return R.getValue(1);
}
/// Convert a SEXT or ZEXT of a vector to a SIGN_EXTEND_VECTOR_INREG or
/// ZERO_EXTEND_VECTOR_INREG, this requires the splitting (or concatenating
/// with UNDEFs) of the input to vectors of the same size as the target type
/// which then extends the lowest elements.
static SDValue combineToExtendVectorInReg(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
unsigned Opcode = N->getOpcode();
if (Opcode != ISD::SIGN_EXTEND && Opcode != ISD::ZERO_EXTEND)
return SDValue();
if (!DCI.isBeforeLegalizeOps())
return SDValue();
if (!Subtarget.hasSSE2())
return SDValue();
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT SVT = VT.getScalarType();
EVT InVT = N0.getValueType();
EVT InSVT = InVT.getScalarType();
// Input type must be a vector and we must be extending legal integer types.
if (!VT.isVector())
return SDValue();
if (SVT != MVT::i64 && SVT != MVT::i32 && SVT != MVT::i16)
return SDValue();
if (InSVT != MVT::i32 && InSVT != MVT::i16 && InSVT != MVT::i8)
return SDValue();
// On AVX2+ targets, if the input/output types are both legal then we will be
// able to use SIGN_EXTEND/ZERO_EXTEND directly.
if (Subtarget.hasInt256() && DAG.getTargetLoweringInfo().isTypeLegal(VT) &&
DAG.getTargetLoweringInfo().isTypeLegal(InVT))
return SDValue();
SDLoc DL(N);
auto ExtendVecSize = [&DAG](SDLoc DL, SDValue N, unsigned Size) {
EVT InVT = N.getValueType();
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), InVT.getScalarType(),
Size / InVT.getScalarSizeInBits());
SmallVector<SDValue, 8> Opnds(Size / InVT.getSizeInBits(),
DAG.getUNDEF(InVT));
Opnds[0] = N;
return DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Opnds);
};
// If target-size is less than 128-bits, extend to a type that would extend
// to 128 bits, extend that and extract the original target vector.
if (VT.getSizeInBits() < 128 && !(128 % VT.getSizeInBits())) {
unsigned Scale = 128 / VT.getSizeInBits();
EVT ExVT =
EVT::getVectorVT(*DAG.getContext(), SVT, 128 / SVT.getSizeInBits());
SDValue Ex = ExtendVecSize(DL, N0, Scale * InVT.getSizeInBits());
SDValue SExt = DAG.getNode(Opcode, DL, ExVT, Ex);
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, SExt,
DAG.getIntPtrConstant(0, DL));
}
// If target-size is 128-bits (or 256-bits on AVX2 target), then convert to
// ISD::*_EXTEND_VECTOR_INREG which ensures lowering to X86ISD::V*EXT.
// Also use this if we don't have SSE41 to allow the legalizer do its job.
if (!Subtarget.hasSSE41() || VT.is128BitVector() ||
(VT.is256BitVector() && Subtarget.hasInt256())) {
SDValue ExOp = ExtendVecSize(DL, N0, VT.getSizeInBits());
return Opcode == ISD::SIGN_EXTEND
? DAG.getSignExtendVectorInReg(ExOp, DL, VT)
: DAG.getZeroExtendVectorInReg(ExOp, DL, VT);
}
// On pre-AVX2 targets, split into 128-bit nodes of
// ISD::*_EXTEND_VECTOR_INREG.
if (!Subtarget.hasInt256() && !(VT.getSizeInBits() % 128)) {
unsigned NumVecs = VT.getSizeInBits() / 128;
unsigned NumSubElts = 128 / SVT.getSizeInBits();
EVT SubVT = EVT::getVectorVT(*DAG.getContext(), SVT, NumSubElts);
EVT InSubVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumSubElts);
SmallVector<SDValue, 8> Opnds;
for (unsigned i = 0, Offset = 0; i != NumVecs; ++i, Offset += NumSubElts) {
SDValue SrcVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InSubVT, N0,
DAG.getIntPtrConstant(Offset, DL));
SrcVec = ExtendVecSize(DL, SrcVec, 128);
SrcVec = Opcode == ISD::SIGN_EXTEND
? DAG.getSignExtendVectorInReg(SrcVec, DL, SubVT)
: DAG.getZeroExtendVectorInReg(SrcVec, DL, SubVT);
Opnds.push_back(SrcVec);
}
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Opnds);
}
return SDValue();
}
static SDValue combineSext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = N0.getValueType();
SDLoc DL(N);
if (SDValue DivRem8 = getDivRem8(N, DAG))
return DivRem8;
if (!DCI.isBeforeLegalizeOps()) {
if (InVT == MVT::i1) {
SDValue Zero = DAG.getConstant(0, DL, VT);
SDValue AllOnes =
DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), DL, VT);
return DAG.getNode(ISD::SELECT, DL, VT, N0, AllOnes, Zero);
}
return SDValue();
}
if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (Subtarget.hasAVX() && VT.is256BitVector())
if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
return R;
if (SDValue NewAdd = promoteSextBeforeAddNSW(N, DAG, Subtarget))
return NewAdd;
return SDValue();
}
static SDValue combineFMA(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDLoc dl(N);
EVT VT = N->getValueType(0);
// Let legalize expand this if it isn't a legal type yet.
if (!DAG.getTargetLoweringInfo().isTypeLegal(VT))
return SDValue();
EVT ScalarVT = VT.getScalarType();
if ((ScalarVT != MVT::f32 && ScalarVT != MVT::f64) || !Subtarget.hasAnyFMA())
return SDValue();
SDValue A = N->getOperand(0);
SDValue B = N->getOperand(1);
SDValue C = N->getOperand(2);
bool NegA = (A.getOpcode() == ISD::FNEG);
bool NegB = (B.getOpcode() == ISD::FNEG);
bool NegC = (C.getOpcode() == ISD::FNEG);
// Negative multiplication when NegA xor NegB
bool NegMul = (NegA != NegB);
if (NegA)
A = A.getOperand(0);
if (NegB)
B = B.getOperand(0);
if (NegC)
C = C.getOperand(0);
unsigned Opcode;
if (!NegMul)
Opcode = (!NegC) ? X86ISD::FMADD : X86ISD::FMSUB;
else
Opcode = (!NegC) ? X86ISD::FNMADD : X86ISD::FNMSUB;
return DAG.getNode(Opcode, dl, VT, A, B, C);
}
static SDValue combineZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
// (i32 zext (and (i8 x86isd::setcc_carry), 1)) ->
// (and (i32 x86isd::setcc_carry), 1)
// This eliminates the zext. This transformation is necessary because
// ISD::SETCC is always legalized to i8.
SDLoc dl(N);
SDValue N0 = N->getOperand(0);
EVT VT = N->getValueType(0);
if (N0.getOpcode() == ISD::AND &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
if (!isOneConstant(N0.getOperand(1)))
return SDValue();
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (N0.getOpcode() == ISD::TRUNCATE &&
N0.hasOneUse() &&
N0.getOperand(0).hasOneUse()) {
SDValue N00 = N0.getOperand(0);
if (N00.getOpcode() == X86ISD::SETCC_CARRY) {
return DAG.getNode(ISD::AND, dl, VT,
DAG.getNode(X86ISD::SETCC_CARRY, dl, VT,
N00.getOperand(0), N00.getOperand(1)),
DAG.getConstant(1, dl, VT));
}
}
if (SDValue V = combineToExtendVectorInReg(N, DAG, DCI, Subtarget))
return V;
if (VT.is256BitVector())
if (SDValue R = WidenMaskArithmetic(N, DAG, DCI, Subtarget))
return R;
if (SDValue DivRem8 = getDivRem8(N, DAG))
return DivRem8;
return SDValue();
}
/// Optimize x == -y --> x+y == 0
/// x != -y --> x+y != 0
static SDValue combineSetCC(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
EVT VT = N->getValueType(0);
SDLoc DL(N);
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && LHS.getOpcode() == ISD::SUB)
if (isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) {
SDValue addV = DAG.getNode(ISD::ADD, DL, LHS.getValueType(), RHS,
LHS.getOperand(1));
return DAG.getSetCC(DL, N->getValueType(0), addV,
DAG.getConstant(0, DL, addV.getValueType()), CC);
}
if ((CC == ISD::SETNE || CC == ISD::SETEQ) && RHS.getOpcode() == ISD::SUB)
if (isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) {
SDValue addV = DAG.getNode(ISD::ADD, DL, RHS.getValueType(), LHS,
RHS.getOperand(1));
return DAG.getSetCC(DL, N->getValueType(0), addV,
DAG.getConstant(0, DL, addV.getValueType()), CC);
}
if (VT.getScalarType() == MVT::i1 &&
(CC == ISD::SETNE || CC == ISD::SETEQ || ISD::isSignedIntSetCC(CC))) {
bool IsSEXT0 =
(LHS.getOpcode() == ISD::SIGN_EXTEND) &&
(LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
bool IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
if (!IsSEXT0 || !IsVZero1) {
// Swap the operands and update the condition code.
std::swap(LHS, RHS);
CC = ISD::getSetCCSwappedOperands(CC);
IsSEXT0 = (LHS.getOpcode() == ISD::SIGN_EXTEND) &&
(LHS.getOperand(0).getValueType().getScalarType() == MVT::i1);
IsVZero1 = ISD::isBuildVectorAllZeros(RHS.getNode());
}
if (IsSEXT0 && IsVZero1) {
assert(VT == LHS.getOperand(0).getValueType() &&
"Uexpected operand type");
if (CC == ISD::SETGT)
return DAG.getConstant(0, DL, VT);
if (CC == ISD::SETLE)
return DAG.getConstant(1, DL, VT);
if (CC == ISD::SETEQ || CC == ISD::SETGE)
return DAG.getNOT(DL, LHS.getOperand(0), VT);
assert((CC == ISD::SETNE || CC == ISD::SETLT) &&
"Unexpected condition code!");
return LHS.getOperand(0);
}
}
return SDValue();
}
static SDValue combineGatherScatter(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
// Gather and Scatter instructions use k-registers for masks. The type of
// the masks is v*i1. So the mask will be truncated anyway.
// The SIGN_EXTEND_INREG my be dropped.
SDValue Mask = N->getOperand(2);
if (Mask.getOpcode() == ISD::SIGN_EXTEND_INREG) {
SmallVector<SDValue, 5> NewOps(N->op_begin(), N->op_end());
NewOps[2] = Mask.getOperand(0);
DAG.UpdateNodeOperands(N, NewOps);
}
return SDValue();
}
// Helper function of performSETCCCombine. It is to materialize "setb reg"
// as "sbb reg,reg", since it can be extended without zext and produces
// an all-ones bit which is more useful than 0/1 in some cases.
static SDValue MaterializeSETB(SDLoc DL, SDValue EFLAGS, SelectionDAG &DAG,
MVT VT) {
if (VT == MVT::i8)
return DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
DAG.getConstant(X86::COND_B, DL, MVT::i8),
EFLAGS),
DAG.getConstant(1, DL, VT));
assert (VT == MVT::i1 && "Unexpected type for SECCC node");
return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1,
DAG.getNode(X86ISD::SETCC_CARRY, DL, MVT::i8,
DAG.getConstant(X86::COND_B, DL, MVT::i8),
EFLAGS));
}
// Optimize RES = X86ISD::SETCC CONDCODE, EFLAG_INPUT
static SDValue combineX86SetCC(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(0));
SDValue EFLAGS = N->getOperand(1);
if (CC == X86::COND_A) {
// Try to convert COND_A into COND_B in an attempt to facilitate
// materializing "setb reg".
//
// Do not flip "e > c", where "c" is a constant, because Cmp instruction
// cannot take an immediate as its first operand.
//
if (EFLAGS.getOpcode() == X86ISD::SUB && EFLAGS.hasOneUse() &&
EFLAGS.getValueType().isInteger() &&
!isa<ConstantSDNode>(EFLAGS.getOperand(1))) {
SDValue NewSub = DAG.getNode(X86ISD::SUB, SDLoc(EFLAGS),
EFLAGS.getNode()->getVTList(),
EFLAGS.getOperand(1), EFLAGS.getOperand(0));
SDValue NewEFLAGS = SDValue(NewSub.getNode(), EFLAGS.getResNo());
return MaterializeSETB(DL, NewEFLAGS, DAG, N->getSimpleValueType(0));
}
}
// Materialize "setb reg" as "sbb reg,reg", since it can be extended without
// a zext and produces an all-ones bit which is more useful than 0/1 in some
// cases.
if (CC == X86::COND_B)
return MaterializeSETB(DL, EFLAGS, DAG, N->getSimpleValueType(0));
// Try to simplify the EFLAGS and condition code operands.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG)) {
SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
return DAG.getNode(X86ISD::SETCC, DL, N->getVTList(), Cond, Flags);
}
return SDValue();
}
/// Optimize branch condition evaluation.
static SDValue combineBrCond(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
SDValue EFLAGS = N->getOperand(3);
X86::CondCode CC = X86::CondCode(N->getConstantOperandVal(2));
// Try to simplify the EFLAGS and condition code operands.
// Make sure to not keep references to operands, as combineSetCCEFLAGS can
// RAUW them under us.
if (SDValue Flags = combineSetCCEFLAGS(EFLAGS, CC, DAG)) {
SDValue Cond = DAG.getConstant(CC, DL, MVT::i8);
return DAG.getNode(X86ISD::BRCOND, DL, N->getVTList(), N->getOperand(0),
N->getOperand(1), Cond, Flags);
}
return SDValue();
}
static SDValue combineVectorCompareAndMaskUnaryOp(SDNode *N,
SelectionDAG &DAG) {
// Take advantage of vector comparisons producing 0 or -1 in each lane to
// optimize away operation when it's from a constant.
//
// The general transformation is:
// UNARYOP(AND(VECTOR_CMP(x,y), constant)) -->
// AND(VECTOR_CMP(x,y), constant2)
// constant2 = UNARYOP(constant)
// Early exit if this isn't a vector operation, the operand of the
// unary operation isn't a bitwise AND, or if the sizes of the operations
// aren't the same.
EVT VT = N->getValueType(0);
if (!VT.isVector() || N->getOperand(0)->getOpcode() != ISD::AND ||
N->getOperand(0)->getOperand(0)->getOpcode() != ISD::SETCC ||
VT.getSizeInBits() != N->getOperand(0)->getValueType(0).getSizeInBits())
return SDValue();
// Now check that the other operand of the AND is a constant. We could
// make the transformation for non-constant splats as well, but it's unclear
// that would be a benefit as it would not eliminate any operations, just
// perform one more step in scalar code before moving to the vector unit.
if (BuildVectorSDNode *BV =
dyn_cast<BuildVectorSDNode>(N->getOperand(0)->getOperand(1))) {
// Bail out if the vector isn't a constant.
if (!BV->isConstant())
return SDValue();
// Everything checks out. Build up the new and improved node.
SDLoc DL(N);
EVT IntVT = BV->getValueType(0);
// Create a new constant of the appropriate type for the transformed
// DAG.
SDValue SourceConst = DAG.getNode(N->getOpcode(), DL, VT, SDValue(BV, 0));
// The AND node needs bitcasts to/from an integer vector type around it.
SDValue MaskConst = DAG.getBitcast(IntVT, SourceConst);
SDValue NewAnd = DAG.getNode(ISD::AND, DL, IntVT,
N->getOperand(0)->getOperand(0), MaskConst);
SDValue Res = DAG.getBitcast(VT, NewAnd);
return Res;
}
return SDValue();
}
static SDValue combineUIntToFP(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
EVT InSVT = InVT.getScalarType();
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
// UINT_TO_FP(vXi8) -> SINT_TO_FP(ZEXT(vXi8 to vXi32))
// UINT_TO_FP(vXi16) -> SINT_TO_FP(ZEXT(vXi16 to vXi32))
if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::ZERO_EXTEND, dl, DstVT, Op0);
if (TLI.isOperationLegal(ISD::UINT_TO_FP, DstVT))
return DAG.getNode(ISD::UINT_TO_FP, dl, VT, P);
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
return SDValue();
}
static SDValue combineSIntToFP(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
// First try to optimize away the conversion entirely when it's
// conditionally from a constant. Vectors only.
if (SDValue Res = combineVectorCompareAndMaskUnaryOp(N, DAG))
return Res;
// Now move on to more general possibilities.
SDValue Op0 = N->getOperand(0);
EVT VT = N->getValueType(0);
EVT InVT = Op0.getValueType();
EVT InSVT = InVT.getScalarType();
// SINT_TO_FP(vXi8) -> SINT_TO_FP(SEXT(vXi8 to vXi32))
// SINT_TO_FP(vXi16) -> SINT_TO_FP(SEXT(vXi16 to vXi32))
if (InVT.isVector() && (InSVT == MVT::i8 || InSVT == MVT::i16)) {
SDLoc dl(N);
EVT DstVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32,
InVT.getVectorNumElements());
SDValue P = DAG.getNode(ISD::SIGN_EXTEND, dl, DstVT, Op0);
return DAG.getNode(ISD::SINT_TO_FP, dl, VT, P);
}
// Transform (SINT_TO_FP (i64 ...)) into an x87 operation if we have
// a 32-bit target where SSE doesn't support i64->FP operations.
if (!Subtarget.useSoftFloat() && Op0.getOpcode() == ISD::LOAD) {
LoadSDNode *Ld = cast<LoadSDNode>(Op0.getNode());
EVT LdVT = Ld->getValueType(0);
// This transformation is not supported if the result type is f16
if (VT == MVT::f16)
return SDValue();
if (!Ld->isVolatile() && !VT.isVector() &&
ISD::isNON_EXTLoad(Op0.getNode()) && Op0.hasOneUse() &&
!Subtarget.is64Bit() && LdVT == MVT::i64) {
SDValue FILDChain = Subtarget.getTargetLowering()->BuildFILD(
SDValue(N, 0), LdVT, Ld->getChain(), Op0, DAG);
DAG.ReplaceAllUsesOfValueWith(Op0.getValue(1), FILDChain.getValue(1));
return FILDChain;
}
}
return SDValue();
}
// Optimize RES, EFLAGS = X86ISD::ADC LHS, RHS, EFLAGS
static SDValue combineADC(SDNode *N, SelectionDAG &DAG,
X86TargetLowering::DAGCombinerInfo &DCI) {
// If the LHS and RHS of the ADC node are zero, then it can't overflow and
// the result is either zero or one (depending on the input carry bit).
// Strength reduce this down to a "set on carry" aka SETCC_CARRY&1.
if (X86::isZeroNode(N->getOperand(0)) &&
X86::isZeroNode(N->getOperand(1)) &&
// We don't have a good way to replace an EFLAGS use, so only do this when
// dead right now.
SDValue(N, 1).use_empty()) {
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue CarryOut = DAG.getConstant(0, DL, N->getValueType(1));
SDValue Res1 = DAG.getNode(ISD::AND, DL, VT,
DAG.getNode(X86ISD::SETCC_CARRY, DL, VT,
DAG.getConstant(X86::COND_B, DL,
MVT::i8),
N->getOperand(2)),
DAG.getConstant(1, DL, VT));
return DCI.CombineTo(N, Res1, CarryOut);
}
return SDValue();
}
/// fold (add Y, (sete X, 0)) -> adc 0, Y
/// (add Y, (setne X, 0)) -> sbb -1, Y
/// (sub (sete X, 0), Y) -> sbb 0, Y
/// (sub (setne X, 0), Y) -> adc -1, Y
static SDValue OptimizeConditionalInDecrement(SDNode *N, SelectionDAG &DAG) {
SDLoc DL(N);
// Look through ZExts.
SDValue Ext = N->getOperand(N->getOpcode() == ISD::SUB ? 1 : 0);
if (Ext.getOpcode() != ISD::ZERO_EXTEND || !Ext.hasOneUse())
return SDValue();
SDValue SetCC = Ext.getOperand(0);
if (SetCC.getOpcode() != X86ISD::SETCC || !SetCC.hasOneUse())
return SDValue();
X86::CondCode CC = (X86::CondCode)SetCC.getConstantOperandVal(0);
if (CC != X86::COND_E && CC != X86::COND_NE)
return SDValue();
SDValue Cmp = SetCC.getOperand(1);
if (Cmp.getOpcode() != X86ISD::CMP || !Cmp.hasOneUse() ||
!X86::isZeroNode(Cmp.getOperand(1)) ||
!Cmp.getOperand(0).getValueType().isInteger())
return SDValue();
SDValue CmpOp0 = Cmp.getOperand(0);
SDValue NewCmp = DAG.getNode(X86ISD::CMP, DL, MVT::i32, CmpOp0,
DAG.getConstant(1, DL, CmpOp0.getValueType()));
SDValue OtherVal = N->getOperand(N->getOpcode() == ISD::SUB ? 0 : 1);
if (CC == X86::COND_NE)
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::ADC : X86ISD::SBB,
DL, OtherVal.getValueType(), OtherVal,
DAG.getConstant(-1ULL, DL, OtherVal.getValueType()),
NewCmp);
return DAG.getNode(N->getOpcode() == ISD::SUB ? X86ISD::SBB : X86ISD::ADC,
DL, OtherVal.getValueType(), OtherVal,
DAG.getConstant(0, DL, OtherVal.getValueType()), NewCmp);
}
static SDValue combineAdd(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
EVT VT = N->getValueType(0);
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// Try to synthesize horizontal adds from adds of shuffles.
if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HADD, SDLoc(N), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
static SDValue combineSub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
// X86 can't encode an immediate LHS of a sub. See if we can push the
// negation into a preceding instruction.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op0)) {
// If the RHS of the sub is a XOR with one use and a constant, invert the
// immediate. Then add one to the LHS of the sub so we can turn
// X-Y -> X+~Y+1, saving one register.
if (Op1->hasOneUse() && Op1.getOpcode() == ISD::XOR &&
isa<ConstantSDNode>(Op1.getOperand(1))) {
APInt XorC = cast<ConstantSDNode>(Op1.getOperand(1))->getAPIntValue();
EVT VT = Op0.getValueType();
SDValue NewXor = DAG.getNode(ISD::XOR, SDLoc(Op1), VT,
Op1.getOperand(0),
DAG.getConstant(~XorC, SDLoc(Op1), VT));
return DAG.getNode(ISD::ADD, SDLoc(N), VT, NewXor,
DAG.getConstant(C->getAPIntValue() + 1, SDLoc(N), VT));
}
}
// Try to synthesize horizontal adds from adds of shuffles.
EVT VT = N->getValueType(0);
if (((Subtarget.hasSSSE3() && (VT == MVT::v8i16 || VT == MVT::v4i32)) ||
(Subtarget.hasInt256() && (VT == MVT::v16i16 || VT == MVT::v8i32))) &&
isHorizontalBinOp(Op0, Op1, true))
return DAG.getNode(X86ISD::HSUB, SDLoc(N), VT, Op0, Op1);
return OptimizeConditionalInDecrement(N, DAG);
}
static SDValue combineVZext(SDNode *N, SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget &Subtarget) {
SDLoc DL(N);
MVT VT = N->getSimpleValueType(0);
MVT SVT = VT.getVectorElementType();
SDValue Op = N->getOperand(0);
MVT OpVT = Op.getSimpleValueType();
MVT OpEltVT = OpVT.getVectorElementType();
unsigned InputBits = OpEltVT.getSizeInBits() * VT.getVectorNumElements();
// Perform any constant folding.
if (ISD::isBuildVectorOfConstantSDNodes(Op.getNode())) {
SmallVector<SDValue, 4> Vals;
for (int i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
SDValue OpElt = Op.getOperand(i);
if (OpElt.getOpcode() == ISD::UNDEF) {
Vals.push_back(DAG.getUNDEF(SVT));
continue;
}
APInt Cst = cast<ConstantSDNode>(OpElt.getNode())->getAPIntValue();
assert(Cst.getBitWidth() == OpEltVT.getSizeInBits());
Cst = Cst.zextOrTrunc(SVT.getSizeInBits());
Vals.push_back(DAG.getConstant(Cst, DL, SVT));
}
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Vals);
}
// (vzext (bitcast (vzext (x)) -> (vzext x)
SDValue V = peekThroughBitcasts(Op);
if (V != Op && V.getOpcode() == X86ISD::VZEXT) {
MVT InnerVT = V.getSimpleValueType();
MVT InnerEltVT = InnerVT.getVectorElementType();
// If the element sizes match exactly, we can just do one larger vzext. This
// is always an exact type match as vzext operates on integer types.
if (OpEltVT == InnerEltVT) {
assert(OpVT == InnerVT && "Types must match for vzext!");
return DAG.getNode(X86ISD::VZEXT, DL, VT, V.getOperand(0));
}
// The only other way we can combine them is if only a single element of the
// inner vzext is used in the input to the outer vzext.
if (InnerEltVT.getSizeInBits() < InputBits)
return SDValue();
// In this case, the inner vzext is completely dead because we're going to
// only look at bits inside of the low element. Just do the outer vzext on
// a bitcast of the input to the inner.
return DAG.getNode(X86ISD::VZEXT, DL, VT, DAG.getBitcast(OpVT, V));
}
// Check if we can bypass extracting and re-inserting an element of an input
// vector. Essentially:
// (bitcast (sclr2vec (ext_vec_elt x))) -> (bitcast x)
if (V.getOpcode() == ISD::SCALAR_TO_VECTOR &&
V.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
V.getOperand(0).getSimpleValueType().getSizeInBits() == InputBits) {
SDValue ExtractedV = V.getOperand(0);
SDValue OrigV = ExtractedV.getOperand(0);
if (isNullConstant(ExtractedV.getOperand(1))) {
MVT OrigVT = OrigV.getSimpleValueType();
// Extract a subvector if necessary...
if (OrigVT.getSizeInBits() > OpVT.getSizeInBits()) {
int Ratio = OrigVT.getSizeInBits() / OpVT.getSizeInBits();
OrigVT = MVT::getVectorVT(OrigVT.getVectorElementType(),
OrigVT.getVectorNumElements() / Ratio);
OrigV = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OrigVT, OrigV,
DAG.getIntPtrConstant(0, DL));
}
Op = DAG.getBitcast(OpVT, OrigV);
return DAG.getNode(X86ISD::VZEXT, DL, VT, Op);
}
}
return SDValue();
}
/// Canonicalize (LSUB p, 1) -> (LADD p, -1).
static SDValue combineLockSub(SDNode *N, SelectionDAG &DAG,
const X86Subtarget &Subtarget) {
SDValue Chain = N->getOperand(0);
SDValue LHS = N->getOperand(1);
SDValue RHS = N->getOperand(2);
MVT VT = RHS.getSimpleValueType();
SDLoc DL(N);
auto *C = dyn_cast<ConstantSDNode>(RHS);
if (!C || C->getZExtValue() != 1)
return SDValue();
RHS = DAG.getConstant(-1, DL, VT);
MachineMemOperand *MMO = cast<MemSDNode>(N)->getMemOperand();
return DAG.getMemIntrinsicNode(X86ISD::LADD, DL,
DAG.getVTList(MVT::i32, MVT::Other),
{Chain, LHS, RHS}, VT, MMO);
}
// TEST (AND a, b) ,(AND a, b) -> TEST a, b
static SDValue PerformTESTM(SDNode *N, SelectionDAG &DAG) {
SDValue Op0 = N->getOperand(0);
SDValue Op1 = N->getOperand(1);
if (Op0 != Op1 || Op1->getOpcode() != ISD::AND)
return SDValue();
EVT VT = N->getValueType(0);
SDLoc DL(N);
return DAG.getNode(X86ISD::TESTM, DL, VT,
Op0->getOperand(0), Op0->getOperand(1));
}
SDValue X86TargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
switch (N->getOpcode()) {
default: break;
case ISD::EXTRACT_VECTOR_ELT: return combineExtractVectorElt(N, DAG, DCI);
case ISD::VSELECT:
case ISD::SELECT:
case X86ISD::SHRUNKBLEND: return combineSelect(N, DAG, DCI, Subtarget);
case ISD::BITCAST: return combineBitcast(N, DAG, Subtarget);
case X86ISD::CMOV: return combineCMov(N, DAG, DCI, Subtarget);
case ISD::ADD: return combineAdd(N, DAG, Subtarget);
case ISD::SUB: return combineSub(N, DAG, Subtarget);
case X86ISD::ADC: return combineADC(N, DAG, DCI);
case ISD::MUL: return combineMul(N, DAG, DCI);
case ISD::SHL:
case ISD::SRA:
case ISD::SRL: return combineShift(N, DAG, DCI, Subtarget);
case ISD::AND: return combineAnd(N, DAG, DCI, Subtarget);
case ISD::OR: return combineOr(N, DAG, DCI, Subtarget);
case ISD::XOR: return combineXor(N, DAG, DCI, Subtarget);
case ISD::LOAD: return combineLoad(N, DAG, DCI, Subtarget);
case ISD::MLOAD: return combineMaskedLoad(N, DAG, DCI, Subtarget);
case ISD::STORE: return combineStore(N, DAG, Subtarget);
case ISD::MSTORE: return combineMaskedStore(N, DAG, Subtarget);
case ISD::SINT_TO_FP: return combineSIntToFP(N, DAG, Subtarget);
case ISD::UINT_TO_FP: return combineUIntToFP(N, DAG, Subtarget);
case ISD::FADD:
case ISD::FSUB: return combineFaddFsub(N, DAG, Subtarget);
case ISD::FNEG: return combineFneg(N, DAG, Subtarget);
case ISD::TRUNCATE: return combineTruncate(N, DAG, Subtarget);
case X86ISD::FXOR:
case X86ISD::FOR: return combineFOr(N, DAG, Subtarget);
case X86ISD::FMIN:
case X86ISD::FMAX: return combineFMinFMax(N, DAG);
case ISD::FMINNUM:
case ISD::FMAXNUM: return combineFMinNumFMaxNum(N, DAG, Subtarget);
case X86ISD::FAND: return combineFAnd(N, DAG, Subtarget);
case X86ISD::FANDN: return combineFAndn(N, DAG, Subtarget);
case X86ISD::BT: return combineBT(N, DAG, DCI);
case X86ISD::VZEXT_MOVL: return combineVZextMovl(N, DAG);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND: return combineZext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND: return combineSext(N, DAG, DCI, Subtarget);
case ISD::SIGN_EXTEND_INREG: return combineSignExtendInReg(N, DAG, Subtarget);
case ISD::SETCC: return combineSetCC(N, DAG, Subtarget);
case X86ISD::SETCC: return combineX86SetCC(N, DAG, DCI, Subtarget);
case X86ISD::BRCOND: return combineBrCond(N, DAG, DCI, Subtarget);
case X86ISD::VZEXT: return combineVZext(N, DAG, DCI, Subtarget);
case X86ISD::SHUFP: // Handle all target specific shuffles
case X86ISD::INSERTPS:
case X86ISD::PALIGNR:
case X86ISD::BLENDI:
case X86ISD::UNPCKH:
case X86ISD::UNPCKL:
case X86ISD::MOVHLPS:
case X86ISD::MOVLHPS:
case X86ISD::PSHUFB:
case X86ISD::PSHUFD:
case X86ISD::PSHUFHW:
case X86ISD::PSHUFLW:
case X86ISD::MOVSHDUP:
case X86ISD::MOVSLDUP:
case X86ISD::MOVDDUP:
case X86ISD::MOVSS:
case X86ISD::MOVSD:
case X86ISD::VPPERM:
case X86ISD::VPERMV3:
case X86ISD::VPERMILPI:
case X86ISD::VPERMILPV:
case X86ISD::VPERM2X128:
case ISD::VECTOR_SHUFFLE: return combineShuffle(N, DAG, DCI,Subtarget);
case ISD::FMA: return combineFMA(N, DAG, Subtarget);
case ISD::MGATHER:
case ISD::MSCATTER: return combineGatherScatter(N, DAG);
case X86ISD::LSUB: return combineLockSub(N, DAG, Subtarget);
case X86ISD::TESTM: return PerformTESTM(N, DAG);
}
return SDValue();
}
/// Return true if the target has native support for the specified value type
/// and it is 'desirable' to use the type for the given node type. e.g. On x86
/// i16 is legal, but undesirable since i16 instruction encodings are longer and
/// some i16 instructions are slow.
bool X86TargetLowering::isTypeDesirableForOp(unsigned Opc, EVT VT) const {
if (!isTypeLegal(VT))
return false;
if (VT != MVT::i16)
return true;
switch (Opc) {
default:
return true;
case ISD::LOAD:
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
case ISD::SHL:
case ISD::SRL:
case ISD::SUB:
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
return false;
}
}
/// This function checks if any of the users of EFLAGS copies the EFLAGS. We
/// know that the code that lowers COPY of EFLAGS has to use the stack, and if
/// we don't adjust the stack we clobber the first frame index.
/// See X86InstrInfo::copyPhysReg.
bool X86TargetLowering::hasCopyImplyingStackAdjustment(
MachineFunction *MF) const {
const MachineRegisterInfo &MRI = MF->getRegInfo();
return any_of(MRI.reg_instructions(X86::EFLAGS),
[](const MachineInstr &RI) { return RI.isCopy(); });
}
/// This method query the target whether it is beneficial for dag combiner to
/// promote the specified node. If true, it should return the desired promotion
/// type by reference.
bool X86TargetLowering::IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const {
EVT VT = Op.getValueType();
if (VT != MVT::i16)
return false;
bool Promote = false;
bool Commute = false;
switch (Op.getOpcode()) {
default: break;
case ISD::SIGN_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::ANY_EXTEND:
Promote = true;
break;
case ISD::SHL:
case ISD::SRL: {
SDValue N0 = Op.getOperand(0);
// Look out for (store (shl (load), x)).
if (MayFoldLoad(N0) && MayFoldIntoStore(Op))
return false;
Promote = true;
break;
}
case ISD::ADD:
case ISD::MUL:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
Commute = true;
// fallthrough
case ISD::SUB: {
SDValue N0 = Op.getOperand(0);
SDValue N1 = Op.getOperand(1);
if (!Commute && MayFoldLoad(N1))
return false;
// Avoid disabling potential load folding opportunities.
if (MayFoldLoad(N0) && (!isa<ConstantSDNode>(N1) || MayFoldIntoStore(Op)))
return false;
if (MayFoldLoad(N1) && (!isa<ConstantSDNode>(N0) || MayFoldIntoStore(Op)))
return false;
Promote = true;
}
}
PVT = MVT::i32;
return Promote;
}
//===----------------------------------------------------------------------===//
// X86 Inline Assembly Support
//===----------------------------------------------------------------------===//
// Helper to match a string separated by whitespace.
static bool matchAsm(StringRef S, ArrayRef<const char *> Pieces) {
S = S.substr(S.find_first_not_of(" \t")); // Skip leading whitespace.
for (StringRef Piece : Pieces) {
if (!S.startswith(Piece)) // Check if the piece matches.
return false;
S = S.substr(Piece.size());
StringRef::size_type Pos = S.find_first_not_of(" \t");
if (Pos == 0) // We matched a prefix.
return false;
S = S.substr(Pos);
}
return S.empty();
}
static bool clobbersFlagRegisters(const SmallVector<StringRef, 4> &AsmPieces) {
if (AsmPieces.size() == 3 || AsmPieces.size() == 4) {
if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{cc}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{flags}") &&
std::count(AsmPieces.begin(), AsmPieces.end(), "~{fpsr}")) {
if (AsmPieces.size() == 3)
return true;
else if (std::count(AsmPieces.begin(), AsmPieces.end(), "~{dirflag}"))
return true;
}
}
return false;
}
bool X86TargetLowering::ExpandInlineAsm(CallInst *CI) const {
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
std::string AsmStr = IA->getAsmString();
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
if (!Ty || Ty->getBitWidth() % 16 != 0)
return false;
// TODO: should remove alternatives from the asmstring: "foo {a|b}" -> "foo a"
SmallVector<StringRef, 4> AsmPieces;
SplitString(AsmStr, AsmPieces, ";\n");
switch (AsmPieces.size()) {
default: return false;
case 1:
// FIXME: this should verify that we are targeting a 486 or better. If not,
// we will turn this bswap into something that will be lowered to logical
// ops instead of emitting the bswap asm. For now, we don't support 486 or
// lower so don't worry about this.
// bswap $0
if (matchAsm(AsmPieces[0], {"bswap", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapl", "$0"}) ||
matchAsm(AsmPieces[0], {"bswapq", "$0"}) ||
matchAsm(AsmPieces[0], {"bswap", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapl", "${0:q}"}) ||
matchAsm(AsmPieces[0], {"bswapq", "${0:q}"})) {
// No need to check constraints, nothing other than the equivalent of
// "=r,0" would be valid here.
return IntrinsicLowering::LowerToByteSwap(CI);
}
// rorw $$8, ${0:w} --> llvm.bswap.i16
if (CI->getType()->isIntegerTy(16) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
(matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) ||
matchAsm(AsmPieces[0], {"rolw", "$$8,", "${0:w}"}))) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
break;
case 3:
if (CI->getType()->isIntegerTy(32) &&
IA->getConstraintString().compare(0, 5, "=r,0,") == 0 &&
matchAsm(AsmPieces[0], {"rorw", "$$8,", "${0:w}"}) &&
matchAsm(AsmPieces[1], {"rorl", "$$16,", "$0"}) &&
matchAsm(AsmPieces[2], {"rorw", "$$8,", "${0:w}"})) {
AsmPieces.clear();
StringRef ConstraintsStr = IA->getConstraintString();
SplitString(StringRef(ConstraintsStr).substr(5), AsmPieces, ",");
array_pod_sort(AsmPieces.begin(), AsmPieces.end());
if (clobbersFlagRegisters(AsmPieces))
return IntrinsicLowering::LowerToByteSwap(CI);
}
if (CI->getType()->isIntegerTy(64)) {
InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints();
if (Constraints.size() >= 2 &&
Constraints[0].Codes.size() == 1 && Constraints[0].Codes[0] == "A" &&
Constraints[1].Codes.size() == 1 && Constraints[1].Codes[0] == "0") {
// bswap %eax / bswap %edx / xchgl %eax, %edx -> llvm.bswap.i64
if (matchAsm(AsmPieces[0], {"bswap", "%eax"}) &&
matchAsm(AsmPieces[1], {"bswap", "%edx"}) &&
matchAsm(AsmPieces[2], {"xchgl", "%eax,", "%edx"}))
return IntrinsicLowering::LowerToByteSwap(CI);
}
}
break;
}
return false;
}
/// Given a constraint letter, return the type of constraint for this target.
X86TargetLowering::ConstraintType
X86TargetLowering::getConstraintType(StringRef Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'R':
case 'q':
case 'Q':
case 'f':
case 't':
case 'u':
case 'y':
case 'x':
case 'Y':
case 'l':
return C_RegisterClass;
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
return C_Register;
case 'I':
case 'J':
case 'K':
case 'L':
case 'M':
case 'N':
case 'G':
case 'C':
case 'e':
case 'Z':
return C_Other;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
/// Examine constraint type and operand type and determine a weight value.
/// This object must already have been set up with the operand type
/// and the current alternative constraint selected.
TargetLowering::ConstraintWeight
X86TargetLowering::getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const {
ConstraintWeight weight = CW_Invalid;
Value *CallOperandVal = info.CallOperandVal;
// If we don't have a value, we can't do a match,
// but allow it at the lowest weight.
if (!CallOperandVal)
return CW_Default;
Type *type = CallOperandVal->getType();
// Look at the constraint type.
switch (*constraint) {
default:
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
case 'R':
case 'q':
case 'Q':
case 'a':
case 'b':
case 'c':
case 'd':
case 'S':
case 'D':
case 'A':
if (CallOperandVal->getType()->isIntegerTy())
weight = CW_SpecificReg;
break;
case 'f':
case 't':
case 'u':
if (type->isFloatingPointTy())
weight = CW_SpecificReg;
break;
case 'y':
if (type->isX86_MMXTy() && Subtarget.hasMMX())
weight = CW_SpecificReg;
break;
case 'x':
case 'Y':
if (((type->getPrimitiveSizeInBits() == 128) && Subtarget.hasSSE1()) ||
((type->getPrimitiveSizeInBits() == 256) && Subtarget.hasFp256()))
weight = CW_Register;
break;
case 'I':
if (ConstantInt *C = dyn_cast<ConstantInt>(info.CallOperandVal)) {
if (C->getZExtValue() <= 31)
weight = CW_Constant;
}
break;
case 'J':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 63)
weight = CW_Constant;
}
break;
case 'K':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80) && (C->getSExtValue() <= 0x7f))
weight = CW_Constant;
}
break;
case 'L':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getZExtValue() == 0xff) || (C->getZExtValue() == 0xffff))
weight = CW_Constant;
}
break;
case 'M':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 3)
weight = CW_Constant;
}
break;
case 'N':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xff)
weight = CW_Constant;
}
break;
case 'G':
case 'C':
if (isa<ConstantFP>(CallOperandVal)) {
weight = CW_Constant;
}
break;
case 'e':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if ((C->getSExtValue() >= -0x80000000LL) &&
(C->getSExtValue() <= 0x7fffffffLL))
weight = CW_Constant;
}
break;
case 'Z':
if (ConstantInt *C = dyn_cast<ConstantInt>(CallOperandVal)) {
if (C->getZExtValue() <= 0xffffffff)
weight = CW_Constant;
}
break;
}
return weight;
}
/// Try to replace an X constraint, which matches anything, with another that
/// has more specific requirements based on the type of the corresponding
/// operand.
const char *X86TargetLowering::
LowerXConstraint(EVT ConstraintVT) const {
// FP X constraints get lowered to SSE1/2 registers if available, otherwise
// 'f' like normal targets.
if (ConstraintVT.isFloatingPoint()) {
if (Subtarget.hasSSE2())
return "Y";
if (Subtarget.hasSSE1())
return "x";
}
return TargetLowering::LowerXConstraint(ConstraintVT);
}
/// Lower the specified operand into the Ops vector.
/// If it is invalid, don't add anything to Ops.
void X86TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue>&Ops,
SelectionDAG &DAG) const {
SDValue Result;
// Only support length 1 constraints for now.
if (Constraint.length() > 1) return;
char ConstraintLetter = Constraint[0];
switch (ConstraintLetter) {
default: break;
case 'I':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 31) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'J':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 63) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'K':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (isInt<8>(C->getSExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'L':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() == 0xff || C->getZExtValue() == 0xffff ||
(Subtarget.is64Bit() && C->getZExtValue() == 0xffffffff)) {
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'M':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 3) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'N':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 255) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'O':
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (C->getZExtValue() <= 127) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
return;
case 'e': {
// 32-bit signed value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getSExtValue())) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(C->getSExtValue(), SDLoc(Op), MVT::i64);
break;
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
}
return;
}
case 'Z': {
// 32-bit unsigned value
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
if (ConstantInt::isValueValidForType(Type::getInt32Ty(*DAG.getContext()),
C->getZExtValue())) {
Result = DAG.getTargetConstant(C->getZExtValue(), SDLoc(Op),
Op.getValueType());
break;
}
}
// FIXME gcc accepts some relocatable values here too, but only in certain
// memory models; it's complicated.
return;
}
case 'i': {
// Literal immediates are always ok.
if (ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op)) {
// Widen to 64 bits here to get it sign extended.
Result = DAG.getTargetConstant(CST->getSExtValue(), SDLoc(Op), MVT::i64);
break;
}
// In any sort of PIC mode addresses need to be computed at runtime by
// adding in a register or some sort of table lookup. These can't
// be used as immediates.
if (Subtarget.isPICStyleGOT() || Subtarget.isPICStyleStubPIC())
return;
// If we are in non-pic codegen mode, we allow the address of a global (with
// an optional displacement) to be used with 'i'.
GlobalAddressSDNode *GA = nullptr;
int64_t Offset = 0;
// Match either (GA), (GA+C), (GA+C1+C2), etc.
while (1) {
if ((GA = dyn_cast<GlobalAddressSDNode>(Op))) {
Offset += GA->getOffset();
break;
} else if (Op.getOpcode() == ISD::ADD) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
} else if (Op.getOpcode() == ISD::SUB) {
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Offset += -C->getZExtValue();
Op = Op.getOperand(0);
continue;
}
}
// Otherwise, this isn't something we can handle, reject it.
return;
}
const GlobalValue *GV = GA->getGlobal();
// If we require an extra load to get this address, as in PIC mode, we
// can't accept it.
if (isGlobalStubReference(Subtarget.classifyGlobalReference(GV)))
return;
Result = DAG.getTargetGlobalAddress(GV, SDLoc(Op),
GA->getValueType(0), Offset);
break;
}
}
if (Result.getNode()) {
Ops.push_back(Result);
return;
}
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
}
/// Check if \p RC is a general purpose register class.
/// I.e., GR* or one of their variant.
static bool isGRClass(const TargetRegisterClass &RC) {
switch (RC.getID()) {
case X86::GR8RegClassID:
case X86::GR8_ABCD_LRegClassID:
case X86::GR8_ABCD_HRegClassID:
case X86::GR8_NOREXRegClassID:
case X86::GR16RegClassID:
case X86::GR16_ABCDRegClassID:
case X86::GR16_NOREXRegClassID:
case X86::GR32RegClassID:
case X86::GR32_ABCDRegClassID:
case X86::GR32_TCRegClassID:
case X86::GR32_NOREXRegClassID:
case X86::GR32_NOAXRegClassID:
case X86::GR32_NOSPRegClassID:
case X86::GR32_NOREX_NOSPRegClassID:
case X86::GR32_ADRegClassID:
case X86::GR64RegClassID:
case X86::GR64_ABCDRegClassID:
case X86::GR64_TCRegClassID:
case X86::GR64_TCW64RegClassID:
case X86::GR64_NOREXRegClassID:
case X86::GR64_NOSPRegClassID:
case X86::GR64_NOREX_NOSPRegClassID:
case X86::LOW32_ADDR_ACCESSRegClassID:
case X86::LOW32_ADDR_ACCESS_RBPRegClassID:
return true;
default:
return false;
}
}
/// Check if \p RC is a general purpose register class.
/// I.e., FR* / VR* or one of their variant.
static bool isFRClass(const TargetRegisterClass &RC) {
switch (RC.getID()) {
case X86::FR32RegClassID:
case X86::FR32XRegClassID:
case X86::FR64RegClassID:
case X86::FR64XRegClassID:
case X86::FR128RegClassID:
case X86::VR64RegClassID:
case X86::VR128RegClassID:
case X86::VR128XRegClassID:
case X86::VR256RegClassID:
case X86::VR256XRegClassID:
case X86::VR512RegClassID:
return true;
default:
return false;
}
}
std::pair<unsigned, const TargetRegisterClass *>
X86TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
StringRef Constraint,
MVT VT) const {
// First, see if this is a constraint that directly corresponds to an LLVM
// register class.
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
// TODO: Slight differences here in allocation order and leaving
// RIP in the class. Do they matter any more here than they do
// in the normal allocation?
case 'q': // GENERAL_REGS in 64-bit mode, Q_REGS in 32-bit mode.
if (Subtarget.is64Bit()) {
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i64 || VT == MVT::f64)
return std::make_pair(0U, &X86::GR64RegClass);
break;
}
// 32-bit fallthrough
case 'Q': // Q_REGS
if (VT == MVT::i32 || VT == MVT::f32)
return std::make_pair(0U, &X86::GR32_ABCDRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_ABCDRegClass);
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_ABCD_LRegClass);
if (VT == MVT::i64)
return std::make_pair(0U, &X86::GR64_ABCDRegClass);
break;
case 'r': // GENERAL_REGS
case 'l': // INDEX_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8RegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16RegClass);
if (VT == MVT::i32 || VT == MVT::f32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32RegClass);
return std::make_pair(0U, &X86::GR64RegClass);
case 'R': // LEGACY_REGS
if (VT == MVT::i8 || VT == MVT::i1)
return std::make_pair(0U, &X86::GR8_NOREXRegClass);
if (VT == MVT::i16)
return std::make_pair(0U, &X86::GR16_NOREXRegClass);
if (VT == MVT::i32 || !Subtarget.is64Bit())
return std::make_pair(0U, &X86::GR32_NOREXRegClass);
return std::make_pair(0U, &X86::GR64_NOREXRegClass);
case 'f': // FP Stack registers.
// If SSE is enabled for this VT, use f80 to ensure the isel moves the
// value to the correct fpstack register class.
if (VT == MVT::f32 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP32RegClass);
if (VT == MVT::f64 && !isScalarFPTypeInSSEReg(VT))
return std::make_pair(0U, &X86::RFP64RegClass);
return std::make_pair(0U, &X86::RFP80RegClass);
case 'y': // MMX_REGS if MMX allowed.
if (!Subtarget.hasMMX()) break;
return std::make_pair(0U, &X86::VR64RegClass);
case 'Y': // SSE_REGS if SSE2 allowed
if (!Subtarget.hasSSE2()) break;
// FALL THROUGH.
case 'x': // SSE_REGS if SSE1 allowed or AVX_REGS if AVX allowed
if (!Subtarget.hasSSE1()) break;
switch (VT.SimpleTy) {
default: break;
// Scalar SSE types.
case MVT::f32:
case MVT::i32:
return std::make_pair(0U, &X86::FR32RegClass);
case MVT::f64:
case MVT::i64:
return std::make_pair(0U, &X86::FR64RegClass);
// TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
// Vector types.
case MVT::v16i8:
case MVT::v8i16:
case MVT::v4i32:
case MVT::v2i64:
case MVT::v4f32:
case MVT::v2f64:
return std::make_pair(0U, &X86::VR128RegClass);
// AVX types.
case MVT::v32i8:
case MVT::v16i16:
case MVT::v8i32:
case MVT::v4i64:
case MVT::v8f32:
case MVT::v4f64:
return std::make_pair(0U, &X86::VR256RegClass);
case MVT::v8f64:
case MVT::v16f32:
case MVT::v16i32:
case MVT::v8i64:
return std::make_pair(0U, &X86::VR512RegClass);
}
break;
}
}
// Use the default implementation in TargetLowering to convert the register
// constraint into a member of a register class.
std::pair<unsigned, const TargetRegisterClass*> Res;
Res = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
// Not found as a standard register?
if (!Res.second) {
// Map st(0) -> st(7) -> ST0
if (Constraint.size() == 7 && Constraint[0] == '{' &&
tolower(Constraint[1]) == 's' &&
tolower(Constraint[2]) == 't' &&
Constraint[3] == '(' &&
(Constraint[4] >= '0' && Constraint[4] <= '7') &&
Constraint[5] == ')' &&
Constraint[6] == '}') {
Res.first = X86::FP0+Constraint[4]-'0';
Res.second = &X86::RFP80RegClass;
return Res;
}
// GCC allows "st(0)" to be called just plain "st".
if (StringRef("{st}").equals_lower(Constraint)) {
Res.first = X86::FP0;
Res.second = &X86::RFP80RegClass;
return Res;
}
// flags -> EFLAGS
if (StringRef("{flags}").equals_lower(Constraint)) {
Res.first = X86::EFLAGS;
Res.second = &X86::CCRRegClass;
return Res;
}
// 'A' means EAX + EDX.
if (Constraint == "A") {
Res.first = X86::EAX;
Res.second = &X86::GR32_ADRegClass;
return Res;
}
return Res;
}
// Otherwise, check to see if this is a register class of the wrong value
// type. For example, we want to map "{ax},i32" -> {eax}, we don't want it to
// turn into {ax},{dx}.
// MVT::Other is used to specify clobber names.
if (Res.second->hasType(VT) || VT == MVT::Other)
return Res; // Correct type already, nothing to do.
// Get a matching integer of the correct size. i.e. "ax" with MVT::32 should
// return "eax". This should even work for things like getting 64bit integer
// registers when given an f64 type.
const TargetRegisterClass *Class = Res.second;
// The generic code will match the first register class that contains the
// given register. Thus, based on the ordering of the tablegened file,
// the "plain" GR classes might not come first.
// Therefore, use a helper method.
if (isGRClass(*Class)) {
unsigned Size = VT.getSizeInBits();
if (Size == 1) Size = 8;
unsigned DestReg = getX86SubSuperRegisterOrZero(Res.first, Size);
if (DestReg > 0) {
Res.first = DestReg;
Res.second = Size == 8 ? &X86::GR8RegClass
: Size == 16 ? &X86::GR16RegClass
: Size == 32 ? &X86::GR32RegClass
: &X86::GR64RegClass;
assert(Res.second->contains(Res.first) && "Register in register class");
} else {
// No register found/type mismatch.
Res.first = 0;
Res.second = nullptr;
}
} else if (isFRClass(*Class)) {
// Handle references to XMM physical registers that got mapped into the
// wrong class. This can happen with constraints like {xmm0} where the
// target independent register mapper will just pick the first match it can
// find, ignoring the required type.
// TODO: Handle f128 and i128 in FR128RegClass after it is tested well.
if (VT == MVT::f32 || VT == MVT::i32)
Res.second = &X86::FR32RegClass;
else if (VT == MVT::f64 || VT == MVT::i64)
Res.second = &X86::FR64RegClass;
else if (X86::VR128RegClass.hasType(VT))
Res.second = &X86::VR128RegClass;
else if (X86::VR256RegClass.hasType(VT))
Res.second = &X86::VR256RegClass;
else if (X86::VR512RegClass.hasType(VT))
Res.second = &X86::VR512RegClass;
else {
// Type mismatch and not a clobber: Return an error;
Res.first = 0;
Res.second = nullptr;
}
}
return Res;
}
int X86TargetLowering::getScalingFactorCost(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// Scaling factors are not free at all.
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
// will take 2 allocations in the out of order engine instead of 1
// for plain addressing mode, i.e. inst (reg1).
// E.g.,
// vaddps (%rsi,%drx), %ymm0, %ymm1
// Requires two allocations (one for the load, one for the computation)
// whereas:
// vaddps (%rsi), %ymm0, %ymm1
// Requires just 1 allocation, i.e., freeing allocations for other operations
// and having less micro operations to execute.
//
// For some X86 architectures, this is even worse because for instance for
// stores, the complex addressing mode forces the instruction to use the
// "load" ports instead of the dedicated "store" port.
// E.g., on Haswell:
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
if (isLegalAddressingMode(DL, AM, Ty, AS))
// Scale represents reg2 * scale, thus account for 1
// as soon as we use a second register.
return AM.Scale != 0;
return -1;
}
bool X86TargetLowering::isIntDivCheap(EVT VT, AttributeSet Attr) const {
// Integer division on x86 is expensive. However, when aggressively optimizing
// for code size, we prefer to use a div instruction, as it is usually smaller
// than the alternative sequence.
// The exception to this is vector division. Since x86 doesn't have vector
// integer division, leaving the division as-is is a loss even in terms of
// size, because it will have to be scalarized, while the alternative code
// sequence can be performed in vector form.
bool OptSize = Attr.hasAttribute(AttributeSet::FunctionIndex,
Attribute::MinSize);
return OptSize && !VT.isVector();
}
void X86TargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
if (!Subtarget.is64Bit())
return;
// Update IsSplitCSR in X86MachineFunctionInfo.
X86MachineFunctionInfo *AFI =
Entry->getParent()->getInfo<X86MachineFunctionInfo>();
AFI->setIsSplitCSR(true);
}
void X86TargetLowering::insertCopiesSplitCSR(
MachineBasicBlock *Entry,
const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
const X86RegisterInfo *TRI = Subtarget.getRegisterInfo();
const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
if (!IStart)
return;
const TargetInstrInfo *TII = Subtarget.getInstrInfo();
MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
MachineBasicBlock::iterator MBBI = Entry->begin();
for (const MCPhysReg *I = IStart; *I; ++I) {
const TargetRegisterClass *RC = nullptr;
if (X86::GR64RegClass.contains(*I))
RC = &X86::GR64RegClass;
else
llvm_unreachable("Unexpected register class in CSRsViaCopy!");
unsigned NewVR = MRI->createVirtualRegister(RC);
// Create copy from CSR to a virtual register.
// FIXME: this currently does not emit CFI pseudo-instructions, it works
// fine for CXX_FAST_TLS since the C++-style TLS access functions should be
// nounwind. If we want to generalize this later, we may need to emit
// CFI pseudo-instructions.
assert(Entry->getParent()->getFunction()->hasFnAttribute(
Attribute::NoUnwind) &&
"Function should be nounwind in insertCopiesSplitCSR!");
Entry->addLiveIn(*I);
BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
.addReg(*I);
// Insert the copy-back instructions right before the terminator.
for (auto *Exit : Exits)
BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
TII->get(TargetOpcode::COPY), *I)
.addReg(NewVR);
}
}