forked from OSchip/llvm-project
641 lines
17 KiB
C++
641 lines
17 KiB
C++
//===-- tsan_interface_atomic.cc ------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is a part of ThreadSanitizer (TSan), a race detector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ThreadSanitizer atomic operations are based on C++11/C1x standards.
|
|
// For background see C++11 standard. A slightly older, publically
|
|
// available draft of the standard (not entirely up-to-date, but close enough
|
|
// for casual browsing) is available here:
|
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
|
|
// The following page contains more background information:
|
|
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
|
|
|
|
#include "sanitizer_common/sanitizer_placement_new.h"
|
|
#include "tsan_interface_atomic.h"
|
|
#include "tsan_flags.h"
|
|
#include "tsan_rtl.h"
|
|
|
|
using namespace __tsan; // NOLINT
|
|
|
|
class ScopedAtomic {
|
|
public:
|
|
ScopedAtomic(ThreadState *thr, uptr pc, const char *func)
|
|
: thr_(thr) {
|
|
CHECK_EQ(thr_->in_rtl, 1); // 1 due to our own ScopedInRtl member.
|
|
DPrintf("#%d: %s\n", thr_->tid, func);
|
|
}
|
|
~ScopedAtomic() {
|
|
CHECK_EQ(thr_->in_rtl, 1);
|
|
}
|
|
private:
|
|
ThreadState *thr_;
|
|
ScopedInRtl in_rtl_;
|
|
};
|
|
|
|
// Some shortcuts.
|
|
typedef __tsan_memory_order morder;
|
|
typedef __tsan_atomic8 a8;
|
|
typedef __tsan_atomic16 a16;
|
|
typedef __tsan_atomic32 a32;
|
|
typedef __tsan_atomic64 a64;
|
|
typedef __tsan_atomic128 a128;
|
|
const morder mo_relaxed = __tsan_memory_order_relaxed;
|
|
const morder mo_consume = __tsan_memory_order_consume;
|
|
const morder mo_acquire = __tsan_memory_order_acquire;
|
|
const morder mo_release = __tsan_memory_order_release;
|
|
const morder mo_acq_rel = __tsan_memory_order_acq_rel;
|
|
const morder mo_seq_cst = __tsan_memory_order_seq_cst;
|
|
|
|
static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
|
|
StatInc(thr, StatAtomic);
|
|
StatInc(thr, t);
|
|
StatInc(thr, size == 1 ? StatAtomic1
|
|
: size == 2 ? StatAtomic2
|
|
: size == 4 ? StatAtomic4
|
|
: size == 8 ? StatAtomic8
|
|
: StatAtomic16);
|
|
StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
|
|
: mo == mo_consume ? StatAtomicConsume
|
|
: mo == mo_acquire ? StatAtomicAcquire
|
|
: mo == mo_release ? StatAtomicRelease
|
|
: mo == mo_acq_rel ? StatAtomicAcq_Rel
|
|
: StatAtomicSeq_Cst);
|
|
}
|
|
|
|
static bool IsLoadOrder(morder mo) {
|
|
return mo == mo_relaxed || mo == mo_consume
|
|
|| mo == mo_acquire || mo == mo_seq_cst;
|
|
}
|
|
|
|
static bool IsStoreOrder(morder mo) {
|
|
return mo == mo_relaxed || mo == mo_release || mo == mo_seq_cst;
|
|
}
|
|
|
|
static bool IsReleaseOrder(morder mo) {
|
|
return mo == mo_release || mo == mo_acq_rel || mo == mo_seq_cst;
|
|
}
|
|
|
|
static bool IsAcquireOrder(morder mo) {
|
|
return mo == mo_consume || mo == mo_acquire
|
|
|| mo == mo_acq_rel || mo == mo_seq_cst;
|
|
}
|
|
|
|
static bool IsAcqRelOrder(morder mo) {
|
|
return mo == mo_acq_rel || mo == mo_seq_cst;
|
|
}
|
|
|
|
static morder ConvertOrder(morder mo) {
|
|
if (mo > (morder)100500) {
|
|
mo = morder(mo - 100500);
|
|
if (mo == morder(1 << 0))
|
|
mo = mo_relaxed;
|
|
else if (mo == morder(1 << 1))
|
|
mo = mo_consume;
|
|
else if (mo == morder(1 << 2))
|
|
mo = mo_acquire;
|
|
else if (mo == morder(1 << 3))
|
|
mo = mo_release;
|
|
else if (mo == morder(1 << 4))
|
|
mo = mo_acq_rel;
|
|
else if (mo == morder(1 << 5))
|
|
mo = mo_seq_cst;
|
|
}
|
|
CHECK_GE(mo, mo_relaxed);
|
|
CHECK_LE(mo, mo_seq_cst);
|
|
return mo;
|
|
}
|
|
|
|
template<typename T> T func_xchg(volatile T *v, T op) {
|
|
T res = __sync_lock_test_and_set(v, op);
|
|
// __sync_lock_test_and_set does not contain full barrier.
|
|
__sync_synchronize();
|
|
return res;
|
|
}
|
|
|
|
template<typename T> T func_add(volatile T *v, T op) {
|
|
return __sync_fetch_and_add(v, op);
|
|
}
|
|
|
|
template<typename T> T func_sub(volatile T *v, T op) {
|
|
return __sync_fetch_and_sub(v, op);
|
|
}
|
|
|
|
template<typename T> T func_and(volatile T *v, T op) {
|
|
return __sync_fetch_and_and(v, op);
|
|
}
|
|
|
|
template<typename T> T func_or(volatile T *v, T op) {
|
|
return __sync_fetch_and_or(v, op);
|
|
}
|
|
|
|
template<typename T> T func_xor(volatile T *v, T op) {
|
|
return __sync_fetch_and_xor(v, op);
|
|
}
|
|
|
|
template<typename T> T func_nand(volatile T *v, T op) {
|
|
// clang does not support __sync_fetch_and_nand.
|
|
T cmp = *v;
|
|
for (;;) {
|
|
T newv = ~(cmp & op);
|
|
T cur = __sync_val_compare_and_swap(v, cmp, newv);
|
|
if (cmp == cur)
|
|
return cmp;
|
|
cmp = cur;
|
|
}
|
|
}
|
|
|
|
template<typename T> T func_cas(volatile T *v, T cmp, T xch) {
|
|
return __sync_val_compare_and_swap(v, cmp, xch);
|
|
}
|
|
|
|
// clang does not support 128-bit atomic ops.
|
|
// Atomic ops are executed under tsan internal mutex,
|
|
// here we assume that the atomic variables are not accessed
|
|
// from non-instrumented code.
|
|
#ifndef __GCC_HAVE_SYNC_COMPARE_AND_SWAP_16
|
|
a128 func_xchg(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_add(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = cmp + op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_sub(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = cmp - op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_and(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = cmp & op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_or(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = cmp | op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_xor(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = cmp ^ op;
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_nand(volatile a128 *v, a128 op) {
|
|
a128 cmp = *v;
|
|
*v = ~(cmp & op);
|
|
return cmp;
|
|
}
|
|
|
|
a128 func_cas(volatile a128 *v, a128 cmp, a128 xch) {
|
|
a128 cur = *v;
|
|
if (cur == cmp)
|
|
*v = xch;
|
|
return cur;
|
|
}
|
|
#endif
|
|
|
|
#define SCOPED_ATOMIC(func, ...) \
|
|
mo = ConvertOrder(mo); \
|
|
mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
|
|
ThreadState *const thr = cur_thread(); \
|
|
ProcessPendingSignals(thr); \
|
|
const uptr pc = (uptr)__builtin_return_address(0); \
|
|
AtomicStatInc(thr, sizeof(*a), mo, StatAtomic##func); \
|
|
ScopedAtomic sa(thr, pc, __FUNCTION__); \
|
|
return Atomic##func(thr, pc, __VA_ARGS__); \
|
|
/**/
|
|
|
|
template<typename T>
|
|
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
|
|
morder mo) {
|
|
CHECK(IsLoadOrder(mo));
|
|
// This fast-path is critical for performance.
|
|
// Assume the access is atomic.
|
|
if (!IsAcquireOrder(mo) && sizeof(T) <= sizeof(a))
|
|
return *a;
|
|
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, false);
|
|
thr->clock.set(thr->tid, thr->fast_state.epoch());
|
|
thr->clock.acquire(&s->clock);
|
|
T v = *a;
|
|
s->mtx.ReadUnlock();
|
|
__sync_synchronize();
|
|
return v;
|
|
}
|
|
|
|
template<typename T>
|
|
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
CHECK(IsStoreOrder(mo));
|
|
// This fast-path is critical for performance.
|
|
// Assume the access is atomic.
|
|
// Strictly saying even relaxed store cuts off release sequence,
|
|
// so must reset the clock.
|
|
if (!IsReleaseOrder(mo) && sizeof(T) <= sizeof(a)) {
|
|
*a = v;
|
|
return;
|
|
}
|
|
__sync_synchronize();
|
|
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true);
|
|
thr->clock.set(thr->tid, thr->fast_state.epoch());
|
|
thr->clock.ReleaseStore(&s->clock);
|
|
*a = v;
|
|
s->mtx.Unlock();
|
|
// Trainling memory barrier to provide sequential consistency
|
|
// for Dekker-like store-load synchronization.
|
|
__sync_synchronize();
|
|
}
|
|
|
|
template<typename T, T (*F)(volatile T *v, T op)>
|
|
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
|
|
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true);
|
|
thr->clock.set(thr->tid, thr->fast_state.epoch());
|
|
if (IsAcqRelOrder(mo))
|
|
thr->clock.acq_rel(&s->clock);
|
|
else if (IsReleaseOrder(mo))
|
|
thr->clock.release(&s->clock);
|
|
else if (IsAcquireOrder(mo))
|
|
thr->clock.acquire(&s->clock);
|
|
v = F(a, v);
|
|
s->mtx.Unlock();
|
|
return v;
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
|
|
morder mo) {
|
|
return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
|
|
}
|
|
|
|
template<typename T>
|
|
static bool AtomicCAS(ThreadState *thr, uptr pc,
|
|
volatile T *a, T *c, T v, morder mo, morder fmo) {
|
|
(void)fmo; // Unused because llvm does not pass it yet.
|
|
SyncVar *s = CTX()->synctab.GetOrCreateAndLock(thr, pc, (uptr)a, true);
|
|
thr->clock.set(thr->tid, thr->fast_state.epoch());
|
|
if (IsAcqRelOrder(mo))
|
|
thr->clock.acq_rel(&s->clock);
|
|
else if (IsReleaseOrder(mo))
|
|
thr->clock.release(&s->clock);
|
|
else if (IsAcquireOrder(mo))
|
|
thr->clock.acquire(&s->clock);
|
|
T cc = *c;
|
|
T pr = func_cas(a, cc, v);
|
|
s->mtx.Unlock();
|
|
if (pr == cc)
|
|
return true;
|
|
*c = pr;
|
|
return false;
|
|
}
|
|
|
|
template<typename T>
|
|
static T AtomicCAS(ThreadState *thr, uptr pc,
|
|
volatile T *a, T c, T v, morder mo, morder fmo) {
|
|
AtomicCAS(thr, pc, a, &c, v, mo, fmo);
|
|
return c;
|
|
}
|
|
|
|
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
|
|
// FIXME(dvyukov): not implemented.
|
|
__sync_synchronize();
|
|
}
|
|
|
|
a8 __tsan_atomic8_load(const volatile a8 *a, morder mo) {
|
|
SCOPED_ATOMIC(Load, a, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_load(const volatile a16 *a, morder mo) {
|
|
SCOPED_ATOMIC(Load, a, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_load(const volatile a32 *a, morder mo) {
|
|
SCOPED_ATOMIC(Load, a, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
|
|
SCOPED_ATOMIC(Load, a, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
|
|
SCOPED_ATOMIC(Load, a, mo);
|
|
}
|
|
#endif
|
|
|
|
void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(Store, a, v, mo);
|
|
}
|
|
|
|
void __tsan_atomic16_store(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(Store, a, v, mo);
|
|
}
|
|
|
|
void __tsan_atomic32_store(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(Store, a, v, mo);
|
|
}
|
|
|
|
void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(Store, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(Store, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(Exchange, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_exchange(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(Exchange, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_exchange(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(Exchange, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(Exchange, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(Exchange, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAdd, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_add(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAdd, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_add(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAdd, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAdd, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAdd, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchSub, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_sub(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchSub, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_sub(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchSub, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchSub, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchSub, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAnd, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_and(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAnd, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_and(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAnd, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAnd, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchAnd, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchOr, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_or(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchOr, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_or(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchOr, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchOr, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchOr, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchXor, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_xor(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchXor, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_xor(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchXor, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchXor, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchXor, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchNand, a, v, mo);
|
|
}
|
|
|
|
a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchNand, a, v, mo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchNand, a, v, mo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchNand, a, v, mo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
|
|
SCOPED_ATOMIC(FetchNand, a, v, mo);
|
|
}
|
|
#endif
|
|
|
|
int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
#endif
|
|
|
|
int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
#endif
|
|
|
|
a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
|
|
#if __TSAN_HAS_INT128
|
|
a128 __tsan_atomic64_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
|
|
morder mo, morder fmo) {
|
|
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
|
|
}
|
|
#endif
|
|
|
|
void __tsan_atomic_thread_fence(morder mo) {
|
|
char* a;
|
|
SCOPED_ATOMIC(Fence, mo);
|
|
}
|
|
|
|
void __tsan_atomic_signal_fence(morder mo) {
|
|
}
|