llvm-project/llvm/lib/Transforms/Utils/ImplicitControlFlowTracking...

94 lines
3.7 KiB
C++

//===-- ImplicitControlFlowTracking.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// This class allows to keep track on instructions with implicit control flow.
// These are instructions that may not pass execution to their successors. For
// example, throwing calls and guards do not always do this. If we need to know
// for sure that some instruction is guaranteed to execute if the given block
// is reached, then we need to make sure that there is no implicit control flow
// instruction (ICFI) preceeding it. For example, this check is required if we
// perform PRE moving non-speculable instruction to other place.
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Utils/ImplicitControlFlowTracking.h"
using namespace llvm;
const Instruction *
ImplicitControlFlowTracking::getFirstICFI(const BasicBlock *BB) {
if (!KnownBlocks.count(BB))
fill(BB);
auto *FirstICF = FirstImplicitControlFlowInsts.lookup(BB);
assert((!FirstICF || FirstICF->getParent() == BB) && "Inconsistent cache!");
return FirstICF;
}
bool ImplicitControlFlowTracking::hasICF(const BasicBlock *BB) {
return getFirstICFI(BB) != nullptr;
}
bool ImplicitControlFlowTracking::isDominatedByICFIFromSameBlock(
const Instruction *Insn) {
const Instruction *MaybeFirstICF = getFirstICFI(Insn->getParent());
return MaybeFirstICF && OI.dominates(MaybeFirstICF, Insn);
}
void ImplicitControlFlowTracking::fill(const BasicBlock *BB) {
auto MayNotTransferExecutionToSuccessor = [&](const Instruction *I) {
// If a block's instruction doesn't always pass the control to its successor
// instruction, mark the block as having implicit control flow. We use them
// to avoid wrong assumptions of sort "if A is executed and B post-dominates
// A, then B is also executed". This is not true is there is an implicit
// control flow instruction (e.g. a guard) between them.
//
// TODO: Currently, isGuaranteedToTransferExecutionToSuccessor returns false
// for volatile stores and loads because they can trap. The discussion on
// whether or not it is correct is still ongoing. We might want to get rid
// of this logic in the future. Anyways, trapping instructions shouldn't
// introduce implicit control flow, so we explicitly allow them here. This
// must be removed once isGuaranteedToTransferExecutionToSuccessor is fixed.
if (isGuaranteedToTransferExecutionToSuccessor(I))
return false;
if (isa<LoadInst>(I)) {
assert(cast<LoadInst>(I)->isVolatile() &&
"Non-volatile load should transfer execution to successor!");
return false;
}
if (isa<StoreInst>(I)) {
assert(cast<StoreInst>(I)->isVolatile() &&
"Non-volatile store should transfer execution to successor!");
return false;
}
return true;
};
FirstImplicitControlFlowInsts.erase(BB);
for (auto &I : *BB)
if (MayNotTransferExecutionToSuccessor(&I)) {
FirstImplicitControlFlowInsts[BB] = &I;
break;
}
// Mark this block as having a known result.
KnownBlocks.insert(BB);
}
void ImplicitControlFlowTracking::invalidateBlock(const BasicBlock *BB) {
OI.invalidateBlock(BB);
FirstImplicitControlFlowInsts.erase(BB);
KnownBlocks.erase(BB);
}
void ImplicitControlFlowTracking::clear() {
for (auto It : FirstImplicitControlFlowInsts)
OI.invalidateBlock(It.first);
FirstImplicitControlFlowInsts.clear();
KnownBlocks.clear();
}