llvm-project/llvm/lib/CodeGen/LiveDebugValues.cpp

438 lines
16 KiB
C++

//===------ LiveDebugValues.cpp - Tracking Debug Value MIs ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// This pass implements a data flow analysis that propagates debug location
/// information by inserting additional DBG_VALUE instructions into the machine
/// instruction stream. The pass internally builds debug location liveness
/// ranges to determine the points where additional DBG_VALUEs need to be
/// inserted.
///
/// This is a separate pass from DbgValueHistoryCalculator to facilitate
/// testing and improve modularity.
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <queue>
#include <list>
using namespace llvm;
#define DEBUG_TYPE "live-debug-values"
STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
namespace {
class LiveDebugValues : public MachineFunctionPass {
private:
const TargetRegisterInfo *TRI;
const TargetInstrInfo *TII;
typedef std::pair<const DILocalVariable *, const DILocation *>
InlinedVariable;
/// A potentially inlined instance of a variable.
struct DebugVariable {
const DILocalVariable *Var;
const DILocation *InlinedAt;
DebugVariable(const DILocalVariable *_var, const DILocation *_inlinedAt)
: Var(_var), InlinedAt(_inlinedAt) {}
bool operator==(const DebugVariable &DV) const {
return (Var == DV.Var) && (InlinedAt == DV.InlinedAt);
}
};
/// Member variables and functions for Range Extension across basic blocks.
struct VarLoc {
DebugVariable Var;
const MachineInstr *MI; // MachineInstr should be a DBG_VALUE instr.
VarLoc(DebugVariable _var, const MachineInstr *_mi) : Var(_var), MI(_mi) {}
bool operator==(const VarLoc &V) const;
};
typedef std::list<VarLoc> VarLocList;
typedef SmallDenseMap<const MachineBasicBlock *, VarLocList> VarLocInMBB;
void transferDebugValue(MachineInstr &MI, VarLocList &OpenRanges);
void transferRegisterDef(MachineInstr &MI, VarLocList &OpenRanges);
bool transferTerminatorInst(MachineInstr &MI, VarLocList &OpenRanges,
VarLocInMBB &OutLocs);
bool transfer(MachineInstr &MI, VarLocList &OpenRanges, VarLocInMBB &OutLocs);
bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs);
bool ExtendRanges(MachineFunction &MF);
public:
static char ID;
/// Default construct and initialize the pass.
LiveDebugValues();
/// Tell the pass manager which passes we depend on and what
/// information we preserve.
void getAnalysisUsage(AnalysisUsage &AU) const override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::AllVRegsAllocated);
}
/// Print to ostream with a message.
void printVarLocInMBB(const VarLocInMBB &V, const char *msg,
raw_ostream &Out) const;
/// Calculate the liveness information for the given machine function.
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // namespace
//===----------------------------------------------------------------------===//
// Implementation
//===----------------------------------------------------------------------===//
char LiveDebugValues::ID = 0;
char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
INITIALIZE_PASS(LiveDebugValues, "livedebugvalues", "Live DEBUG_VALUE analysis",
false, false)
/// Default construct and initialize the pass.
LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
}
/// Tell the pass manager which passes we depend on and what information we
/// preserve.
void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
// \brief If @MI is a DBG_VALUE with debug value described by a defined
// register, returns the number of this register. In the other case, returns 0.
static unsigned isDescribedByReg(const MachineInstr &MI) {
assert(MI.isDebugValue());
assert(MI.getNumOperands() == 4);
// If location of variable is described using a register (directly or
// indirecltly), this register is always a first operand.
return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : 0;
}
// \brief This function takes two DBG_VALUE instructions and returns true
// if their offsets are equal; otherwise returns false.
static bool areOffsetsEqual(const MachineInstr &MI1, const MachineInstr &MI2) {
assert(MI1.isDebugValue());
assert(MI1.getNumOperands() == 4);
assert(MI2.isDebugValue());
assert(MI2.getNumOperands() == 4);
if (!MI1.isIndirectDebugValue() && !MI2.isIndirectDebugValue())
return true;
// Check if both MIs are indirect and they are equal.
if (MI1.isIndirectDebugValue() && MI2.isIndirectDebugValue())
return MI1.getOperand(1).getImm() == MI2.getOperand(1).getImm();
return false;
}
//===----------------------------------------------------------------------===//
// Debug Range Extension Implementation
//===----------------------------------------------------------------------===//
void LiveDebugValues::printVarLocInMBB(const VarLocInMBB &V, const char *msg,
raw_ostream &Out) const {
Out << "Printing " << msg << ":\n";
for (const auto &L : V) {
Out << "MBB: " << L.first->getName() << ":\n";
for (const auto &VLL : L.second) {
Out << " Var: " << VLL.Var.Var->getName();
Out << " MI: ";
(*VLL.MI).dump();
Out << "\n";
}
}
Out << "\n";
}
bool LiveDebugValues::VarLoc::operator==(const VarLoc &V) const {
return (Var == V.Var) && (isDescribedByReg(*MI) == isDescribedByReg(*V.MI)) &&
(areOffsetsEqual(*MI, *V.MI));
}
/// End all previous ranges related to @MI and start a new range from @MI
/// if it is a DBG_VALUE instr.
void LiveDebugValues::transferDebugValue(MachineInstr &MI,
VarLocList &OpenRanges) {
if (!MI.isDebugValue())
return;
const DILocalVariable *RawVar = MI.getDebugVariable();
assert(RawVar->isValidLocationForIntrinsic(MI.getDebugLoc()) &&
"Expected inlined-at fields to agree");
DebugVariable Var(RawVar, MI.getDebugLoc()->getInlinedAt());
// End all previous ranges of Var.
OpenRanges.erase(
std::remove_if(OpenRanges.begin(), OpenRanges.end(),
[&](const VarLoc &V) { return (Var == V.Var); }),
OpenRanges.end());
// Add Var to OpenRanges from this DBG_VALUE.
// TODO: Currently handles DBG_VALUE which has only reg as location.
if (isDescribedByReg(MI)) {
VarLoc V(Var, &MI);
OpenRanges.push_back(std::move(V));
}
}
/// A definition of a register may mark the end of a range.
void LiveDebugValues::transferRegisterDef(MachineInstr &MI,
VarLocList &OpenRanges) {
MachineFunction *MF = MI.getParent()->getParent();
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
for (const MachineOperand &MO : MI.operands()) {
if (MO.isReg() && MO.isDef() && MO.getReg() &&
TRI->isPhysicalRegister(MO.getReg())) {
// Remove ranges of all aliased registers.
for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
OpenRanges.erase(std::remove_if(OpenRanges.begin(), OpenRanges.end(),
[&](const VarLoc &V) {
return (*RAI ==
isDescribedByReg(*V.MI));
}),
OpenRanges.end());
} else if (MO.isRegMask()) {
// Remove ranges of all clobbered registers. Register masks don't usually
// list SP as preserved. While the debug info may be off for an
// instruction or two around callee-cleanup calls, transferring the
// DEBUG_VALUE across the call is still a better user experience.
OpenRanges.erase(std::remove_if(OpenRanges.begin(), OpenRanges.end(),
[&](const VarLoc &V) {
unsigned Reg = isDescribedByReg(*V.MI);
return Reg && Reg != SP &&
MO.clobbersPhysReg(Reg);
}),
OpenRanges.end());
}
}
}
/// Terminate all open ranges at the end of the current basic block.
bool LiveDebugValues::transferTerminatorInst(MachineInstr &MI,
VarLocList &OpenRanges,
VarLocInMBB &OutLocs) {
bool Changed = false;
const MachineBasicBlock *CurMBB = MI.getParent();
if (!(MI.isTerminator() || (&MI == &CurMBB->instr_back())))
return false;
if (OpenRanges.empty())
return false;
VarLocList &VLL = OutLocs[CurMBB];
for (auto OR : OpenRanges) {
// Copy OpenRanges to OutLocs, if not already present.
assert(OR.MI->isDebugValue());
DEBUG(dbgs() << "Add to OutLocs: "; OR.MI->dump(););
if (std::find_if(VLL.begin(), VLL.end(),
[&](const VarLoc &V) { return (OR == V); }) == VLL.end()) {
VLL.push_back(std::move(OR));
Changed = true;
}
}
OpenRanges.clear();
return Changed;
}
/// This routine creates OpenRanges and OutLocs.
bool LiveDebugValues::transfer(MachineInstr &MI, VarLocList &OpenRanges,
VarLocInMBB &OutLocs) {
bool Changed = false;
transferDebugValue(MI, OpenRanges);
transferRegisterDef(MI, OpenRanges);
Changed = transferTerminatorInst(MI, OpenRanges, OutLocs);
return Changed;
}
/// This routine joins the analysis results of all incoming edges in @MBB by
/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
/// source variable in all the predecessors of @MBB reside in the same location.
bool LiveDebugValues::join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs,
VarLocInMBB &InLocs) {
DEBUG(dbgs() << "join MBB: " << MBB.getName() << "\n");
bool Changed = false;
VarLocList InLocsT; // Temporary incoming locations.
// For all predecessors of this MBB, find the set of VarLocs that can be
// joined.
for (auto p : MBB.predecessors()) {
auto OL = OutLocs.find(p);
// Join is null in case of empty OutLocs from any of the pred.
if (OL == OutLocs.end())
return false;
// Just copy over the Out locs to incoming locs for the first predecessor.
if (p == *MBB.pred_begin()) {
InLocsT = OL->second;
continue;
}
// Join with this predecessor.
VarLocList &VLL = OL->second;
InLocsT.erase(
std::remove_if(InLocsT.begin(), InLocsT.end(), [&](VarLoc &ILT) {
return (std::find_if(VLL.begin(), VLL.end(), [&](const VarLoc &V) {
return (ILT == V);
}) == VLL.end());
}), InLocsT.end());
}
if (InLocsT.empty())
return false;
VarLocList &ILL = InLocs[&MBB];
// Insert DBG_VALUE instructions, if not already inserted.
for (auto ILT : InLocsT) {
if (std::find_if(ILL.begin(), ILL.end(), [&](const VarLoc &I) {
return (ILT == I);
}) == ILL.end()) {
// This VarLoc is not found in InLocs i.e. it is not yet inserted. So, a
// new range is started for the var from the mbb's beginning by inserting
// a new DBG_VALUE. transfer() will end this range however appropriate.
const MachineInstr *DMI = ILT.MI;
MachineInstr *MI =
BuildMI(MBB, MBB.instr_begin(), DMI->getDebugLoc(), DMI->getDesc(),
DMI->isIndirectDebugValue(), DMI->getOperand(0).getReg(), 0,
DMI->getDebugVariable(), DMI->getDebugExpression());
if (DMI->isIndirectDebugValue())
MI->getOperand(1).setImm(DMI->getOperand(1).getImm());
DEBUG(dbgs() << "Inserted: "; MI->dump(););
++NumInserted;
Changed = true;
VarLoc V(ILT.Var, MI);
ILL.push_back(std::move(V));
}
}
return Changed;
}
/// Calculate the liveness information for the given machine function and
/// extend ranges across basic blocks.
bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
DEBUG(dbgs() << "\nDebug Range Extension\n");
bool Changed = false;
bool OLChanged = false;
bool MBBJoined = false;
VarLocList OpenRanges; // Ranges that are open until end of bb.
VarLocInMBB OutLocs; // Ranges that exist beyond bb.
VarLocInMBB InLocs; // Ranges that are incoming after joining.
DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>> Worklist;
std::priority_queue<unsigned int, std::vector<unsigned int>,
std::greater<unsigned int>> Pending;
// Initialize every mbb with OutLocs.
for (auto &MBB : MF)
for (auto &MI : MBB)
transfer(MI, OpenRanges, OutLocs);
DEBUG(printVarLocInMBB(OutLocs, "OutLocs after initialization", dbgs()));
ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
unsigned int RPONumber = 0;
for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
OrderToBB[RPONumber] = *RI;
BBToOrder[*RI] = RPONumber;
Worklist.push(RPONumber);
++RPONumber;
}
// This is a standard "union of predecessor outs" dataflow problem.
// To solve it, we perform join() and transfer() using the two worklist method
// until the ranges converge.
// Ranges have converged when both worklists are empty.
while (!Worklist.empty() || !Pending.empty()) {
// We track what is on the pending worklist to avoid inserting the same
// thing twice. We could avoid this with a custom priority queue, but this
// is probably not worth it.
SmallPtrSet<MachineBasicBlock *, 16> OnPending;
while (!Worklist.empty()) {
MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
Worklist.pop();
MBBJoined = join(*MBB, OutLocs, InLocs);
if (MBBJoined) {
MBBJoined = false;
Changed = true;
for (auto &MI : *MBB)
OLChanged |= transfer(MI, OpenRanges, OutLocs);
DEBUG(printVarLocInMBB(OutLocs, "OutLocs after propagating", dbgs()));
DEBUG(printVarLocInMBB(InLocs, "InLocs after propagating", dbgs()));
if (OLChanged) {
OLChanged = false;
for (auto s : MBB->successors())
if (!OnPending.count(s)) {
OnPending.insert(s);
Pending.push(BBToOrder[s]);
}
}
}
}
Worklist.swap(Pending);
// At this point, pending must be empty, since it was just the empty
// worklist
assert(Pending.empty() && "Pending should be empty");
}
DEBUG(printVarLocInMBB(OutLocs, "Final OutLocs", dbgs()));
DEBUG(printVarLocInMBB(InLocs, "Final InLocs", dbgs()));
return Changed;
}
bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
TRI = MF.getSubtarget().getRegisterInfo();
TII = MF.getSubtarget().getInstrInfo();
bool Changed = false;
Changed |= ExtendRanges(MF);
return Changed;
}