forked from OSchip/llvm-project
662 lines
24 KiB
C++
662 lines
24 KiB
C++
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements semantic analysis for inline asm statements.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Lex/Preprocessor.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCParser/MCAsmParser.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
#include "llvm/Support/TargetSelect.h"
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
|
|
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
|
|
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
|
|
/// provide a strong guidance to not use it.
|
|
///
|
|
/// This method checks to see if the argument is an acceptable l-value and
|
|
/// returns false if it is a case we can handle.
|
|
static bool CheckAsmLValue(const Expr *E, Sema &S) {
|
|
// Type dependent expressions will be checked during instantiation.
|
|
if (E->isTypeDependent())
|
|
return false;
|
|
|
|
if (E->isLValue())
|
|
return false; // Cool, this is an lvalue.
|
|
|
|
// Okay, this is not an lvalue, but perhaps it is the result of a cast that we
|
|
// are supposed to allow.
|
|
const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
|
|
if (E != E2 && E2->isLValue()) {
|
|
if (!S.getLangOpts().HeinousExtensions)
|
|
S.Diag(E2->getLocStart(), diag::err_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
else
|
|
S.Diag(E2->getLocStart(), diag::warn_invalid_asm_cast_lvalue)
|
|
<< E->getSourceRange();
|
|
// Accept, even if we emitted an error diagnostic.
|
|
return false;
|
|
}
|
|
|
|
// None of the above, just randomly invalid non-lvalue.
|
|
return true;
|
|
}
|
|
|
|
/// isOperandMentioned - Return true if the specified operand # is mentioned
|
|
/// anywhere in the decomposed asm string.
|
|
static bool isOperandMentioned(unsigned OpNo,
|
|
ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
|
|
for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
|
|
const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
|
|
if (!Piece.isOperand()) continue;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (Piece.getOperandNo() == OpNo)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
|
|
bool IsVolatile, unsigned NumOutputs,
|
|
unsigned NumInputs, IdentifierInfo **Names,
|
|
MultiExprArg constraints, MultiExprArg exprs,
|
|
Expr *asmString, MultiExprArg clobbers,
|
|
SourceLocation RParenLoc) {
|
|
unsigned NumClobbers = clobbers.size();
|
|
StringLiteral **Constraints =
|
|
reinterpret_cast<StringLiteral**>(constraints.data());
|
|
Expr **Exprs = exprs.data();
|
|
StringLiteral *AsmString = cast<StringLiteral>(asmString);
|
|
StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
|
|
|
|
// The parser verifies that there is a string literal here.
|
|
if (!AsmString->isAscii())
|
|
return StmtError(Diag(AsmString->getLocStart(),diag::err_asm_wide_character)
|
|
<< AsmString->getSourceRange());
|
|
|
|
for (unsigned i = 0; i != NumOutputs; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef OutputName;
|
|
if (Names[i])
|
|
OutputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
|
|
if (!Context.getTargetInfo().validateOutputConstraint(Info))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_output_constraint)
|
|
<< Info.getConstraintStr());
|
|
|
|
// Check that the output exprs are valid lvalues.
|
|
Expr *OutputExpr = Exprs[i];
|
|
if (CheckAsmLValue(OutputExpr, *this)) {
|
|
return StmtError(Diag(OutputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_output)
|
|
<< OutputExpr->getSourceRange());
|
|
}
|
|
|
|
OutputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
|
|
|
|
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
|
|
StringLiteral *Literal = Constraints[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef InputName;
|
|
if (Names[i])
|
|
InputName = Names[i]->getName();
|
|
|
|
TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
|
|
if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos.data(),
|
|
NumOutputs, Info)) {
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_invalid_input_constraint)
|
|
<< Info.getConstraintStr());
|
|
}
|
|
|
|
Expr *InputExpr = Exprs[i];
|
|
|
|
// Only allow void types for memory constraints.
|
|
if (Info.allowsMemory() && !Info.allowsRegister()) {
|
|
if (CheckAsmLValue(InputExpr, *this))
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_lvalue_in_input)
|
|
<< Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
|
|
if (Info.allowsRegister()) {
|
|
if (InputExpr->getType()->isVoidType()) {
|
|
return StmtError(Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_invalid_type_in_input)
|
|
<< InputExpr->getType() << Info.getConstraintStr()
|
|
<< InputExpr->getSourceRange());
|
|
}
|
|
}
|
|
|
|
ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
|
|
if (Result.isInvalid())
|
|
return StmtError();
|
|
|
|
Exprs[i] = Result.take();
|
|
InputConstraintInfos.push_back(Info);
|
|
}
|
|
|
|
// Check that the clobbers are valid.
|
|
for (unsigned i = 0; i != NumClobbers; i++) {
|
|
StringLiteral *Literal = Clobbers[i];
|
|
if (!Literal->isAscii())
|
|
return StmtError(Diag(Literal->getLocStart(),diag::err_asm_wide_character)
|
|
<< Literal->getSourceRange());
|
|
|
|
StringRef Clobber = Literal->getString();
|
|
|
|
if (!Context.getTargetInfo().isValidClobber(Clobber))
|
|
return StmtError(Diag(Literal->getLocStart(),
|
|
diag::err_asm_unknown_register_name) << Clobber);
|
|
}
|
|
|
|
GCCAsmStmt *NS =
|
|
new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
|
|
NumInputs, Names, Constraints, Exprs, AsmString,
|
|
NumClobbers, Clobbers, RParenLoc);
|
|
// Validate the asm string, ensuring it makes sense given the operands we
|
|
// have.
|
|
SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
|
|
unsigned DiagOffs;
|
|
if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
|
|
Diag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
|
|
<< AsmString->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
// Validate constraints and modifiers.
|
|
for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
|
|
GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
|
|
if (!Piece.isOperand()) continue;
|
|
|
|
// Look for the correct constraint index.
|
|
unsigned Idx = 0;
|
|
unsigned ConstraintIdx = 0;
|
|
for (unsigned i = 0, e = NS->getNumOutputs(); i != e; ++i, ++ConstraintIdx) {
|
|
TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
|
|
if (Idx == Piece.getOperandNo())
|
|
break;
|
|
++Idx;
|
|
|
|
if (Info.isReadWrite()) {
|
|
if (Idx == Piece.getOperandNo())
|
|
break;
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = NS->getNumInputs(); i != e; ++i, ++ConstraintIdx) {
|
|
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
|
|
if (Idx == Piece.getOperandNo())
|
|
break;
|
|
++Idx;
|
|
|
|
if (Info.isReadWrite()) {
|
|
if (Idx == Piece.getOperandNo())
|
|
break;
|
|
++Idx;
|
|
}
|
|
}
|
|
|
|
// Now that we have the right indexes go ahead and check.
|
|
StringLiteral *Literal = Constraints[ConstraintIdx];
|
|
const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
|
|
if (Ty->isDependentType() || Ty->isIncompleteType())
|
|
continue;
|
|
|
|
unsigned Size = Context.getTypeSize(Ty);
|
|
if (!Context.getTargetInfo()
|
|
.validateConstraintModifier(Literal->getString(), Piece.getModifier(),
|
|
Size))
|
|
Diag(Exprs[ConstraintIdx]->getLocStart(),
|
|
diag::warn_asm_mismatched_size_modifier);
|
|
}
|
|
|
|
// Validate tied input operands for type mismatches.
|
|
for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
|
|
TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
|
|
|
|
// If this is a tied constraint, verify that the output and input have
|
|
// either exactly the same type, or that they are int/ptr operands with the
|
|
// same size (int/long, int*/long, are ok etc).
|
|
if (!Info.hasTiedOperand()) continue;
|
|
|
|
unsigned TiedTo = Info.getTiedOperand();
|
|
unsigned InputOpNo = i+NumOutputs;
|
|
Expr *OutputExpr = Exprs[TiedTo];
|
|
Expr *InputExpr = Exprs[InputOpNo];
|
|
|
|
if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
|
|
continue;
|
|
|
|
QualType InTy = InputExpr->getType();
|
|
QualType OutTy = OutputExpr->getType();
|
|
if (Context.hasSameType(InTy, OutTy))
|
|
continue; // All types can be tied to themselves.
|
|
|
|
// Decide if the input and output are in the same domain (integer/ptr or
|
|
// floating point.
|
|
enum AsmDomain {
|
|
AD_Int, AD_FP, AD_Other
|
|
} InputDomain, OutputDomain;
|
|
|
|
if (InTy->isIntegerType() || InTy->isPointerType())
|
|
InputDomain = AD_Int;
|
|
else if (InTy->isRealFloatingType())
|
|
InputDomain = AD_FP;
|
|
else
|
|
InputDomain = AD_Other;
|
|
|
|
if (OutTy->isIntegerType() || OutTy->isPointerType())
|
|
OutputDomain = AD_Int;
|
|
else if (OutTy->isRealFloatingType())
|
|
OutputDomain = AD_FP;
|
|
else
|
|
OutputDomain = AD_Other;
|
|
|
|
// They are ok if they are the same size and in the same domain. This
|
|
// allows tying things like:
|
|
// void* to int*
|
|
// void* to int if they are the same size.
|
|
// double to long double if they are the same size.
|
|
//
|
|
uint64_t OutSize = Context.getTypeSize(OutTy);
|
|
uint64_t InSize = Context.getTypeSize(InTy);
|
|
if (OutSize == InSize && InputDomain == OutputDomain &&
|
|
InputDomain != AD_Other)
|
|
continue;
|
|
|
|
// If the smaller input/output operand is not mentioned in the asm string,
|
|
// then we can promote the smaller one to a larger input and the asm string
|
|
// won't notice.
|
|
bool SmallerValueMentioned = false;
|
|
|
|
// If this is a reference to the input and if the input was the smaller
|
|
// one, then we have to reject this asm.
|
|
if (isOperandMentioned(InputOpNo, Pieces)) {
|
|
// This is a use in the asm string of the smaller operand. Since we
|
|
// codegen this by promoting to a wider value, the asm will get printed
|
|
// "wrong".
|
|
SmallerValueMentioned |= InSize < OutSize;
|
|
}
|
|
if (isOperandMentioned(TiedTo, Pieces)) {
|
|
// If this is a reference to the output, and if the output is the larger
|
|
// value, then it's ok because we'll promote the input to the larger type.
|
|
SmallerValueMentioned |= OutSize < InSize;
|
|
}
|
|
|
|
// If the smaller value wasn't mentioned in the asm string, and if the
|
|
// output was a register, just extend the shorter one to the size of the
|
|
// larger one.
|
|
if (!SmallerValueMentioned && InputDomain != AD_Other &&
|
|
OutputConstraintInfos[TiedTo].allowsRegister())
|
|
continue;
|
|
|
|
// Either both of the operands were mentioned or the smaller one was
|
|
// mentioned. One more special case that we'll allow: if the tied input is
|
|
// integer, unmentioned, and is a constant, then we'll allow truncating it
|
|
// down to the size of the destination.
|
|
if (InputDomain == AD_Int && OutputDomain == AD_Int &&
|
|
!isOperandMentioned(InputOpNo, Pieces) &&
|
|
InputExpr->isEvaluatable(Context)) {
|
|
CastKind castKind =
|
|
(OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
|
|
InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).take();
|
|
Exprs[InputOpNo] = InputExpr;
|
|
NS->setInputExpr(i, InputExpr);
|
|
continue;
|
|
}
|
|
|
|
Diag(InputExpr->getLocStart(),
|
|
diag::err_asm_tying_incompatible_types)
|
|
<< InTy << OutTy << OutputExpr->getSourceRange()
|
|
<< InputExpr->getSourceRange();
|
|
return StmtError();
|
|
}
|
|
|
|
return Owned(NS);
|
|
}
|
|
|
|
// getSpelling - Get the spelling of the AsmTok token.
|
|
static StringRef getSpelling(Sema &SemaRef, Token AsmTok) {
|
|
StringRef Asm;
|
|
SmallString<512> TokenBuf;
|
|
TokenBuf.resize(512);
|
|
bool StringInvalid = false;
|
|
Asm = SemaRef.PP.getSpelling(AsmTok, TokenBuf, &StringInvalid);
|
|
assert (!StringInvalid && "Expected valid string!");
|
|
return Asm;
|
|
}
|
|
|
|
// Build the inline assembly string. Returns true on error.
|
|
static bool buildMSAsmString(Sema &SemaRef,
|
|
SourceLocation AsmLoc,
|
|
ArrayRef<Token> AsmToks,
|
|
llvm::SmallVectorImpl<unsigned> &TokOffsets,
|
|
std::string &AsmString) {
|
|
assert (!AsmToks.empty() && "Didn't expect an empty AsmToks!");
|
|
|
|
SmallString<512> Asm;
|
|
for (unsigned i = 0, e = AsmToks.size(); i < e; ++i) {
|
|
bool isNewAsm = ((i == 0) ||
|
|
AsmToks[i].isAtStartOfLine() ||
|
|
AsmToks[i].is(tok::kw_asm));
|
|
if (isNewAsm) {
|
|
if (i != 0)
|
|
Asm += "\n\t";
|
|
|
|
if (AsmToks[i].is(tok::kw_asm)) {
|
|
i++; // Skip __asm
|
|
if (i == e) {
|
|
SemaRef.Diag(AsmLoc, diag::err_asm_empty);
|
|
return true;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
if (i && AsmToks[i].hasLeadingSpace() && !isNewAsm)
|
|
Asm += ' ';
|
|
|
|
StringRef Spelling = getSpelling(SemaRef, AsmToks[i]);
|
|
Asm += Spelling;
|
|
TokOffsets.push_back(Asm.size());
|
|
}
|
|
AsmString = Asm.str();
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class MCAsmParserSemaCallbackImpl : public llvm::MCAsmParserSemaCallback {
|
|
Sema &SemaRef;
|
|
SourceLocation AsmLoc;
|
|
ArrayRef<Token> AsmToks;
|
|
ArrayRef<unsigned> TokOffsets;
|
|
|
|
public:
|
|
MCAsmParserSemaCallbackImpl(Sema &Ref, SourceLocation Loc,
|
|
ArrayRef<Token> Toks,
|
|
ArrayRef<unsigned> Offsets)
|
|
: SemaRef(Ref), AsmLoc(Loc), AsmToks(Toks), TokOffsets(Offsets) { }
|
|
~MCAsmParserSemaCallbackImpl() {}
|
|
|
|
void *LookupInlineAsmIdentifier(StringRef Name, void *SrcLoc, unsigned &Size){
|
|
SourceLocation Loc = SourceLocation::getFromPtrEncoding(SrcLoc);
|
|
NamedDecl *OpDecl = SemaRef.LookupInlineAsmIdentifier(Name, Loc, Size);
|
|
return static_cast<void *>(OpDecl);
|
|
}
|
|
|
|
bool LookupInlineAsmField(StringRef Base, StringRef Member,
|
|
unsigned &Offset) {
|
|
return SemaRef.LookupInlineAsmField(Base, Member, Offset, AsmLoc);
|
|
}
|
|
|
|
static void MSAsmDiagHandlerCallback(const llvm::SMDiagnostic &D,
|
|
void *Context) {
|
|
((MCAsmParserSemaCallbackImpl*)Context)->MSAsmDiagHandler(D);
|
|
}
|
|
void MSAsmDiagHandler(const llvm::SMDiagnostic &D) {
|
|
// Compute an offset into the inline asm buffer.
|
|
// FIXME: This isn't right if .macro is involved (but hopefully, no
|
|
// real-world code does that).
|
|
const llvm::SourceMgr &LSM = *D.getSourceMgr();
|
|
const llvm::MemoryBuffer *LBuf =
|
|
LSM.getMemoryBuffer(LSM.FindBufferContainingLoc(D.getLoc()));
|
|
unsigned Offset = D.getLoc().getPointer() - LBuf->getBufferStart();
|
|
|
|
// Figure out which token that offset points into.
|
|
const unsigned *OffsetPtr =
|
|
std::lower_bound(TokOffsets.begin(), TokOffsets.end(), Offset);
|
|
unsigned TokIndex = OffsetPtr - TokOffsets.begin();
|
|
|
|
// If we come up with an answer which seems sane, use it; otherwise,
|
|
// just point at the __asm keyword.
|
|
// FIXME: Assert the answer is sane once we handle .macro correctly.
|
|
SourceLocation Loc = AsmLoc;
|
|
if (TokIndex < AsmToks.size()) {
|
|
const Token *Tok = &AsmToks[TokIndex];
|
|
Loc = Tok->getLocation();
|
|
Loc = Loc.getLocWithOffset(Offset - (*OffsetPtr - Tok->getLength()));
|
|
}
|
|
SemaRef.Diag(Loc, diag::err_inline_ms_asm_parsing) << D.getMessage();
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
NamedDecl *Sema::LookupInlineAsmIdentifier(StringRef Name, SourceLocation Loc,
|
|
unsigned &Size) {
|
|
Size = 0;
|
|
LookupResult Result(*this, &Context.Idents.get(Name), Loc,
|
|
Sema::LookupOrdinaryName);
|
|
|
|
if (!LookupName(Result, getCurScope())) {
|
|
// If we don't find anything, return null; the AsmParser will assume
|
|
// it is a label of some sort.
|
|
return 0;
|
|
}
|
|
|
|
if (!Result.isSingleResult()) {
|
|
// FIXME: Diagnose result.
|
|
return 0;
|
|
}
|
|
|
|
NamedDecl *ND = Result.getFoundDecl();
|
|
if (isa<VarDecl>(ND) || isa<FunctionDecl>(ND)) {
|
|
if (VarDecl *Var = dyn_cast<VarDecl>(ND))
|
|
Size = Context.getTypeInfo(Var->getType()).first;
|
|
|
|
return ND;
|
|
}
|
|
|
|
// FIXME: Handle other kinds of results? (FieldDecl, etc.)
|
|
// FIXME: Diagnose if we find something we can't handle, like a typedef.
|
|
return 0;
|
|
}
|
|
|
|
bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
|
|
unsigned &Offset, SourceLocation AsmLoc) {
|
|
Offset = 0;
|
|
LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
|
|
LookupOrdinaryName);
|
|
|
|
if (!LookupName(BaseResult, getCurScope()))
|
|
return true;
|
|
|
|
if (!BaseResult.isSingleResult())
|
|
return true;
|
|
|
|
NamedDecl *FoundDecl = BaseResult.getFoundDecl();
|
|
const RecordType *RT = 0;
|
|
if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl)) {
|
|
RT = VD->getType()->getAs<RecordType>();
|
|
} else if (TypedefDecl *TD = dyn_cast<TypedefDecl>(FoundDecl)) {
|
|
RT = TD->getUnderlyingType()->getAs<RecordType>();
|
|
}
|
|
if (!RT)
|
|
return true;
|
|
|
|
if (RequireCompleteType(AsmLoc, QualType(RT, 0), 0))
|
|
return true;
|
|
|
|
LookupResult FieldResult(*this, &Context.Idents.get(Member), SourceLocation(),
|
|
LookupMemberName);
|
|
|
|
if (!LookupQualifiedName(FieldResult, RT->getDecl()))
|
|
return true;
|
|
|
|
// FIXME: Handle IndirectFieldDecl?
|
|
FieldDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
|
|
if (!FD)
|
|
return true;
|
|
|
|
const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
|
|
unsigned i = FD->getFieldIndex();
|
|
CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
|
|
Offset = (unsigned)Result.getQuantity();
|
|
|
|
return false;
|
|
}
|
|
|
|
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
|
|
ArrayRef<Token> AsmToks,SourceLocation EndLoc) {
|
|
SmallVector<IdentifierInfo*, 4> Names;
|
|
SmallVector<StringRef, 4> ConstraintRefs;
|
|
SmallVector<Expr*, 4> Exprs;
|
|
SmallVector<StringRef, 4> ClobberRefs;
|
|
|
|
// Empty asm statements don't need to instantiate the AsmParser, etc.
|
|
if (AsmToks.empty()) {
|
|
StringRef EmptyAsmStr;
|
|
MSAsmStmt *NS =
|
|
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, /*IsSimple*/ true,
|
|
/*IsVolatile*/ true, AsmToks, /*NumOutputs*/ 0,
|
|
/*NumInputs*/ 0, Names, ConstraintRefs, Exprs,
|
|
EmptyAsmStr, ClobberRefs, EndLoc);
|
|
return Owned(NS);
|
|
}
|
|
|
|
std::string AsmString;
|
|
llvm::SmallVector<unsigned, 8> TokOffsets;
|
|
if (buildMSAsmString(*this, AsmLoc, AsmToks, TokOffsets, AsmString))
|
|
return StmtError();
|
|
|
|
// Get the target specific parser.
|
|
std::string Error;
|
|
const std::string &TT = Context.getTargetInfo().getTriple().getTriple();
|
|
const llvm::Target *TheTarget(llvm::TargetRegistry::lookupTarget(TT, Error));
|
|
|
|
OwningPtr<llvm::MCAsmInfo> MAI(TheTarget->createMCAsmInfo(TT));
|
|
OwningPtr<llvm::MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TT));
|
|
OwningPtr<llvm::MCObjectFileInfo> MOFI(new llvm::MCObjectFileInfo());
|
|
OwningPtr<llvm::MCSubtargetInfo>
|
|
STI(TheTarget->createMCSubtargetInfo(TT, "", ""));
|
|
|
|
llvm::SourceMgr SrcMgr;
|
|
llvm::MCContext Ctx(*MAI, *MRI, MOFI.get(), &SrcMgr);
|
|
llvm::MemoryBuffer *Buffer =
|
|
llvm::MemoryBuffer::getMemBuffer(AsmString, "<inline asm>");
|
|
|
|
// Tell SrcMgr about this buffer, which is what the parser will pick up.
|
|
SrcMgr.AddNewSourceBuffer(Buffer, llvm::SMLoc());
|
|
|
|
OwningPtr<llvm::MCStreamer> Str(createNullStreamer(Ctx));
|
|
OwningPtr<llvm::MCAsmParser>
|
|
Parser(createMCAsmParser(SrcMgr, Ctx, *Str.get(), *MAI));
|
|
OwningPtr<llvm::MCTargetAsmParser>
|
|
TargetParser(TheTarget->createMCAsmParser(*STI, *Parser));
|
|
|
|
// Get the instruction descriptor.
|
|
const llvm::MCInstrInfo *MII = TheTarget->createMCInstrInfo();
|
|
llvm::MCInstPrinter *IP =
|
|
TheTarget->createMCInstPrinter(1, *MAI, *MII, *MRI, *STI);
|
|
|
|
// Change to the Intel dialect.
|
|
Parser->setAssemblerDialect(1);
|
|
Parser->setTargetParser(*TargetParser.get());
|
|
Parser->setParsingInlineAsm(true);
|
|
TargetParser->setParsingInlineAsm(true);
|
|
|
|
MCAsmParserSemaCallbackImpl MCAPSI(*this, AsmLoc, AsmToks, TokOffsets);
|
|
TargetParser->setSemaCallback(&MCAPSI);
|
|
SrcMgr.setDiagHandler(MCAsmParserSemaCallbackImpl::MSAsmDiagHandlerCallback,
|
|
&MCAPSI);
|
|
|
|
unsigned NumOutputs;
|
|
unsigned NumInputs;
|
|
std::string AsmStringIR;
|
|
SmallVector<std::pair<void *, bool>, 4> OpDecls;
|
|
SmallVector<std::string, 4> Constraints;
|
|
SmallVector<std::string, 4> Clobbers;
|
|
if (Parser->ParseMSInlineAsm(AsmLoc.getPtrEncoding(), AsmStringIR,
|
|
NumOutputs, NumInputs, OpDecls, Constraints,
|
|
Clobbers, MII, IP, MCAPSI))
|
|
return StmtError();
|
|
|
|
// Build the vector of clobber StringRefs.
|
|
unsigned NumClobbers = Clobbers.size();
|
|
ClobberRefs.resize(NumClobbers);
|
|
for (unsigned i = 0; i != NumClobbers; ++i)
|
|
ClobberRefs[i] = StringRef(Clobbers[i]);
|
|
|
|
// Recast the void pointers and build the vector of constraint StringRefs.
|
|
unsigned NumExprs = NumOutputs + NumInputs;
|
|
Names.resize(NumExprs);
|
|
ConstraintRefs.resize(NumExprs);
|
|
Exprs.resize(NumExprs);
|
|
for (unsigned i = 0, e = NumExprs; i != e; ++i) {
|
|
NamedDecl *OpDecl = static_cast<NamedDecl *>(OpDecls[i].first);
|
|
if (!OpDecl)
|
|
return StmtError();
|
|
|
|
DeclarationNameInfo NameInfo(OpDecl->getDeclName(), AsmLoc);
|
|
ExprResult OpExpr = BuildDeclarationNameExpr(CXXScopeSpec(), NameInfo,
|
|
OpDecl);
|
|
if (OpExpr.isInvalid())
|
|
return StmtError();
|
|
|
|
// Need offset of variable.
|
|
if (OpDecls[i].second)
|
|
OpExpr = BuildUnaryOp(getCurScope(), AsmLoc, clang::UO_AddrOf,
|
|
OpExpr.take());
|
|
|
|
Names[i] = OpDecl->getIdentifier();
|
|
ConstraintRefs[i] = StringRef(Constraints[i]);
|
|
Exprs[i] = OpExpr.take();
|
|
}
|
|
|
|
bool IsSimple = NumExprs > 0;
|
|
MSAsmStmt *NS =
|
|
new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
|
|
/*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
|
|
Names, ConstraintRefs, Exprs, AsmStringIR,
|
|
ClobberRefs, EndLoc);
|
|
return Owned(NS);
|
|
}
|