forked from OSchip/llvm-project
502 lines
17 KiB
C++
502 lines
17 KiB
C++
//===-- llvm/CodeGen/GlobalISel/IRTranslator.cpp - IRTranslator --*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the IRTranslator class.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Target/TargetIntrinsicInfo.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
|
|
#define DEBUG_TYPE "irtranslator"
|
|
|
|
using namespace llvm;
|
|
|
|
char IRTranslator::ID = 0;
|
|
INITIALIZE_PASS(IRTranslator, "irtranslator", "IRTranslator LLVM IR -> MI",
|
|
false, false)
|
|
|
|
IRTranslator::IRTranslator() : MachineFunctionPass(ID), MRI(nullptr) {
|
|
initializeIRTranslatorPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
unsigned IRTranslator::getOrCreateVReg(const Value &Val) {
|
|
unsigned &ValReg = ValToVReg[&Val];
|
|
// Check if this is the first time we see Val.
|
|
if (!ValReg) {
|
|
// Fill ValRegsSequence with the sequence of registers
|
|
// we need to concat together to produce the value.
|
|
assert(Val.getType()->isSized() &&
|
|
"Don't know how to create an empty vreg");
|
|
unsigned Size = DL->getTypeSizeInBits(Val.getType());
|
|
unsigned VReg = MRI->createGenericVirtualRegister(Size);
|
|
ValReg = VReg;
|
|
|
|
if (auto CV = dyn_cast<Constant>(&Val)) {
|
|
bool Success = translate(*CV, VReg);
|
|
if (!Success)
|
|
report_fatal_error("unable to translate constant");
|
|
}
|
|
}
|
|
return ValReg;
|
|
}
|
|
|
|
unsigned IRTranslator::getMemOpAlignment(const Instruction &I) {
|
|
unsigned Alignment = 0;
|
|
Type *ValTy = nullptr;
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
Alignment = SI->getAlignment();
|
|
ValTy = SI->getValueOperand()->getType();
|
|
} else if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
Alignment = LI->getAlignment();
|
|
ValTy = LI->getType();
|
|
} else
|
|
llvm_unreachable("unhandled memory instruction");
|
|
|
|
return Alignment ? Alignment : DL->getABITypeAlignment(ValTy);
|
|
}
|
|
|
|
MachineBasicBlock &IRTranslator::getOrCreateBB(const BasicBlock &BB) {
|
|
MachineBasicBlock *&MBB = BBToMBB[&BB];
|
|
if (!MBB) {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
MBB = MF.CreateMachineBasicBlock();
|
|
MF.push_back(MBB);
|
|
}
|
|
return *MBB;
|
|
}
|
|
|
|
bool IRTranslator::translateBinaryOp(unsigned Opcode, const User &U) {
|
|
// FIXME: handle signed/unsigned wrapping flags.
|
|
|
|
// Get or create a virtual register for each value.
|
|
// Unless the value is a Constant => loadimm cst?
|
|
// or inline constant each time?
|
|
// Creation of a virtual register needs to have a size.
|
|
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder.buildInstr(Opcode, LLT{*U.getType()})
|
|
.addDef(Res)
|
|
.addUse(Op0)
|
|
.addUse(Op1);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateCompare(const User &U) {
|
|
const CmpInst *CI = dyn_cast<CmpInst>(&U);
|
|
unsigned Op0 = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Op1 = getOrCreateVReg(*U.getOperand(1));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
CmpInst::Predicate Pred =
|
|
CI ? CI->getPredicate() : static_cast<CmpInst::Predicate>(
|
|
cast<ConstantExpr>(U).getPredicate());
|
|
|
|
if (CmpInst::isIntPredicate(Pred))
|
|
MIRBuilder.buildICmp(
|
|
{LLT{*U.getType()}, LLT{*U.getOperand(0)->getType()}}, Pred, Res, Op0,
|
|
Op1);
|
|
else
|
|
MIRBuilder.buildFCmp(
|
|
{LLT{*U.getType()}, LLT{*U.getOperand(0)->getType()}}, Pred, Res, Op0,
|
|
Op1);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateRet(const User &U) {
|
|
const ReturnInst &RI = cast<ReturnInst>(U);
|
|
const Value *Ret = RI.getReturnValue();
|
|
// The target may mess up with the insertion point, but
|
|
// this is not important as a return is the last instruction
|
|
// of the block anyway.
|
|
return CLI->lowerReturn(MIRBuilder, Ret, !Ret ? 0 : getOrCreateVReg(*Ret));
|
|
}
|
|
|
|
bool IRTranslator::translateBr(const User &U) {
|
|
const BranchInst &BrInst = cast<BranchInst>(U);
|
|
unsigned Succ = 0;
|
|
if (!BrInst.isUnconditional()) {
|
|
// We want a G_BRCOND to the true BB followed by an unconditional branch.
|
|
unsigned Tst = getOrCreateVReg(*BrInst.getCondition());
|
|
const BasicBlock &TrueTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ++));
|
|
MachineBasicBlock &TrueBB = getOrCreateBB(TrueTgt);
|
|
MIRBuilder.buildBrCond(LLT{*BrInst.getCondition()->getType()}, Tst, TrueBB);
|
|
}
|
|
|
|
const BasicBlock &BrTgt = *cast<BasicBlock>(BrInst.getSuccessor(Succ));
|
|
MachineBasicBlock &TgtBB = getOrCreateBB(BrTgt);
|
|
MIRBuilder.buildBr(TgtBB);
|
|
|
|
// Link successors.
|
|
MachineBasicBlock &CurBB = MIRBuilder.getMBB();
|
|
for (const BasicBlock *Succ : BrInst.successors())
|
|
CurBB.addSuccessor(&getOrCreateBB(*Succ));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateLoad(const User &U) {
|
|
const LoadInst &LI = cast<LoadInst>(U);
|
|
assert(LI.isSimple() && "only simple loads are supported at the moment");
|
|
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
unsigned Res = getOrCreateVReg(LI);
|
|
unsigned Addr = getOrCreateVReg(*LI.getPointerOperand());
|
|
LLT VTy{*LI.getType(), DL}, PTy{*LI.getPointerOperand()->getType()};
|
|
|
|
MIRBuilder.buildLoad(
|
|
VTy, PTy, Res, Addr,
|
|
*MF.getMachineMemOperand(
|
|
MachinePointerInfo(LI.getPointerOperand()), MachineMemOperand::MOLoad,
|
|
DL->getTypeStoreSize(LI.getType()), getMemOpAlignment(LI)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateStore(const User &U) {
|
|
const StoreInst &SI = cast<StoreInst>(U);
|
|
assert(SI.isSimple() && "only simple loads are supported at the moment");
|
|
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
unsigned Val = getOrCreateVReg(*SI.getValueOperand());
|
|
unsigned Addr = getOrCreateVReg(*SI.getPointerOperand());
|
|
LLT VTy{*SI.getValueOperand()->getType(), DL},
|
|
PTy{*SI.getPointerOperand()->getType()};
|
|
|
|
MIRBuilder.buildStore(
|
|
VTy, PTy, Val, Addr,
|
|
*MF.getMachineMemOperand(
|
|
MachinePointerInfo(SI.getPointerOperand()),
|
|
MachineMemOperand::MOStore,
|
|
DL->getTypeStoreSize(SI.getValueOperand()->getType()),
|
|
getMemOpAlignment(SI)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateExtractValue(const User &U) {
|
|
const Value *Src = U.getOperand(0);
|
|
Type *Int32Ty = Type::getInt32Ty(U.getContext());
|
|
SmallVector<Value *, 1> Indices;
|
|
|
|
// getIndexedOffsetInType is designed for GEPs, so the first index is the
|
|
// usual array element rather than looking into the actual aggregate.
|
|
Indices.push_back(ConstantInt::get(Int32Ty, 0));
|
|
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&U)) {
|
|
for (auto Idx : EVI->indices())
|
|
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
|
} else {
|
|
for (unsigned i = 1; i < U.getNumOperands(); ++i)
|
|
Indices.push_back(U.getOperand(i));
|
|
}
|
|
|
|
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
|
|
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder.buildExtract(LLT{*U.getType(), DL}, Res, Offset,
|
|
LLT{*Src->getType(), DL}, getOrCreateVReg(*Src));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateInsertValue(const User &U) {
|
|
const Value *Src = U.getOperand(0);
|
|
Type *Int32Ty = Type::getInt32Ty(U.getContext());
|
|
SmallVector<Value *, 1> Indices;
|
|
|
|
// getIndexedOffsetInType is designed for GEPs, so the first index is the
|
|
// usual array element rather than looking into the actual aggregate.
|
|
Indices.push_back(ConstantInt::get(Int32Ty, 0));
|
|
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&U)) {
|
|
for (auto Idx : IVI->indices())
|
|
Indices.push_back(ConstantInt::get(Int32Ty, Idx));
|
|
} else {
|
|
for (unsigned i = 2; i < U.getNumOperands(); ++i)
|
|
Indices.push_back(U.getOperand(i));
|
|
}
|
|
|
|
uint64_t Offset = 8 * DL->getIndexedOffsetInType(Src->getType(), Indices);
|
|
|
|
unsigned Res = getOrCreateVReg(U);
|
|
const Value &Inserted = *U.getOperand(1);
|
|
MIRBuilder.buildInsert(LLT{*U.getType(), DL}, Res, getOrCreateVReg(*Src),
|
|
LLT{*Inserted.getType(), DL},
|
|
getOrCreateVReg(Inserted), Offset);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateSelect(const User &U) {
|
|
MIRBuilder.buildSelect(
|
|
LLT{*U.getType()}, getOrCreateVReg(U), getOrCreateVReg(*U.getOperand(0)),
|
|
getOrCreateVReg(*U.getOperand(1)), getOrCreateVReg(*U.getOperand(2)));
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateBitCast(const User &U) {
|
|
if (LLT{*U.getOperand(0)->getType()} == LLT{*U.getType()}) {
|
|
unsigned &Reg = ValToVReg[&U];
|
|
if (Reg)
|
|
MIRBuilder.buildCopy(Reg, getOrCreateVReg(*U.getOperand(0)));
|
|
else
|
|
Reg = getOrCreateVReg(*U.getOperand(0));
|
|
return true;
|
|
}
|
|
return translateCast(TargetOpcode::G_BITCAST, U);
|
|
}
|
|
|
|
bool IRTranslator::translateCast(unsigned Opcode, const User &U) {
|
|
unsigned Op = getOrCreateVReg(*U.getOperand(0));
|
|
unsigned Res = getOrCreateVReg(U);
|
|
MIRBuilder
|
|
.buildInstr(Opcode, {LLT{*U.getType()}, LLT{*U.getOperand(0)->getType()}})
|
|
.addDef(Res)
|
|
.addUse(Op);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateKnownIntrinsic(const CallInst &CI,
|
|
Intrinsic::ID ID) {
|
|
unsigned Op = 0;
|
|
switch (ID) {
|
|
default: return false;
|
|
case Intrinsic::uadd_with_overflow: Op = TargetOpcode::G_UADDE; break;
|
|
case Intrinsic::sadd_with_overflow: Op = TargetOpcode::G_SADDO; break;
|
|
case Intrinsic::usub_with_overflow: Op = TargetOpcode::G_USUBE; break;
|
|
case Intrinsic::ssub_with_overflow: Op = TargetOpcode::G_SSUBO; break;
|
|
case Intrinsic::umul_with_overflow: Op = TargetOpcode::G_UMULO; break;
|
|
case Intrinsic::smul_with_overflow: Op = TargetOpcode::G_SMULO; break;
|
|
}
|
|
|
|
LLT Ty{*CI.getOperand(0)->getType()};
|
|
LLT s1 = LLT::scalar(1);
|
|
unsigned Width = Ty.getSizeInBits();
|
|
unsigned Res = MRI->createGenericVirtualRegister(Width);
|
|
unsigned Overflow = MRI->createGenericVirtualRegister(1);
|
|
auto MIB = MIRBuilder.buildInstr(Op, {Ty, s1})
|
|
.addDef(Res)
|
|
.addDef(Overflow)
|
|
.addUse(getOrCreateVReg(*CI.getOperand(0)))
|
|
.addUse(getOrCreateVReg(*CI.getOperand(1)));
|
|
|
|
if (Op == TargetOpcode::G_UADDE || Op == TargetOpcode::G_USUBE) {
|
|
unsigned Zero = MRI->createGenericVirtualRegister(1);
|
|
EntryBuilder.buildConstant(s1, Zero, 0);
|
|
MIB.addUse(Zero);
|
|
}
|
|
|
|
MIRBuilder.buildSequence(LLT{*CI.getType(), DL}, getOrCreateVReg(CI), Ty, Res,
|
|
0, s1, Overflow, Width);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateCall(const User &U) {
|
|
const CallInst &CI = cast<CallInst>(U);
|
|
auto TII = MIRBuilder.getMF().getTarget().getIntrinsicInfo();
|
|
const Function *F = CI.getCalledFunction();
|
|
|
|
if (!F || !F->isIntrinsic()) {
|
|
// FIXME: handle multiple return values.
|
|
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
|
|
SmallVector<unsigned, 8> Args;
|
|
for (auto &Arg: CI.arg_operands())
|
|
Args.push_back(getOrCreateVReg(*Arg));
|
|
|
|
return CLI->lowerCall(MIRBuilder, CI,
|
|
F ? 0 : getOrCreateVReg(*CI.getCalledValue()), Res,
|
|
Args);
|
|
}
|
|
|
|
Intrinsic::ID ID = F->getIntrinsicID();
|
|
if (TII && ID == Intrinsic::not_intrinsic)
|
|
ID = static_cast<Intrinsic::ID>(TII->getIntrinsicID(F));
|
|
|
|
assert(ID != Intrinsic::not_intrinsic && "unknown intrinsic");
|
|
|
|
if (translateKnownIntrinsic(CI, ID))
|
|
return true;
|
|
|
|
// Need types (starting with return) & args.
|
|
SmallVector<LLT, 4> Tys;
|
|
Tys.emplace_back(*CI.getType());
|
|
for (auto &Arg : CI.arg_operands())
|
|
Tys.emplace_back(*Arg->getType());
|
|
|
|
unsigned Res = CI.getType()->isVoidTy() ? 0 : getOrCreateVReg(CI);
|
|
MachineInstrBuilder MIB =
|
|
MIRBuilder.buildIntrinsic(Tys, ID, Res, !CI.doesNotAccessMemory());
|
|
|
|
for (auto &Arg : CI.arg_operands()) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Arg))
|
|
MIB.addImm(CI->getSExtValue());
|
|
else
|
|
MIB.addUse(getOrCreateVReg(*Arg));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translateStaticAlloca(const AllocaInst &AI) {
|
|
assert(AI.isStaticAlloca() && "only handle static allocas now");
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
unsigned ElementSize = DL->getTypeStoreSize(AI.getAllocatedType());
|
|
unsigned Size =
|
|
ElementSize * cast<ConstantInt>(AI.getArraySize())->getZExtValue();
|
|
|
|
// Always allocate at least one byte.
|
|
Size = std::max(Size, 1u);
|
|
|
|
unsigned Alignment = AI.getAlignment();
|
|
if (!Alignment)
|
|
Alignment = DL->getABITypeAlignment(AI.getAllocatedType());
|
|
|
|
unsigned Res = getOrCreateVReg(AI);
|
|
int FI = MF.getFrameInfo().CreateStackObject(Size, Alignment, false, &AI);
|
|
MIRBuilder.buildFrameIndex(LLT::pointer(0), Res, FI);
|
|
return true;
|
|
}
|
|
|
|
bool IRTranslator::translatePHI(const User &U) {
|
|
const PHINode &PI = cast<PHINode>(U);
|
|
MachineInstrBuilder MIB = MIRBuilder.buildInstr(TargetOpcode::PHI);
|
|
MIB.addDef(getOrCreateVReg(PI));
|
|
|
|
PendingPHIs.emplace_back(&PI, MIB.getInstr());
|
|
return true;
|
|
}
|
|
|
|
void IRTranslator::finishPendingPhis() {
|
|
for (std::pair<const PHINode *, MachineInstr *> &Phi : PendingPHIs) {
|
|
const PHINode *PI = Phi.first;
|
|
MachineInstrBuilder MIB(MIRBuilder.getMF(), Phi.second);
|
|
|
|
// All MachineBasicBlocks exist, add them to the PHI. We assume IRTranslator
|
|
// won't create extra control flow here, otherwise we need to find the
|
|
// dominating predecessor here (or perhaps force the weirder IRTranslators
|
|
// to provide a simple boundary).
|
|
for (unsigned i = 0; i < PI->getNumIncomingValues(); ++i) {
|
|
assert(BBToMBB[PI->getIncomingBlock(i)]->isSuccessor(MIB->getParent()) &&
|
|
"I appear to have misunderstood Machine PHIs");
|
|
MIB.addUse(getOrCreateVReg(*PI->getIncomingValue(i)));
|
|
MIB.addMBB(BBToMBB[PI->getIncomingBlock(i)]);
|
|
}
|
|
}
|
|
|
|
PendingPHIs.clear();
|
|
}
|
|
|
|
bool IRTranslator::translate(const Instruction &Inst) {
|
|
MIRBuilder.setDebugLoc(Inst.getDebugLoc());
|
|
switch(Inst.getOpcode()) {
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: return translate##OPCODE(Inst);
|
|
#include "llvm/IR/Instruction.def"
|
|
default:
|
|
llvm_unreachable("unknown opcode");
|
|
}
|
|
}
|
|
|
|
bool IRTranslator::translate(const Constant &C, unsigned Reg) {
|
|
if (auto CI = dyn_cast<ConstantInt>(&C))
|
|
EntryBuilder.buildConstant(LLT{*CI->getType()}, Reg, CI->getZExtValue());
|
|
else if (auto CF = dyn_cast<ConstantFP>(&C))
|
|
EntryBuilder.buildFConstant(LLT{*CF->getType()}, Reg, *CF);
|
|
else if (isa<UndefValue>(C))
|
|
EntryBuilder.buildInstr(TargetOpcode::IMPLICIT_DEF).addDef(Reg);
|
|
else if (isa<ConstantPointerNull>(C))
|
|
EntryBuilder.buildInstr(TargetOpcode::G_CONSTANT, LLT{*C.getType()})
|
|
.addDef(Reg)
|
|
.addImm(0);
|
|
else if (auto CE = dyn_cast<ConstantExpr>(&C)) {
|
|
switch(CE->getOpcode()) {
|
|
#define HANDLE_INST(NUM, OPCODE, CLASS) \
|
|
case Instruction::OPCODE: return translate##OPCODE(*CE);
|
|
#include "llvm/IR/Instruction.def"
|
|
default:
|
|
llvm_unreachable("unknown opcode");
|
|
}
|
|
} else
|
|
llvm_unreachable("unhandled constant kind");
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void IRTranslator::finalizeFunction() {
|
|
finishPendingPhis();
|
|
|
|
// Release the memory used by the different maps we
|
|
// needed during the translation.
|
|
ValToVReg.clear();
|
|
Constants.clear();
|
|
}
|
|
|
|
bool IRTranslator::runOnMachineFunction(MachineFunction &MF) {
|
|
const Function &F = *MF.getFunction();
|
|
if (F.empty())
|
|
return false;
|
|
CLI = MF.getSubtarget().getCallLowering();
|
|
MIRBuilder.setMF(MF);
|
|
EntryBuilder.setMF(MF);
|
|
MRI = &MF.getRegInfo();
|
|
DL = &F.getParent()->getDataLayout();
|
|
|
|
assert(PendingPHIs.empty() && "stale PHIs");
|
|
|
|
// Setup the arguments.
|
|
MachineBasicBlock &MBB = getOrCreateBB(F.front());
|
|
MIRBuilder.setMBB(MBB);
|
|
SmallVector<unsigned, 8> VRegArgs;
|
|
for (const Argument &Arg: F.args())
|
|
VRegArgs.push_back(getOrCreateVReg(Arg));
|
|
bool Succeeded =
|
|
CLI->lowerFormalArguments(MIRBuilder, F.getArgumentList(), VRegArgs);
|
|
if (!Succeeded)
|
|
report_fatal_error("Unable to lower arguments");
|
|
|
|
// Now that we've got the ABI handling code, it's safe to set a location for
|
|
// any Constants we find in the IR.
|
|
if (MBB.empty())
|
|
EntryBuilder.setMBB(MBB);
|
|
else
|
|
EntryBuilder.setInstr(MBB.back(), /* Before */ false);
|
|
|
|
for (const BasicBlock &BB: F) {
|
|
MachineBasicBlock &MBB = getOrCreateBB(BB);
|
|
// Set the insertion point of all the following translations to
|
|
// the end of this basic block.
|
|
MIRBuilder.setMBB(MBB);
|
|
for (const Instruction &Inst: BB) {
|
|
bool Succeeded = translate(Inst);
|
|
if (!Succeeded) {
|
|
DEBUG(dbgs() << "Cannot translate: " << Inst << '\n');
|
|
report_fatal_error("Unable to translate instruction");
|
|
}
|
|
}
|
|
}
|
|
|
|
finalizeFunction();
|
|
|
|
// Now that the MachineFrameInfo has been configured, no further changes to
|
|
// the reserved registers are possible.
|
|
MRI->freezeReservedRegs(MF);
|
|
|
|
return false;
|
|
}
|