forked from OSchip/llvm-project
1081 lines
40 KiB
C++
1081 lines
40 KiB
C++
//===-- RISCVISelLowering.cpp - RISCV DAG Lowering Implementation --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that RISCV uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "RISCVISelLowering.h"
|
|
#include "RISCV.h"
|
|
#include "RISCVMachineFunctionInfo.h"
|
|
#include "RISCVRegisterInfo.h"
|
|
#include "RISCVSubtarget.h"
|
|
#include "RISCVTargetMachine.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/DiagnosticPrinter.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "riscv-lower"
|
|
|
|
RISCVTargetLowering::RISCVTargetLowering(const TargetMachine &TM,
|
|
const RISCVSubtarget &STI)
|
|
: TargetLowering(TM), Subtarget(STI) {
|
|
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// Set up the register classes.
|
|
addRegisterClass(XLenVT, &RISCV::GPRRegClass);
|
|
|
|
// Compute derived properties from the register classes.
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
setStackPointerRegisterToSaveRestore(RISCV::X2);
|
|
|
|
for (auto N : {ISD::EXTLOAD, ISD::SEXTLOAD, ISD::ZEXTLOAD})
|
|
setLoadExtAction(N, XLenVT, MVT::i1, Promote);
|
|
|
|
// TODO: add all necessary setOperationAction calls.
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, XLenVT, Expand);
|
|
setOperationAction(ISD::SELECT, XLenVT, Custom);
|
|
setOperationAction(ISD::SELECT_CC, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
|
|
for (auto VT : {MVT::i1, MVT::i8, MVT::i16})
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
|
|
setOperationAction(ISD::ADDC, XLenVT, Expand);
|
|
setOperationAction(ISD::ADDE, XLenVT, Expand);
|
|
setOperationAction(ISD::SUBC, XLenVT, Expand);
|
|
setOperationAction(ISD::SUBE, XLenVT, Expand);
|
|
|
|
if (!Subtarget.hasStdExtM()) {
|
|
setOperationAction(ISD::MUL, XLenVT, Expand);
|
|
setOperationAction(ISD::MULHS, XLenVT, Expand);
|
|
setOperationAction(ISD::MULHU, XLenVT, Expand);
|
|
setOperationAction(ISD::SDIV, XLenVT, Expand);
|
|
setOperationAction(ISD::UDIV, XLenVT, Expand);
|
|
setOperationAction(ISD::SREM, XLenVT, Expand);
|
|
setOperationAction(ISD::UREM, XLenVT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::SDIVREM, XLenVT, Expand);
|
|
setOperationAction(ISD::UDIVREM, XLenVT, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, XLenVT, Expand);
|
|
setOperationAction(ISD::UMUL_LOHI, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, XLenVT, Expand);
|
|
setOperationAction(ISD::SRL_PARTS, XLenVT, Expand);
|
|
setOperationAction(ISD::SRA_PARTS, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::ROTL, XLenVT, Expand);
|
|
setOperationAction(ISD::ROTR, XLenVT, Expand);
|
|
setOperationAction(ISD::BSWAP, XLenVT, Expand);
|
|
setOperationAction(ISD::CTTZ, XLenVT, Expand);
|
|
setOperationAction(ISD::CTLZ, XLenVT, Expand);
|
|
setOperationAction(ISD::CTPOP, XLenVT, Expand);
|
|
|
|
setOperationAction(ISD::GlobalAddress, XLenVT, Custom);
|
|
setOperationAction(ISD::BlockAddress, XLenVT, Custom);
|
|
|
|
setBooleanContents(ZeroOrOneBooleanContent);
|
|
|
|
// Function alignments (log2).
|
|
setMinFunctionAlignment(3);
|
|
setPrefFunctionAlignment(3);
|
|
|
|
// Effectively disable jump table generation.
|
|
setMinimumJumpTableEntries(INT_MAX);
|
|
}
|
|
|
|
EVT RISCVTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return getPointerTy(DL);
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
// Changes the condition code and swaps operands if necessary, so the SetCC
|
|
// operation matches one of the comparisons supported directly in the RISC-V
|
|
// ISA.
|
|
static void normaliseSetCC(SDValue &LHS, SDValue &RHS, ISD::CondCode &CC) {
|
|
switch (CC) {
|
|
default:
|
|
break;
|
|
case ISD::SETGT:
|
|
case ISD::SETLE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETULE:
|
|
CC = ISD::getSetCCSwappedOperands(CC);
|
|
std::swap(LHS, RHS);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Return the RISC-V branch opcode that matches the given DAG integer
|
|
// condition code. The CondCode must be one of those supported by the RISC-V
|
|
// ISA (see normaliseSetCC).
|
|
static unsigned getBranchOpcodeForIntCondCode(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported CondCode");
|
|
case ISD::SETEQ:
|
|
return RISCV::BEQ;
|
|
case ISD::SETNE:
|
|
return RISCV::BNE;
|
|
case ISD::SETLT:
|
|
return RISCV::BLT;
|
|
case ISD::SETGE:
|
|
return RISCV::BGE;
|
|
case ISD::SETULT:
|
|
return RISCV::BLTU;
|
|
case ISD::SETUGE:
|
|
return RISCV::BGEU;
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerOperation(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default:
|
|
report_fatal_error("unimplemented operand");
|
|
case ISD::GlobalAddress:
|
|
return lowerGlobalAddress(Op, DAG);
|
|
case ISD::BlockAddress:
|
|
return lowerBlockAddress(Op, DAG);
|
|
case ISD::SELECT:
|
|
return lowerSELECT(Op, DAG);
|
|
case ISD::VASTART:
|
|
return lowerVASTART(Op, DAG);
|
|
case ISD::FRAMEADDR:
|
|
return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::RETURNADDR:
|
|
return LowerRETURNADDR(Op, DAG);
|
|
}
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerGlobalAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
GlobalAddressSDNode *N = cast<GlobalAddressSDNode>(Op);
|
|
const GlobalValue *GV = N->getGlobal();
|
|
int64_t Offset = N->getOffset();
|
|
|
|
if (isPositionIndependent() || Subtarget.is64Bit())
|
|
report_fatal_error("Unable to lowerGlobalAddress");
|
|
|
|
SDValue GAHi =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_HI);
|
|
SDValue GALo =
|
|
DAG.getTargetGlobalAddress(GV, DL, Ty, Offset, RISCVII::MO_LO);
|
|
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
|
|
SDValue MNLo =
|
|
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
|
|
return MNLo;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
BlockAddressSDNode *N = cast<BlockAddressSDNode>(Op);
|
|
const BlockAddress *BA = N->getBlockAddress();
|
|
int64_t Offset = N->getOffset();
|
|
|
|
if (isPositionIndependent() || Subtarget.is64Bit())
|
|
report_fatal_error("Unable to lowerBlockAddress");
|
|
|
|
SDValue BAHi = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_HI);
|
|
SDValue BALo = DAG.getTargetBlockAddress(BA, Ty, Offset, RISCVII::MO_LO);
|
|
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, BAHi), 0);
|
|
SDValue MNLo =
|
|
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, BALo), 0);
|
|
return MNLo;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerExternalSymbol(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT Ty = Op.getValueType();
|
|
ExternalSymbolSDNode *N = cast<ExternalSymbolSDNode>(Op);
|
|
const char *Sym = N->getSymbol();
|
|
|
|
// TODO: should also handle gp-relative loads.
|
|
|
|
if (isPositionIndependent() || Subtarget.is64Bit())
|
|
report_fatal_error("Unable to lowerExternalSymbol");
|
|
|
|
SDValue GAHi = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_HI);
|
|
SDValue GALo = DAG.getTargetExternalSymbol(Sym, Ty, RISCVII::MO_LO);
|
|
SDValue MNHi = SDValue(DAG.getMachineNode(RISCV::LUI, DL, Ty, GAHi), 0);
|
|
SDValue MNLo =
|
|
SDValue(DAG.getMachineNode(RISCV::ADDI, DL, Ty, MNHi, GALo), 0);
|
|
return MNLo;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue CondV = Op.getOperand(0);
|
|
SDValue TrueV = Op.getOperand(1);
|
|
SDValue FalseV = Op.getOperand(2);
|
|
SDLoc DL(Op);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
// If the result type is XLenVT and CondV is the output of a SETCC node
|
|
// which also operated on XLenVT inputs, then merge the SETCC node into the
|
|
// lowered RISCVISD::SELECT_CC to take advantage of the integer
|
|
// compare+branch instructions. i.e.:
|
|
// (select (setcc lhs, rhs, cc), truev, falsev)
|
|
// -> (riscvisd::select_cc lhs, rhs, cc, truev, falsev)
|
|
if (Op.getSimpleValueType() == XLenVT && CondV.getOpcode() == ISD::SETCC &&
|
|
CondV.getOperand(0).getSimpleValueType() == XLenVT) {
|
|
SDValue LHS = CondV.getOperand(0);
|
|
SDValue RHS = CondV.getOperand(1);
|
|
auto CC = cast<CondCodeSDNode>(CondV.getOperand(2));
|
|
ISD::CondCode CCVal = CC->get();
|
|
|
|
normaliseSetCC(LHS, RHS, CCVal);
|
|
|
|
SDValue TargetCC = DAG.getConstant(CCVal, DL, XLenVT);
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = {LHS, RHS, TargetCC, TrueV, FalseV};
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
|
|
}
|
|
|
|
// Otherwise:
|
|
// (select condv, truev, falsev)
|
|
// -> (riscvisd::select_cc condv, zero, setne, truev, falsev)
|
|
SDValue Zero = DAG.getConstant(0, DL, XLenVT);
|
|
SDValue SetNE = DAG.getConstant(ISD::SETNE, DL, XLenVT);
|
|
|
|
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Glue);
|
|
SDValue Ops[] = {CondV, Zero, SetNE, TrueV, FalseV};
|
|
|
|
return DAG.getNode(RISCVISD::SELECT_CC, DL, VTs, Ops);
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::lowerVASTART(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
RISCVMachineFunctionInfo *FuncInfo = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue FI = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
|
|
getPointerTy(MF.getDataLayout()));
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), DL, FI, Op.getOperand(1),
|
|
MachinePointerInfo(SV));
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerFRAMEADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setFrameAddressIsTaken(true);
|
|
unsigned FrameReg = RI.getFrameRegister(MF);
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), DL, FrameReg, VT);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
while (Depth--) {
|
|
int Offset = -(XLenInBytes * 2);
|
|
SDValue Ptr = DAG.getNode(ISD::ADD, DL, VT, FrameAddr,
|
|
DAG.getIntPtrConstant(Offset, DL));
|
|
FrameAddr =
|
|
DAG.getLoad(VT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo());
|
|
}
|
|
return FrameAddr;
|
|
}
|
|
|
|
SDValue RISCVTargetLowering::LowerRETURNADDR(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
const RISCVRegisterInfo &RI = *Subtarget.getRegisterInfo();
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MFI.setReturnAddressIsTaken(true);
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
int XLenInBytes = Subtarget.getXLen() / 8;
|
|
|
|
if (verifyReturnAddressArgumentIsConstant(Op, DAG))
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
int Off = -XLenInBytes;
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(Off, DL, VT);
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, DL, VT, FrameAddr, Offset),
|
|
MachinePointerInfo());
|
|
}
|
|
|
|
// Return the value of the return address register, marking it an implicit
|
|
// live-in.
|
|
unsigned Reg = MF.addLiveIn(RI.getRARegister(), getRegClassFor(XLenVT));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, XLenVT);
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
RISCVTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo &TII = *BB->getParent()->getSubtarget().getInstrInfo();
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
|
|
assert(MI.getOpcode() == RISCV::Select_GPR_Using_CC_GPR &&
|
|
"Unexpected instr type to insert");
|
|
|
|
// To "insert" a SELECT instruction, we actually have to insert the triangle
|
|
// control-flow pattern. The incoming instruction knows the destination vreg
|
|
// to set, the condition code register to branch on, the true/false values to
|
|
// select between, and the condcode to use to select the appropriate branch.
|
|
//
|
|
// We produce the following control flow:
|
|
// HeadMBB
|
|
// | \
|
|
// | IfFalseMBB
|
|
// | /
|
|
// TailMBB
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator I = ++BB->getIterator();
|
|
|
|
MachineBasicBlock *HeadMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *TailMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *IfFalseMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
F->insert(I, IfFalseMBB);
|
|
F->insert(I, TailMBB);
|
|
// Move all remaining instructions to TailMBB.
|
|
TailMBB->splice(TailMBB->begin(), HeadMBB,
|
|
std::next(MachineBasicBlock::iterator(MI)), HeadMBB->end());
|
|
// Update machine-CFG edges by transferring all successors of the current
|
|
// block to the new block which will contain the Phi node for the select.
|
|
TailMBB->transferSuccessorsAndUpdatePHIs(HeadMBB);
|
|
// Set the successors for HeadMBB.
|
|
HeadMBB->addSuccessor(IfFalseMBB);
|
|
HeadMBB->addSuccessor(TailMBB);
|
|
|
|
// Insert appropriate branch.
|
|
unsigned LHS = MI.getOperand(1).getReg();
|
|
unsigned RHS = MI.getOperand(2).getReg();
|
|
auto CC = static_cast<ISD::CondCode>(MI.getOperand(3).getImm());
|
|
unsigned Opcode = getBranchOpcodeForIntCondCode(CC);
|
|
|
|
BuildMI(HeadMBB, DL, TII.get(Opcode))
|
|
.addReg(LHS)
|
|
.addReg(RHS)
|
|
.addMBB(TailMBB);
|
|
|
|
// IfFalseMBB just falls through to TailMBB.
|
|
IfFalseMBB->addSuccessor(TailMBB);
|
|
|
|
// %Result = phi [ %TrueValue, HeadMBB ], [ %FalseValue, IfFalseMBB ]
|
|
BuildMI(*TailMBB, TailMBB->begin(), DL, TII.get(RISCV::PHI),
|
|
MI.getOperand(0).getReg())
|
|
.addReg(MI.getOperand(4).getReg())
|
|
.addMBB(HeadMBB)
|
|
.addReg(MI.getOperand(5).getReg())
|
|
.addMBB(IfFalseMBB);
|
|
|
|
MI.eraseFromParent(); // The pseudo instruction is gone now.
|
|
return TailMBB;
|
|
}
|
|
|
|
// Calling Convention Implementation.
|
|
// The expectations for frontend ABI lowering vary from target to target.
|
|
// Ideally, an LLVM frontend would be able to avoid worrying about many ABI
|
|
// details, but this is a longer term goal. For now, we simply try to keep the
|
|
// role of the frontend as simple and well-defined as possible. The rules can
|
|
// be summarised as:
|
|
// * Never split up large scalar arguments. We handle them here.
|
|
// * If a hardfloat calling convention is being used, and the struct may be
|
|
// passed in a pair of registers (fp+fp, int+fp), and both registers are
|
|
// available, then pass as two separate arguments. If either the GPRs or FPRs
|
|
// are exhausted, then pass according to the rule below.
|
|
// * If a struct could never be passed in registers or directly in a stack
|
|
// slot (as it is larger than 2*XLEN and the floating point rules don't
|
|
// apply), then pass it using a pointer with the byval attribute.
|
|
// * If a struct is less than 2*XLEN, then coerce to either a two-element
|
|
// word-sized array or a 2*XLEN scalar (depending on alignment).
|
|
// * The frontend can determine whether a struct is returned by reference or
|
|
// not based on its size and fields. If it will be returned by reference, the
|
|
// frontend must modify the prototype so a pointer with the sret annotation is
|
|
// passed as the first argument. This is not necessary for large scalar
|
|
// returns.
|
|
// * Struct return values and varargs should be coerced to structs containing
|
|
// register-size fields in the same situations they would be for fixed
|
|
// arguments.
|
|
|
|
static const MCPhysReg ArgGPRs[] = {
|
|
RISCV::X10, RISCV::X11, RISCV::X12, RISCV::X13,
|
|
RISCV::X14, RISCV::X15, RISCV::X16, RISCV::X17
|
|
};
|
|
|
|
// Pass a 2*XLEN argument that has been split into two XLEN values through
|
|
// registers or the stack as necessary.
|
|
static bool CC_RISCVAssign2XLen(unsigned XLen, CCState &State, CCValAssign VA1,
|
|
ISD::ArgFlagsTy ArgFlags1, unsigned ValNo2,
|
|
MVT ValVT2, MVT LocVT2,
|
|
ISD::ArgFlagsTy ArgFlags2) {
|
|
unsigned XLenInBytes = XLen / 8;
|
|
if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
|
|
// At least one half can be passed via register.
|
|
State.addLoc(CCValAssign::getReg(VA1.getValNo(), VA1.getValVT(), Reg,
|
|
VA1.getLocVT(), CCValAssign::Full));
|
|
} else {
|
|
// Both halves must be passed on the stack, with proper alignment.
|
|
unsigned StackAlign = std::max(XLenInBytes, ArgFlags1.getOrigAlign());
|
|
State.addLoc(
|
|
CCValAssign::getMem(VA1.getValNo(), VA1.getValVT(),
|
|
State.AllocateStack(XLenInBytes, StackAlign),
|
|
VA1.getLocVT(), CCValAssign::Full));
|
|
State.addLoc(CCValAssign::getMem(
|
|
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
|
|
CCValAssign::Full));
|
|
return false;
|
|
}
|
|
|
|
if (unsigned Reg = State.AllocateReg(ArgGPRs)) {
|
|
// The second half can also be passed via register.
|
|
State.addLoc(
|
|
CCValAssign::getReg(ValNo2, ValVT2, Reg, LocVT2, CCValAssign::Full));
|
|
} else {
|
|
// The second half is passed via the stack, without additional alignment.
|
|
State.addLoc(CCValAssign::getMem(
|
|
ValNo2, ValVT2, State.AllocateStack(XLenInBytes, XLenInBytes), LocVT2,
|
|
CCValAssign::Full));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Implements the RISC-V calling convention. Returns true upon failure.
|
|
static bool CC_RISCV(const DataLayout &DL, unsigned ValNo, MVT ValVT, MVT LocVT,
|
|
CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
|
|
CCState &State, bool IsFixed, bool IsRet, Type *OrigTy) {
|
|
unsigned XLen = DL.getLargestLegalIntTypeSizeInBits();
|
|
assert(XLen == 32 || XLen == 64);
|
|
MVT XLenVT = XLen == 32 ? MVT::i32 : MVT::i64;
|
|
assert(ValVT == XLenVT && "Unexpected ValVT");
|
|
assert(LocVT == XLenVT && "Unexpected LocVT");
|
|
|
|
// Any return value split in to more than two values can't be returned
|
|
// directly.
|
|
if (IsRet && ValNo > 1)
|
|
return true;
|
|
|
|
// If this is a variadic argument, the RISC-V calling convention requires
|
|
// that it is assigned an 'even' or 'aligned' register if it has 8-byte
|
|
// alignment (RV32) or 16-byte alignment (RV64). An aligned register should
|
|
// be used regardless of whether the original argument was split during
|
|
// legalisation or not. The argument will not be passed by registers if the
|
|
// original type is larger than 2*XLEN, so the register alignment rule does
|
|
// not apply.
|
|
unsigned TwoXLenInBytes = (2 * XLen) / 8;
|
|
if (!IsFixed && ArgFlags.getOrigAlign() == TwoXLenInBytes &&
|
|
DL.getTypeAllocSize(OrigTy) == TwoXLenInBytes) {
|
|
unsigned RegIdx = State.getFirstUnallocated(ArgGPRs);
|
|
// Skip 'odd' register if necessary.
|
|
if (RegIdx != array_lengthof(ArgGPRs) && RegIdx % 2 == 1)
|
|
State.AllocateReg(ArgGPRs);
|
|
}
|
|
|
|
SmallVectorImpl<CCValAssign> &PendingLocs = State.getPendingLocs();
|
|
SmallVectorImpl<ISD::ArgFlagsTy> &PendingArgFlags =
|
|
State.getPendingArgFlags();
|
|
|
|
assert(PendingLocs.size() == PendingArgFlags.size() &&
|
|
"PendingLocs and PendingArgFlags out of sync");
|
|
|
|
// Split arguments might be passed indirectly, so keep track of the pending
|
|
// values.
|
|
if (ArgFlags.isSplit() || !PendingLocs.empty()) {
|
|
LocVT = XLenVT;
|
|
LocInfo = CCValAssign::Indirect;
|
|
PendingLocs.push_back(
|
|
CCValAssign::getPending(ValNo, ValVT, LocVT, LocInfo));
|
|
PendingArgFlags.push_back(ArgFlags);
|
|
if (!ArgFlags.isSplitEnd()) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the split argument only had two elements, it should be passed directly
|
|
// in registers or on the stack.
|
|
if (ArgFlags.isSplitEnd() && PendingLocs.size() <= 2) {
|
|
assert(PendingLocs.size() == 2 && "Unexpected PendingLocs.size()");
|
|
// Apply the normal calling convention rules to the first half of the
|
|
// split argument.
|
|
CCValAssign VA = PendingLocs[0];
|
|
ISD::ArgFlagsTy AF = PendingArgFlags[0];
|
|
PendingLocs.clear();
|
|
PendingArgFlags.clear();
|
|
return CC_RISCVAssign2XLen(XLen, State, VA, AF, ValNo, ValVT, LocVT,
|
|
ArgFlags);
|
|
}
|
|
|
|
// Allocate to a register if possible, or else a stack slot.
|
|
unsigned Reg = State.AllocateReg(ArgGPRs);
|
|
unsigned StackOffset = Reg ? 0 : State.AllocateStack(XLen / 8, XLen / 8);
|
|
|
|
// If we reach this point and PendingLocs is non-empty, we must be at the
|
|
// end of a split argument that must be passed indirectly.
|
|
if (!PendingLocs.empty()) {
|
|
assert(ArgFlags.isSplitEnd() && "Expected ArgFlags.isSplitEnd()");
|
|
assert(PendingLocs.size() > 2 && "Unexpected PendingLocs.size()");
|
|
|
|
for (auto &It : PendingLocs) {
|
|
if (Reg)
|
|
It.convertToReg(Reg);
|
|
else
|
|
It.convertToMem(StackOffset);
|
|
State.addLoc(It);
|
|
}
|
|
PendingLocs.clear();
|
|
PendingArgFlags.clear();
|
|
return false;
|
|
}
|
|
|
|
assert(LocVT == XLenVT && "Expected an XLenVT at this stage");
|
|
|
|
if (Reg) {
|
|
State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
|
|
} else {
|
|
State.addLoc(
|
|
CCValAssign::getMem(ValNo, ValVT, StackOffset, LocVT, LocInfo));
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeInputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, bool IsRet) const {
|
|
unsigned NumArgs = Ins.size();
|
|
FunctionType *FType = MF.getFunction().getFunctionType();
|
|
|
|
for (unsigned i = 0; i != NumArgs; ++i) {
|
|
MVT ArgVT = Ins[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
|
|
|
|
Type *ArgTy = nullptr;
|
|
if (IsRet)
|
|
ArgTy = FType->getReturnType();
|
|
else if (Ins[i].isOrigArg())
|
|
ArgTy = FType->getParamType(Ins[i].getOrigArgIndex());
|
|
|
|
if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo, /*IsRet=*/true, IsRet, ArgTy)) {
|
|
DEBUG(dbgs() << "InputArg #" << i << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString() << '\n');
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RISCVTargetLowering::analyzeOutputArgs(
|
|
MachineFunction &MF, CCState &CCInfo,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, bool IsRet,
|
|
CallLoweringInfo *CLI) const {
|
|
unsigned NumArgs = Outs.size();
|
|
|
|
for (unsigned i = 0; i != NumArgs; i++) {
|
|
MVT ArgVT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
Type *OrigTy = CLI ? CLI->getArgs()[Outs[i].OrigArgIndex].Ty : nullptr;
|
|
|
|
if (CC_RISCV(MF.getDataLayout(), i, ArgVT, ArgVT, CCValAssign::Full,
|
|
ArgFlags, CCInfo, Outs[i].IsFixed, IsRet, OrigTy)) {
|
|
DEBUG(dbgs() << "OutputArg #" << i << " has unhandled type "
|
|
<< EVT(ArgVT).getEVTString() << "\n");
|
|
llvm_unreachable(nullptr);
|
|
}
|
|
}
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromRegLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
SDValue Val;
|
|
|
|
unsigned VReg = RegInfo.createVirtualRegister(&RISCV::GPRRegClass);
|
|
RegInfo.addLiveIn(VA.getLocReg(), VReg);
|
|
Val = DAG.getCopyFromReg(Chain, DL, VReg, LocVT);
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
case CCValAssign::Indirect:
|
|
return Val;
|
|
}
|
|
}
|
|
|
|
// The caller is responsible for loading the full value if the argument is
|
|
// passed with CCValAssign::Indirect.
|
|
static SDValue unpackFromMemLoc(SelectionDAG &DAG, SDValue Chain,
|
|
const CCValAssign &VA, const SDLoc &DL) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
EVT LocVT = VA.getLocVT();
|
|
EVT ValVT = VA.getValVT();
|
|
EVT PtrVT = MVT::getIntegerVT(DAG.getDataLayout().getPointerSizeInBits(0));
|
|
int FI = MFI.CreateFixedObject(ValVT.getSizeInBits() / 8,
|
|
VA.getLocMemOffset(), /*Immutable=*/true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
|
|
SDValue Val;
|
|
|
|
ISD::LoadExtType ExtType;
|
|
switch (VA.getLocInfo()) {
|
|
default:
|
|
llvm_unreachable("Unexpected CCValAssign::LocInfo");
|
|
case CCValAssign::Full:
|
|
case CCValAssign::Indirect:
|
|
ExtType = ISD::NON_EXTLOAD;
|
|
break;
|
|
}
|
|
Val = DAG.getExtLoad(
|
|
ExtType, DL, LocVT, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), ValVT);
|
|
return Val;
|
|
}
|
|
|
|
// Transform physical registers into virtual registers.
|
|
SDValue RISCVTargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
|
|
switch (CallConv) {
|
|
default:
|
|
report_fatal_error("Unsupported calling convention");
|
|
case CallingConv::C:
|
|
case CallingConv::Fast:
|
|
break;
|
|
}
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
unsigned XLenInBytes = Subtarget.getXLen() / 8;
|
|
// Used with vargs to acumulate store chains.
|
|
std::vector<SDValue> OutChains;
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
analyzeInputArgs(MF, CCInfo, Ins, /*IsRet=*/false);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
assert(VA.getLocVT() == XLenVT && "Unhandled argument type");
|
|
SDValue ArgValue;
|
|
if (VA.isRegLoc())
|
|
ArgValue = unpackFromRegLoc(DAG, Chain, VA, DL);
|
|
else
|
|
ArgValue = unpackFromMemLoc(DAG, Chain, VA, DL);
|
|
|
|
if (VA.getLocInfo() == CCValAssign::Indirect) {
|
|
// If the original argument was split and passed by reference (e.g. i128
|
|
// on RV32), we need to load all parts of it here (using the same
|
|
// address).
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), DL, Chain, ArgValue,
|
|
MachinePointerInfo()));
|
|
unsigned ArgIndex = Ins[i].OrigArgIndex;
|
|
assert(Ins[i].PartOffset == 0);
|
|
while (i + 1 != e && Ins[i + 1].OrigArgIndex == ArgIndex) {
|
|
CCValAssign &PartVA = ArgLocs[i + 1];
|
|
unsigned PartOffset = Ins[i + 1].PartOffset;
|
|
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, ArgValue,
|
|
DAG.getIntPtrConstant(PartOffset, DL));
|
|
InVals.push_back(DAG.getLoad(PartVA.getValVT(), DL, Chain, Address,
|
|
MachinePointerInfo()));
|
|
++i;
|
|
}
|
|
continue;
|
|
}
|
|
InVals.push_back(ArgValue);
|
|
}
|
|
|
|
if (IsVarArg) {
|
|
ArrayRef<MCPhysReg> ArgRegs = makeArrayRef(ArgGPRs);
|
|
unsigned Idx = CCInfo.getFirstUnallocated(ArgRegs);
|
|
const TargetRegisterClass *RC = &RISCV::GPRRegClass;
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
RISCVMachineFunctionInfo *RVFI = MF.getInfo<RISCVMachineFunctionInfo>();
|
|
|
|
// Offset of the first variable argument from stack pointer, and size of
|
|
// the vararg save area. For now, the varargs save area is either zero or
|
|
// large enough to hold a0-a7.
|
|
int VaArgOffset, VarArgsSaveSize;
|
|
|
|
// If all registers are allocated, then all varargs must be passed on the
|
|
// stack and we don't need to save any argregs.
|
|
if (ArgRegs.size() == Idx) {
|
|
VaArgOffset = CCInfo.getNextStackOffset();
|
|
VarArgsSaveSize = 0;
|
|
} else {
|
|
VarArgsSaveSize = XLenInBytes * (ArgRegs.size() - Idx);
|
|
VaArgOffset = -VarArgsSaveSize;
|
|
}
|
|
|
|
// Record the frame index of the first variable argument
|
|
// which is a value necessary to VASTART.
|
|
int FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
|
|
RVFI->setVarArgsFrameIndex(FI);
|
|
|
|
// If saving an odd number of registers then create an extra stack slot to
|
|
// ensure that the frame pointer is 2*XLEN-aligned, which in turn ensures
|
|
// offsets to even-numbered registered remain 2*XLEN-aligned.
|
|
if (Idx % 2) {
|
|
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset - (int)XLenInBytes,
|
|
true);
|
|
VarArgsSaveSize += XLenInBytes;
|
|
}
|
|
|
|
// Copy the integer registers that may have been used for passing varargs
|
|
// to the vararg save area.
|
|
for (unsigned I = Idx; I < ArgRegs.size();
|
|
++I, VaArgOffset += XLenInBytes) {
|
|
const unsigned Reg = RegInfo.createVirtualRegister(RC);
|
|
RegInfo.addLiveIn(ArgRegs[I], Reg);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Chain, DL, Reg, XLenVT);
|
|
FI = MFI.CreateFixedObject(XLenInBytes, VaArgOffset, true);
|
|
SDValue PtrOff = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue Store = DAG.getStore(Chain, DL, ArgValue, PtrOff,
|
|
MachinePointerInfo::getFixedStack(MF, FI));
|
|
cast<StoreSDNode>(Store.getNode())
|
|
->getMemOperand()
|
|
->setValue((Value *)nullptr);
|
|
OutChains.push_back(Store);
|
|
}
|
|
RVFI->setVarArgsSaveSize(VarArgsSaveSize);
|
|
}
|
|
|
|
// All stores are grouped in one node to allow the matching between
|
|
// the size of Ins and InVals. This only happens for vararg functions.
|
|
if (!OutChains.empty()) {
|
|
OutChains.push_back(Chain);
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, OutChains);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
// Lower a call to a callseq_start + CALL + callseq_end chain, and add input
|
|
// and output parameter nodes.
|
|
SDValue RISCVTargetLowering::LowerCall(CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &DL = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
CLI.IsTailCall = false;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool IsVarArg = CLI.IsVarArg;
|
|
EVT PtrVT = getPointerTy(DAG.getDataLayout());
|
|
MVT XLenVT = Subtarget.getXLenVT();
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Analyze the operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState ArgCCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
|
|
analyzeOutputArgs(MF, ArgCCInfo, Outs, /*IsRet=*/false, &CLI);
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = ArgCCInfo.getNextStackOffset();
|
|
|
|
// Create local copies for byval args
|
|
SmallVector<SDValue, 8> ByValArgs;
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
if (!Flags.isByVal())
|
|
continue;
|
|
|
|
SDValue Arg = OutVals[i];
|
|
unsigned Size = Flags.getByValSize();
|
|
unsigned Align = Flags.getByValAlign();
|
|
|
|
int FI = MF.getFrameInfo().CreateStackObject(Size, Align, /*isSS=*/false);
|
|
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
|
|
SDValue SizeNode = DAG.getConstant(Size, DL, XLenVT);
|
|
|
|
Chain = DAG.getMemcpy(Chain, DL, FIPtr, Arg, SizeNode, Align,
|
|
/*IsVolatile=*/false,
|
|
/*AlwaysInline=*/false,
|
|
/*isTailCall=*/false, MachinePointerInfo(),
|
|
MachinePointerInfo());
|
|
ByValArgs.push_back(FIPtr);
|
|
}
|
|
|
|
Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, CLI.DL);
|
|
|
|
// Copy argument values to their designated locations.
|
|
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
SDValue StackPtr;
|
|
for (unsigned i = 0, j = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue ArgValue = OutVals[i];
|
|
ISD::ArgFlagsTy Flags = Outs[i].Flags;
|
|
|
|
// Promote the value if needed.
|
|
// For now, only handle fully promoted and indirect arguments.
|
|
switch (VA.getLocInfo()) {
|
|
case CCValAssign::Full:
|
|
break;
|
|
case CCValAssign::Indirect: {
|
|
// Store the argument in a stack slot and pass its address.
|
|
SDValue SpillSlot = DAG.CreateStackTemporary(Outs[i].ArgVT);
|
|
int FI = cast<FrameIndexSDNode>(SpillSlot)->getIndex();
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, SpillSlot,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
// If the original argument was split (e.g. i128), we need
|
|
// to store all parts of it here (and pass just one address).
|
|
unsigned ArgIndex = Outs[i].OrigArgIndex;
|
|
assert(Outs[i].PartOffset == 0);
|
|
while (i + 1 != e && Outs[i + 1].OrigArgIndex == ArgIndex) {
|
|
SDValue PartValue = OutVals[i + 1];
|
|
unsigned PartOffset = Outs[i + 1].PartOffset;
|
|
SDValue Address = DAG.getNode(ISD::ADD, DL, PtrVT, SpillSlot,
|
|
DAG.getIntPtrConstant(PartOffset, DL));
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, PartValue, Address,
|
|
MachinePointerInfo::getFixedStack(MF, FI)));
|
|
++i;
|
|
}
|
|
ArgValue = SpillSlot;
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unknown loc info!");
|
|
}
|
|
|
|
// Use local copy if it is a byval arg.
|
|
if (Flags.isByVal())
|
|
ArgValue = ByValArgs[j++];
|
|
|
|
if (VA.isRegLoc()) {
|
|
// Queue up the argument copies and emit them at the end.
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgValue));
|
|
} else {
|
|
assert(VA.isMemLoc() && "Argument not register or memory");
|
|
|
|
// Work out the address of the stack slot.
|
|
if (!StackPtr.getNode())
|
|
StackPtr = DAG.getCopyFromReg(Chain, DL, RISCV::X2, PtrVT);
|
|
SDValue Address =
|
|
DAG.getNode(ISD::ADD, DL, PtrVT, StackPtr,
|
|
DAG.getIntPtrConstant(VA.getLocMemOffset(), DL));
|
|
|
|
// Emit the store.
|
|
MemOpChains.push_back(
|
|
DAG.getStore(Chain, DL, ArgValue, Address, MachinePointerInfo()));
|
|
}
|
|
}
|
|
|
|
// Join the stores, which are independent of one another.
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
|
|
|
|
SDValue Glue;
|
|
|
|
// Build a sequence of copy-to-reg nodes, chained and glued together.
|
|
for (auto &Reg : RegsToPass) {
|
|
Chain = DAG.getCopyToReg(Chain, DL, Reg.first, Reg.second, Glue);
|
|
Glue = Chain.getValue(1);
|
|
}
|
|
|
|
if (isa<GlobalAddressSDNode>(Callee)) {
|
|
Callee = lowerGlobalAddress(Callee, DAG);
|
|
} else if (isa<ExternalSymbolSDNode>(Callee)) {
|
|
Callee = lowerExternalSymbol(Callee, DAG);
|
|
}
|
|
|
|
// The first call operand is the chain and the second is the target address.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are
|
|
// known live into the call.
|
|
for (auto &Reg : RegsToPass)
|
|
Ops.push_back(DAG.getRegister(Reg.first, Reg.second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
|
|
const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
// Glue the call to the argument copies, if any.
|
|
if (Glue.getNode())
|
|
Ops.push_back(Glue);
|
|
|
|
// Emit the call.
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
Chain = DAG.getNode(RISCVISD::CALL, DL, NodeTys, Ops);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Mark the end of the call, which is glued to the call itself.
|
|
Chain = DAG.getCALLSEQ_END(Chain,
|
|
DAG.getConstant(NumBytes, DL, PtrVT, true),
|
|
DAG.getConstant(0, DL, PtrVT, true),
|
|
Glue, DL);
|
|
Glue = Chain.getValue(1);
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState RetCCInfo(CallConv, IsVarArg, MF, RVLocs, *DAG.getContext());
|
|
analyzeInputArgs(MF, RetCCInfo, Ins, /*IsRet=*/true);
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (auto &VA : RVLocs) {
|
|
// Copy the value out, gluing the copy to the end of the call sequence.
|
|
SDValue RetValue = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(),
|
|
VA.getLocVT(), Glue);
|
|
Chain = RetValue.getValue(1);
|
|
Glue = RetValue.getValue(2);
|
|
|
|
assert(VA.getLocInfo() == CCValAssign::Full && "Unknown loc info!");
|
|
InVals.push_back(RetValue);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
bool RISCVTargetLowering::CanLowerReturn(
|
|
CallingConv::ID CallConv, MachineFunction &MF, bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs, LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
|
|
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
|
|
MVT VT = Outs[i].VT;
|
|
ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
|
|
if (CC_RISCV(MF.getDataLayout(), i, VT, VT, CCValAssign::Full, ArgFlags,
|
|
CCInfo, /*IsFixed=*/true, /*IsRet=*/true, nullptr))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
SDValue
|
|
RISCVTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
|
|
bool IsVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SDLoc &DL, SelectionDAG &DAG) const {
|
|
// Stores the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// Info about the registers and stack slot.
|
|
CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
|
|
*DAG.getContext());
|
|
|
|
analyzeOutputArgs(DAG.getMachineFunction(), CCInfo, Outs, /*IsRet=*/true,
|
|
nullptr);
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps(1, Chain);
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, e = RVLocs.size(); i < e; ++i) {
|
|
SDValue Val = OutVals[i];
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
assert(VA.getLocInfo() == CCValAssign::Full &&
|
|
"Unexpected CCValAssign::LocInfo");
|
|
|
|
Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Val, Flag);
|
|
|
|
// Guarantee that all emitted copies are stuck together.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
RetOps[0] = Chain; // Update chain.
|
|
|
|
// Add the flag if we have it.
|
|
if (Flag.getNode()) {
|
|
RetOps.push_back(Flag);
|
|
}
|
|
|
|
return DAG.getNode(RISCVISD::RET_FLAG, DL, MVT::Other, RetOps);
|
|
}
|
|
|
|
const char *RISCVTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch ((RISCVISD::NodeType)Opcode) {
|
|
case RISCVISD::FIRST_NUMBER:
|
|
break;
|
|
case RISCVISD::RET_FLAG:
|
|
return "RISCVISD::RET_FLAG";
|
|
case RISCVISD::CALL:
|
|
return "RISCVISD::CALL";
|
|
case RISCVISD::SELECT_CC:
|
|
return "RISCVISD::SELECT_CC";
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::pair<unsigned, const TargetRegisterClass *>
|
|
RISCVTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
|
|
StringRef Constraint,
|
|
MVT VT) const {
|
|
// First, see if this is a constraint that directly corresponds to a
|
|
// RISCV register class.
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
case 'r':
|
|
return std::make_pair(0U, &RISCV::GPRRegClass);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
|
|
}
|