forked from OSchip/llvm-project
230 lines
6.4 KiB
LLVM
230 lines
6.4 KiB
LLVM
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
|
|
; RUN: llc < %s -mtriple=x86_64-unknown-unknown -global-isel | FileCheck %s
|
|
|
|
; The fundamental problem: an add separated from other arithmetic by a sign or
|
|
; zero extension can't be combined with the later instructions. However, if the
|
|
; first add is 'nsw' or 'nuw' respectively, then we can promote the extension
|
|
; ahead of that add to allow optimizations.
|
|
|
|
define i64 @add_nsw_consts(i32 %i) {
|
|
; CHECK-LABEL: add_nsw_consts:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: addq $7, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
%idx = add i64 %ext, 7
|
|
ret i64 %idx
|
|
}
|
|
|
|
; An x86 bonus: If we promote the sext ahead of the 'add nsw',
|
|
; we allow LEA formation and eliminate an add instruction.
|
|
|
|
define i64 @add_nsw_sext_add(i32 %i, i64 %x) {
|
|
; CHECK-LABEL: add_nsw_sext_add:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
%idx = add i64 %x, %ext
|
|
ret i64 %idx
|
|
}
|
|
|
|
; Throw in a scale (left shift) because an LEA can do that too.
|
|
; Use a negative constant (LEA displacement) to verify that's handled correctly.
|
|
|
|
define i64 @add_nsw_sext_lsh_add(i32 %i, i64 %x) {
|
|
; CHECK-LABEL: add_nsw_sext_lsh_add:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $-5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: shlq $3, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, -5
|
|
%ext = sext i32 %add to i64
|
|
%shl = shl i64 %ext, 3
|
|
%idx = add i64 %x, %shl
|
|
ret i64 %idx
|
|
}
|
|
|
|
; Don't promote the sext if it has no users. The wider add instruction needs an
|
|
; extra byte to encode.
|
|
|
|
define i64 @add_nsw_sext(i32 %i, i64 %x) {
|
|
; CHECK-LABEL: add_nsw_sext:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
ret i64 %ext
|
|
}
|
|
|
|
; The typical use case: a 64-bit system where an 'int' is used as an index into an array.
|
|
|
|
define i8* @gep8(i32 %i, i8* %x) {
|
|
; CHECK-LABEL: gep8:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
%idx = getelementptr i8, i8* %x, i64 %ext
|
|
ret i8* %idx
|
|
}
|
|
|
|
define i16* @gep16(i32 %i, i16* %x) {
|
|
; CHECK-LABEL: gep16:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $-5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: imulq $2, %rax, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, -5
|
|
%ext = sext i32 %add to i64
|
|
%idx = getelementptr i16, i16* %x, i64 %ext
|
|
ret i16* %idx
|
|
}
|
|
|
|
define i32* @gep32(i32 %i, i32* %x) {
|
|
; CHECK-LABEL: gep32:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: imulq $4, %rax, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
%idx = getelementptr i32, i32* %x, i64 %ext
|
|
ret i32* %idx
|
|
}
|
|
|
|
define i64* @gep64(i32 %i, i64* %x) {
|
|
; CHECK-LABEL: gep64:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $-5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: imulq $8, %rax, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, -5
|
|
%ext = sext i32 %add to i64
|
|
%idx = getelementptr i64, i64* %x, i64 %ext
|
|
ret i64* %idx
|
|
}
|
|
|
|
; LEA can't scale by 16, but the adds can still be combined into an LEA.
|
|
|
|
define i128* @gep128(i32 %i, i128* %x) {
|
|
; CHECK-LABEL: gep128:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: addl $5, %edi
|
|
; CHECK-NEXT: movslq %edi, %rax
|
|
; CHECK-NEXT: imulq $16, %rax, %rax
|
|
; CHECK-NEXT: addq %rsi, %rax
|
|
; CHECK-NEXT: retq
|
|
|
|
%add = add nsw i32 %i, 5
|
|
%ext = sext i32 %add to i64
|
|
%idx = getelementptr i128, i128* %x, i64 %ext
|
|
ret i128* %idx
|
|
}
|
|
|
|
; A bigger win can be achieved when there is more than one use of the
|
|
; sign extended value. In this case, we can eliminate sign extension
|
|
; instructions plus use more efficient addressing modes for memory ops.
|
|
|
|
define void @PR20134(i32* %a, i32 %i) {
|
|
; CHECK-LABEL: PR20134:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: # kill: def $esi killed $esi def $rsi
|
|
; CHECK-NEXT: leal 1(%rsi), %eax
|
|
; CHECK-NEXT: cltq
|
|
; CHECK-NEXT: imulq $4, %rax, %rax
|
|
; CHECK-NEXT: addq %rdi, %rax
|
|
; CHECK-NEXT: leal 2(%rsi), %ecx
|
|
; CHECK-NEXT: movslq %ecx, %rcx
|
|
; CHECK-NEXT: imulq $4, %rcx, %rcx
|
|
; CHECK-NEXT: addq %rdi, %rcx
|
|
; CHECK-NEXT: movl (%rcx), %ecx
|
|
; CHECK-NEXT: addl (%rax), %ecx
|
|
; CHECK-NEXT: movslq %esi, %rax
|
|
; CHECK-NEXT: imulq $4, %rax, %rax
|
|
; CHECK-NEXT: addq %rdi, %rax
|
|
; CHECK-NEXT: movl %ecx, (%rax)
|
|
; CHECK-NEXT: retq
|
|
|
|
%add1 = add nsw i32 %i, 1
|
|
%idx1 = sext i32 %add1 to i64
|
|
%gep1 = getelementptr i32, i32* %a, i64 %idx1
|
|
%load1 = load i32, i32* %gep1, align 4
|
|
|
|
%add2 = add nsw i32 %i, 2
|
|
%idx2 = sext i32 %add2 to i64
|
|
%gep2 = getelementptr i32, i32* %a, i64 %idx2
|
|
%load2 = load i32, i32* %gep2, align 4
|
|
|
|
%add3 = add i32 %load1, %load2
|
|
%idx3 = sext i32 %i to i64
|
|
%gep3 = getelementptr i32, i32* %a, i64 %idx3
|
|
store i32 %add3, i32* %gep3, align 4
|
|
ret void
|
|
}
|
|
|
|
; The same as @PR20134 but sign extension is replaced with zero extension
|
|
define void @PR20134_zext(i32* %a, i32 %i) {
|
|
; CHECK-LABEL: PR20134_zext:
|
|
; CHECK: # %bb.0:
|
|
; CHECK-NEXT: # kill: def $esi killed $esi def $rsi
|
|
; CHECK-NEXT: leal 1(%rsi), %eax
|
|
; CHECK-NEXT: movl %eax, %eax
|
|
; CHECK-NEXT: imulq $4, %rax, %rax
|
|
; CHECK-NEXT: addq %rdi, %rax
|
|
; CHECK-NEXT: leal 2(%rsi), %ecx
|
|
; CHECK-NEXT: movl %ecx, %ecx
|
|
; CHECK-NEXT: imulq $4, %rcx, %rcx
|
|
; CHECK-NEXT: addq %rdi, %rcx
|
|
; CHECK-NEXT: movl (%rcx), %ecx
|
|
; CHECK-NEXT: addl (%rax), %ecx
|
|
; CHECK-NEXT: movl %esi, %eax
|
|
; CHECK-NEXT: imulq $4, %rax, %rax
|
|
; CHECK-NEXT: addq %rdi, %rax
|
|
; CHECK-NEXT: movl %ecx, (%rax)
|
|
; CHECK-NEXT: retq
|
|
|
|
%add1 = add nuw i32 %i, 1
|
|
%idx1 = zext i32 %add1 to i64
|
|
%gep1 = getelementptr i32, i32* %a, i64 %idx1
|
|
%load1 = load i32, i32* %gep1, align 4
|
|
|
|
%add2 = add nuw i32 %i, 2
|
|
%idx2 = zext i32 %add2 to i64
|
|
%gep2 = getelementptr i32, i32* %a, i64 %idx2
|
|
%load2 = load i32, i32* %gep2, align 4
|
|
|
|
%add3 = add i32 %load1, %load2
|
|
%idx3 = zext i32 %i to i64
|
|
%gep3 = getelementptr i32, i32* %a, i64 %idx3
|
|
store i32 %add3, i32* %gep3, align 4
|
|
ret void
|
|
}
|