llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetTransformInfo.cpp

1079 lines
37 KiB
C++

//===- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements a TargetTransformInfo analysis pass specific to the
// AMDGPU target machine. It uses the target's detailed information to provide
// more precise answers to certain TTI queries, while letting the target
// independent and default TTI implementations handle the rest.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetTransformInfo.h"
#include "AMDGPUSubtarget.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <limits>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "AMDGPUtti"
static cl::opt<unsigned> UnrollThresholdPrivate(
"amdgpu-unroll-threshold-private",
cl::desc("Unroll threshold for AMDGPU if private memory used in a loop"),
cl::init(2700), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdLocal(
"amdgpu-unroll-threshold-local",
cl::desc("Unroll threshold for AMDGPU if local memory used in a loop"),
cl::init(1000), cl::Hidden);
static cl::opt<unsigned> UnrollThresholdIf(
"amdgpu-unroll-threshold-if",
cl::desc("Unroll threshold increment for AMDGPU for each if statement inside loop"),
cl::init(150), cl::Hidden);
static cl::opt<bool> UnrollRuntimeLocal(
"amdgpu-unroll-runtime-local",
cl::desc("Allow runtime unroll for AMDGPU if local memory used in a loop"),
cl::init(true), cl::Hidden);
static cl::opt<bool> UseLegacyDA(
"amdgpu-use-legacy-divergence-analysis",
cl::desc("Enable legacy divergence analysis for AMDGPU"),
cl::init(false), cl::Hidden);
static bool dependsOnLocalPhi(const Loop *L, const Value *Cond,
unsigned Depth = 0) {
const Instruction *I = dyn_cast<Instruction>(Cond);
if (!I)
return false;
for (const Value *V : I->operand_values()) {
if (!L->contains(I))
continue;
if (const PHINode *PHI = dyn_cast<PHINode>(V)) {
if (llvm::none_of(L->getSubLoops(), [PHI](const Loop* SubLoop) {
return SubLoop->contains(PHI); }))
return true;
} else if (Depth < 10 && dependsOnLocalPhi(L, V, Depth+1))
return true;
}
return false;
}
void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
const Function &F = *L->getHeader()->getParent();
UP.Threshold = AMDGPU::getIntegerAttribute(F, "amdgpu-unroll-threshold", 300);
UP.MaxCount = std::numeric_limits<unsigned>::max();
UP.Partial = true;
// TODO: Do we want runtime unrolling?
// Maximum alloca size than can fit registers. Reserve 16 registers.
const unsigned MaxAlloca = (256 - 16) * 4;
unsigned ThresholdPrivate = UnrollThresholdPrivate;
unsigned ThresholdLocal = UnrollThresholdLocal;
unsigned MaxBoost = std::max(ThresholdPrivate, ThresholdLocal);
for (const BasicBlock *BB : L->getBlocks()) {
const DataLayout &DL = BB->getModule()->getDataLayout();
unsigned LocalGEPsSeen = 0;
if (llvm::any_of(L->getSubLoops(), [BB](const Loop* SubLoop) {
return SubLoop->contains(BB); }))
continue; // Block belongs to an inner loop.
for (const Instruction &I : *BB) {
// Unroll a loop which contains an "if" statement whose condition
// defined by a PHI belonging to the loop. This may help to eliminate
// if region and potentially even PHI itself, saving on both divergence
// and registers used for the PHI.
// Add a small bonus for each of such "if" statements.
if (const BranchInst *Br = dyn_cast<BranchInst>(&I)) {
if (UP.Threshold < MaxBoost && Br->isConditional()) {
BasicBlock *Succ0 = Br->getSuccessor(0);
BasicBlock *Succ1 = Br->getSuccessor(1);
if ((L->contains(Succ0) && L->isLoopExiting(Succ0)) ||
(L->contains(Succ1) && L->isLoopExiting(Succ1)))
continue;
if (dependsOnLocalPhi(L, Br->getCondition())) {
UP.Threshold += UnrollThresholdIf;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << UP.Threshold
<< " for loop:\n"
<< *L << " due to " << *Br << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
}
continue;
}
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I);
if (!GEP)
continue;
unsigned AS = GEP->getAddressSpace();
unsigned Threshold = 0;
if (AS == AMDGPUAS::PRIVATE_ADDRESS)
Threshold = ThresholdPrivate;
else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS)
Threshold = ThresholdLocal;
else
continue;
if (UP.Threshold >= Threshold)
continue;
if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
const Value *Ptr = GEP->getPointerOperand();
const AllocaInst *Alloca =
dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL));
if (!Alloca || !Alloca->isStaticAlloca())
continue;
Type *Ty = Alloca->getAllocatedType();
unsigned AllocaSize = Ty->isSized() ? DL.getTypeAllocSize(Ty) : 0;
if (AllocaSize > MaxAlloca)
continue;
} else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
AS == AMDGPUAS::REGION_ADDRESS) {
LocalGEPsSeen++;
// Inhibit unroll for local memory if we have seen addressing not to
// a variable, most likely we will be unable to combine it.
// Do not unroll too deep inner loops for local memory to give a chance
// to unroll an outer loop for a more important reason.
if (LocalGEPsSeen > 1 || L->getLoopDepth() > 2 ||
(!isa<GlobalVariable>(GEP->getPointerOperand()) &&
!isa<Argument>(GEP->getPointerOperand())))
continue;
LLVM_DEBUG(dbgs() << "Allow unroll runtime for loop:\n"
<< *L << " due to LDS use.\n");
UP.Runtime = UnrollRuntimeLocal;
}
// Check if GEP depends on a value defined by this loop itself.
bool HasLoopDef = false;
for (const Value *Op : GEP->operands()) {
const Instruction *Inst = dyn_cast<Instruction>(Op);
if (!Inst || L->isLoopInvariant(Op))
continue;
if (llvm::any_of(L->getSubLoops(), [Inst](const Loop* SubLoop) {
return SubLoop->contains(Inst); }))
continue;
HasLoopDef = true;
break;
}
if (!HasLoopDef)
continue;
// We want to do whatever we can to limit the number of alloca
// instructions that make it through to the code generator. allocas
// require us to use indirect addressing, which is slow and prone to
// compiler bugs. If this loop does an address calculation on an
// alloca ptr, then we want to use a higher than normal loop unroll
// threshold. This will give SROA a better chance to eliminate these
// allocas.
//
// We also want to have more unrolling for local memory to let ds
// instructions with different offsets combine.
//
// Don't use the maximum allowed value here as it will make some
// programs way too big.
UP.Threshold = Threshold;
LLVM_DEBUG(dbgs() << "Set unroll threshold " << Threshold
<< " for loop:\n"
<< *L << " due to " << *GEP << '\n');
if (UP.Threshold >= MaxBoost)
return;
}
}
}
unsigned GCNTTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
// The concept of vector registers doesn't really exist. Some packed vector
// operations operate on the normal 32-bit registers.
return 256;
}
unsigned GCNTTIImpl::getNumberOfRegisters(bool Vec) const {
// This is really the number of registers to fill when vectorizing /
// interleaving loops, so we lie to avoid trying to use all registers.
return getHardwareNumberOfRegisters(Vec) >> 3;
}
unsigned GCNTTIImpl::getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned GCNTTIImpl::getMinVectorRegisterBitWidth() const {
return 32;
}
unsigned GCNTTIImpl::getLoadVectorFactor(unsigned VF, unsigned LoadSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * LoadSize;
if (VecRegBitWidth > 128 && VecTy->getScalarSizeInBits() < 32)
// TODO: Support element-size less than 32bit?
return 128 / LoadSize;
return VF;
}
unsigned GCNTTIImpl::getStoreVectorFactor(unsigned VF, unsigned StoreSize,
unsigned ChainSizeInBytes,
VectorType *VecTy) const {
unsigned VecRegBitWidth = VF * StoreSize;
if (VecRegBitWidth > 128)
return 128 / StoreSize;
return VF;
}
unsigned GCNTTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
AddrSpace == AMDGPUAS::BUFFER_FAT_POINTER) {
return 512;
}
if (AddrSpace == AMDGPUAS::FLAT_ADDRESS ||
AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS)
return 128;
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
return 8 * ST->getMaxPrivateElementSize();
llvm_unreachable("unhandled address space");
}
bool GCNTTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
// We allow vectorization of flat stores, even though we may need to decompose
// them later if they may access private memory. We don't have enough context
// here, and legalization can handle it.
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS) {
return (Alignment >= 4 || ST->hasUnalignedScratchAccess()) &&
ChainSizeInBytes <= ST->getMaxPrivateElementSize();
}
return true;
}
bool GCNTTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
bool GCNTTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
unsigned GCNTTIImpl::getMaxInterleaveFactor(unsigned VF) {
// Disable unrolling if the loop is not vectorized.
// TODO: Enable this again.
if (VF == 1)
return 1;
return 8;
}
bool GCNTTIImpl::getTgtMemIntrinsic(IntrinsicInst *Inst,
MemIntrinsicInfo &Info) const {
switch (Inst->getIntrinsicID()) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
auto *Ordering = dyn_cast<ConstantInt>(Inst->getArgOperand(2));
auto *Volatile = dyn_cast<ConstantInt>(Inst->getArgOperand(4));
if (!Ordering || !Volatile)
return false; // Invalid.
unsigned OrderingVal = Ordering->getZExtValue();
if (OrderingVal > static_cast<unsigned>(AtomicOrdering::SequentiallyConsistent))
return false;
Info.PtrVal = Inst->getArgOperand(0);
Info.Ordering = static_cast<AtomicOrdering>(OrderingVal);
Info.ReadMem = true;
Info.WriteMem = true;
Info.IsVolatile = !Volatile->isNullValue();
return true;
}
default:
return false;
}
}
int GCNTTIImpl::getArithmeticInstrCost(unsigned Opcode, Type *Ty,
TTI::OperandValueKind Opd1Info,
TTI::OperandValueKind Opd2Info,
TTI::OperandValueProperties Opd1PropInfo,
TTI::OperandValueProperties Opd2PropInfo,
ArrayRef<const Value *> Args,
const Instruction *CxtI) {
EVT OrigTy = TLI->getValueType(DL, Ty);
if (!OrigTy.isSimple()) {
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
int ISD = TLI->InstructionOpcodeToISD(Opcode);
// Because we don't have any legal vector operations, but the legal types, we
// need to account for split vectors.
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
switch (ISD) {
case ISD::SHL:
case ISD::SRL:
case ISD::SRA:
if (SLT == MVT::i64)
return get64BitInstrCost() * LT.first * NElts;
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return getFullRateInstrCost() * LT.first * NElts;
case ISD::ADD:
case ISD::SUB:
case ISD::AND:
case ISD::OR:
case ISD::XOR:
if (SLT == MVT::i64) {
// and, or and xor are typically split into 2 VALU instructions.
return 2 * getFullRateInstrCost() * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
return LT.first * NElts * getFullRateInstrCost();
case ISD::MUL: {
const int QuarterRateCost = getQuarterRateInstrCost();
if (SLT == MVT::i64) {
const int FullRateCost = getFullRateInstrCost();
return (4 * QuarterRateCost + (2 * 2) * FullRateCost) * LT.first * NElts;
}
if (ST->has16BitInsts() && SLT == MVT::i16)
NElts = (NElts + 1) / 2;
// i32
return QuarterRateCost * NElts * LT.first;
}
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost();
if (ST->has16BitInsts() && SLT == MVT::f16)
NElts = (NElts + 1) / 2;
if (SLT == MVT::f32 || SLT == MVT::f16)
return LT.first * NElts * getFullRateInstrCost();
break;
case ISD::FDIV:
case ISD::FREM:
// FIXME: frem should be handled separately. The fdiv in it is most of it,
// but the current lowering is also not entirely correct.
if (SLT == MVT::f64) {
int Cost = 4 * get64BitInstrCost() + 7 * getQuarterRateInstrCost();
// Add cost of workaround.
if (!ST->hasUsableDivScaleConditionOutput())
Cost += 3 * getFullRateInstrCost();
return LT.first * Cost * NElts;
}
if (!Args.empty() && match(Args[0], PatternMatch::m_FPOne())) {
// TODO: This is more complicated, unsafe flags etc.
if ((SLT == MVT::f32 && !HasFP32Denormals) ||
(SLT == MVT::f16 && ST->has16BitInsts())) {
return LT.first * getQuarterRateInstrCost() * NElts;
}
}
if (SLT == MVT::f16 && ST->has16BitInsts()) {
// 2 x v_cvt_f32_f16
// f32 rcp
// f32 fmul
// v_cvt_f16_f32
// f16 div_fixup
int Cost = 4 * getFullRateInstrCost() + 2 * getQuarterRateInstrCost();
return LT.first * Cost * NElts;
}
if (SLT == MVT::f32 || SLT == MVT::f16) {
int Cost = 7 * getFullRateInstrCost() + 1 * getQuarterRateInstrCost();
if (!HasFP32Denormals) {
// FP mode switches.
Cost += 2 * getFullRateInstrCost();
}
return LT.first * NElts * Cost;
}
break;
default:
break;
}
return BaseT::getArithmeticInstrCost(Opcode, Ty, Opd1Info, Opd2Info,
Opd1PropInfo, Opd2PropInfo);
}
template <typename T>
int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<T *> Args, FastMathFlags FMF,
unsigned VF, const Instruction *I) {
if (ID != Intrinsic::fma)
return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I);
EVT OrigTy = TLI->getValueType(DL, RetTy);
if (!OrigTy.isSimple()) {
return BaseT::getIntrinsicInstrCost(ID, RetTy, Args, FMF, VF, I);
}
// Legalize the type.
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
unsigned NElts = LT.second.isVector() ?
LT.second.getVectorNumElements() : 1;
MVT::SimpleValueType SLT = LT.second.getScalarType().SimpleTy;
if (SLT == MVT::f64)
return LT.first * NElts * get64BitInstrCost();
if (ST->has16BitInsts() && SLT == MVT::f16)
NElts = (NElts + 1) / 2;
return LT.first * NElts * (ST->hasFastFMAF32() ? getHalfRateInstrCost()
: getQuarterRateInstrCost());
}
int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Value *> Args, FastMathFlags FMF,
unsigned VF, const Instruction *I) {
return getIntrinsicInstrCost<Value>(ID, RetTy, Args, FMF, VF, I);
}
int GCNTTIImpl::getIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy,
ArrayRef<Type *> Tys, FastMathFlags FMF,
unsigned ScalarizationCostPassed,
const Instruction *I) {
return getIntrinsicInstrCost<Type>(ID, RetTy, Tys, FMF,
ScalarizationCostPassed, I);
}
unsigned GCNTTIImpl::getCFInstrCost(unsigned Opcode) {
// XXX - For some reason this isn't called for switch.
switch (Opcode) {
case Instruction::Br:
case Instruction::Ret:
return 10;
default:
return BaseT::getCFInstrCost(Opcode);
}
}
int GCNTTIImpl::getArithmeticReductionCost(unsigned Opcode, Type *Ty,
bool IsPairwise) {
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (IsPairwise ||
!ST->hasVOP3PInsts() ||
OrigTy.getScalarSizeInBits() != 16)
return BaseT::getArithmeticReductionCost(Opcode, Ty, IsPairwise);
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
return LT.first * getFullRateInstrCost();
}
int GCNTTIImpl::getMinMaxReductionCost(Type *Ty, Type *CondTy,
bool IsPairwise,
bool IsUnsigned) {
EVT OrigTy = TLI->getValueType(DL, Ty);
// Computes cost on targets that have packed math instructions(which support
// 16-bit types only).
if (IsPairwise ||
!ST->hasVOP3PInsts() ||
OrigTy.getScalarSizeInBits() != 16)
return BaseT::getMinMaxReductionCost(Ty, CondTy, IsPairwise, IsUnsigned);
std::pair<int, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
return LT.first * getHalfRateInstrCost();
}
int GCNTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement: {
unsigned EltSize
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
if (EltSize < 32) {
if (EltSize == 16 && Index == 0 && ST->has16BitInsts())
return 0;
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
}
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
}
static bool isArgPassedInSGPR(const Argument *A) {
const Function *F = A->getParent();
// Arguments to compute shaders are never a source of divergence.
CallingConv::ID CC = F->getCallingConv();
switch (CC) {
case CallingConv::AMDGPU_KERNEL:
case CallingConv::SPIR_KERNEL:
return true;
case CallingConv::AMDGPU_VS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_ES:
case CallingConv::AMDGPU_GS:
case CallingConv::AMDGPU_PS:
case CallingConv::AMDGPU_CS:
// For non-compute shaders, SGPR inputs are marked with either inreg or byval.
// Everything else is in VGPRs.
return F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::InReg) ||
F->getAttributes().hasParamAttribute(A->getArgNo(), Attribute::ByVal);
default:
// TODO: Should calls support inreg for SGPR inputs?
return false;
}
}
/// Analyze if the results of inline asm are divergent. If \p Indices is empty,
/// this is analyzing the collective result of all output registers. Otherwise,
/// this is only querying a specific result index if this returns multiple
/// registers in a struct.
bool GCNTTIImpl::isInlineAsmSourceOfDivergence(
const CallInst *CI, ArrayRef<unsigned> Indices) const {
// TODO: Handle complex extract indices
if (Indices.size() > 1)
return true;
const DataLayout &DL = CI->getModule()->getDataLayout();
const SIRegisterInfo *TRI = ST->getRegisterInfo();
ImmutableCallSite CS(CI);
TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI->ParseConstraints(DL, ST->getRegisterInfo(), CS);
const int TargetOutputIdx = Indices.empty() ? -1 : Indices[0];
int OutputIdx = 0;
for (auto &TC : TargetConstraints) {
if (TC.Type != InlineAsm::isOutput)
continue;
// Skip outputs we don't care about.
if (TargetOutputIdx != -1 && TargetOutputIdx != OutputIdx++)
continue;
TLI->ComputeConstraintToUse(TC, SDValue());
Register AssignedReg;
const TargetRegisterClass *RC;
std::tie(AssignedReg, RC) = TLI->getRegForInlineAsmConstraint(
TRI, TC.ConstraintCode, TC.ConstraintVT);
if (AssignedReg) {
// FIXME: This is a workaround for getRegForInlineAsmConstraint
// returning VS_32
RC = TRI->getPhysRegClass(AssignedReg);
}
// For AGPR constraints null is returned on subtargets without AGPRs, so
// assume divergent for null.
if (!RC || !TRI->isSGPRClass(RC))
return true;
}
return false;
}
/// \returns true if the new GPU divergence analysis is enabled.
bool GCNTTIImpl::useGPUDivergenceAnalysis() const {
return !UseLegacyDA;
}
/// \returns true if the result of the value could potentially be
/// different across workitems in a wavefront.
bool GCNTTIImpl::isSourceOfDivergence(const Value *V) const {
if (const Argument *A = dyn_cast<Argument>(V))
return !isArgPassedInSGPR(A);
// Loads from the private and flat address spaces are divergent, because
// threads can execute the load instruction with the same inputs and get
// different results.
//
// All other loads are not divergent, because if threads issue loads with the
// same arguments, they will always get the same result.
if (const LoadInst *Load = dyn_cast<LoadInst>(V))
return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS ||
Load->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS;
// Atomics are divergent because they are executed sequentially: when an
// atomic operation refers to the same address in each thread, then each
// thread after the first sees the value written by the previous thread as
// original value.
if (isa<AtomicRMWInst>(V) || isa<AtomicCmpXchgInst>(V))
return true;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V))
return AMDGPU::isIntrinsicSourceOfDivergence(Intrinsic->getIntrinsicID());
// Assume all function calls are a source of divergence.
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (isa<InlineAsm>(CI->getCalledValue()))
return isInlineAsmSourceOfDivergence(CI);
return true;
}
// Assume all function calls are a source of divergence.
if (isa<InvokeInst>(V))
return true;
return false;
}
bool GCNTTIImpl::isAlwaysUniform(const Value *V) const {
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_readfirstlane:
case Intrinsic::amdgcn_readlane:
case Intrinsic::amdgcn_icmp:
case Intrinsic::amdgcn_fcmp:
case Intrinsic::amdgcn_if_break:
return true;
}
}
if (const CallInst *CI = dyn_cast<CallInst>(V)) {
if (isa<InlineAsm>(CI->getCalledValue()))
return !isInlineAsmSourceOfDivergence(CI);
return false;
}
const ExtractValueInst *ExtValue = dyn_cast<ExtractValueInst>(V);
if (!ExtValue)
return false;
const CallInst *CI = dyn_cast<CallInst>(ExtValue->getOperand(0));
if (!CI)
return false;
if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(CI)) {
switch (Intrinsic->getIntrinsicID()) {
default:
return false;
case Intrinsic::amdgcn_if:
case Intrinsic::amdgcn_else: {
ArrayRef<unsigned> Indices = ExtValue->getIndices();
return Indices.size() == 1 && Indices[0] == 1;
}
}
}
// If we have inline asm returning mixed SGPR and VGPR results, we inferred
// divergent for the overall struct return. We need to override it in the
// case we're extracting an SGPR component here.
if (isa<InlineAsm>(CI->getCalledValue()))
return !isInlineAsmSourceOfDivergence(CI, ExtValue->getIndices());
return false;
}
bool GCNTTIImpl::collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
Intrinsic::ID IID) const {
switch (IID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax:
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private:
OpIndexes.push_back(0);
return true;
default:
return false;
}
}
bool GCNTTIImpl::rewriteIntrinsicWithAddressSpace(
IntrinsicInst *II, Value *OldV, Value *NewV) const {
auto IntrID = II->getIntrinsicID();
switch (IntrID) {
case Intrinsic::amdgcn_atomic_inc:
case Intrinsic::amdgcn_atomic_dec:
case Intrinsic::amdgcn_ds_fadd:
case Intrinsic::amdgcn_ds_fmin:
case Intrinsic::amdgcn_ds_fmax: {
const ConstantInt *IsVolatile = cast<ConstantInt>(II->getArgOperand(4));
if (!IsVolatile->isZero())
return false;
Module *M = II->getParent()->getParent()->getParent();
Type *DestTy = II->getType();
Type *SrcTy = NewV->getType();
Function *NewDecl =
Intrinsic::getDeclaration(M, II->getIntrinsicID(), {DestTy, SrcTy});
II->setArgOperand(0, NewV);
II->setCalledFunction(NewDecl);
return true;
}
case Intrinsic::amdgcn_is_shared:
case Intrinsic::amdgcn_is_private: {
unsigned TrueAS = IntrID == Intrinsic::amdgcn_is_shared ?
AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
unsigned NewAS = NewV->getType()->getPointerAddressSpace();
LLVMContext &Ctx = NewV->getType()->getContext();
ConstantInt *NewVal = (TrueAS == NewAS) ?
ConstantInt::getTrue(Ctx) : ConstantInt::getFalse(Ctx);
II->replaceAllUsesWith(NewVal);
II->eraseFromParent();
return true;
}
default:
return false;
}
}
unsigned GCNTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) {
if (ST->hasVOP3PInsts()) {
VectorType *VT = cast<VectorType>(Tp);
if (VT->getNumElements() == 2 &&
DL.getTypeSizeInBits(VT->getElementType()) == 16) {
// With op_sel VOP3P instructions freely can access the low half or high
// half of a register, so any swizzle is free.
switch (Kind) {
case TTI::SK_Broadcast:
case TTI::SK_Reverse:
case TTI::SK_PermuteSingleSrc:
return 0;
default:
break;
}
}
}
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
}
bool GCNTTIImpl::areInlineCompatible(const Function *Caller,
const Function *Callee) const {
const TargetMachine &TM = getTLI()->getTargetMachine();
const GCNSubtarget *CallerST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Caller));
const GCNSubtarget *CalleeST
= static_cast<const GCNSubtarget *>(TM.getSubtargetImpl(*Callee));
const FeatureBitset &CallerBits = CallerST->getFeatureBits();
const FeatureBitset &CalleeBits = CalleeST->getFeatureBits();
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
return false;
// FIXME: dx10_clamp can just take the caller setting, but there seems to be
// no way to support merge for backend defined attributes.
AMDGPU::SIModeRegisterDefaults CallerMode(*Caller, *CallerST);
AMDGPU::SIModeRegisterDefaults CalleeMode(*Callee, *CalleeST);
return CallerMode.isInlineCompatible(CalleeMode);
}
void GCNTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
CommonTTI.getUnrollingPreferences(L, SE, UP);
}
unsigned GCNTTIImpl::getUserCost(const User *U,
ArrayRef<const Value *> Operands) {
const Instruction *I = dyn_cast<Instruction>(U);
if (!I)
return BaseT::getUserCost(U, Operands);
// Estimate different operations to be optimized out
switch (I->getOpcode()) {
case Instruction::ExtractElement: {
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
return getVectorInstrCost(I->getOpcode(), I->getOperand(0)->getType(), Idx);
}
case Instruction::InsertElement: {
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(2));
unsigned Idx = -1;
if (CI)
Idx = CI->getZExtValue();
return getVectorInstrCost(I->getOpcode(), I->getType(), Idx);
}
case Instruction::Call: {
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
SmallVector<Value *, 4> Args(II->arg_operands());
FastMathFlags FMF;
if (auto *FPMO = dyn_cast<FPMathOperator>(II))
FMF = FPMO->getFastMathFlags();
return getIntrinsicInstrCost(II->getIntrinsicID(), II->getType(), Args,
FMF, 1, II);
} else {
return BaseT::getUserCost(U, Operands);
}
}
case Instruction::ShuffleVector: {
const ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
Type *Ty = Shuffle->getType();
Type *SrcTy = Shuffle->getOperand(0)->getType();
// TODO: Identify and add costs for insert subvector, etc.
int SubIndex;
if (Shuffle->isExtractSubvectorMask(SubIndex))
return getShuffleCost(TTI::SK_ExtractSubvector, SrcTy, SubIndex, Ty);
if (Shuffle->changesLength())
return BaseT::getUserCost(U, Operands);
if (Shuffle->isIdentity())
return 0;
if (Shuffle->isReverse())
return getShuffleCost(TTI::SK_Reverse, Ty, 0, nullptr);
if (Shuffle->isSelect())
return getShuffleCost(TTI::SK_Select, Ty, 0, nullptr);
if (Shuffle->isTranspose())
return getShuffleCost(TTI::SK_Transpose, Ty, 0, nullptr);
if (Shuffle->isZeroEltSplat())
return getShuffleCost(TTI::SK_Broadcast, Ty, 0, nullptr);
if (Shuffle->isSingleSource())
return getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, nullptr);
return getShuffleCost(TTI::SK_PermuteTwoSrc, Ty, 0, nullptr);
}
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::FPExt:
case Instruction::PtrToInt:
case Instruction::IntToPtr:
case Instruction::SIToFP:
case Instruction::UIToFP:
case Instruction::Trunc:
case Instruction::FPTrunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast: {
return getCastInstrCost(I->getOpcode(), I->getType(),
I->getOperand(0)->getType(), I);
}
case Instruction::Add:
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::FDiv:
case Instruction::URem:
case Instruction::SRem:
case Instruction::FRem:
case Instruction::Shl:
case Instruction::LShr:
case Instruction::AShr:
case Instruction::And:
case Instruction::Or:
case Instruction::Xor:
case Instruction::FNeg: {
return getArithmeticInstrCost(I->getOpcode(), I->getType(),
TTI::OK_AnyValue, TTI::OK_AnyValue,
TTI::OP_None, TTI::OP_None, Operands, I);
}
default:
break;
}
return BaseT::getUserCost(U, Operands);
}
unsigned R600TTIImpl::getHardwareNumberOfRegisters(bool Vec) const {
return 4 * 128; // XXX - 4 channels. Should these count as vector instead?
}
unsigned R600TTIImpl::getNumberOfRegisters(bool Vec) const {
return getHardwareNumberOfRegisters(Vec);
}
unsigned R600TTIImpl::getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned R600TTIImpl::getMinVectorRegisterBitWidth() const {
return 32;
}
unsigned R600TTIImpl::getLoadStoreVecRegBitWidth(unsigned AddrSpace) const {
if (AddrSpace == AMDGPUAS::GLOBAL_ADDRESS ||
AddrSpace == AMDGPUAS::CONSTANT_ADDRESS)
return 128;
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS)
return 64;
if (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS)
return 32;
if ((AddrSpace == AMDGPUAS::PARAM_D_ADDRESS ||
AddrSpace == AMDGPUAS::PARAM_I_ADDRESS ||
(AddrSpace >= AMDGPUAS::CONSTANT_BUFFER_0 &&
AddrSpace <= AMDGPUAS::CONSTANT_BUFFER_15)))
return 128;
llvm_unreachable("unhandled address space");
}
bool R600TTIImpl::isLegalToVectorizeMemChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
// We allow vectorization of flat stores, even though we may need to decompose
// them later if they may access private memory. We don't have enough context
// here, and legalization can handle it.
return (AddrSpace != AMDGPUAS::PRIVATE_ADDRESS);
}
bool R600TTIImpl::isLegalToVectorizeLoadChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
bool R600TTIImpl::isLegalToVectorizeStoreChain(unsigned ChainSizeInBytes,
unsigned Alignment,
unsigned AddrSpace) const {
return isLegalToVectorizeMemChain(ChainSizeInBytes, Alignment, AddrSpace);
}
unsigned R600TTIImpl::getMaxInterleaveFactor(unsigned VF) {
// Disable unrolling if the loop is not vectorized.
// TODO: Enable this again.
if (VF == 1)
return 1;
return 8;
}
unsigned R600TTIImpl::getCFInstrCost(unsigned Opcode) {
// XXX - For some reason this isn't called for switch.
switch (Opcode) {
case Instruction::Br:
case Instruction::Ret:
return 10;
default:
return BaseT::getCFInstrCost(Opcode);
}
}
int R600TTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy,
unsigned Index) {
switch (Opcode) {
case Instruction::ExtractElement:
case Instruction::InsertElement: {
unsigned EltSize
= DL.getTypeSizeInBits(cast<VectorType>(ValTy)->getElementType());
if (EltSize < 32) {
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
// Extracts are just reads of a subregister, so are free. Inserts are
// considered free because we don't want to have any cost for scalarizing
// operations, and we don't have to copy into a different register class.
// Dynamic indexing isn't free and is best avoided.
return Index == ~0u ? 2 : 0;
}
default:
return BaseT::getVectorInstrCost(Opcode, ValTy, Index);
}
}
void R600TTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
TTI::UnrollingPreferences &UP) {
CommonTTI.getUnrollingPreferences(L, SE, UP);
}