forked from OSchip/llvm-project
2218 lines
80 KiB
C++
2218 lines
80 KiB
C++
//===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Custom DAG lowering for R600
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "R600ISelLowering.h"
|
|
#include "AMDGPUFrameLowering.h"
|
|
#include "AMDGPUIntrinsicInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "R600Defines.h"
|
|
#include "R600FrameLowering.h"
|
|
#include "R600InstrInfo.h"
|
|
#include "R600MachineFunctionInfo.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/DAGCombine.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
R600TargetLowering::R600TargetLowering(const TargetMachine &TM,
|
|
const R600Subtarget &STI)
|
|
: AMDGPUTargetLowering(TM, STI), Gen(STI.getGeneration()) {
|
|
addRegisterClass(MVT::f32, &AMDGPU::R600_Reg32RegClass);
|
|
addRegisterClass(MVT::i32, &AMDGPU::R600_Reg32RegClass);
|
|
addRegisterClass(MVT::v2f32, &AMDGPU::R600_Reg64RegClass);
|
|
addRegisterClass(MVT::v2i32, &AMDGPU::R600_Reg64RegClass);
|
|
addRegisterClass(MVT::v4f32, &AMDGPU::R600_Reg128RegClass);
|
|
addRegisterClass(MVT::v4i32, &AMDGPU::R600_Reg128RegClass);
|
|
|
|
computeRegisterProperties(STI.getRegisterInfo());
|
|
|
|
// Legalize loads and stores to the private address space.
|
|
setOperationAction(ISD::LOAD, MVT::i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
|
|
|
|
// EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
|
|
// spaces, so it is custom lowered to handle those where it isn't.
|
|
for (MVT VT : MVT::integer_valuetypes()) {
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Custom);
|
|
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Custom);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Custom);
|
|
setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Custom);
|
|
}
|
|
|
|
// Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i32, MVT::v2i1, Expand);
|
|
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i32, MVT::v4i1, Expand);
|
|
|
|
setOperationAction(ISD::STORE, MVT::i8, Custom);
|
|
setOperationAction(ISD::STORE, MVT::i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
|
|
|
|
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
|
|
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
|
|
// We need to include these since trunc STORES to PRIVATE need
|
|
// special handling to accommodate RMW
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Custom);
|
|
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Custom);
|
|
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Custom);
|
|
setTruncStoreAction(MVT::v32i32, MVT::v32i16, Custom);
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
|
|
setTruncStoreAction(MVT::v8i32, MVT::v8i8, Custom);
|
|
setTruncStoreAction(MVT::v16i32, MVT::v16i8, Custom);
|
|
setTruncStoreAction(MVT::v32i32, MVT::v32i8, Custom);
|
|
|
|
// Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
|
|
setTruncStoreAction(MVT::v2i32, MVT::v2i1, Expand);
|
|
setTruncStoreAction(MVT::v4i32, MVT::v4i1, Expand);
|
|
|
|
// Set condition code actions
|
|
setCondCodeAction(ISD::SETO, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETLT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETLE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
|
|
setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
|
|
|
|
setCondCodeAction(ISD::SETLE, MVT::i32, Expand);
|
|
setCondCodeAction(ISD::SETLT, MVT::i32, Expand);
|
|
setCondCodeAction(ISD::SETULE, MVT::i32, Expand);
|
|
setCondCodeAction(ISD::SETULT, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::FCOS, MVT::f32, Custom);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::v4i32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v2i32, Expand);
|
|
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Expand);
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
|
|
|
|
setOperationAction(ISD::FSUB, MVT::f32, Expand);
|
|
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i1, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i1, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
|
|
|
|
setOperationAction(ISD::SELECT, MVT::i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
|
|
|
|
// ADD, SUB overflow.
|
|
// TODO: turn these into Legal?
|
|
if (Subtarget->hasCARRY())
|
|
setOperationAction(ISD::UADDO, MVT::i32, Custom);
|
|
|
|
if (Subtarget->hasBORROW())
|
|
setOperationAction(ISD::USUBO, MVT::i32, Custom);
|
|
|
|
// Expand sign extension of vectors
|
|
if (!Subtarget->hasBFE())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Expand);
|
|
|
|
if (!Subtarget->hasBFE())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Expand);
|
|
|
|
if (!Subtarget->hasBFE())
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Expand);
|
|
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Expand);
|
|
|
|
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
|
|
|
|
// We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
|
|
// to be Legal/Custom in order to avoid library calls.
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
|
|
if (!Subtarget->hasFMA()) {
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
|
|
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
|
|
for (MVT VT : ScalarIntVTs) {
|
|
setOperationAction(ISD::ADDC, VT, Expand);
|
|
setOperationAction(ISD::SUBC, VT, Expand);
|
|
setOperationAction(ISD::ADDE, VT, Expand);
|
|
setOperationAction(ISD::SUBE, VT, Expand);
|
|
}
|
|
|
|
// LLVM will expand these to atomic_cmp_swap(0)
|
|
// and atomic_swap, respectively.
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
|
|
|
|
// We need to custom lower some of the intrinsics
|
|
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
|
|
setSchedulingPreference(Sched::Source);
|
|
|
|
setTargetDAGCombine(ISD::FP_ROUND);
|
|
setTargetDAGCombine(ISD::FP_TO_SINT);
|
|
setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::LOAD);
|
|
}
|
|
|
|
const R600Subtarget *R600TargetLowering::getSubtarget() const {
|
|
return static_cast<const R600Subtarget *>(Subtarget);
|
|
}
|
|
|
|
static inline bool isEOP(MachineBasicBlock::iterator I) {
|
|
if (std::next(I) == I->getParent()->end())
|
|
return false;
|
|
return std::next(I)->getOpcode() == AMDGPU::RETURN;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
|
|
MachineBasicBlock *BB) const {
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
MachineBasicBlock::iterator I = MI;
|
|
const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
// Replace LDS_*_RET instruction that don't have any uses with the
|
|
// equivalent LDS_*_NORET instruction.
|
|
if (TII->isLDSRetInstr(MI.getOpcode())) {
|
|
int DstIdx = TII->getOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
|
|
assert(DstIdx != -1);
|
|
MachineInstrBuilder NewMI;
|
|
// FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
|
|
// LDS_1A2D support and remove this special case.
|
|
if (!MRI.use_empty(MI.getOperand(DstIdx).getReg()) ||
|
|
MI.getOpcode() == AMDGPU::LDS_CMPST_RET)
|
|
return BB;
|
|
|
|
NewMI = BuildMI(*BB, I, BB->findDebugLoc(I),
|
|
TII->get(AMDGPU::getLDSNoRetOp(MI.getOpcode())));
|
|
for (unsigned i = 1, e = MI.getNumOperands(); i < e; ++i) {
|
|
NewMI.add(MI.getOperand(i));
|
|
}
|
|
} else {
|
|
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
|
|
}
|
|
break;
|
|
|
|
case AMDGPU::FABS_R600: {
|
|
MachineInstr *NewMI = TII->buildDefaultInstruction(
|
|
*BB, I, AMDGPU::MOV, MI.getOperand(0).getReg(),
|
|
MI.getOperand(1).getReg());
|
|
TII->addFlag(*NewMI, 0, MO_FLAG_ABS);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::FNEG_R600: {
|
|
MachineInstr *NewMI = TII->buildDefaultInstruction(
|
|
*BB, I, AMDGPU::MOV, MI.getOperand(0).getReg(),
|
|
MI.getOperand(1).getReg());
|
|
TII->addFlag(*NewMI, 0, MO_FLAG_NEG);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::MASK_WRITE: {
|
|
unsigned maskedRegister = MI.getOperand(0).getReg();
|
|
assert(TargetRegisterInfo::isVirtualRegister(maskedRegister));
|
|
MachineInstr * defInstr = MRI.getVRegDef(maskedRegister);
|
|
TII->addFlag(*defInstr, 0, MO_FLAG_MASK);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::MOV_IMM_F32:
|
|
TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(), MI.getOperand(1)
|
|
.getFPImm()
|
|
->getValueAPF()
|
|
.bitcastToAPInt()
|
|
.getZExtValue());
|
|
break;
|
|
|
|
case AMDGPU::MOV_IMM_I32:
|
|
TII->buildMovImm(*BB, I, MI.getOperand(0).getReg(),
|
|
MI.getOperand(1).getImm());
|
|
break;
|
|
|
|
case AMDGPU::MOV_IMM_GLOBAL_ADDR: {
|
|
//TODO: Perhaps combine this instruction with the next if possible
|
|
auto MIB = TII->buildDefaultInstruction(
|
|
*BB, MI, AMDGPU::MOV, MI.getOperand(0).getReg(), AMDGPU::ALU_LITERAL_X);
|
|
int Idx = TII->getOperandIdx(*MIB, AMDGPU::OpName::literal);
|
|
//TODO: Ugh this is rather ugly
|
|
MIB->getOperand(Idx) = MI.getOperand(1);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::CONST_COPY: {
|
|
MachineInstr *NewMI = TII->buildDefaultInstruction(
|
|
*BB, MI, AMDGPU::MOV, MI.getOperand(0).getReg(), AMDGPU::ALU_CONST);
|
|
TII->setImmOperand(*NewMI, AMDGPU::OpName::src0_sel,
|
|
MI.getOperand(1).getImm());
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::RAT_WRITE_CACHELESS_32_eg:
|
|
case AMDGPU::RAT_WRITE_CACHELESS_64_eg:
|
|
case AMDGPU::RAT_WRITE_CACHELESS_128_eg:
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
|
|
.add(MI.getOperand(0))
|
|
.add(MI.getOperand(1))
|
|
.addImm(isEOP(I)); // Set End of program bit
|
|
break;
|
|
|
|
case AMDGPU::RAT_STORE_TYPED_eg:
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
|
|
.add(MI.getOperand(0))
|
|
.add(MI.getOperand(1))
|
|
.add(MI.getOperand(2))
|
|
.addImm(isEOP(I)); // Set End of program bit
|
|
break;
|
|
|
|
case AMDGPU::BRANCH:
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP))
|
|
.add(MI.getOperand(0));
|
|
break;
|
|
|
|
case AMDGPU::BRANCH_COND_f32: {
|
|
MachineInstr *NewMI =
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
|
|
AMDGPU::PREDICATE_BIT)
|
|
.add(MI.getOperand(1))
|
|
.addImm(AMDGPU::PRED_SETNE)
|
|
.addImm(0); // Flags
|
|
TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
|
|
.add(MI.getOperand(0))
|
|
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::BRANCH_COND_i32: {
|
|
MachineInstr *NewMI =
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::PRED_X),
|
|
AMDGPU::PREDICATE_BIT)
|
|
.add(MI.getOperand(1))
|
|
.addImm(AMDGPU::PRED_SETNE_INT)
|
|
.addImm(0); // Flags
|
|
TII->addFlag(*NewMI, 0, MO_FLAG_PUSH);
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(AMDGPU::JUMP_COND))
|
|
.add(MI.getOperand(0))
|
|
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
|
|
break;
|
|
}
|
|
|
|
case AMDGPU::EG_ExportSwz:
|
|
case AMDGPU::R600_ExportSwz: {
|
|
// Instruction is left unmodified if its not the last one of its type
|
|
bool isLastInstructionOfItsType = true;
|
|
unsigned InstExportType = MI.getOperand(1).getImm();
|
|
for (MachineBasicBlock::iterator NextExportInst = std::next(I),
|
|
EndBlock = BB->end(); NextExportInst != EndBlock;
|
|
NextExportInst = std::next(NextExportInst)) {
|
|
if (NextExportInst->getOpcode() == AMDGPU::EG_ExportSwz ||
|
|
NextExportInst->getOpcode() == AMDGPU::R600_ExportSwz) {
|
|
unsigned CurrentInstExportType = NextExportInst->getOperand(1)
|
|
.getImm();
|
|
if (CurrentInstExportType == InstExportType) {
|
|
isLastInstructionOfItsType = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
bool EOP = isEOP(I);
|
|
if (!EOP && !isLastInstructionOfItsType)
|
|
return BB;
|
|
unsigned CfInst = (MI.getOpcode() == AMDGPU::EG_ExportSwz) ? 84 : 40;
|
|
BuildMI(*BB, I, BB->findDebugLoc(I), TII->get(MI.getOpcode()))
|
|
.add(MI.getOperand(0))
|
|
.add(MI.getOperand(1))
|
|
.add(MI.getOperand(2))
|
|
.add(MI.getOperand(3))
|
|
.add(MI.getOperand(4))
|
|
.add(MI.getOperand(5))
|
|
.add(MI.getOperand(6))
|
|
.addImm(CfInst)
|
|
.addImm(EOP);
|
|
break;
|
|
}
|
|
case AMDGPU::RETURN: {
|
|
return BB;
|
|
}
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
return BB;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG Lowering Operations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue R600TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
switch (Op.getOpcode()) {
|
|
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::SHL_PARTS: return LowerSHLParts(Op, DAG);
|
|
case ISD::SRA_PARTS:
|
|
case ISD::SRL_PARTS: return LowerSRXParts(Op, DAG);
|
|
case ISD::UADDO: return LowerUADDSUBO(Op, DAG, ISD::ADD, AMDGPUISD::CARRY);
|
|
case ISD::USUBO: return LowerUADDSUBO(Op, DAG, ISD::SUB, AMDGPUISD::BORROW);
|
|
case ISD::FCOS:
|
|
case ISD::FSIN: return LowerTrig(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::STORE: return LowerSTORE(Op, DAG);
|
|
case ISD::LOAD: {
|
|
SDValue Result = LowerLOAD(Op, DAG);
|
|
assert((!Result.getNode() ||
|
|
Result.getNode()->getNumValues() == 2) &&
|
|
"Load should return a value and a chain");
|
|
return Result;
|
|
}
|
|
|
|
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
|
|
case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
|
|
case ISD::FrameIndex: return lowerFrameIndex(Op, DAG);
|
|
case ISD::INTRINSIC_VOID: {
|
|
SDValue Chain = Op.getOperand(0);
|
|
unsigned IntrinsicID =
|
|
cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::r600_store_swizzle: {
|
|
SDLoc DL(Op);
|
|
const SDValue Args[8] = {
|
|
Chain,
|
|
Op.getOperand(2), // Export Value
|
|
Op.getOperand(3), // ArrayBase
|
|
Op.getOperand(4), // Type
|
|
DAG.getConstant(0, DL, MVT::i32), // SWZ_X
|
|
DAG.getConstant(1, DL, MVT::i32), // SWZ_Y
|
|
DAG.getConstant(2, DL, MVT::i32), // SWZ_Z
|
|
DAG.getConstant(3, DL, MVT::i32) // SWZ_W
|
|
};
|
|
return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, Op.getValueType(), Args);
|
|
}
|
|
|
|
// default for switch(IntrinsicID)
|
|
default: break;
|
|
}
|
|
// break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
unsigned IntrinsicID =
|
|
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
EVT VT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::r600_tex:
|
|
case Intrinsic::r600_texc: {
|
|
unsigned TextureOp;
|
|
switch (IntrinsicID) {
|
|
case Intrinsic::r600_tex:
|
|
TextureOp = 0;
|
|
break;
|
|
case Intrinsic::r600_texc:
|
|
TextureOp = 1;
|
|
break;
|
|
default:
|
|
llvm_unreachable("unhandled texture operation");
|
|
}
|
|
|
|
SDValue TexArgs[19] = {
|
|
DAG.getConstant(TextureOp, DL, MVT::i32),
|
|
Op.getOperand(1),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(1, DL, MVT::i32),
|
|
DAG.getConstant(2, DL, MVT::i32),
|
|
DAG.getConstant(3, DL, MVT::i32),
|
|
Op.getOperand(2),
|
|
Op.getOperand(3),
|
|
Op.getOperand(4),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(1, DL, MVT::i32),
|
|
DAG.getConstant(2, DL, MVT::i32),
|
|
DAG.getConstant(3, DL, MVT::i32),
|
|
Op.getOperand(5),
|
|
Op.getOperand(6),
|
|
Op.getOperand(7),
|
|
Op.getOperand(8),
|
|
Op.getOperand(9),
|
|
Op.getOperand(10)
|
|
};
|
|
return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, MVT::v4f32, TexArgs);
|
|
}
|
|
case Intrinsic::r600_dot4: {
|
|
SDValue Args[8] = {
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
|
|
DAG.getConstant(0, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
|
|
DAG.getConstant(0, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
|
|
DAG.getConstant(1, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
|
|
DAG.getConstant(1, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
|
|
DAG.getConstant(2, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
|
|
DAG.getConstant(2, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(1),
|
|
DAG.getConstant(3, DL, MVT::i32)),
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, Op.getOperand(2),
|
|
DAG.getConstant(3, DL, MVT::i32))
|
|
};
|
|
return DAG.getNode(AMDGPUISD::DOT4, DL, MVT::f32, Args);
|
|
}
|
|
|
|
case Intrinsic::r600_implicitarg_ptr: {
|
|
MVT PtrVT = getPointerTy(DAG.getDataLayout(), AMDGPUASI.PARAM_I_ADDRESS);
|
|
uint32_t ByteOffset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
|
|
return DAG.getConstant(ByteOffset, DL, PtrVT);
|
|
}
|
|
case Intrinsic::r600_read_ngroups_x:
|
|
return LowerImplicitParameter(DAG, VT, DL, 0);
|
|
case Intrinsic::r600_read_ngroups_y:
|
|
return LowerImplicitParameter(DAG, VT, DL, 1);
|
|
case Intrinsic::r600_read_ngroups_z:
|
|
return LowerImplicitParameter(DAG, VT, DL, 2);
|
|
case Intrinsic::r600_read_global_size_x:
|
|
return LowerImplicitParameter(DAG, VT, DL, 3);
|
|
case Intrinsic::r600_read_global_size_y:
|
|
return LowerImplicitParameter(DAG, VT, DL, 4);
|
|
case Intrinsic::r600_read_global_size_z:
|
|
return LowerImplicitParameter(DAG, VT, DL, 5);
|
|
case Intrinsic::r600_read_local_size_x:
|
|
return LowerImplicitParameter(DAG, VT, DL, 6);
|
|
case Intrinsic::r600_read_local_size_y:
|
|
return LowerImplicitParameter(DAG, VT, DL, 7);
|
|
case Intrinsic::r600_read_local_size_z:
|
|
return LowerImplicitParameter(DAG, VT, DL, 8);
|
|
|
|
case Intrinsic::r600_read_tgid_x:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T1_X, VT);
|
|
case Intrinsic::r600_read_tgid_y:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T1_Y, VT);
|
|
case Intrinsic::r600_read_tgid_z:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T1_Z, VT);
|
|
case Intrinsic::r600_read_tidig_x:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T0_X, VT);
|
|
case Intrinsic::r600_read_tidig_y:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T0_Y, VT);
|
|
case Intrinsic::r600_read_tidig_z:
|
|
return CreateLiveInRegisterRaw(DAG, &AMDGPU::R600_TReg32RegClass,
|
|
AMDGPU::T0_Z, VT);
|
|
|
|
case Intrinsic::r600_recipsqrt_ieee:
|
|
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
|
|
|
|
case Intrinsic::r600_recipsqrt_clamped:
|
|
return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
|
|
default:
|
|
return Op;
|
|
}
|
|
|
|
// break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
|
|
break;
|
|
}
|
|
} // end switch(Op.getOpcode())
|
|
return SDValue();
|
|
}
|
|
|
|
void R600TargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG) const {
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
AMDGPUTargetLowering::ReplaceNodeResults(N, Results, DAG);
|
|
return;
|
|
case ISD::FP_TO_UINT:
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
Results.push_back(lowerFP_TO_UINT(N->getOperand(0), DAG));
|
|
return;
|
|
}
|
|
// Since we don't care about out of bounds values we can use FP_TO_SINT for
|
|
// uints too. The DAGLegalizer code for uint considers some extra cases
|
|
// which are not necessary here.
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::FP_TO_SINT: {
|
|
if (N->getValueType(0) == MVT::i1) {
|
|
Results.push_back(lowerFP_TO_SINT(N->getOperand(0), DAG));
|
|
return;
|
|
}
|
|
|
|
SDValue Result;
|
|
if (expandFP_TO_SINT(N, Result, DAG))
|
|
Results.push_back(Result);
|
|
return;
|
|
}
|
|
case ISD::SDIVREM: {
|
|
SDValue Op = SDValue(N, 1);
|
|
SDValue RES = LowerSDIVREM(Op, DAG);
|
|
Results.push_back(RES);
|
|
Results.push_back(RES.getValue(1));
|
|
break;
|
|
}
|
|
case ISD::UDIVREM: {
|
|
SDValue Op = SDValue(N, 0);
|
|
LowerUDIVREM64(Op, DAG, Results);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
SDValue R600TargetLowering::vectorToVerticalVector(SelectionDAG &DAG,
|
|
SDValue Vector) const {
|
|
SDLoc DL(Vector);
|
|
EVT VecVT = Vector.getValueType();
|
|
EVT EltVT = VecVT.getVectorElementType();
|
|
SmallVector<SDValue, 8> Args;
|
|
|
|
for (unsigned i = 0, e = VecVT.getVectorNumElements(); i != e; ++i) {
|
|
Args.push_back(DAG.getNode(
|
|
ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Vector,
|
|
DAG.getConstant(i, DL, getVectorIdxTy(DAG.getDataLayout()))));
|
|
}
|
|
|
|
return DAG.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR, DL, VecVT, Args);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vector = Op.getOperand(0);
|
|
SDValue Index = Op.getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(Index) ||
|
|
Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
|
|
return Op;
|
|
|
|
Vector = vectorToVerticalVector(DAG, Vector);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, Op.getValueType(),
|
|
Vector, Index);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
SDValue Vector = Op.getOperand(0);
|
|
SDValue Value = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
|
|
if (isa<ConstantSDNode>(Index) ||
|
|
Vector.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR)
|
|
return Op;
|
|
|
|
Vector = vectorToVerticalVector(DAG, Vector);
|
|
SDValue Insert = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, Op.getValueType(),
|
|
Vector, Value, Index);
|
|
return vectorToVerticalVector(DAG, Insert);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
|
|
SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
|
|
if (GSD->getAddressSpace() != AMDGPUASI.CONSTANT_ADDRESS)
|
|
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
|
|
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
const GlobalValue *GV = GSD->getGlobal();
|
|
MVT ConstPtrVT = getPointerTy(DL, AMDGPUASI.CONSTANT_ADDRESS);
|
|
|
|
SDValue GA = DAG.getTargetGlobalAddress(GV, SDLoc(GSD), ConstPtrVT);
|
|
return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, SDLoc(GSD), ConstPtrVT, GA);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
|
|
// On hw >= R700, COS/SIN input must be between -1. and 1.
|
|
// Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
|
|
EVT VT = Op.getValueType();
|
|
SDValue Arg = Op.getOperand(0);
|
|
SDLoc DL(Op);
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
|
|
DAG.getNode(ISD::FADD, DL, VT,
|
|
DAG.getNode(ISD::FMUL, DL, VT, Arg,
|
|
DAG.getConstantFP(0.15915494309, DL, MVT::f32)),
|
|
DAG.getConstantFP(0.5, DL, MVT::f32)));
|
|
unsigned TrigNode;
|
|
switch (Op.getOpcode()) {
|
|
case ISD::FCOS:
|
|
TrigNode = AMDGPUISD::COS_HW;
|
|
break;
|
|
case ISD::FSIN:
|
|
TrigNode = AMDGPUISD::SIN_HW;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Wrong trig opcode");
|
|
}
|
|
SDValue TrigVal = DAG.getNode(TrigNode, DL, VT,
|
|
DAG.getNode(ISD::FADD, DL, VT, FractPart,
|
|
DAG.getConstantFP(-0.5, DL, MVT::f32)));
|
|
if (Gen >= R600Subtarget::R700)
|
|
return TrigVal;
|
|
// On R600 hw, COS/SIN input must be between -Pi and Pi.
|
|
return DAG.getNode(ISD::FMUL, DL, VT, TrigVal,
|
|
DAG.getConstantFP(3.14159265359, DL, MVT::f32));
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerSHLParts(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shift = Op.getOperand(2);
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
|
|
SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
|
|
SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
|
|
SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
|
|
SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
|
|
|
|
// The dance around Width1 is necessary for 0 special case.
|
|
// Without it the CompShift might be 32, producing incorrect results in
|
|
// Overflow. So we do the shift in two steps, the alternative is to
|
|
// add a conditional to filter the special case.
|
|
|
|
SDValue Overflow = DAG.getNode(ISD::SRL, DL, VT, Lo, CompShift);
|
|
Overflow = DAG.getNode(ISD::SRL, DL, VT, Overflow, One);
|
|
|
|
SDValue HiSmall = DAG.getNode(ISD::SHL, DL, VT, Hi, Shift);
|
|
HiSmall = DAG.getNode(ISD::OR, DL, VT, HiSmall, Overflow);
|
|
SDValue LoSmall = DAG.getNode(ISD::SHL, DL, VT, Lo, Shift);
|
|
|
|
SDValue HiBig = DAG.getNode(ISD::SHL, DL, VT, Lo, BigShift);
|
|
SDValue LoBig = Zero;
|
|
|
|
Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
|
|
Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerSRXParts(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
SDValue Shift = Op.getOperand(2);
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
|
|
const bool SRA = Op.getOpcode() == ISD::SRA_PARTS;
|
|
|
|
SDValue Width = DAG.getConstant(VT.getSizeInBits(), DL, VT);
|
|
SDValue Width1 = DAG.getConstant(VT.getSizeInBits() - 1, DL, VT);
|
|
SDValue BigShift = DAG.getNode(ISD::SUB, DL, VT, Shift, Width);
|
|
SDValue CompShift = DAG.getNode(ISD::SUB, DL, VT, Width1, Shift);
|
|
|
|
// The dance around Width1 is necessary for 0 special case.
|
|
// Without it the CompShift might be 32, producing incorrect results in
|
|
// Overflow. So we do the shift in two steps, the alternative is to
|
|
// add a conditional to filter the special case.
|
|
|
|
SDValue Overflow = DAG.getNode(ISD::SHL, DL, VT, Hi, CompShift);
|
|
Overflow = DAG.getNode(ISD::SHL, DL, VT, Overflow, One);
|
|
|
|
SDValue HiSmall = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, Shift);
|
|
SDValue LoSmall = DAG.getNode(ISD::SRL, DL, VT, Lo, Shift);
|
|
LoSmall = DAG.getNode(ISD::OR, DL, VT, LoSmall, Overflow);
|
|
|
|
SDValue LoBig = DAG.getNode(SRA ? ISD::SRA : ISD::SRL, DL, VT, Hi, BigShift);
|
|
SDValue HiBig = SRA ? DAG.getNode(ISD::SRA, DL, VT, Hi, Width1) : Zero;
|
|
|
|
Hi = DAG.getSelectCC(DL, Shift, Width, HiSmall, HiBig, ISD::SETULT);
|
|
Lo = DAG.getSelectCC(DL, Shift, Width, LoSmall, LoBig, ISD::SETULT);
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT,VT), Lo, Hi);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerUADDSUBO(SDValue Op, SelectionDAG &DAG,
|
|
unsigned mainop, unsigned ovf) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue Lo = Op.getOperand(0);
|
|
SDValue Hi = Op.getOperand(1);
|
|
|
|
SDValue OVF = DAG.getNode(ovf, DL, VT, Lo, Hi);
|
|
// Extend sign.
|
|
OVF = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, OVF,
|
|
DAG.getValueType(MVT::i1));
|
|
|
|
SDValue Res = DAG.getNode(mainop, DL, VT, Lo, Hi);
|
|
|
|
return DAG.getNode(ISD::MERGE_VALUES, DL, DAG.getVTList(VT, VT), Res, OVF);
|
|
}
|
|
|
|
SDValue R600TargetLowering::lowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(
|
|
ISD::SETCC,
|
|
DL,
|
|
MVT::i1,
|
|
Op, DAG.getConstantFP(1.0f, DL, MVT::f32),
|
|
DAG.getCondCode(ISD::SETEQ));
|
|
}
|
|
|
|
SDValue R600TargetLowering::lowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
return DAG.getNode(
|
|
ISD::SETCC,
|
|
DL,
|
|
MVT::i1,
|
|
Op, DAG.getConstantFP(-1.0f, DL, MVT::f32),
|
|
DAG.getCondCode(ISD::SETEQ));
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerImplicitParameter(SelectionDAG &DAG, EVT VT,
|
|
const SDLoc &DL,
|
|
unsigned DwordOffset) const {
|
|
unsigned ByteOffset = DwordOffset * 4;
|
|
PointerType * PtrType = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
|
|
AMDGPUASI.CONSTANT_BUFFER_0);
|
|
|
|
// We shouldn't be using an offset wider than 16-bits for implicit parameters.
|
|
assert(isInt<16>(ByteOffset));
|
|
|
|
return DAG.getLoad(VT, DL, DAG.getEntryNode(),
|
|
DAG.getConstant(ByteOffset, DL, MVT::i32), // PTR
|
|
MachinePointerInfo(ConstantPointerNull::get(PtrType)));
|
|
}
|
|
|
|
bool R600TargetLowering::isZero(SDValue Op) const {
|
|
if(ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Op)) {
|
|
return Cst->isNullValue();
|
|
} else if(ConstantFPSDNode *CstFP = dyn_cast<ConstantFPSDNode>(Op)){
|
|
return CstFP->isZero();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool R600TargetLowering::isHWTrueValue(SDValue Op) const {
|
|
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
return CFP->isExactlyValue(1.0);
|
|
}
|
|
return isAllOnesConstant(Op);
|
|
}
|
|
|
|
bool R600TargetLowering::isHWFalseValue(SDValue Op) const {
|
|
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
|
|
return CFP->getValueAPF().isZero();
|
|
}
|
|
return isNullConstant(Op);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
SDValue True = Op.getOperand(2);
|
|
SDValue False = Op.getOperand(3);
|
|
SDValue CC = Op.getOperand(4);
|
|
SDValue Temp;
|
|
|
|
if (VT == MVT::f32) {
|
|
DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
|
|
SDValue MinMax = combineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
|
|
if (MinMax)
|
|
return MinMax;
|
|
}
|
|
|
|
// LHS and RHS are guaranteed to be the same value type
|
|
EVT CompareVT = LHS.getValueType();
|
|
|
|
// Check if we can lower this to a native operation.
|
|
|
|
// Try to lower to a SET* instruction:
|
|
//
|
|
// SET* can match the following patterns:
|
|
//
|
|
// select_cc f32, f32, -1, 0, cc_supported
|
|
// select_cc f32, f32, 1.0f, 0.0f, cc_supported
|
|
// select_cc i32, i32, -1, 0, cc_supported
|
|
//
|
|
|
|
// Move hardware True/False values to the correct operand.
|
|
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
ISD::CondCode InverseCC =
|
|
ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
|
|
if (isHWTrueValue(False) && isHWFalseValue(True)) {
|
|
if (isCondCodeLegal(InverseCC, CompareVT.getSimpleVT())) {
|
|
std::swap(False, True);
|
|
CC = DAG.getCondCode(InverseCC);
|
|
} else {
|
|
ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InverseCC);
|
|
if (isCondCodeLegal(SwapInvCC, CompareVT.getSimpleVT())) {
|
|
std::swap(False, True);
|
|
std::swap(LHS, RHS);
|
|
CC = DAG.getCondCode(SwapInvCC);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (isHWTrueValue(True) && isHWFalseValue(False) &&
|
|
(CompareVT == VT || VT == MVT::i32)) {
|
|
// This can be matched by a SET* instruction.
|
|
return DAG.getNode(ISD::SELECT_CC, DL, VT, LHS, RHS, True, False, CC);
|
|
}
|
|
|
|
// Try to lower to a CND* instruction:
|
|
//
|
|
// CND* can match the following patterns:
|
|
//
|
|
// select_cc f32, 0.0, f32, f32, cc_supported
|
|
// select_cc f32, 0.0, i32, i32, cc_supported
|
|
// select_cc i32, 0, f32, f32, cc_supported
|
|
// select_cc i32, 0, i32, i32, cc_supported
|
|
//
|
|
|
|
// Try to move the zero value to the RHS
|
|
if (isZero(LHS)) {
|
|
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
// Try swapping the operands
|
|
ISD::CondCode CCSwapped = ISD::getSetCCSwappedOperands(CCOpcode);
|
|
if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
|
|
std::swap(LHS, RHS);
|
|
CC = DAG.getCondCode(CCSwapped);
|
|
} else {
|
|
// Try inverting the conditon and then swapping the operands
|
|
ISD::CondCode CCInv = ISD::getSetCCInverse(CCOpcode, CompareVT.isInteger());
|
|
CCSwapped = ISD::getSetCCSwappedOperands(CCInv);
|
|
if (isCondCodeLegal(CCSwapped, CompareVT.getSimpleVT())) {
|
|
std::swap(True, False);
|
|
std::swap(LHS, RHS);
|
|
CC = DAG.getCondCode(CCSwapped);
|
|
}
|
|
}
|
|
}
|
|
if (isZero(RHS)) {
|
|
SDValue Cond = LHS;
|
|
SDValue Zero = RHS;
|
|
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
if (CompareVT != VT) {
|
|
// Bitcast True / False to the correct types. This will end up being
|
|
// a nop, but it allows us to define only a single pattern in the
|
|
// .TD files for each CND* instruction rather than having to have
|
|
// one pattern for integer True/False and one for fp True/False
|
|
True = DAG.getNode(ISD::BITCAST, DL, CompareVT, True);
|
|
False = DAG.getNode(ISD::BITCAST, DL, CompareVT, False);
|
|
}
|
|
|
|
switch (CCOpcode) {
|
|
case ISD::SETONE:
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE:
|
|
CCOpcode = ISD::getSetCCInverse(CCOpcode, CompareVT == MVT::i32);
|
|
Temp = True;
|
|
True = False;
|
|
False = Temp;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, CompareVT,
|
|
Cond, Zero,
|
|
True, False,
|
|
DAG.getCondCode(CCOpcode));
|
|
return DAG.getNode(ISD::BITCAST, DL, VT, SelectNode);
|
|
}
|
|
|
|
// If we make it this for it means we have no native instructions to handle
|
|
// this SELECT_CC, so we must lower it.
|
|
SDValue HWTrue, HWFalse;
|
|
|
|
if (CompareVT == MVT::f32) {
|
|
HWTrue = DAG.getConstantFP(1.0f, DL, CompareVT);
|
|
HWFalse = DAG.getConstantFP(0.0f, DL, CompareVT);
|
|
} else if (CompareVT == MVT::i32) {
|
|
HWTrue = DAG.getConstant(-1, DL, CompareVT);
|
|
HWFalse = DAG.getConstant(0, DL, CompareVT);
|
|
}
|
|
else {
|
|
llvm_unreachable("Unhandled value type in LowerSELECT_CC");
|
|
}
|
|
|
|
// Lower this unsupported SELECT_CC into a combination of two supported
|
|
// SELECT_CC operations.
|
|
SDValue Cond = DAG.getNode(ISD::SELECT_CC, DL, CompareVT, LHS, RHS, HWTrue, HWFalse, CC);
|
|
|
|
return DAG.getNode(ISD::SELECT_CC, DL, VT,
|
|
Cond, HWFalse,
|
|
True, False,
|
|
DAG.getCondCode(ISD::SETNE));
|
|
}
|
|
|
|
/// LLVM generates byte-addressed pointers. For indirect addressing, we need to
|
|
/// convert these pointers to a register index. Each register holds
|
|
/// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
|
|
/// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
|
|
/// for indirect addressing.
|
|
SDValue R600TargetLowering::stackPtrToRegIndex(SDValue Ptr,
|
|
unsigned StackWidth,
|
|
SelectionDAG &DAG) const {
|
|
unsigned SRLPad;
|
|
switch(StackWidth) {
|
|
case 1:
|
|
SRLPad = 2;
|
|
break;
|
|
case 2:
|
|
SRLPad = 3;
|
|
break;
|
|
case 4:
|
|
SRLPad = 4;
|
|
break;
|
|
default: llvm_unreachable("Invalid stack width");
|
|
}
|
|
|
|
SDLoc DL(Ptr);
|
|
return DAG.getNode(ISD::SRL, DL, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(SRLPad, DL, MVT::i32));
|
|
}
|
|
|
|
void R600TargetLowering::getStackAddress(unsigned StackWidth,
|
|
unsigned ElemIdx,
|
|
unsigned &Channel,
|
|
unsigned &PtrIncr) const {
|
|
switch (StackWidth) {
|
|
default:
|
|
case 1:
|
|
Channel = 0;
|
|
if (ElemIdx > 0) {
|
|
PtrIncr = 1;
|
|
} else {
|
|
PtrIncr = 0;
|
|
}
|
|
break;
|
|
case 2:
|
|
Channel = ElemIdx % 2;
|
|
if (ElemIdx == 2) {
|
|
PtrIncr = 1;
|
|
} else {
|
|
PtrIncr = 0;
|
|
}
|
|
break;
|
|
case 4:
|
|
Channel = ElemIdx;
|
|
PtrIncr = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
SDValue R600TargetLowering::lowerPrivateTruncStore(StoreSDNode *Store,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Store);
|
|
//TODO: Who creates the i8 stores?
|
|
assert(Store->isTruncatingStore()
|
|
|| Store->getValue().getValueType() == MVT::i8);
|
|
assert(Store->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS);
|
|
|
|
SDValue Mask;
|
|
if (Store->getMemoryVT() == MVT::i8) {
|
|
assert(Store->getAlignment() >= 1);
|
|
Mask = DAG.getConstant(0xff, DL, MVT::i32);
|
|
} else if (Store->getMemoryVT() == MVT::i16) {
|
|
assert(Store->getAlignment() >= 2);
|
|
Mask = DAG.getConstant(0xffff, DL, MVT::i32);
|
|
} else {
|
|
llvm_unreachable("Unsupported private trunc store");
|
|
}
|
|
|
|
SDValue OldChain = Store->getChain();
|
|
bool VectorTrunc = (OldChain.getOpcode() == AMDGPUISD::DUMMY_CHAIN);
|
|
// Skip dummy
|
|
SDValue Chain = VectorTrunc ? OldChain->getOperand(0) : OldChain;
|
|
SDValue BasePtr = Store->getBasePtr();
|
|
SDValue Offset = Store->getOffset();
|
|
EVT MemVT = Store->getMemoryVT();
|
|
|
|
SDValue LoadPtr = BasePtr;
|
|
if (!Offset.isUndef()) {
|
|
LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
|
|
}
|
|
|
|
// Get dword location
|
|
// TODO: this should be eliminated by the future SHR ptr, 2
|
|
SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
|
|
DAG.getConstant(0xfffffffc, DL, MVT::i32));
|
|
|
|
// Load dword
|
|
// TODO: can we be smarter about machine pointer info?
|
|
MachinePointerInfo PtrInfo(UndefValue::get(
|
|
Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
|
|
SDValue Dst = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
|
|
|
|
Chain = Dst.getValue(1);
|
|
|
|
// Get offset in dword
|
|
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
|
|
DAG.getConstant(0x3, DL, MVT::i32));
|
|
|
|
// Convert byte offset to bit shift
|
|
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
|
|
DAG.getConstant(3, DL, MVT::i32));
|
|
|
|
// TODO: Contrary to the name of the functiom,
|
|
// it also handles sub i32 non-truncating stores (like i1)
|
|
SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
|
|
Store->getValue());
|
|
|
|
// Mask the value to the right type
|
|
SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
|
|
|
|
// Shift the value in place
|
|
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
|
|
MaskedValue, ShiftAmt);
|
|
|
|
// Shift the mask in place
|
|
SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, Mask, ShiftAmt);
|
|
|
|
// Invert the mask. NOTE: if we had native ROL instructions we could
|
|
// use inverted mask
|
|
DstMask = DAG.getNOT(DL, DstMask, MVT::i32);
|
|
|
|
// Cleanup the target bits
|
|
Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
|
|
|
|
// Add the new bits
|
|
SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
|
|
|
|
// Store dword
|
|
// TODO: Can we be smarter about MachinePointerInfo?
|
|
SDValue NewStore = DAG.getStore(Chain, DL, Value, Ptr, PtrInfo);
|
|
|
|
// If we are part of expanded vector, make our neighbors depend on this store
|
|
if (VectorTrunc) {
|
|
// Make all other vector elements depend on this store
|
|
Chain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, NewStore);
|
|
DAG.ReplaceAllUsesOfValueWith(OldChain, Chain);
|
|
}
|
|
return NewStore;
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
|
|
StoreSDNode *StoreNode = cast<StoreSDNode>(Op);
|
|
unsigned AS = StoreNode->getAddressSpace();
|
|
|
|
SDValue Chain = StoreNode->getChain();
|
|
SDValue Ptr = StoreNode->getBasePtr();
|
|
SDValue Value = StoreNode->getValue();
|
|
|
|
EVT VT = Value.getValueType();
|
|
EVT MemVT = StoreNode->getMemoryVT();
|
|
EVT PtrVT = Ptr.getValueType();
|
|
|
|
SDLoc DL(Op);
|
|
|
|
// Neither LOCAL nor PRIVATE can do vectors at the moment
|
|
if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS) &&
|
|
VT.isVector()) {
|
|
if ((AS == AMDGPUASI.PRIVATE_ADDRESS) &&
|
|
StoreNode->isTruncatingStore()) {
|
|
// Add an extra level of chain to isolate this vector
|
|
SDValue NewChain = DAG.getNode(AMDGPUISD::DUMMY_CHAIN, DL, MVT::Other, Chain);
|
|
// TODO: can the chain be replaced without creating a new store?
|
|
SDValue NewStore = DAG.getTruncStore(
|
|
NewChain, DL, Value, Ptr, StoreNode->getPointerInfo(),
|
|
MemVT, StoreNode->getAlignment(),
|
|
StoreNode->getMemOperand()->getFlags(), StoreNode->getAAInfo());
|
|
StoreNode = cast<StoreSDNode>(NewStore);
|
|
}
|
|
|
|
return scalarizeVectorStore(StoreNode, DAG);
|
|
}
|
|
|
|
unsigned Align = StoreNode->getAlignment();
|
|
if (Align < MemVT.getStoreSize() &&
|
|
!allowsMisalignedMemoryAccesses(MemVT, AS, Align, nullptr)) {
|
|
return expandUnalignedStore(StoreNode, DAG);
|
|
}
|
|
|
|
SDValue DWordAddr = DAG.getNode(ISD::SRL, DL, PtrVT, Ptr,
|
|
DAG.getConstant(2, DL, PtrVT));
|
|
|
|
if (AS == AMDGPUASI.GLOBAL_ADDRESS) {
|
|
// It is beneficial to create MSKOR here instead of combiner to avoid
|
|
// artificial dependencies introduced by RMW
|
|
if (StoreNode->isTruncatingStore()) {
|
|
assert(VT.bitsLE(MVT::i32));
|
|
SDValue MaskConstant;
|
|
if (MemVT == MVT::i8) {
|
|
MaskConstant = DAG.getConstant(0xFF, DL, MVT::i32);
|
|
} else {
|
|
assert(MemVT == MVT::i16);
|
|
assert(StoreNode->getAlignment() >= 2);
|
|
MaskConstant = DAG.getConstant(0xFFFF, DL, MVT::i32);
|
|
}
|
|
|
|
SDValue ByteIndex = DAG.getNode(ISD::AND, DL, PtrVT, Ptr,
|
|
DAG.getConstant(0x00000003, DL, PtrVT));
|
|
SDValue BitShift = DAG.getNode(ISD::SHL, DL, VT, ByteIndex,
|
|
DAG.getConstant(3, DL, VT));
|
|
|
|
// Put the mask in correct place
|
|
SDValue Mask = DAG.getNode(ISD::SHL, DL, VT, MaskConstant, BitShift);
|
|
|
|
// Put the value bits in correct place
|
|
SDValue TruncValue = DAG.getNode(ISD::AND, DL, VT, Value, MaskConstant);
|
|
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, VT, TruncValue, BitShift);
|
|
|
|
// XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
|
|
// vector instead.
|
|
SDValue Src[4] = {
|
|
ShiftedValue,
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
DAG.getConstant(0, DL, MVT::i32),
|
|
Mask
|
|
};
|
|
SDValue Input = DAG.getBuildVector(MVT::v4i32, DL, Src);
|
|
SDValue Args[3] = { Chain, Input, DWordAddr };
|
|
return DAG.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR, DL,
|
|
Op->getVTList(), Args, MemVT,
|
|
StoreNode->getMemOperand());
|
|
} else if (Ptr->getOpcode() != AMDGPUISD::DWORDADDR && VT.bitsGE(MVT::i32)) {
|
|
// Convert pointer from byte address to dword address.
|
|
Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
|
|
|
|
if (StoreNode->isTruncatingStore() || StoreNode->isIndexed()) {
|
|
llvm_unreachable("Truncated and indexed stores not supported yet");
|
|
} else {
|
|
Chain = DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
|
|
}
|
|
return Chain;
|
|
}
|
|
}
|
|
|
|
// GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
|
|
if (AS != AMDGPUASI.PRIVATE_ADDRESS)
|
|
return SDValue();
|
|
|
|
if (MemVT.bitsLT(MVT::i32))
|
|
return lowerPrivateTruncStore(StoreNode, DAG);
|
|
|
|
// Standard i32+ store, tag it with DWORDADDR to note that the address
|
|
// has been shifted
|
|
if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
|
|
Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, PtrVT, DWordAddr);
|
|
return DAG.getStore(Chain, DL, Value, Ptr, StoreNode->getMemOperand());
|
|
}
|
|
|
|
// Tagged i32+ stores will be matched by patterns
|
|
return SDValue();
|
|
}
|
|
|
|
// return (512 + (kc_bank << 12)
|
|
static int
|
|
ConstantAddressBlock(unsigned AddressSpace) {
|
|
switch (AddressSpace) {
|
|
case AMDGPUAS::CONSTANT_BUFFER_0:
|
|
return 512;
|
|
case AMDGPUAS::CONSTANT_BUFFER_1:
|
|
return 512 + 4096;
|
|
case AMDGPUAS::CONSTANT_BUFFER_2:
|
|
return 512 + 4096 * 2;
|
|
case AMDGPUAS::CONSTANT_BUFFER_3:
|
|
return 512 + 4096 * 3;
|
|
case AMDGPUAS::CONSTANT_BUFFER_4:
|
|
return 512 + 4096 * 4;
|
|
case AMDGPUAS::CONSTANT_BUFFER_5:
|
|
return 512 + 4096 * 5;
|
|
case AMDGPUAS::CONSTANT_BUFFER_6:
|
|
return 512 + 4096 * 6;
|
|
case AMDGPUAS::CONSTANT_BUFFER_7:
|
|
return 512 + 4096 * 7;
|
|
case AMDGPUAS::CONSTANT_BUFFER_8:
|
|
return 512 + 4096 * 8;
|
|
case AMDGPUAS::CONSTANT_BUFFER_9:
|
|
return 512 + 4096 * 9;
|
|
case AMDGPUAS::CONSTANT_BUFFER_10:
|
|
return 512 + 4096 * 10;
|
|
case AMDGPUAS::CONSTANT_BUFFER_11:
|
|
return 512 + 4096 * 11;
|
|
case AMDGPUAS::CONSTANT_BUFFER_12:
|
|
return 512 + 4096 * 12;
|
|
case AMDGPUAS::CONSTANT_BUFFER_13:
|
|
return 512 + 4096 * 13;
|
|
case AMDGPUAS::CONSTANT_BUFFER_14:
|
|
return 512 + 4096 * 14;
|
|
case AMDGPUAS::CONSTANT_BUFFER_15:
|
|
return 512 + 4096 * 15;
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
SDValue R600TargetLowering::lowerPrivateExtLoad(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc DL(Op);
|
|
LoadSDNode *Load = cast<LoadSDNode>(Op);
|
|
ISD::LoadExtType ExtType = Load->getExtensionType();
|
|
EVT MemVT = Load->getMemoryVT();
|
|
assert(Load->getAlignment() >= MemVT.getStoreSize());
|
|
|
|
SDValue BasePtr = Load->getBasePtr();
|
|
SDValue Chain = Load->getChain();
|
|
SDValue Offset = Load->getOffset();
|
|
|
|
SDValue LoadPtr = BasePtr;
|
|
if (!Offset.isUndef()) {
|
|
LoadPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, Offset);
|
|
}
|
|
|
|
// Get dword location
|
|
// NOTE: this should be eliminated by the future SHR ptr, 2
|
|
SDValue Ptr = DAG.getNode(ISD::AND, DL, MVT::i32, LoadPtr,
|
|
DAG.getConstant(0xfffffffc, DL, MVT::i32));
|
|
|
|
// Load dword
|
|
// TODO: can we be smarter about machine pointer info?
|
|
MachinePointerInfo PtrInfo(UndefValue::get(
|
|
Type::getInt32PtrTy(*DAG.getContext(), AMDGPUASI.PRIVATE_ADDRESS)));
|
|
SDValue Read = DAG.getLoad(MVT::i32, DL, Chain, Ptr, PtrInfo);
|
|
|
|
// Get offset within the register.
|
|
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
|
|
LoadPtr, DAG.getConstant(0x3, DL, MVT::i32));
|
|
|
|
// Bit offset of target byte (byteIdx * 8).
|
|
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
|
|
DAG.getConstant(3, DL, MVT::i32));
|
|
|
|
// Shift to the right.
|
|
SDValue Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Read, ShiftAmt);
|
|
|
|
// Eliminate the upper bits by setting them to ...
|
|
EVT MemEltVT = MemVT.getScalarType();
|
|
|
|
if (ExtType == ISD::SEXTLOAD) { // ... ones.
|
|
SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
|
|
Ret = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode);
|
|
} else { // ... or zeros.
|
|
Ret = DAG.getZeroExtendInReg(Ret, DL, MemEltVT);
|
|
}
|
|
|
|
SDValue Ops[] = {
|
|
Ret,
|
|
Read.getValue(1) // This should be our output chain
|
|
};
|
|
|
|
return DAG.getMergeValues(Ops, DL);
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
|
|
LoadSDNode *LoadNode = cast<LoadSDNode>(Op);
|
|
unsigned AS = LoadNode->getAddressSpace();
|
|
EVT MemVT = LoadNode->getMemoryVT();
|
|
ISD::LoadExtType ExtType = LoadNode->getExtensionType();
|
|
|
|
if (AS == AMDGPUASI.PRIVATE_ADDRESS &&
|
|
ExtType != ISD::NON_EXTLOAD && MemVT.bitsLT(MVT::i32)) {
|
|
return lowerPrivateExtLoad(Op, DAG);
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
EVT VT = Op.getValueType();
|
|
SDValue Chain = LoadNode->getChain();
|
|
SDValue Ptr = LoadNode->getBasePtr();
|
|
|
|
if ((LoadNode->getAddressSpace() == AMDGPUASI.LOCAL_ADDRESS ||
|
|
LoadNode->getAddressSpace() == AMDGPUASI.PRIVATE_ADDRESS) &&
|
|
VT.isVector()) {
|
|
return scalarizeVectorLoad(LoadNode, DAG);
|
|
}
|
|
|
|
int ConstantBlock = ConstantAddressBlock(LoadNode->getAddressSpace());
|
|
if (ConstantBlock > -1 &&
|
|
((LoadNode->getExtensionType() == ISD::NON_EXTLOAD) ||
|
|
(LoadNode->getExtensionType() == ISD::ZEXTLOAD))) {
|
|
SDValue Result;
|
|
if (isa<ConstantExpr>(LoadNode->getMemOperand()->getValue()) ||
|
|
isa<Constant>(LoadNode->getMemOperand()->getValue()) ||
|
|
isa<ConstantSDNode>(Ptr)) {
|
|
SDValue Slots[4];
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
// We want Const position encoded with the following formula :
|
|
// (((512 + (kc_bank << 12) + const_index) << 2) + chan)
|
|
// const_index is Ptr computed by llvm using an alignment of 16.
|
|
// Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
|
|
// then div by 4 at the ISel step
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, DL, Ptr.getValueType(), Ptr,
|
|
DAG.getConstant(4 * i + ConstantBlock * 16, DL, MVT::i32));
|
|
Slots[i] = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::i32, NewPtr);
|
|
}
|
|
EVT NewVT = MVT::v4i32;
|
|
unsigned NumElements = 4;
|
|
if (VT.isVector()) {
|
|
NewVT = VT;
|
|
NumElements = VT.getVectorNumElements();
|
|
}
|
|
Result = DAG.getBuildVector(NewVT, DL, makeArrayRef(Slots, NumElements));
|
|
} else {
|
|
// non-constant ptr can't be folded, keeps it as a v4f32 load
|
|
Result = DAG.getNode(AMDGPUISD::CONST_ADDRESS, DL, MVT::v4i32,
|
|
DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr,
|
|
DAG.getConstant(4, DL, MVT::i32)),
|
|
DAG.getConstant(LoadNode->getAddressSpace() -
|
|
AMDGPUASI.CONSTANT_BUFFER_0, DL, MVT::i32)
|
|
);
|
|
}
|
|
|
|
if (!VT.isVector()) {
|
|
Result = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, Result,
|
|
DAG.getConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
SDValue MergedValues[2] = {
|
|
Result,
|
|
Chain
|
|
};
|
|
return DAG.getMergeValues(MergedValues, DL);
|
|
}
|
|
|
|
// For most operations returning SDValue() will result in the node being
|
|
// expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
|
|
// need to manually expand loads that may be legal in some address spaces and
|
|
// illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
|
|
// compute shaders, since the data is sign extended when it is uploaded to the
|
|
// buffer. However SEXT loads from other address spaces are not supported, so
|
|
// we need to expand them here.
|
|
if (LoadNode->getExtensionType() == ISD::SEXTLOAD) {
|
|
EVT MemVT = LoadNode->getMemoryVT();
|
|
assert(!MemVT.isVector() && (MemVT == MVT::i16 || MemVT == MVT::i8));
|
|
SDValue NewLoad = DAG.getExtLoad(
|
|
ISD::EXTLOAD, DL, VT, Chain, Ptr, LoadNode->getPointerInfo(), MemVT,
|
|
LoadNode->getAlignment(), LoadNode->getMemOperand()->getFlags());
|
|
SDValue Res = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, NewLoad,
|
|
DAG.getValueType(MemVT));
|
|
|
|
SDValue MergedValues[2] = { Res, Chain };
|
|
return DAG.getMergeValues(MergedValues, DL);
|
|
}
|
|
|
|
if (LoadNode->getAddressSpace() != AMDGPUASI.PRIVATE_ADDRESS) {
|
|
return SDValue();
|
|
}
|
|
|
|
// DWORDADDR ISD marks already shifted address
|
|
if (Ptr.getOpcode() != AMDGPUISD::DWORDADDR) {
|
|
assert(VT == MVT::i32);
|
|
Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Ptr, DAG.getConstant(2, DL, MVT::i32));
|
|
Ptr = DAG.getNode(AMDGPUISD::DWORDADDR, DL, MVT::i32, Ptr);
|
|
return DAG.getLoad(MVT::i32, DL, Chain, Ptr, LoadNode->getMemOperand());
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue R600TargetLowering::LowerBRCOND(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Cond = Op.getOperand(1);
|
|
SDValue Jump = Op.getOperand(2);
|
|
|
|
return DAG.getNode(AMDGPUISD::BRANCH_COND, SDLoc(Op), Op.getValueType(),
|
|
Chain, Jump, Cond);
|
|
}
|
|
|
|
SDValue R600TargetLowering::lowerFrameIndex(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
const R600FrameLowering *TFL = getSubtarget()->getFrameLowering();
|
|
|
|
FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
|
|
|
|
unsigned FrameIndex = FIN->getIndex();
|
|
unsigned IgnoredFrameReg;
|
|
unsigned Offset =
|
|
TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
|
|
return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
|
|
Op.getValueType());
|
|
}
|
|
|
|
/// XXX Only kernel functions are supported, so we can assume for now that
|
|
/// every function is a kernel function, but in the future we should use
|
|
/// separate calling conventions for kernel and non-kernel functions.
|
|
SDValue R600TargetLowering::LowerFormalArguments(
|
|
SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
|
|
SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
|
|
*DAG.getContext());
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
|
|
|
|
SmallVector<ISD::InputArg, 8> LocalIns;
|
|
|
|
if (AMDGPU::isShader(CallConv)) {
|
|
CCInfo.AnalyzeFormalArguments(Ins, CCAssignFnForCall(CallConv, isVarArg));
|
|
} else {
|
|
analyzeFormalArgumentsCompute(CCInfo, Ins);
|
|
}
|
|
|
|
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
const ISD::InputArg &In = Ins[i];
|
|
EVT VT = In.VT;
|
|
EVT MemVT = VA.getLocVT();
|
|
if (!VT.isVector() && MemVT.isVector()) {
|
|
// Get load source type if scalarized.
|
|
MemVT = MemVT.getVectorElementType();
|
|
}
|
|
|
|
if (AMDGPU::isShader(CallConv)) {
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), &AMDGPU::R600_Reg128RegClass);
|
|
SDValue Register = DAG.getCopyFromReg(Chain, DL, Reg, VT);
|
|
InVals.push_back(Register);
|
|
continue;
|
|
}
|
|
|
|
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
|
|
AMDGPUASI.CONSTANT_BUFFER_0);
|
|
|
|
// i64 isn't a legal type, so the register type used ends up as i32, which
|
|
// isn't expected here. It attempts to create this sextload, but it ends up
|
|
// being invalid. Somehow this seems to work with i64 arguments, but breaks
|
|
// for <1 x i64>.
|
|
|
|
// The first 36 bytes of the input buffer contains information about
|
|
// thread group and global sizes.
|
|
ISD::LoadExtType Ext = ISD::NON_EXTLOAD;
|
|
if (MemVT.getScalarSizeInBits() != VT.getScalarSizeInBits()) {
|
|
// FIXME: This should really check the extload type, but the handling of
|
|
// extload vector parameters seems to be broken.
|
|
|
|
// Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
Ext = ISD::SEXTLOAD;
|
|
}
|
|
|
|
// Compute the offset from the value.
|
|
// XXX - I think PartOffset should give you this, but it seems to give the
|
|
// size of the register which isn't useful.
|
|
|
|
unsigned ValBase = ArgLocs[In.getOrigArgIndex()].getLocMemOffset();
|
|
unsigned PartOffset = VA.getLocMemOffset();
|
|
unsigned Offset = Subtarget->getExplicitKernelArgOffset(MF.getFunction()) +
|
|
VA.getLocMemOffset();
|
|
|
|
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy), PartOffset - ValBase);
|
|
SDValue Arg = DAG.getLoad(
|
|
ISD::UNINDEXED, Ext, VT, DL, Chain,
|
|
DAG.getConstant(Offset, DL, MVT::i32), DAG.getUNDEF(MVT::i32), PtrInfo,
|
|
MemVT, /* Alignment = */ 4, MachineMemOperand::MONonTemporal |
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant);
|
|
|
|
// 4 is the preferred alignment for the CONSTANT memory space.
|
|
InVals.push_back(Arg);
|
|
MFI->setABIArgOffset(Offset + MemVT.getStoreSize());
|
|
}
|
|
return Chain;
|
|
}
|
|
|
|
EVT R600TargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
|
|
EVT VT) const {
|
|
if (!VT.isVector())
|
|
return MVT::i32;
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
bool R600TargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
|
|
const SelectionDAG &DAG) const {
|
|
// Local and Private addresses do not handle vectors. Limit to i32
|
|
if ((AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.PRIVATE_ADDRESS)) {
|
|
return (MemVT.getSizeInBits() <= 32);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool R600TargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
|
|
unsigned AddrSpace,
|
|
unsigned Align,
|
|
bool *IsFast) const {
|
|
if (IsFast)
|
|
*IsFast = false;
|
|
|
|
if (!VT.isSimple() || VT == MVT::Other)
|
|
return false;
|
|
|
|
if (VT.bitsLT(MVT::i32))
|
|
return false;
|
|
|
|
// TODO: This is a rough estimate.
|
|
if (IsFast)
|
|
*IsFast = true;
|
|
|
|
return VT.bitsGT(MVT::i32) && Align % 4 == 0;
|
|
}
|
|
|
|
static SDValue CompactSwizzlableVector(
|
|
SelectionDAG &DAG, SDValue VectorEntry,
|
|
DenseMap<unsigned, unsigned> &RemapSwizzle) {
|
|
assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
|
|
assert(RemapSwizzle.empty());
|
|
SDValue NewBldVec[4] = {
|
|
VectorEntry.getOperand(0),
|
|
VectorEntry.getOperand(1),
|
|
VectorEntry.getOperand(2),
|
|
VectorEntry.getOperand(3)
|
|
};
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
if (NewBldVec[i].isUndef())
|
|
// We mask write here to teach later passes that the ith element of this
|
|
// vector is undef. Thus we can use it to reduce 128 bits reg usage,
|
|
// break false dependencies and additionnaly make assembly easier to read.
|
|
RemapSwizzle[i] = 7; // SEL_MASK_WRITE
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(NewBldVec[i])) {
|
|
if (C->isZero()) {
|
|
RemapSwizzle[i] = 4; // SEL_0
|
|
NewBldVec[i] = DAG.getUNDEF(MVT::f32);
|
|
} else if (C->isExactlyValue(1.0)) {
|
|
RemapSwizzle[i] = 5; // SEL_1
|
|
NewBldVec[i] = DAG.getUNDEF(MVT::f32);
|
|
}
|
|
}
|
|
|
|
if (NewBldVec[i].isUndef())
|
|
continue;
|
|
for (unsigned j = 0; j < i; j++) {
|
|
if (NewBldVec[i] == NewBldVec[j]) {
|
|
NewBldVec[i] = DAG.getUNDEF(NewBldVec[i].getValueType());
|
|
RemapSwizzle[i] = j;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
|
|
NewBldVec);
|
|
}
|
|
|
|
static SDValue ReorganizeVector(SelectionDAG &DAG, SDValue VectorEntry,
|
|
DenseMap<unsigned, unsigned> &RemapSwizzle) {
|
|
assert(VectorEntry.getOpcode() == ISD::BUILD_VECTOR);
|
|
assert(RemapSwizzle.empty());
|
|
SDValue NewBldVec[4] = {
|
|
VectorEntry.getOperand(0),
|
|
VectorEntry.getOperand(1),
|
|
VectorEntry.getOperand(2),
|
|
VectorEntry.getOperand(3)
|
|
};
|
|
bool isUnmovable[4] = { false, false, false, false };
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
RemapSwizzle[i] = i;
|
|
if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
|
|
->getZExtValue();
|
|
if (i == Idx)
|
|
isUnmovable[Idx] = true;
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
if (NewBldVec[i].getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
unsigned Idx = dyn_cast<ConstantSDNode>(NewBldVec[i].getOperand(1))
|
|
->getZExtValue();
|
|
if (isUnmovable[Idx])
|
|
continue;
|
|
// Swap i and Idx
|
|
std::swap(NewBldVec[Idx], NewBldVec[i]);
|
|
std::swap(RemapSwizzle[i], RemapSwizzle[Idx]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return DAG.getBuildVector(VectorEntry.getValueType(), SDLoc(VectorEntry),
|
|
NewBldVec);
|
|
}
|
|
|
|
SDValue R600TargetLowering::OptimizeSwizzle(SDValue BuildVector, SDValue Swz[4],
|
|
SelectionDAG &DAG,
|
|
const SDLoc &DL) const {
|
|
assert(BuildVector.getOpcode() == ISD::BUILD_VECTOR);
|
|
// Old -> New swizzle values
|
|
DenseMap<unsigned, unsigned> SwizzleRemap;
|
|
|
|
BuildVector = CompactSwizzlableVector(DAG, BuildVector, SwizzleRemap);
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
|
|
if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
|
|
Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
|
|
}
|
|
|
|
SwizzleRemap.clear();
|
|
BuildVector = ReorganizeVector(DAG, BuildVector, SwizzleRemap);
|
|
for (unsigned i = 0; i < 4; i++) {
|
|
unsigned Idx = cast<ConstantSDNode>(Swz[i])->getZExtValue();
|
|
if (SwizzleRemap.find(Idx) != SwizzleRemap.end())
|
|
Swz[i] = DAG.getConstant(SwizzleRemap[Idx], DL, MVT::i32);
|
|
}
|
|
|
|
return BuildVector;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Custom DAG Optimizations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SDValue R600TargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(N);
|
|
|
|
switch (N->getOpcode()) {
|
|
// (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
|
|
case ISD::FP_ROUND: {
|
|
SDValue Arg = N->getOperand(0);
|
|
if (Arg.getOpcode() == ISD::UINT_TO_FP && Arg.getValueType() == MVT::f64) {
|
|
return DAG.getNode(ISD::UINT_TO_FP, DL, N->getValueType(0),
|
|
Arg.getOperand(0));
|
|
}
|
|
break;
|
|
}
|
|
|
|
// (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
|
|
// (i32 select_cc f32, f32, -1, 0 cc)
|
|
//
|
|
// Mesa's GLSL frontend generates the above pattern a lot and we can lower
|
|
// this to one of the SET*_DX10 instructions.
|
|
case ISD::FP_TO_SINT: {
|
|
SDValue FNeg = N->getOperand(0);
|
|
if (FNeg.getOpcode() != ISD::FNEG) {
|
|
return SDValue();
|
|
}
|
|
SDValue SelectCC = FNeg.getOperand(0);
|
|
if (SelectCC.getOpcode() != ISD::SELECT_CC ||
|
|
SelectCC.getOperand(0).getValueType() != MVT::f32 || // LHS
|
|
SelectCC.getOperand(2).getValueType() != MVT::f32 || // True
|
|
!isHWTrueValue(SelectCC.getOperand(2)) ||
|
|
!isHWFalseValue(SelectCC.getOperand(3))) {
|
|
return SDValue();
|
|
}
|
|
|
|
return DAG.getNode(ISD::SELECT_CC, DL, N->getValueType(0),
|
|
SelectCC.getOperand(0), // LHS
|
|
SelectCC.getOperand(1), // RHS
|
|
DAG.getConstant(-1, DL, MVT::i32), // True
|
|
DAG.getConstant(0, DL, MVT::i32), // False
|
|
SelectCC.getOperand(4)); // CC
|
|
|
|
break;
|
|
}
|
|
|
|
// insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
|
|
// => build_vector elt0, ... , NewEltIdx, ... , eltN
|
|
case ISD::INSERT_VECTOR_ELT: {
|
|
SDValue InVec = N->getOperand(0);
|
|
SDValue InVal = N->getOperand(1);
|
|
SDValue EltNo = N->getOperand(2);
|
|
|
|
// If the inserted element is an UNDEF, just use the input vector.
|
|
if (InVal.isUndef())
|
|
return InVec;
|
|
|
|
EVT VT = InVec.getValueType();
|
|
|
|
// If we can't generate a legal BUILD_VECTOR, exit
|
|
if (!isOperationLegal(ISD::BUILD_VECTOR, VT))
|
|
return SDValue();
|
|
|
|
// Check that we know which element is being inserted
|
|
if (!isa<ConstantSDNode>(EltNo))
|
|
return SDValue();
|
|
unsigned Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
|
|
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
|
|
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
|
|
// vector elements.
|
|
SmallVector<SDValue, 8> Ops;
|
|
if (InVec.getOpcode() == ISD::BUILD_VECTOR) {
|
|
Ops.append(InVec.getNode()->op_begin(),
|
|
InVec.getNode()->op_end());
|
|
} else if (InVec.isUndef()) {
|
|
unsigned NElts = VT.getVectorNumElements();
|
|
Ops.append(NElts, DAG.getUNDEF(InVal.getValueType()));
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// Insert the element
|
|
if (Elt < Ops.size()) {
|
|
// All the operands of BUILD_VECTOR must have the same type;
|
|
// we enforce that here.
|
|
EVT OpVT = Ops[0].getValueType();
|
|
if (InVal.getValueType() != OpVT)
|
|
InVal = OpVT.bitsGT(InVal.getValueType()) ?
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, OpVT, InVal) :
|
|
DAG.getNode(ISD::TRUNCATE, DL, OpVT, InVal);
|
|
Ops[Elt] = InVal;
|
|
}
|
|
|
|
// Return the new vector
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
// Extract_vec (Build_vector) generated by custom lowering
|
|
// also needs to be customly combined
|
|
case ISD::EXTRACT_VECTOR_ELT: {
|
|
SDValue Arg = N->getOperand(0);
|
|
if (Arg.getOpcode() == ISD::BUILD_VECTOR) {
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
unsigned Element = Const->getZExtValue();
|
|
return Arg->getOperand(Element);
|
|
}
|
|
}
|
|
if (Arg.getOpcode() == ISD::BITCAST &&
|
|
Arg.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
|
|
(Arg.getOperand(0).getValueType().getVectorNumElements() ==
|
|
Arg.getValueType().getVectorNumElements())) {
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
|
|
unsigned Element = Const->getZExtValue();
|
|
return DAG.getNode(ISD::BITCAST, DL, N->getVTList(),
|
|
Arg->getOperand(0).getOperand(Element));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case ISD::SELECT_CC: {
|
|
// Try common optimizations
|
|
if (SDValue Ret = AMDGPUTargetLowering::PerformDAGCombine(N, DCI))
|
|
return Ret;
|
|
|
|
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
|
|
// selectcc x, y, a, b, inv(cc)
|
|
//
|
|
// fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
|
|
// selectcc x, y, a, b, cc
|
|
SDValue LHS = N->getOperand(0);
|
|
if (LHS.getOpcode() != ISD::SELECT_CC) {
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue True = N->getOperand(2);
|
|
SDValue False = N->getOperand(3);
|
|
ISD::CondCode NCC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
|
|
if (LHS.getOperand(2).getNode() != True.getNode() ||
|
|
LHS.getOperand(3).getNode() != False.getNode() ||
|
|
RHS.getNode() != False.getNode()) {
|
|
return SDValue();
|
|
}
|
|
|
|
switch (NCC) {
|
|
default: return SDValue();
|
|
case ISD::SETNE: return LHS;
|
|
case ISD::SETEQ: {
|
|
ISD::CondCode LHSCC = cast<CondCodeSDNode>(LHS.getOperand(4))->get();
|
|
LHSCC = ISD::getSetCCInverse(LHSCC,
|
|
LHS.getOperand(0).getValueType().isInteger());
|
|
if (DCI.isBeforeLegalizeOps() ||
|
|
isCondCodeLegal(LHSCC, LHS.getOperand(0).getSimpleValueType()))
|
|
return DAG.getSelectCC(DL,
|
|
LHS.getOperand(0),
|
|
LHS.getOperand(1),
|
|
LHS.getOperand(2),
|
|
LHS.getOperand(3),
|
|
LHSCC);
|
|
break;
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
case AMDGPUISD::R600_EXPORT: {
|
|
SDValue Arg = N->getOperand(1);
|
|
if (Arg.getOpcode() != ISD::BUILD_VECTOR)
|
|
break;
|
|
|
|
SDValue NewArgs[8] = {
|
|
N->getOperand(0), // Chain
|
|
SDValue(),
|
|
N->getOperand(2), // ArrayBase
|
|
N->getOperand(3), // Type
|
|
N->getOperand(4), // SWZ_X
|
|
N->getOperand(5), // SWZ_Y
|
|
N->getOperand(6), // SWZ_Z
|
|
N->getOperand(7) // SWZ_W
|
|
};
|
|
NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[4], DAG, DL);
|
|
return DAG.getNode(AMDGPUISD::R600_EXPORT, DL, N->getVTList(), NewArgs);
|
|
}
|
|
case AMDGPUISD::TEXTURE_FETCH: {
|
|
SDValue Arg = N->getOperand(1);
|
|
if (Arg.getOpcode() != ISD::BUILD_VECTOR)
|
|
break;
|
|
|
|
SDValue NewArgs[19] = {
|
|
N->getOperand(0),
|
|
N->getOperand(1),
|
|
N->getOperand(2),
|
|
N->getOperand(3),
|
|
N->getOperand(4),
|
|
N->getOperand(5),
|
|
N->getOperand(6),
|
|
N->getOperand(7),
|
|
N->getOperand(8),
|
|
N->getOperand(9),
|
|
N->getOperand(10),
|
|
N->getOperand(11),
|
|
N->getOperand(12),
|
|
N->getOperand(13),
|
|
N->getOperand(14),
|
|
N->getOperand(15),
|
|
N->getOperand(16),
|
|
N->getOperand(17),
|
|
N->getOperand(18),
|
|
};
|
|
NewArgs[1] = OptimizeSwizzle(N->getOperand(1), &NewArgs[2], DAG, DL);
|
|
return DAG.getNode(AMDGPUISD::TEXTURE_FETCH, DL, N->getVTList(), NewArgs);
|
|
}
|
|
default: break;
|
|
}
|
|
|
|
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
|
|
}
|
|
|
|
bool R600TargetLowering::FoldOperand(SDNode *ParentNode, unsigned SrcIdx,
|
|
SDValue &Src, SDValue &Neg, SDValue &Abs,
|
|
SDValue &Sel, SDValue &Imm,
|
|
SelectionDAG &DAG) const {
|
|
const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
if (!Src.isMachineOpcode())
|
|
return false;
|
|
|
|
switch (Src.getMachineOpcode()) {
|
|
case AMDGPU::FNEG_R600:
|
|
if (!Neg.getNode())
|
|
return false;
|
|
Src = Src.getOperand(0);
|
|
Neg = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
|
|
return true;
|
|
case AMDGPU::FABS_R600:
|
|
if (!Abs.getNode())
|
|
return false;
|
|
Src = Src.getOperand(0);
|
|
Abs = DAG.getTargetConstant(1, SDLoc(ParentNode), MVT::i32);
|
|
return true;
|
|
case AMDGPU::CONST_COPY: {
|
|
unsigned Opcode = ParentNode->getMachineOpcode();
|
|
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
|
|
|
|
if (!Sel.getNode())
|
|
return false;
|
|
|
|
SDValue CstOffset = Src.getOperand(0);
|
|
if (ParentNode->getValueType(0).isVector())
|
|
return false;
|
|
|
|
// Gather constants values
|
|
int SrcIndices[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
|
|
};
|
|
std::vector<unsigned> Consts;
|
|
for (int OtherSrcIdx : SrcIndices) {
|
|
int OtherSelIdx = TII->getSelIdx(Opcode, OtherSrcIdx);
|
|
if (OtherSrcIdx < 0 || OtherSelIdx < 0)
|
|
continue;
|
|
if (HasDst) {
|
|
OtherSrcIdx--;
|
|
OtherSelIdx--;
|
|
}
|
|
if (RegisterSDNode *Reg =
|
|
dyn_cast<RegisterSDNode>(ParentNode->getOperand(OtherSrcIdx))) {
|
|
if (Reg->getReg() == AMDGPU::ALU_CONST) {
|
|
ConstantSDNode *Cst
|
|
= cast<ConstantSDNode>(ParentNode->getOperand(OtherSelIdx));
|
|
Consts.push_back(Cst->getZExtValue());
|
|
}
|
|
}
|
|
}
|
|
|
|
ConstantSDNode *Cst = cast<ConstantSDNode>(CstOffset);
|
|
Consts.push_back(Cst->getZExtValue());
|
|
if (!TII->fitsConstReadLimitations(Consts)) {
|
|
return false;
|
|
}
|
|
|
|
Sel = CstOffset;
|
|
Src = DAG.getRegister(AMDGPU::ALU_CONST, MVT::f32);
|
|
return true;
|
|
}
|
|
case AMDGPU::MOV_IMM_GLOBAL_ADDR:
|
|
// Check if the Imm slot is used. Taken from below.
|
|
if (cast<ConstantSDNode>(Imm)->getZExtValue())
|
|
return false;
|
|
Imm = Src.getOperand(0);
|
|
Src = DAG.getRegister(AMDGPU::ALU_LITERAL_X, MVT::i32);
|
|
return true;
|
|
case AMDGPU::MOV_IMM_I32:
|
|
case AMDGPU::MOV_IMM_F32: {
|
|
unsigned ImmReg = AMDGPU::ALU_LITERAL_X;
|
|
uint64_t ImmValue = 0;
|
|
|
|
if (Src.getMachineOpcode() == AMDGPU::MOV_IMM_F32) {
|
|
ConstantFPSDNode *FPC = dyn_cast<ConstantFPSDNode>(Src.getOperand(0));
|
|
float FloatValue = FPC->getValueAPF().convertToFloat();
|
|
if (FloatValue == 0.0) {
|
|
ImmReg = AMDGPU::ZERO;
|
|
} else if (FloatValue == 0.5) {
|
|
ImmReg = AMDGPU::HALF;
|
|
} else if (FloatValue == 1.0) {
|
|
ImmReg = AMDGPU::ONE;
|
|
} else {
|
|
ImmValue = FPC->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
}
|
|
} else {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src.getOperand(0));
|
|
uint64_t Value = C->getZExtValue();
|
|
if (Value == 0) {
|
|
ImmReg = AMDGPU::ZERO;
|
|
} else if (Value == 1) {
|
|
ImmReg = AMDGPU::ONE_INT;
|
|
} else {
|
|
ImmValue = Value;
|
|
}
|
|
}
|
|
|
|
// Check that we aren't already using an immediate.
|
|
// XXX: It's possible for an instruction to have more than one
|
|
// immediate operand, but this is not supported yet.
|
|
if (ImmReg == AMDGPU::ALU_LITERAL_X) {
|
|
if (!Imm.getNode())
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Imm);
|
|
assert(C);
|
|
if (C->getZExtValue())
|
|
return false;
|
|
Imm = DAG.getTargetConstant(ImmValue, SDLoc(ParentNode), MVT::i32);
|
|
}
|
|
Src = DAG.getRegister(ImmReg, MVT::i32);
|
|
return true;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Fold the instructions after selecting them
|
|
SDNode *R600TargetLowering::PostISelFolding(MachineSDNode *Node,
|
|
SelectionDAG &DAG) const {
|
|
const R600InstrInfo *TII = getSubtarget()->getInstrInfo();
|
|
if (!Node->isMachineOpcode())
|
|
return Node;
|
|
|
|
unsigned Opcode = Node->getMachineOpcode();
|
|
SDValue FakeOp;
|
|
|
|
std::vector<SDValue> Ops(Node->op_begin(), Node->op_end());
|
|
|
|
if (Opcode == AMDGPU::DOT_4) {
|
|
int OperandIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_W),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_W)
|
|
};
|
|
int NegIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg_W),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg_W)
|
|
};
|
|
int AbsIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs_W),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_X),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Y),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_Z),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs_W)
|
|
};
|
|
for (unsigned i = 0; i < 8; i++) {
|
|
if (OperandIdx[i] < 0)
|
|
return Node;
|
|
SDValue &Src = Ops[OperandIdx[i] - 1];
|
|
SDValue &Neg = Ops[NegIdx[i] - 1];
|
|
SDValue &Abs = Ops[AbsIdx[i] - 1];
|
|
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
|
|
int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
|
|
if (HasDst)
|
|
SelIdx--;
|
|
SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
|
|
if (FoldOperand(Node, i, Src, Neg, Abs, Sel, FakeOp, DAG))
|
|
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
|
|
}
|
|
} else if (Opcode == AMDGPU::REG_SEQUENCE) {
|
|
for (unsigned i = 1, e = Node->getNumOperands(); i < e; i += 2) {
|
|
SDValue &Src = Ops[i];
|
|
if (FoldOperand(Node, i, Src, FakeOp, FakeOp, FakeOp, FakeOp, DAG))
|
|
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
|
|
}
|
|
} else {
|
|
if (!TII->hasInstrModifiers(Opcode))
|
|
return Node;
|
|
int OperandIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2)
|
|
};
|
|
int NegIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_neg),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_neg),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src2_neg)
|
|
};
|
|
int AbsIdx[] = {
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src0_abs),
|
|
TII->getOperandIdx(Opcode, AMDGPU::OpName::src1_abs),
|
|
-1
|
|
};
|
|
for (unsigned i = 0; i < 3; i++) {
|
|
if (OperandIdx[i] < 0)
|
|
return Node;
|
|
SDValue &Src = Ops[OperandIdx[i] - 1];
|
|
SDValue &Neg = Ops[NegIdx[i] - 1];
|
|
SDValue FakeAbs;
|
|
SDValue &Abs = (AbsIdx[i] > -1) ? Ops[AbsIdx[i] - 1] : FakeAbs;
|
|
bool HasDst = TII->getOperandIdx(Opcode, AMDGPU::OpName::dst) > -1;
|
|
int SelIdx = TII->getSelIdx(Opcode, OperandIdx[i]);
|
|
int ImmIdx = TII->getOperandIdx(Opcode, AMDGPU::OpName::literal);
|
|
if (HasDst) {
|
|
SelIdx--;
|
|
ImmIdx--;
|
|
}
|
|
SDValue &Sel = (SelIdx > -1) ? Ops[SelIdx] : FakeOp;
|
|
SDValue &Imm = Ops[ImmIdx];
|
|
if (FoldOperand(Node, i, Src, Neg, Abs, Sel, Imm, DAG))
|
|
return DAG.getMachineNode(Opcode, SDLoc(Node), Node->getVTList(), Ops);
|
|
}
|
|
}
|
|
|
|
return Node;
|
|
}
|