forked from OSchip/llvm-project
1320 lines
55 KiB
C++
1320 lines
55 KiB
C++
//===- Schedule.cpp - Calculate an optimized schedule ---------------------===//
|
||
//
|
||
// The LLVM Compiler Infrastructure
|
||
//
|
||
// This file is distributed under the University of Illinois Open Source
|
||
// License. See LICENSE.TXT for details.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This pass generates an entirely new schedule tree from the data dependences
|
||
// and iteration domains. The new schedule tree is computed in two steps:
|
||
//
|
||
// 1) The isl scheduling optimizer is run
|
||
//
|
||
// The isl scheduling optimizer creates a new schedule tree that maximizes
|
||
// parallelism and tileability and minimizes data-dependence distances. The
|
||
// algorithm used is a modified version of the ``Pluto'' algorithm:
|
||
//
|
||
// U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan.
|
||
// A Practical Automatic Polyhedral Parallelizer and Locality Optimizer.
|
||
// In Proceedings of the 2008 ACM SIGPLAN Conference On Programming Language
|
||
// Design and Implementation, PLDI ’08, pages 101–113. ACM, 2008.
|
||
//
|
||
// 2) A set of post-scheduling transformations is applied on the schedule tree.
|
||
//
|
||
// These optimizations include:
|
||
//
|
||
// - Tiling of the innermost tilable bands
|
||
// - Prevectorization - The coice of a possible outer loop that is strip-mined
|
||
// to the innermost level to enable inner-loop
|
||
// vectorization.
|
||
// - Some optimizations for spatial locality are also planned.
|
||
//
|
||
// For a detailed description of the schedule tree itself please see section 6
|
||
// of:
|
||
//
|
||
// Polyhedral AST generation is more than scanning polyhedra
|
||
// Tobias Grosser, Sven Verdoolaege, Albert Cohen
|
||
// ACM Transations on Programming Languages and Systems (TOPLAS),
|
||
// 37(4), July 2015
|
||
// http://www.grosser.es/#pub-polyhedral-AST-generation
|
||
//
|
||
// This publication also contains a detailed discussion of the different options
|
||
// for polyhedral loop unrolling, full/partial tile separation and other uses
|
||
// of the schedule tree.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "polly/ScheduleOptimizer.h"
|
||
#include "polly/CodeGen/CodeGeneration.h"
|
||
#include "polly/DependenceInfo.h"
|
||
#include "polly/LinkAllPasses.h"
|
||
#include "polly/Options.h"
|
||
#include "polly/ScopInfo.h"
|
||
#include "polly/Support/GICHelper.h"
|
||
#include "llvm/Analysis/TargetTransformInfo.h"
|
||
#include "llvm/Support/Debug.h"
|
||
#include "isl/aff.h"
|
||
#include "isl/band.h"
|
||
#include "isl/constraint.h"
|
||
#include "isl/map.h"
|
||
#include "isl/options.h"
|
||
#include "isl/printer.h"
|
||
#include "isl/schedule.h"
|
||
#include "isl/schedule_node.h"
|
||
#include "isl/space.h"
|
||
#include "isl/union_map.h"
|
||
#include "isl/union_set.h"
|
||
|
||
using namespace llvm;
|
||
using namespace polly;
|
||
|
||
#define DEBUG_TYPE "polly-opt-isl"
|
||
|
||
static cl::opt<std::string>
|
||
OptimizeDeps("polly-opt-optimize-only",
|
||
cl::desc("Only a certain kind of dependences (all/raw)"),
|
||
cl::Hidden, cl::init("all"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
SimplifyDeps("polly-opt-simplify-deps",
|
||
cl::desc("Dependences should be simplified (yes/no)"),
|
||
cl::Hidden, cl::init("yes"), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxConstantTerm(
|
||
"polly-opt-max-constant-term",
|
||
cl::desc("The maximal constant term allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> MaxCoefficient(
|
||
"polly-opt-max-coefficient",
|
||
cl::desc("The maximal coefficient allowed (-1 is unlimited)"), cl::Hidden,
|
||
cl::init(20), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> FusionStrategy(
|
||
"polly-opt-fusion", cl::desc("The fusion strategy to choose (min/max)"),
|
||
cl::Hidden, cl::init("min"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string>
|
||
MaximizeBandDepth("polly-opt-maximize-bands",
|
||
cl::desc("Maximize the band depth (yes/no)"), cl::Hidden,
|
||
cl::init("yes"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<std::string> OuterCoincidence(
|
||
"polly-opt-outer-coincidence",
|
||
cl::desc("Try to construct schedules where the outer member of each band "
|
||
"satisfies the coincidence constraints (yes/no)"),
|
||
cl::Hidden, cl::init("no"), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PrevectorWidth(
|
||
"polly-prevect-width",
|
||
cl::desc(
|
||
"The number of loop iterations to strip-mine for pre-vectorization"),
|
||
cl::Hidden, cl::init(4), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> FirstLevelTiling("polly-tiling",
|
||
cl::desc("Enable loop tiling"),
|
||
cl::init(true), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> LatencyVectorFma(
|
||
"polly-target-latency-vector-fma",
|
||
cl::desc("The minimal number of cycles between issuing two "
|
||
"dependent consecutive vector fused multiply-add "
|
||
"instructions."),
|
||
cl::Hidden, cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> ThroughputVectorFma(
|
||
"polly-target-throughput-vector-fma",
|
||
cl::desc("A throughput of the processor floating-point arithmetic units "
|
||
"expressed in the number of vector fused multiply-add "
|
||
"instructions per clock cycle."),
|
||
cl::Hidden, cl::init(1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
// This option, along with --polly-target-2nd-cache-level-associativity,
|
||
// --polly-target-1st-cache-level-size, and --polly-target-2st-cache-level-size
|
||
// represent the parameters of the target cache, which do not have typical
|
||
// values that can be used by default. However, to apply the pattern matching
|
||
// optimizations, we use the values of the parameters of Intel Core i7-3820
|
||
// SandyBridge in case the parameters are not specified. Such an approach helps
|
||
// also to attain the high-performance on IBM POWER System S822 and IBM Power
|
||
// 730 Express server.
|
||
static cl::opt<int> FirstCacheLevelAssociativity(
|
||
"polly-target-1st-cache-level-associativity",
|
||
cl::desc("The associativity of the first cache level."), cl::Hidden,
|
||
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelAssociativity(
|
||
"polly-target-2nd-cache-level-associativity",
|
||
cl::desc("The associativity of the second cache level."), cl::Hidden,
|
||
cl::init(8), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstCacheLevelSize(
|
||
"polly-target-1st-cache-level-size",
|
||
cl::desc("The size of the first cache level specified in bytes."),
|
||
cl::Hidden, cl::init(32768), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondCacheLevelSize(
|
||
"polly-target-2nd-cache-level-size",
|
||
cl::desc("The size of the second level specified in bytes."), cl::Hidden,
|
||
cl::init(262144), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> VectorRegisterBitwidth(
|
||
"polly-target-vector-register-bitwidth",
|
||
cl::desc("The size in bits of a vector register (if not set, this "
|
||
"information is taken from LLVM's target information."),
|
||
cl::Hidden, cl::init(-1), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> FirstLevelDefaultTileSize(
|
||
"polly-default-tile-size",
|
||
cl::desc("The default tile size (if not enough were provided by"
|
||
" --polly-tile-sizes)"),
|
||
cl::Hidden, cl::init(32), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
FirstLevelTileSizes("polly-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
SecondLevelTiling("polly-2nd-level-tiling",
|
||
cl::desc("Enable a 2nd level loop of loop tiling"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> SecondLevelDefaultTileSize(
|
||
"polly-2nd-level-default-tile-size",
|
||
cl::desc("The default 2nd-level tile size (if not enough were provided by"
|
||
" --polly-2nd-level-tile-sizes)"),
|
||
cl::Hidden, cl::init(16), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
SecondLevelTileSizes("polly-2nd-level-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-default-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> RegisterTiling("polly-register-tiling",
|
||
cl::desc("Enable register tiling"),
|
||
cl::init(false), cl::ZeroOrMore,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> RegisterDefaultTileSize(
|
||
"polly-register-tiling-default-tile-size",
|
||
cl::desc("The default register tile size (if not enough were provided by"
|
||
" --polly-register-tile-sizes)"),
|
||
cl::Hidden, cl::init(2), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<int> PollyPatternMatchingNcQuotient(
|
||
"polly-pattern-matching-nc-quotient",
|
||
cl::desc("Quotient that is obtained by dividing Nc, the parameter of the"
|
||
"macro-kernel, by Nr, the parameter of the micro-kernel"),
|
||
cl::Hidden, cl::init(256), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::list<int>
|
||
RegisterTileSizes("polly-register-tile-sizes",
|
||
cl::desc("A tile size for each loop dimension, filled "
|
||
"with --polly-register-tile-size"),
|
||
cl::Hidden, cl::ZeroOrMore, cl::CommaSeparated,
|
||
cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool>
|
||
PMBasedOpts("polly-pattern-matching-based-opts",
|
||
cl::desc("Perform optimizations based on pattern matching"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
static cl::opt<bool> OptimizedScops(
|
||
"polly-optimized-scops",
|
||
cl::desc("Polly - Dump polyhedral description of Scops optimized with "
|
||
"the isl scheduling optimizer and the set of post-scheduling "
|
||
"transformations is applied on the schedule tree"),
|
||
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
||
|
||
/// Create an isl_union_set, which describes the isolate option based on
|
||
/// IsoalteDomain.
|
||
///
|
||
/// @param IsolateDomain An isl_set whose last dimension is the only one that
|
||
/// should belong to the current band node.
|
||
static __isl_give isl_union_set *
|
||
getIsolateOptions(__isl_take isl_set *IsolateDomain) {
|
||
auto Dims = isl_set_dim(IsolateDomain, isl_dim_set);
|
||
auto *IsolateRelation = isl_map_from_domain(IsolateDomain);
|
||
IsolateRelation = isl_map_move_dims(IsolateRelation, isl_dim_out, 0,
|
||
isl_dim_in, Dims - 1, 1);
|
||
auto *IsolateOption = isl_map_wrap(IsolateRelation);
|
||
auto *Id = isl_id_alloc(isl_set_get_ctx(IsolateOption), "isolate", nullptr);
|
||
return isl_union_set_from_set(isl_set_set_tuple_id(IsolateOption, Id));
|
||
}
|
||
|
||
/// Create an isl_union_set, which describes the atomic option for the dimension
|
||
/// of the current node.
|
||
///
|
||
/// It may help to reduce the size of generated code.
|
||
///
|
||
/// @param Ctx An isl_ctx, which is used to create the isl_union_set.
|
||
static __isl_give isl_union_set *getAtomicOptions(__isl_take isl_ctx *Ctx) {
|
||
auto *Space = isl_space_set_alloc(Ctx, 0, 1);
|
||
auto *AtomicOption = isl_set_universe(Space);
|
||
auto *Id = isl_id_alloc(Ctx, "atomic", nullptr);
|
||
return isl_union_set_from_set(isl_set_set_tuple_id(AtomicOption, Id));
|
||
}
|
||
|
||
/// Make the last dimension of Set to take values from 0 to VectorWidth - 1.
|
||
///
|
||
/// @param Set A set, which should be modified.
|
||
/// @param VectorWidth A parameter, which determines the constraint.
|
||
static __isl_give isl_set *addExtentConstraints(__isl_take isl_set *Set,
|
||
int VectorWidth) {
|
||
auto Dims = isl_set_dim(Set, isl_dim_set);
|
||
auto Space = isl_set_get_space(Set);
|
||
auto *LocalSpace = isl_local_space_from_space(Space);
|
||
auto *ExtConstr =
|
||
isl_constraint_alloc_inequality(isl_local_space_copy(LocalSpace));
|
||
ExtConstr = isl_constraint_set_constant_si(ExtConstr, 0);
|
||
ExtConstr =
|
||
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, 1);
|
||
Set = isl_set_add_constraint(Set, ExtConstr);
|
||
ExtConstr = isl_constraint_alloc_inequality(LocalSpace);
|
||
ExtConstr = isl_constraint_set_constant_si(ExtConstr, VectorWidth - 1);
|
||
ExtConstr =
|
||
isl_constraint_set_coefficient_si(ExtConstr, isl_dim_set, Dims - 1, -1);
|
||
return isl_set_add_constraint(Set, ExtConstr);
|
||
}
|
||
|
||
/// Build the desired set of partial tile prefixes.
|
||
///
|
||
/// We build a set of partial tile prefixes, which are prefixes of the vector
|
||
/// loop that have exactly VectorWidth iterations.
|
||
///
|
||
/// 1. Get all prefixes of the vector loop.
|
||
/// 2. Extend it to a set, which has exactly VectorWidth iterations for
|
||
/// any prefix from the set that was built on the previous step.
|
||
/// 3. Subtract loop domain from it, project out the vector loop dimension and
|
||
/// get a set of prefixes, which don't have exactly VectorWidth iterations.
|
||
/// 4. Subtract it from all prefixes of the vector loop and get the desired
|
||
/// set.
|
||
///
|
||
/// @param ScheduleRange A range of a map, which describes a prefix schedule
|
||
/// relation.
|
||
static __isl_give isl_set *
|
||
getPartialTilePrefixes(__isl_take isl_set *ScheduleRange, int VectorWidth) {
|
||
auto Dims = isl_set_dim(ScheduleRange, isl_dim_set);
|
||
auto *LoopPrefixes = isl_set_project_out(isl_set_copy(ScheduleRange),
|
||
isl_dim_set, Dims - 1, 1);
|
||
auto *ExtentPrefixes =
|
||
isl_set_add_dims(isl_set_copy(LoopPrefixes), isl_dim_set, 1);
|
||
ExtentPrefixes = addExtentConstraints(ExtentPrefixes, VectorWidth);
|
||
auto *BadPrefixes = isl_set_subtract(ExtentPrefixes, ScheduleRange);
|
||
BadPrefixes = isl_set_project_out(BadPrefixes, isl_dim_set, Dims - 1, 1);
|
||
return isl_set_subtract(LoopPrefixes, BadPrefixes);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::isolateFullPartialTiles(
|
||
__isl_take isl_schedule_node *Node, int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
auto *SchedRelUMap = isl_schedule_node_get_prefix_schedule_relation(Node);
|
||
auto *ScheduleRelation = isl_map_from_union_map(SchedRelUMap);
|
||
auto *ScheduleRange = isl_map_range(ScheduleRelation);
|
||
auto *IsolateDomain = getPartialTilePrefixes(ScheduleRange, VectorWidth);
|
||
auto *AtomicOption = getAtomicOptions(isl_set_get_ctx(IsolateDomain));
|
||
auto *IsolateOption = getIsolateOptions(IsolateDomain);
|
||
Node = isl_schedule_node_parent(Node);
|
||
Node = isl_schedule_node_parent(Node);
|
||
auto *Options = isl_union_set_union(IsolateOption, AtomicOption);
|
||
Node = isl_schedule_node_band_set_ast_build_options(Node, Options);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::prevectSchedBand(__isl_take isl_schedule_node *Node,
|
||
unsigned DimToVectorize,
|
||
int VectorWidth) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto ScheduleDimensions = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
assert(DimToVectorize < ScheduleDimensions);
|
||
|
||
if (DimToVectorize > 0) {
|
||
Node = isl_schedule_node_band_split(Node, DimToVectorize);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
}
|
||
if (DimToVectorize < ScheduleDimensions - 1)
|
||
Node = isl_schedule_node_band_split(Node, 1);
|
||
Space = isl_schedule_node_band_get_space(Node);
|
||
auto Sizes = isl_multi_val_zero(Space);
|
||
auto Ctx = isl_schedule_node_get_ctx(Node);
|
||
Sizes =
|
||
isl_multi_val_set_val(Sizes, 0, isl_val_int_from_si(Ctx, VectorWidth));
|
||
Node = isl_schedule_node_band_tile(Node, Sizes);
|
||
Node = isolateFullPartialTiles(Node, VectorWidth);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
// Make sure the "trivially vectorizable loop" is not unrolled. Otherwise,
|
||
// we will have troubles to match it in the backend.
|
||
Node = isl_schedule_node_band_set_ast_build_options(
|
||
Node, isl_union_set_read_from_str(Ctx, "{ unroll[x]: 1 = 0 }"));
|
||
Node = isl_schedule_node_band_sink(Node);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
if (isl_schedule_node_get_type(Node) == isl_schedule_node_leaf)
|
||
Node = isl_schedule_node_parent(Node);
|
||
isl_id *LoopMarker = isl_id_alloc(Ctx, "SIMD", nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, LoopMarker);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::tileNode(__isl_take isl_schedule_node *Node,
|
||
const char *Identifier, ArrayRef<int> TileSizes,
|
||
int DefaultTileSize) {
|
||
auto Ctx = isl_schedule_node_get_ctx(Node);
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
auto Sizes = isl_multi_val_zero(Space);
|
||
std::string IdentifierString(Identifier);
|
||
for (unsigned i = 0; i < Dims; i++) {
|
||
auto tileSize = i < TileSizes.size() ? TileSizes[i] : DefaultTileSize;
|
||
Sizes = isl_multi_val_set_val(Sizes, i, isl_val_int_from_si(Ctx, tileSize));
|
||
}
|
||
auto TileLoopMarkerStr = IdentifierString + " - Tiles";
|
||
isl_id *TileLoopMarker =
|
||
isl_id_alloc(Ctx, TileLoopMarkerStr.c_str(), nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, TileLoopMarker);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
Node = isl_schedule_node_band_tile(Node, Sizes);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
auto PointLoopMarkerStr = IdentifierString + " - Points";
|
||
isl_id *PointLoopMarker =
|
||
isl_id_alloc(Ctx, PointLoopMarkerStr.c_str(), nullptr);
|
||
Node = isl_schedule_node_insert_mark(Node, PointLoopMarker);
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::applyRegisterTiling(__isl_take isl_schedule_node *Node,
|
||
llvm::ArrayRef<int> TileSizes,
|
||
int DefaultTileSize) {
|
||
auto *Ctx = isl_schedule_node_get_ctx(Node);
|
||
Node = tileNode(Node, "Register tiling", TileSizes, DefaultTileSize);
|
||
Node = isl_schedule_node_band_set_ast_build_options(
|
||
Node, isl_union_set_read_from_str(Ctx, "{unroll[x]}"));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isTileableBandNode(
|
||
__isl_keep isl_schedule_node *Node) {
|
||
if (isl_schedule_node_get_type(Node) != isl_schedule_node_band)
|
||
return false;
|
||
|
||
if (isl_schedule_node_n_children(Node) != 1)
|
||
return false;
|
||
|
||
if (!isl_schedule_node_band_get_permutable(Node))
|
||
return false;
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
|
||
if (Dims <= 1)
|
||
return false;
|
||
|
||
auto Child = isl_schedule_node_get_child(Node, 0);
|
||
auto Type = isl_schedule_node_get_type(Child);
|
||
isl_schedule_node_free(Child);
|
||
|
||
if (Type != isl_schedule_node_leaf)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::standardBandOpts(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (FirstLevelTiling)
|
||
Node = tileNode(Node, "1st level tiling", FirstLevelTileSizes,
|
||
FirstLevelDefaultTileSize);
|
||
|
||
if (SecondLevelTiling)
|
||
Node = tileNode(Node, "2nd level tiling", SecondLevelTileSizes,
|
||
SecondLevelDefaultTileSize);
|
||
|
||
if (RegisterTiling)
|
||
Node =
|
||
applyRegisterTiling(Node, RegisterTileSizes, RegisterDefaultTileSize);
|
||
|
||
if (PollyVectorizerChoice == VECTORIZER_NONE)
|
||
return Node;
|
||
|
||
auto Space = isl_schedule_node_band_get_space(Node);
|
||
auto Dims = isl_space_dim(Space, isl_dim_set);
|
||
isl_space_free(Space);
|
||
|
||
for (int i = Dims - 1; i >= 0; i--)
|
||
if (isl_schedule_node_band_member_get_coincident(Node, i)) {
|
||
Node = prevectSchedBand(Node, i, PrevectorWidth);
|
||
break;
|
||
}
|
||
|
||
return Node;
|
||
}
|
||
|
||
/// Check whether output dimensions of the map rely on the specified input
|
||
/// dimension.
|
||
///
|
||
/// @param IslMap The isl map to be considered.
|
||
/// @param DimNum The number of an input dimension to be checked.
|
||
static bool isInputDimUsed(__isl_take isl_map *IslMap, unsigned DimNum) {
|
||
auto *CheckedAccessRelation =
|
||
isl_map_project_out(isl_map_copy(IslMap), isl_dim_in, DimNum, 1);
|
||
CheckedAccessRelation =
|
||
isl_map_insert_dims(CheckedAccessRelation, isl_dim_in, DimNum, 1);
|
||
auto *InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
|
||
CheckedAccessRelation =
|
||
isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_in, InputDimsId);
|
||
InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_out);
|
||
CheckedAccessRelation =
|
||
isl_map_set_tuple_id(CheckedAccessRelation, isl_dim_out, InputDimsId);
|
||
auto res = !isl_map_is_equal(CheckedAccessRelation, IslMap);
|
||
isl_map_free(CheckedAccessRelation);
|
||
isl_map_free(IslMap);
|
||
return res;
|
||
}
|
||
|
||
/// Check if the SCoP statement could probably be optimized with analytical
|
||
/// modeling.
|
||
///
|
||
/// containsMatrMult tries to determine whether the following conditions
|
||
/// are true:
|
||
/// 1. all memory accesses of the statement will have stride 0 or 1,
|
||
/// if we interchange loops (switch the variable used in the inner
|
||
/// loop to the outer loop).
|
||
/// 2. all memory accesses of the statement except from the last one, are
|
||
/// read memory access and the last one is write memory access.
|
||
/// 3. all subscripts of the last memory access of the statement don't contain
|
||
/// the variable used in the inner loop.
|
||
///
|
||
/// @param PartialSchedule The PartialSchedule that contains a SCoP statement
|
||
/// to check.
|
||
static bool containsMatrMult(__isl_keep isl_map *PartialSchedule) {
|
||
auto InputDimsId = isl_map_get_tuple_id(PartialSchedule, isl_dim_in);
|
||
auto *ScpStmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
|
||
isl_id_free(InputDimsId);
|
||
if (ScpStmt->size() <= 1)
|
||
return false;
|
||
auto MemA = ScpStmt->begin();
|
||
for (unsigned i = 0; i < ScpStmt->size() - 2 && MemA != ScpStmt->end();
|
||
i++, MemA++)
|
||
if (!(*MemA)->isRead() ||
|
||
((*MemA)->isArrayKind() &&
|
||
!((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
|
||
(*MemA)->isStrideZero(isl_map_copy(PartialSchedule)))))
|
||
return false;
|
||
MemA++;
|
||
if (!(*MemA)->isWrite() || !(*MemA)->isArrayKind() ||
|
||
!((*MemA)->isStrideOne(isl_map_copy(PartialSchedule)) ||
|
||
(*MemA)->isStrideZero(isl_map_copy(PartialSchedule))))
|
||
return false;
|
||
auto DimNum = isl_map_dim(PartialSchedule, isl_dim_in);
|
||
return !isInputDimUsed((*MemA)->getAccessRelation(), DimNum - 1);
|
||
}
|
||
|
||
/// Circular shift of output dimensions of the integer map.
|
||
///
|
||
/// @param IslMap The isl map to be modified.
|
||
static __isl_give isl_map *circularShiftOutputDims(__isl_take isl_map *IslMap) {
|
||
auto DimNum = isl_map_dim(IslMap, isl_dim_out);
|
||
if (DimNum == 0)
|
||
return IslMap;
|
||
auto InputDimsId = isl_map_get_tuple_id(IslMap, isl_dim_in);
|
||
IslMap = isl_map_move_dims(IslMap, isl_dim_in, 0, isl_dim_out, DimNum - 1, 1);
|
||
IslMap = isl_map_move_dims(IslMap, isl_dim_out, 0, isl_dim_in, 0, 1);
|
||
return isl_map_set_tuple_id(IslMap, isl_dim_in, InputDimsId);
|
||
}
|
||
|
||
/// Permute two dimensions of the band node.
|
||
///
|
||
/// Permute FirstDim and SecondDim dimensions of the Node.
|
||
///
|
||
/// @param Node The band node to be modified.
|
||
/// @param FirstDim The first dimension to be permuted.
|
||
/// @param SecondDim The second dimension to be permuted.
|
||
static __isl_give isl_schedule_node *
|
||
permuteBandNodeDimensions(__isl_take isl_schedule_node *Node, unsigned FirstDim,
|
||
unsigned SecondDim) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band &&
|
||
isl_schedule_node_band_n_member(Node) > std::max(FirstDim, SecondDim));
|
||
auto PartialSchedule = isl_schedule_node_band_get_partial_schedule(Node);
|
||
auto PartialScheduleFirstDim =
|
||
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, FirstDim);
|
||
auto PartialScheduleSecondDim =
|
||
isl_multi_union_pw_aff_get_union_pw_aff(PartialSchedule, SecondDim);
|
||
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
|
||
PartialSchedule, SecondDim, PartialScheduleFirstDim);
|
||
PartialSchedule = isl_multi_union_pw_aff_set_union_pw_aff(
|
||
PartialSchedule, FirstDim, PartialScheduleSecondDim);
|
||
Node = isl_schedule_node_delete(Node);
|
||
Node = isl_schedule_node_insert_partial_schedule(Node, PartialSchedule);
|
||
return Node;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMicroKernel(
|
||
__isl_take isl_schedule_node *Node, MicroKernelParamsTy MicroKernelParams) {
|
||
applyRegisterTiling(Node, {MicroKernelParams.Mr, MicroKernelParams.Nr}, 1);
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = permuteBandNodeDimensions(Node, 0, 1);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::createMacroKernel(
|
||
__isl_take isl_schedule_node *Node, MacroKernelParamsTy MacroKernelParams) {
|
||
assert(isl_schedule_node_get_type(Node) == isl_schedule_node_band);
|
||
if (MacroKernelParams.Mc == 1 && MacroKernelParams.Nc == 1 &&
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
Node = tileNode(
|
||
Node, "1st level tiling",
|
||
{MacroKernelParams.Mc, MacroKernelParams.Nc, MacroKernelParams.Kc}, 1);
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = permuteBandNodeDimensions(Node, 1, 2);
|
||
Node = permuteBandNodeDimensions(Node, 0, 2);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
/// Get parameters of the BLIS micro kernel.
|
||
///
|
||
/// We choose the Mr and Nr parameters of the micro kernel to be large enough
|
||
/// such that no stalls caused by the combination of latencies and dependencies
|
||
/// are introduced during the updates of the resulting matrix of the matrix
|
||
/// multiplication. However, they should also be as small as possible to
|
||
/// release more registers for entries of multiplied matrices.
|
||
///
|
||
/// @param TTI Target Transform Info.
|
||
/// @return The structure of type MicroKernelParamsTy.
|
||
/// @see MicroKernelParamsTy
|
||
static struct MicroKernelParamsTy
|
||
getMicroKernelParams(const llvm::TargetTransformInfo *TTI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
|
||
// Nvec - Number of double-precision floating-point numbers that can be hold
|
||
// by a vector register. Use 2 by default.
|
||
long RegisterBitwidth = VectorRegisterBitwidth;
|
||
|
||
if (RegisterBitwidth == -1)
|
||
RegisterBitwidth = TTI->getRegisterBitWidth(true);
|
||
auto Nvec = RegisterBitwidth / 64;
|
||
if (Nvec == 0)
|
||
Nvec = 2;
|
||
int Nr =
|
||
ceil(sqrt(Nvec * LatencyVectorFma * ThroughputVectorFma) / Nvec) * Nvec;
|
||
int Mr = ceil(Nvec * LatencyVectorFma * ThroughputVectorFma / Nr);
|
||
return {Mr, Nr};
|
||
}
|
||
|
||
/// Get parameters of the BLIS macro kernel.
|
||
///
|
||
/// During the computation of matrix multiplication, blocks of partitioned
|
||
/// matrices are mapped to different layers of the memory hierarchy.
|
||
/// To optimize data reuse, blocks should be ideally kept in cache between
|
||
/// iterations. Since parameters of the macro kernel determine sizes of these
|
||
/// blocks, there are upper and lower bounds on these parameters.
|
||
///
|
||
/// @param MicroKernelParams Parameters of the micro-kernel
|
||
/// to be taken into account.
|
||
/// @return The structure of type MacroKernelParamsTy.
|
||
/// @see MacroKernelParamsTy
|
||
/// @see MicroKernelParamsTy
|
||
static struct MacroKernelParamsTy
|
||
getMacroKernelParams(const MicroKernelParamsTy &MicroKernelParams) {
|
||
// According to www.cs.utexas.edu/users/flame/pubs/TOMS-BLIS-Analytical.pdf,
|
||
// it requires information about the first two levels of a cache to determine
|
||
// all the parameters of a macro-kernel. It also checks that an associativity
|
||
// degree of a cache level is greater than two. Otherwise, another algorithm
|
||
// for determination of the parameters should be used.
|
||
if (!(MicroKernelParams.Mr > 0 && MicroKernelParams.Nr > 0 &&
|
||
FirstCacheLevelSize > 0 && SecondCacheLevelSize > 0 &&
|
||
FirstCacheLevelAssociativity > 2 && SecondCacheLevelAssociativity > 2))
|
||
return {1, 1, 1};
|
||
// The quotient should be greater than zero.
|
||
if (PollyPatternMatchingNcQuotient <= 0)
|
||
return {1, 1, 1};
|
||
int Car = floor(
|
||
(FirstCacheLevelAssociativity - 1) /
|
||
(1 + static_cast<double>(MicroKernelParams.Nr) / MicroKernelParams.Mr));
|
||
int Kc = (Car * FirstCacheLevelSize) /
|
||
(MicroKernelParams.Mr * FirstCacheLevelAssociativity * 8);
|
||
double Cac = static_cast<double>(Kc * 8 * SecondCacheLevelAssociativity) /
|
||
SecondCacheLevelSize;
|
||
int Mc = floor((SecondCacheLevelAssociativity - 2) / Cac);
|
||
int Nc = PollyPatternMatchingNcQuotient * MicroKernelParams.Nr;
|
||
return {Mc, Nc, Kc};
|
||
}
|
||
|
||
/// Identify a memory access through the shape of its memory access relation.
|
||
///
|
||
/// Identify the unique memory access in @p Stmt, that has an access relation
|
||
/// equal to @p ExpectedAccessRelation.
|
||
///
|
||
/// @param Stmt The SCoP statement that contains the memory accesses under
|
||
/// consideration.
|
||
/// @param ExpectedAccessRelation The access relation that identifies
|
||
/// the memory access.
|
||
/// @return The memory access of @p Stmt whose memory access relation is equal
|
||
/// to @p ExpectedAccessRelation. nullptr in case there is no or more
|
||
/// than one such access.
|
||
MemoryAccess *
|
||
identifyAccessByAccessRelation(ScopStmt *Stmt,
|
||
__isl_take isl_map *ExpectedAccessRelation) {
|
||
if (isl_map_has_tuple_id(ExpectedAccessRelation, isl_dim_out))
|
||
ExpectedAccessRelation =
|
||
isl_map_reset_tuple_id(ExpectedAccessRelation, isl_dim_out);
|
||
MemoryAccess *IdentifiedAccess = nullptr;
|
||
for (auto *Access : *Stmt) {
|
||
auto *AccessRelation = Access->getAccessRelation();
|
||
AccessRelation = isl_map_reset_tuple_id(AccessRelation, isl_dim_out);
|
||
if (isl_map_is_equal(ExpectedAccessRelation, AccessRelation)) {
|
||
if (IdentifiedAccess) {
|
||
isl_map_free(AccessRelation);
|
||
isl_map_free(ExpectedAccessRelation);
|
||
return nullptr;
|
||
}
|
||
IdentifiedAccess = Access;
|
||
}
|
||
isl_map_free(AccessRelation);
|
||
}
|
||
isl_map_free(ExpectedAccessRelation);
|
||
return IdentifiedAccess;
|
||
}
|
||
|
||
/// Add constrains to @Dim dimension of @p ExtMap.
|
||
///
|
||
/// If @ExtMap has the following form [O0, O1, O2]->[I1, I2, I3],
|
||
/// the following constraint will be added
|
||
/// Bound * OM <= IM <= Bound * (OM + 1) - 1,
|
||
/// where M is @p Dim and Bound is @p Bound.
|
||
///
|
||
/// @param ExtMap The isl map to be modified.
|
||
/// @param Dim The output dimension to be modfied.
|
||
/// @param Bound The value that is used to specify the constraint.
|
||
/// @return The modified isl map
|
||
__isl_give isl_map *
|
||
addExtensionMapMatMulDimConstraint(__isl_take isl_map *ExtMap, unsigned Dim,
|
||
unsigned Bound) {
|
||
assert(Bound != 0);
|
||
auto *ExtMapSpace = isl_map_get_space(ExtMap);
|
||
auto *ConstrSpace = isl_local_space_from_space(ExtMapSpace);
|
||
auto *Constr =
|
||
isl_constraint_alloc_inequality(isl_local_space_copy(ConstrSpace));
|
||
Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, Dim, 1);
|
||
Constr =
|
||
isl_constraint_set_coefficient_si(Constr, isl_dim_in, Dim, Bound * (-1));
|
||
ExtMap = isl_map_add_constraint(ExtMap, Constr);
|
||
Constr = isl_constraint_alloc_inequality(ConstrSpace);
|
||
Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_out, Dim, -1);
|
||
Constr = isl_constraint_set_coefficient_si(Constr, isl_dim_in, Dim, Bound);
|
||
Constr = isl_constraint_set_constant_si(Constr, Bound - 1);
|
||
return isl_map_add_constraint(ExtMap, Constr);
|
||
}
|
||
|
||
/// Create an access relation that is specific for matrix multiplication
|
||
/// pattern.
|
||
///
|
||
/// Create an access relation of the following form:
|
||
/// { [O0, O1, O2]->[I1, I2, I3] :
|
||
/// FirstOutputDimBound * O0 <= I1 <= FirstOutputDimBound * (O0 + 1) - 1
|
||
/// and SecondOutputDimBound * O1 <= I2 <= SecondOutputDimBound * (O1 + 1) - 1
|
||
/// and ThirdOutputDimBound * O2 <= I3 <= ThirdOutputDimBound * (O2 + 1) - 1}
|
||
/// where FirstOutputDimBound is @p FirstOutputDimBound,
|
||
/// SecondOutputDimBound is @p SecondOutputDimBound,
|
||
/// ThirdOutputDimBound is @p ThirdOutputDimBound
|
||
///
|
||
/// @param Ctx The isl context.
|
||
/// @param FirstOutputDimBound,
|
||
/// SecondOutputDimBound,
|
||
/// ThirdOutputDimBound The parameters of the access relation.
|
||
/// @return The specified access relation.
|
||
__isl_give isl_map *getMatMulExt(isl_ctx *Ctx, unsigned FirstOutputDimBound,
|
||
unsigned SecondOutputDimBound,
|
||
unsigned ThirdOutputDimBound) {
|
||
auto *NewRelSpace = isl_space_alloc(Ctx, 0, 3, 3);
|
||
auto *extensionMap = isl_map_universe(NewRelSpace);
|
||
if (!FirstOutputDimBound)
|
||
extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 0, 0);
|
||
else
|
||
extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 0,
|
||
FirstOutputDimBound);
|
||
if (!SecondOutputDimBound)
|
||
extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 1, 0);
|
||
else
|
||
extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 1,
|
||
SecondOutputDimBound);
|
||
if (!ThirdOutputDimBound)
|
||
extensionMap = isl_map_fix_si(extensionMap, isl_dim_out, 2, 0);
|
||
else
|
||
extensionMap = addExtensionMapMatMulDimConstraint(extensionMap, 2,
|
||
ThirdOutputDimBound);
|
||
return extensionMap;
|
||
}
|
||
|
||
/// Create an access relation that is specific to the matrix
|
||
/// multiplication pattern.
|
||
///
|
||
/// Create an access relation of the following form:
|
||
/// Stmt[O0, O1, O2]->[OI, OJ],
|
||
/// where I is @p I, J is @J
|
||
///
|
||
/// @param Stmt The SCoP statement for which to generate the access relation.
|
||
/// @param I The index of the input dimension that is mapped to the first output
|
||
/// dimension.
|
||
/// @param J The index of the input dimension that is mapped to the second
|
||
/// output dimension.
|
||
/// @return The specified access relation.
|
||
__isl_give isl_map *
|
||
getMatMulPatternOriginalAccessRelation(ScopStmt *Stmt, unsigned I, unsigned J) {
|
||
auto *AccessRelSpace = isl_space_alloc(Stmt->getIslCtx(), 0, 3, 2);
|
||
auto *AccessRel = isl_map_universe(AccessRelSpace);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, I, isl_dim_out, 0);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, J, isl_dim_out, 1);
|
||
AccessRel = isl_map_set_tuple_id(AccessRel, isl_dim_in, Stmt->getDomainId());
|
||
return AccessRel;
|
||
}
|
||
|
||
/// Identify the memory access that corresponds to the access to the second
|
||
/// operand of the matrix multiplication.
|
||
///
|
||
/// Identify the memory access that corresponds to the access
|
||
/// to the matrix B of the matrix multiplication C = A x B.
|
||
///
|
||
/// @param Stmt The SCoP statement that contains the memory accesses
|
||
/// under consideration.
|
||
/// @return The memory access of @p Stmt that corresponds to the access
|
||
/// to the second operand of the matrix multiplication.
|
||
MemoryAccess *identifyAccessA(ScopStmt *Stmt) {
|
||
auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 0, 2);
|
||
return identifyAccessByAccessRelation(Stmt, OriginalRel);
|
||
}
|
||
|
||
/// Identify the memory access that corresponds to the access to the first
|
||
/// operand of the matrix multiplication.
|
||
///
|
||
/// Identify the memory access that corresponds to the access
|
||
/// to the matrix A of the matrix multiplication C = A x B.
|
||
///
|
||
/// @param Stmt The SCoP statement that contains the memory accesses
|
||
/// under consideration.
|
||
/// @return The memory access of @p Stmt that corresponds to the access
|
||
/// to the first operand of the matrix multiplication.
|
||
MemoryAccess *identifyAccessB(ScopStmt *Stmt) {
|
||
auto *OriginalRel = getMatMulPatternOriginalAccessRelation(Stmt, 2, 1);
|
||
return identifyAccessByAccessRelation(Stmt, OriginalRel);
|
||
}
|
||
|
||
/// Create an access relation that is specific to
|
||
/// the matrix multiplication pattern.
|
||
///
|
||
/// Create an access relation of the following form:
|
||
/// [O0, O1, O2, O3, O4, O5, O6, O7, O8] -> [OI, O5, OJ]
|
||
/// where I is @p FirstDim, J is @p SecondDim.
|
||
///
|
||
/// It can be used, for example, to create relations that helps to consequently
|
||
/// access elements of operands of a matrix multiplication after creation of
|
||
/// the BLIS micro and macro kernels.
|
||
///
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
///
|
||
/// Subsequently, the described access relation is applied to the range of
|
||
/// @p MapOldIndVar, that is used to map original induction variables to
|
||
/// the ones, which are produced by schedule transformations. It helps to
|
||
/// define relations using a new space and, at the same time, keep them
|
||
/// in the original one.
|
||
///
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param FirstDim, SecondDim The input dimensions that are used to define
|
||
/// the specified access relation.
|
||
/// @return The specified access relation.
|
||
__isl_give isl_map *getMatMulAccRel(__isl_take isl_map *MapOldIndVar,
|
||
unsigned FirstDim, unsigned SecondDim) {
|
||
auto *Ctx = isl_map_get_ctx(MapOldIndVar);
|
||
auto *AccessRelSpace = isl_space_alloc(Ctx, 0, 9, 3);
|
||
auto *AccessRel = isl_map_universe(AccessRelSpace);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, FirstDim, isl_dim_out, 0);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, 5, isl_dim_out, 1);
|
||
AccessRel = isl_map_equate(AccessRel, isl_dim_in, SecondDim, isl_dim_out, 2);
|
||
return isl_map_apply_range(MapOldIndVar, AccessRel);
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
createExtensionNode(__isl_take isl_schedule_node *Node,
|
||
__isl_take isl_map *ExtensionMap) {
|
||
auto *Extension = isl_union_map_from_map(ExtensionMap);
|
||
auto *NewNode = isl_schedule_node_from_extension(Extension);
|
||
return isl_schedule_node_graft_before(Node, NewNode);
|
||
}
|
||
|
||
/// Apply the packing transformation.
|
||
///
|
||
/// The packing transformation can be described as a data-layout
|
||
/// transformation that requires to introduce a new array, copy data
|
||
/// to the array, and change memory access locations to reference the array.
|
||
/// It can be used to ensure that elements of the new array are read in-stride
|
||
/// access, aligned to cache lines boundaries, and preloaded into certain cache
|
||
/// levels.
|
||
///
|
||
/// As an example let us consider the packing of the array A that would help
|
||
/// to read its elements with in-stride access. An access to the array A
|
||
/// is represented by an access relation that has the form
|
||
/// S[i, j, k] -> A[i, k]. The scheduling function of the SCoP statement S has
|
||
/// the form S[i,j, k] -> [floor((j mod Nc) / Nr), floor((i mod Mc) / Mr),
|
||
/// k mod Kc, j mod Nr, i mod Mr].
|
||
///
|
||
/// To ensure that elements of the array A are read in-stride access, we add
|
||
/// a new array Packed_A[Mc/Mr][Kc][Mr] to the SCoP, using
|
||
/// Scop::createScopArrayInfo, change the access relation
|
||
/// S[i, j, k] -> A[i, k] to
|
||
/// S[i, j, k] -> Packed_A[floor((i mod Mc) / Mr), k mod Kc, i mod Mr], using
|
||
/// MemoryAccess::setNewAccessRelation, and copy the data to the array, using
|
||
/// the copy statement created by Scop::addScopStmt.
|
||
///
|
||
/// @param Node The schedule node to be optimized.
|
||
/// @param MapOldIndVar The relation, which maps original induction variables
|
||
/// to the ones, which are produced by schedule
|
||
/// transformations.
|
||
/// @param MicroParams, MacroParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @return The optimized schedule node.
|
||
static __isl_give isl_schedule_node *optimizeDataLayoutMatrMulPattern(
|
||
__isl_take isl_schedule_node *Node, __isl_take isl_map *MapOldIndVar,
|
||
MicroKernelParamsTy MicroParams, MacroKernelParamsTy MacroParams) {
|
||
// Check whether memory accesses of the SCoP statement correspond to
|
||
// the matrix multiplication pattern and if this is true, obtain them.
|
||
auto InputDimsId = isl_map_get_tuple_id(MapOldIndVar, isl_dim_in);
|
||
auto *Stmt = static_cast<ScopStmt *>(isl_id_get_user(InputDimsId));
|
||
isl_id_free(InputDimsId);
|
||
MemoryAccess *MemAccessA = identifyAccessA(Stmt);
|
||
MemoryAccess *MemAccessB = identifyAccessB(Stmt);
|
||
if (!MemAccessA || !MemAccessB) {
|
||
isl_map_free(MapOldIndVar);
|
||
return Node;
|
||
}
|
||
|
||
// Create a copy statement that corresponds to the memory access to the
|
||
// matrix B, the second operand of the matrix multiplication.
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = isl_schedule_node_parent(isl_schedule_node_parent(Node));
|
||
Node = isl_schedule_node_parent(Node);
|
||
Node = isl_schedule_node_child(isl_schedule_node_band_split(Node, 2), 0);
|
||
auto *AccRel = getMatMulAccRel(isl_map_copy(MapOldIndVar), 3, 7);
|
||
unsigned FirstDimSize = MacroParams.Nc / MicroParams.Nr;
|
||
unsigned SecondDimSize = MacroParams.Kc;
|
||
unsigned ThirdDimSize = MicroParams.Nr;
|
||
auto *SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MemAccessB->getElementType(), "Packed_B",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
|
||
auto *OldAcc = MemAccessB->getAccessRelation();
|
||
MemAccessB->setNewAccessRelation(AccRel);
|
||
auto *ExtMap =
|
||
getMatMulExt(Stmt->getIslCtx(), 0, MacroParams.Nc, MacroParams.Kc);
|
||
isl_map_move_dims(ExtMap, isl_dim_out, 0, isl_dim_in, 0, 1);
|
||
isl_map_move_dims(ExtMap, isl_dim_in, 2, isl_dim_out, 0, 1);
|
||
ExtMap = isl_map_project_out(ExtMap, isl_dim_in, 2, 1);
|
||
auto *Domain = Stmt->getDomain();
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
auto *DomainId = isl_set_get_tuple_id(Domain);
|
||
auto *NewStmt = Stmt->getParent()->addScopStmt(
|
||
OldAcc, MemAccessB->getAccessRelation(), isl_set_copy(Domain));
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, isl_id_copy(DomainId));
|
||
ExtMap = isl_map_intersect_range(ExtMap, isl_set_copy(Domain));
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
|
||
// Create a copy statement that corresponds to the memory access
|
||
// to the matrix A, the first operand of the matrix multiplication.
|
||
Node = isl_schedule_node_child(Node, 0);
|
||
AccRel = getMatMulAccRel(MapOldIndVar, 4, 6);
|
||
FirstDimSize = MacroParams.Mc / MicroParams.Mr;
|
||
ThirdDimSize = MicroParams.Mr;
|
||
SAI = Stmt->getParent()->createScopArrayInfo(
|
||
MemAccessA->getElementType(), "Packed_A",
|
||
{FirstDimSize, SecondDimSize, ThirdDimSize});
|
||
AccRel = isl_map_set_tuple_id(AccRel, isl_dim_out, SAI->getBasePtrId());
|
||
OldAcc = MemAccessA->getAccessRelation();
|
||
MemAccessA->setNewAccessRelation(AccRel);
|
||
ExtMap = getMatMulExt(Stmt->getIslCtx(), MacroParams.Mc, 0, MacroParams.Kc);
|
||
isl_map_move_dims(ExtMap, isl_dim_out, 0, isl_dim_in, 0, 1);
|
||
isl_map_move_dims(ExtMap, isl_dim_in, 2, isl_dim_out, 0, 1);
|
||
NewStmt = Stmt->getParent()->addScopStmt(
|
||
OldAcc, MemAccessA->getAccessRelation(), isl_set_copy(Domain));
|
||
|
||
// Restrict the domains of the copy statements to only execute when also its
|
||
// originating statement is executed.
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, DomainId);
|
||
ExtMap = isl_map_intersect_range(ExtMap, Domain);
|
||
ExtMap = isl_map_set_tuple_id(ExtMap, isl_dim_out, NewStmt->getDomainId());
|
||
Node = createExtensionNode(Node, ExtMap);
|
||
Node = isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
return isl_schedule_node_child(isl_schedule_node_child(Node, 0), 0);
|
||
}
|
||
|
||
/// Get a relation mapping induction variables produced by schedule
|
||
/// transformations to the original ones.
|
||
///
|
||
/// @param Node The schedule node produced as the result of creation
|
||
/// of the BLIS kernels.
|
||
/// @param MicroKernelParams, MacroKernelParams Parameters of the BLIS kernel
|
||
/// to be taken into account.
|
||
/// @return The relation mapping original induction variables to the ones
|
||
/// produced by schedule transformation.
|
||
/// @see ScheduleTreeOptimizer::createMicroKernel
|
||
/// @see ScheduleTreeOptimizer::createMacroKernel
|
||
/// @see getMacroKernelParams
|
||
__isl_give isl_map *
|
||
getInductionVariablesSubstitution(__isl_take isl_schedule_node *Node,
|
||
MicroKernelParamsTy MicroKernelParams,
|
||
MacroKernelParamsTy MacroKernelParams) {
|
||
auto *Child = isl_schedule_node_get_child(Node, 0);
|
||
auto *UnMapOldIndVar = isl_schedule_node_get_prefix_schedule_union_map(Child);
|
||
isl_schedule_node_free(Child);
|
||
auto *MapOldIndVar = isl_map_from_union_map(UnMapOldIndVar);
|
||
if (isl_map_dim(MapOldIndVar, isl_dim_out) > 9)
|
||
MapOldIndVar =
|
||
isl_map_project_out(MapOldIndVar, isl_dim_out, 0,
|
||
isl_map_dim(MapOldIndVar, isl_dim_out) - 9);
|
||
return MapOldIndVar;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeMatMulPattern(
|
||
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
|
||
assert(TTI && "The target transform info should be provided.");
|
||
auto MicroKernelParams = getMicroKernelParams(TTI);
|
||
auto MacroKernelParams = getMacroKernelParams(MicroKernelParams);
|
||
Node = createMacroKernel(Node, MacroKernelParams);
|
||
Node = createMicroKernel(Node, MicroKernelParams);
|
||
if (MacroKernelParams.Mc == 1 || MacroKernelParams.Nc == 1 ||
|
||
MacroKernelParams.Kc == 1)
|
||
return Node;
|
||
auto *MapOldIndVar = getInductionVariablesSubstitution(
|
||
Node, MicroKernelParams, MacroKernelParams);
|
||
if (!MapOldIndVar)
|
||
return Node;
|
||
return optimizeDataLayoutMatrMulPattern(Node, MapOldIndVar, MicroKernelParams,
|
||
MacroKernelParams);
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isMatrMultPattern(
|
||
__isl_keep isl_schedule_node *Node) {
|
||
auto *PartialSchedule =
|
||
isl_schedule_node_band_get_partial_schedule_union_map(Node);
|
||
if (isl_schedule_node_band_n_member(Node) != 3 ||
|
||
isl_union_map_n_map(PartialSchedule) != 1) {
|
||
isl_union_map_free(PartialSchedule);
|
||
return false;
|
||
}
|
||
auto *NewPartialSchedule = isl_map_from_union_map(PartialSchedule);
|
||
NewPartialSchedule = circularShiftOutputDims(NewPartialSchedule);
|
||
if (containsMatrMult(NewPartialSchedule)) {
|
||
isl_map_free(NewPartialSchedule);
|
||
return true;
|
||
}
|
||
isl_map_free(NewPartialSchedule);
|
||
return false;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *
|
||
ScheduleTreeOptimizer::optimizeBand(__isl_take isl_schedule_node *Node,
|
||
void *User) {
|
||
if (!isTileableBandNode(Node))
|
||
return Node;
|
||
|
||
if (PMBasedOpts && User && isMatrMultPattern(Node)) {
|
||
DEBUG(dbgs() << "The matrix multiplication pattern was detected\n");
|
||
const llvm::TargetTransformInfo *TTI;
|
||
TTI = static_cast<const llvm::TargetTransformInfo *>(User);
|
||
Node = optimizeMatMulPattern(Node, TTI);
|
||
}
|
||
|
||
return standardBandOpts(Node, User);
|
||
}
|
||
|
||
__isl_give isl_schedule *
|
||
ScheduleTreeOptimizer::optimizeSchedule(__isl_take isl_schedule *Schedule,
|
||
const llvm::TargetTransformInfo *TTI) {
|
||
isl_schedule_node *Root = isl_schedule_get_root(Schedule);
|
||
Root = optimizeScheduleNode(Root, TTI);
|
||
isl_schedule_free(Schedule);
|
||
auto S = isl_schedule_node_get_schedule(Root);
|
||
isl_schedule_node_free(Root);
|
||
return S;
|
||
}
|
||
|
||
__isl_give isl_schedule_node *ScheduleTreeOptimizer::optimizeScheduleNode(
|
||
__isl_take isl_schedule_node *Node, const llvm::TargetTransformInfo *TTI) {
|
||
Node = isl_schedule_node_map_descendant_bottom_up(
|
||
Node, optimizeBand, const_cast<void *>(static_cast<const void *>(TTI)));
|
||
return Node;
|
||
}
|
||
|
||
bool ScheduleTreeOptimizer::isProfitableSchedule(
|
||
Scop &S, __isl_keep isl_schedule *NewSchedule) {
|
||
// To understand if the schedule has been optimized we check if the schedule
|
||
// has changed at all.
|
||
// TODO: We can improve this by tracking if any necessarily beneficial
|
||
// transformations have been performed. This can e.g. be tiling, loop
|
||
// interchange, or ...) We can track this either at the place where the
|
||
// transformation has been performed or, in case of automatic ILP based
|
||
// optimizations, by comparing (yet to be defined) performance metrics
|
||
// before/after the scheduling optimizer
|
||
// (e.g., #stride-one accesses)
|
||
if (S.containsExtensionNode(NewSchedule))
|
||
return true;
|
||
auto *NewScheduleMap = isl_schedule_get_map(NewSchedule);
|
||
isl_union_map *OldSchedule = S.getSchedule();
|
||
assert(OldSchedule && "Only IslScheduleOptimizer can insert extension nodes "
|
||
"that make Scop::getSchedule() return nullptr.");
|
||
bool changed = !isl_union_map_is_equal(OldSchedule, NewScheduleMap);
|
||
isl_union_map_free(OldSchedule);
|
||
isl_union_map_free(NewScheduleMap);
|
||
return changed;
|
||
}
|
||
|
||
namespace {
|
||
class IslScheduleOptimizer : public ScopPass {
|
||
public:
|
||
static char ID;
|
||
explicit IslScheduleOptimizer() : ScopPass(ID) { LastSchedule = nullptr; }
|
||
|
||
~IslScheduleOptimizer() { isl_schedule_free(LastSchedule); }
|
||
|
||
/// Optimize the schedule of the SCoP @p S.
|
||
bool runOnScop(Scop &S) override;
|
||
|
||
/// Print the new schedule for the SCoP @p S.
|
||
void printScop(raw_ostream &OS, Scop &S) const override;
|
||
|
||
/// Register all analyses and transformation required.
|
||
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
||
|
||
/// Release the internal memory.
|
||
void releaseMemory() override {
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
}
|
||
|
||
private:
|
||
isl_schedule *LastSchedule;
|
||
};
|
||
} // namespace
|
||
|
||
char IslScheduleOptimizer::ID = 0;
|
||
|
||
bool IslScheduleOptimizer::runOnScop(Scop &S) {
|
||
|
||
// Skip empty SCoPs but still allow code generation as it will delete the
|
||
// loops present but not needed.
|
||
if (S.getSize() == 0) {
|
||
S.markAsOptimized();
|
||
return false;
|
||
}
|
||
|
||
const Dependences &D =
|
||
getAnalysis<DependenceInfo>().getDependences(Dependences::AL_Statement);
|
||
|
||
if (!D.hasValidDependences())
|
||
return false;
|
||
|
||
isl_schedule_free(LastSchedule);
|
||
LastSchedule = nullptr;
|
||
|
||
// Build input data.
|
||
int ValidityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
int ProximityKinds;
|
||
|
||
if (OptimizeDeps == "all")
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
else if (OptimizeDeps == "raw")
|
||
ProximityKinds = Dependences::TYPE_RAW;
|
||
else {
|
||
errs() << "Do not know how to optimize for '" << OptimizeDeps << "'"
|
||
<< " Falling back to optimizing all dependences.\n";
|
||
ProximityKinds =
|
||
Dependences::TYPE_RAW | Dependences::TYPE_WAR | Dependences::TYPE_WAW;
|
||
}
|
||
|
||
isl_union_set *Domain = S.getDomains();
|
||
|
||
if (!Domain)
|
||
return false;
|
||
|
||
isl_union_map *Validity = D.getDependences(ValidityKinds);
|
||
isl_union_map *Proximity = D.getDependences(ProximityKinds);
|
||
|
||
// Simplify the dependences by removing the constraints introduced by the
|
||
// domains. This can speed up the scheduling time significantly, as large
|
||
// constant coefficients will be removed from the dependences. The
|
||
// introduction of some additional dependences reduces the possible
|
||
// transformations, but in most cases, such transformation do not seem to be
|
||
// interesting anyway. In some cases this option may stop the scheduler to
|
||
// find any schedule.
|
||
if (SimplifyDeps == "yes") {
|
||
Validity = isl_union_map_gist_domain(Validity, isl_union_set_copy(Domain));
|
||
Validity = isl_union_map_gist_range(Validity, isl_union_set_copy(Domain));
|
||
Proximity =
|
||
isl_union_map_gist_domain(Proximity, isl_union_set_copy(Domain));
|
||
Proximity = isl_union_map_gist_range(Proximity, isl_union_set_copy(Domain));
|
||
} else if (SimplifyDeps != "no") {
|
||
errs() << "warning: Option -polly-opt-simplify-deps should either be 'yes' "
|
||
"or 'no'. Falling back to default: 'yes'\n";
|
||
}
|
||
|
||
DEBUG(dbgs() << "\n\nCompute schedule from: ");
|
||
DEBUG(dbgs() << "Domain := " << stringFromIslObj(Domain) << ";\n");
|
||
DEBUG(dbgs() << "Proximity := " << stringFromIslObj(Proximity) << ";\n");
|
||
DEBUG(dbgs() << "Validity := " << stringFromIslObj(Validity) << ";\n");
|
||
|
||
unsigned IslSerializeSCCs;
|
||
|
||
if (FusionStrategy == "max") {
|
||
IslSerializeSCCs = 0;
|
||
} else if (FusionStrategy == "min") {
|
||
IslSerializeSCCs = 1;
|
||
} else {
|
||
errs() << "warning: Unknown fusion strategy. Falling back to maximal "
|
||
"fusion.\n";
|
||
IslSerializeSCCs = 0;
|
||
}
|
||
|
||
int IslMaximizeBands;
|
||
|
||
if (MaximizeBandDepth == "yes") {
|
||
IslMaximizeBands = 1;
|
||
} else if (MaximizeBandDepth == "no") {
|
||
IslMaximizeBands = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-maximize-bands should either be 'yes'"
|
||
" or 'no'. Falling back to default: 'yes'\n";
|
||
IslMaximizeBands = 1;
|
||
}
|
||
|
||
int IslOuterCoincidence;
|
||
|
||
if (OuterCoincidence == "yes") {
|
||
IslOuterCoincidence = 1;
|
||
} else if (OuterCoincidence == "no") {
|
||
IslOuterCoincidence = 0;
|
||
} else {
|
||
errs() << "warning: Option -polly-opt-outer-coincidence should either be "
|
||
"'yes' or 'no'. Falling back to default: 'no'\n";
|
||
IslOuterCoincidence = 0;
|
||
}
|
||
|
||
isl_ctx *Ctx = S.getIslCtx();
|
||
|
||
isl_options_set_schedule_outer_coincidence(Ctx, IslOuterCoincidence);
|
||
isl_options_set_schedule_serialize_sccs(Ctx, IslSerializeSCCs);
|
||
isl_options_set_schedule_maximize_band_depth(Ctx, IslMaximizeBands);
|
||
isl_options_set_schedule_max_constant_term(Ctx, MaxConstantTerm);
|
||
isl_options_set_schedule_max_coefficient(Ctx, MaxCoefficient);
|
||
isl_options_set_tile_scale_tile_loops(Ctx, 0);
|
||
|
||
auto OnErrorStatus = isl_options_get_on_error(Ctx);
|
||
isl_options_set_on_error(Ctx, ISL_ON_ERROR_CONTINUE);
|
||
|
||
isl_schedule_constraints *ScheduleConstraints;
|
||
ScheduleConstraints = isl_schedule_constraints_on_domain(Domain);
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_proximity(ScheduleConstraints, Proximity);
|
||
ScheduleConstraints = isl_schedule_constraints_set_validity(
|
||
ScheduleConstraints, isl_union_map_copy(Validity));
|
||
ScheduleConstraints =
|
||
isl_schedule_constraints_set_coincidence(ScheduleConstraints, Validity);
|
||
isl_schedule *Schedule;
|
||
Schedule = isl_schedule_constraints_compute_schedule(ScheduleConstraints);
|
||
isl_options_set_on_error(Ctx, OnErrorStatus);
|
||
|
||
// In cases the scheduler is not able to optimize the code, we just do not
|
||
// touch the schedule.
|
||
if (!Schedule)
|
||
return false;
|
||
|
||
DEBUG({
|
||
auto *P = isl_printer_to_str(Ctx);
|
||
P = isl_printer_set_yaml_style(P, ISL_YAML_STYLE_BLOCK);
|
||
P = isl_printer_print_schedule(P, Schedule);
|
||
auto *str = isl_printer_get_str(P);
|
||
dbgs() << "NewScheduleTree: \n" << str << "\n";
|
||
free(str);
|
||
isl_printer_free(P);
|
||
});
|
||
|
||
Function &F = S.getFunction();
|
||
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
||
isl_schedule *NewSchedule =
|
||
ScheduleTreeOptimizer::optimizeSchedule(Schedule, TTI);
|
||
|
||
if (!ScheduleTreeOptimizer::isProfitableSchedule(S, NewSchedule)) {
|
||
isl_schedule_free(NewSchedule);
|
||
return false;
|
||
}
|
||
|
||
S.setScheduleTree(NewSchedule);
|
||
S.markAsOptimized();
|
||
|
||
if (OptimizedScops)
|
||
S.dump();
|
||
|
||
return false;
|
||
}
|
||
|
||
void IslScheduleOptimizer::printScop(raw_ostream &OS, Scop &) const {
|
||
isl_printer *p;
|
||
char *ScheduleStr;
|
||
|
||
OS << "Calculated schedule:\n";
|
||
|
||
if (!LastSchedule) {
|
||
OS << "n/a\n";
|
||
return;
|
||
}
|
||
|
||
p = isl_printer_to_str(isl_schedule_get_ctx(LastSchedule));
|
||
p = isl_printer_print_schedule(p, LastSchedule);
|
||
ScheduleStr = isl_printer_get_str(p);
|
||
isl_printer_free(p);
|
||
|
||
OS << ScheduleStr << "\n";
|
||
}
|
||
|
||
void IslScheduleOptimizer::getAnalysisUsage(AnalysisUsage &AU) const {
|
||
ScopPass::getAnalysisUsage(AU);
|
||
AU.addRequired<DependenceInfo>();
|
||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||
}
|
||
|
||
Pass *polly::createIslScheduleOptimizerPass() {
|
||
return new IslScheduleOptimizer();
|
||
}
|
||
|
||
INITIALIZE_PASS_BEGIN(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false);
|
||
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
|
||
INITIALIZE_PASS_DEPENDENCY(ScopInfoRegionPass);
|
||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass);
|
||
INITIALIZE_PASS_END(IslScheduleOptimizer, "polly-opt-isl",
|
||
"Polly - Optimize schedule of SCoP", false, false)
|