forked from OSchip/llvm-project
277 lines
7.5 KiB
C++
277 lines
7.5 KiB
C++
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <map>
|
|
#include <random>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "CartesianBenchmarks.h"
|
|
#include "GenerateInput.h"
|
|
#include "benchmark/benchmark.h"
|
|
#include "test_macros.h"
|
|
|
|
namespace {
|
|
|
|
enum class ValueType { Uint32, String };
|
|
struct AllValueTypes : EnumValuesAsTuple<AllValueTypes, ValueType, 2> {
|
|
static constexpr const char* Names[] = {"uint32", "string"};
|
|
};
|
|
|
|
template <class V>
|
|
using Value =
|
|
std::conditional_t<V() == ValueType::Uint32, uint32_t, std::string>;
|
|
|
|
enum class Order {
|
|
Random,
|
|
Ascending,
|
|
Descending,
|
|
SingleElement,
|
|
PipeOrgan,
|
|
Heap
|
|
};
|
|
struct AllOrders : EnumValuesAsTuple<AllOrders, Order, 6> {
|
|
static constexpr const char* Names[] = {"Random", "Ascending",
|
|
"Descending", "SingleElement",
|
|
"PipeOrgan", "Heap"};
|
|
};
|
|
|
|
void fillValues(std::vector<uint32_t>& V, size_t N, Order O) {
|
|
if (O == Order::SingleElement) {
|
|
V.resize(N, 0);
|
|
} else {
|
|
while (V.size() < N)
|
|
V.push_back(V.size());
|
|
}
|
|
}
|
|
|
|
void fillValues(std::vector<std::string>& V, size_t N, Order O) {
|
|
|
|
if (O == Order::SingleElement) {
|
|
V.resize(N, getRandomString(1024));
|
|
} else {
|
|
while (V.size() < N)
|
|
V.push_back(getRandomString(1024));
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void sortValues(T& V, Order O) {
|
|
assert(std::is_sorted(V.begin(), V.end()));
|
|
switch (O) {
|
|
case Order::Random: {
|
|
std::random_device R;
|
|
std::mt19937 M(R());
|
|
std::shuffle(V.begin(), V.end(), M);
|
|
break;
|
|
}
|
|
case Order::Ascending:
|
|
std::sort(V.begin(), V.end());
|
|
break;
|
|
case Order::Descending:
|
|
std::sort(V.begin(), V.end(), std::greater<>());
|
|
break;
|
|
case Order::SingleElement:
|
|
// Nothing to do
|
|
break;
|
|
case Order::PipeOrgan:
|
|
std::sort(V.begin(), V.end());
|
|
std::reverse(V.begin() + V.size() / 2, V.end());
|
|
break;
|
|
case Order::Heap:
|
|
std::make_heap(V.begin(), V.end());
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <class ValueType>
|
|
std::vector<std::vector<Value<ValueType> > > makeOrderedValues(size_t N,
|
|
Order O) {
|
|
// Let's make sure that all random sequences of the same size are the same.
|
|
// That way we can compare the different algorithms with the same input.
|
|
static std::map<std::pair<size_t, Order>, std::vector<Value<ValueType> > >
|
|
Cached;
|
|
|
|
auto& Values = Cached[{N, O}];
|
|
if (Values.empty()) {
|
|
fillValues(Values, N, O);
|
|
sortValues(Values, O);
|
|
};
|
|
const size_t NumCopies = std::max(size_t{1}, 1000 / N);
|
|
return { NumCopies, Values };
|
|
}
|
|
|
|
template <class T, class U>
|
|
TEST_ALWAYS_INLINE void resetCopies(benchmark::State& state, T& Copies,
|
|
U& Orig) {
|
|
state.PauseTiming();
|
|
for (auto& Copy : Copies)
|
|
Copy = Orig;
|
|
state.ResumeTiming();
|
|
}
|
|
|
|
template <class ValueType, class F>
|
|
void runOpOnCopies(benchmark::State& state, size_t Quantity, Order O,
|
|
bool CountElements, F f) {
|
|
auto Copies = makeOrderedValues<ValueType>(Quantity, O);
|
|
const auto Orig = Copies[0];
|
|
|
|
const size_t Batch = CountElements ? Copies.size() * Quantity : Copies.size();
|
|
while (state.KeepRunningBatch(Batch)) {
|
|
for (auto& Copy : Copies) {
|
|
f(Copy);
|
|
benchmark::DoNotOptimize(Copy);
|
|
}
|
|
resetCopies(state, Copies, Orig);
|
|
}
|
|
}
|
|
|
|
template <class ValueType, class Order>
|
|
struct Sort {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), false, [](auto& Copy) {
|
|
std::sort(Copy.begin(), Copy.end());
|
|
});
|
|
}
|
|
|
|
bool skip() const { return Order() == ::Order::Heap; }
|
|
|
|
std::string name() const {
|
|
return "BM_Sort" + ValueType::name() + Order::name() + "_" +
|
|
std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType, class Order>
|
|
struct StableSort {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), false, [](auto& Copy) {
|
|
std::stable_sort(Copy.begin(), Copy.end());
|
|
});
|
|
}
|
|
|
|
bool skip() const { return Order() == ::Order::Heap; }
|
|
|
|
std::string name() const {
|
|
return "BM_StableSort" + ValueType::name() + Order::name() + "_" +
|
|
std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType, class Order>
|
|
struct MakeHeap {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), false, [](auto& Copy) {
|
|
std::make_heap(Copy.begin(), Copy.end());
|
|
});
|
|
}
|
|
|
|
std::string name() const {
|
|
return "BM_MakeHeap" + ValueType::name() + Order::name() + "_" +
|
|
std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType>
|
|
struct SortHeap {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(
|
|
state, Quantity, Order::Heap, false,
|
|
[](auto& Copy) { std::sort_heap(Copy.begin(), Copy.end()); });
|
|
}
|
|
|
|
std::string name() const {
|
|
return "BM_SortHeap" + ValueType::name() + "_" + std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType, class Order>
|
|
struct MakeThenSortHeap {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), false, [](auto& Copy) {
|
|
std::make_heap(Copy.begin(), Copy.end());
|
|
std::sort_heap(Copy.begin(), Copy.end());
|
|
});
|
|
}
|
|
|
|
std::string name() const {
|
|
return "BM_MakeThenSortHeap" + ValueType::name() + Order::name() + "_" +
|
|
std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType, class Order>
|
|
struct PushHeap {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), true, [](auto& Copy) {
|
|
for (auto I = Copy.begin(), E = Copy.end(); I != E; ++I) {
|
|
std::push_heap(Copy.begin(), I + 1);
|
|
}
|
|
});
|
|
}
|
|
|
|
bool skip() const { return Order() == ::Order::Heap; }
|
|
|
|
std::string name() const {
|
|
return "BM_PushHeap" + ValueType::name() + Order::name() + "_" +
|
|
std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
template <class ValueType>
|
|
struct PopHeap {
|
|
size_t Quantity;
|
|
|
|
void run(benchmark::State& state) const {
|
|
runOpOnCopies<ValueType>(state, Quantity, Order(), true, [](auto& Copy) {
|
|
for (auto B = Copy.begin(), I = Copy.end(); I != B; --I) {
|
|
std::pop_heap(B, I);
|
|
}
|
|
});
|
|
}
|
|
|
|
std::string name() const {
|
|
return "BM_PopHeap" + ValueType::name() + "_" + std::to_string(Quantity);
|
|
};
|
|
};
|
|
|
|
} // namespace
|
|
|
|
int main(int argc, char** argv) {
|
|
benchmark::Initialize(&argc, argv);
|
|
if (benchmark::ReportUnrecognizedArguments(argc, argv))
|
|
return 1;
|
|
|
|
const std::vector<size_t> Quantities = {1 << 0, 1 << 2, 1 << 4, 1 << 6,
|
|
1 << 8, 1 << 10, 1 << 14,
|
|
// Running each benchmark in parallel consumes too much memory with MSAN
|
|
// and can lead to the test process being killed.
|
|
#if !TEST_HAS_FEATURE(memory_sanitizer)
|
|
1 << 18
|
|
#endif
|
|
};
|
|
makeCartesianProductBenchmark<Sort, AllValueTypes, AllOrders>(Quantities);
|
|
makeCartesianProductBenchmark<StableSort, AllValueTypes, AllOrders>(
|
|
Quantities);
|
|
makeCartesianProductBenchmark<MakeHeap, AllValueTypes, AllOrders>(Quantities);
|
|
makeCartesianProductBenchmark<SortHeap, AllValueTypes>(Quantities);
|
|
makeCartesianProductBenchmark<MakeThenSortHeap, AllValueTypes, AllOrders>(
|
|
Quantities);
|
|
makeCartesianProductBenchmark<PushHeap, AllValueTypes, AllOrders>(Quantities);
|
|
makeCartesianProductBenchmark<PopHeap, AllValueTypes>(Quantities);
|
|
benchmark::RunSpecifiedBenchmarks();
|
|
}
|