llvm-project/llvm/lib/CodeGen/MachineScheduler.cpp

395 lines
13 KiB
C++

//===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// MachineScheduler schedules machine instructions after phi elimination. It
// preserves LiveIntervals so it can be invoked before register allocation.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "misched"
#include "ScheduleDAGInstrs.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachinePassRegistry.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/OwningPtr.h"
#include <queue>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Pass and Registry
//===----------------------------------------------------------------------===//
namespace {
/// MachineScheduler runs after coalescing and before register allocation.
class MachineScheduler : public MachineFunctionPass {
public:
MachineFunction *MF;
const TargetInstrInfo *TII;
const MachineLoopInfo *MLI;
const MachineDominatorTree *MDT;
LiveIntervals *LIS;
MachineScheduler();
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory() {}
virtual bool runOnMachineFunction(MachineFunction&);
virtual void print(raw_ostream &O, const Module* = 0) const;
static char ID; // Class identification, replacement for typeinfo
};
} // namespace
char MachineScheduler::ID = 0;
char &llvm::MachineSchedulerID = MachineScheduler::ID;
INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
"Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(MachineScheduler, "misched",
"Machine Instruction Scheduler", false, false)
MachineScheduler::MachineScheduler()
: MachineFunctionPass(ID), MF(0), MLI(0), MDT(0) {
initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
}
void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<SlotIndexes>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
MachineFunctionPass::getAnalysisUsage(AU);
}
namespace {
/// MachineSchedRegistry provides a selection of available machine instruction
/// schedulers.
class MachineSchedRegistry : public MachinePassRegistryNode {
public:
typedef ScheduleDAGInstrs *(*ScheduleDAGCtor)(MachineScheduler *);
// RegisterPassParser requires a (misnamed) FunctionPassCtor type.
typedef ScheduleDAGCtor FunctionPassCtor;
static MachinePassRegistry Registry;
MachineSchedRegistry(const char *N, const char *D, ScheduleDAGCtor C)
: MachinePassRegistryNode(N, D, (MachinePassCtor)C) {
Registry.Add(this);
}
~MachineSchedRegistry() { Registry.Remove(this); }
// Accessors.
//
MachineSchedRegistry *getNext() const {
return (MachineSchedRegistry *)MachinePassRegistryNode::getNext();
}
static MachineSchedRegistry *getList() {
return (MachineSchedRegistry *)Registry.getList();
}
static ScheduleDAGCtor getDefault() {
return (ScheduleDAGCtor)Registry.getDefault();
}
static void setDefault(ScheduleDAGCtor C) {
Registry.setDefault((MachinePassCtor)C);
}
static void setListener(MachinePassRegistryListener *L) {
Registry.setListener(L);
}
};
} // namespace
MachinePassRegistry MachineSchedRegistry::Registry;
static ScheduleDAGInstrs *createDefaultMachineSched(MachineScheduler *P);
/// MachineSchedOpt allows command line selection of the scheduler.
static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
RegisterPassParser<MachineSchedRegistry> >
MachineSchedOpt("misched",
cl::init(&createDefaultMachineSched), cl::Hidden,
cl::desc("Machine instruction scheduler to use"));
//===----------------------------------------------------------------------===//
// Machine Instruction Scheduling Common Implementation
//===----------------------------------------------------------------------===//
namespace {
/// ScheduleTopDownLive is an implementation of ScheduleDAGInstrs that schedules
/// machine instructions while updating LiveIntervals.
class ScheduleTopDownLive : public ScheduleDAGInstrs {
protected:
MachineScheduler *Pass;
public:
ScheduleTopDownLive(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// ScheduleDAGInstrs callback.
void Schedule();
/// Interface implemented by the selected top-down liveinterval scheduler.
///
/// Pick the next node to schedule, or return NULL.
virtual SUnit *pickNode() = 0;
/// When all preceeding dependencies have been resolved, free this node for
/// scheduling.
virtual void releaseNode(SUnit *SU) = 0;
protected:
void releaseSucc(SUnit *SU, SDep *SuccEdge);
void releaseSuccessors(SUnit *SU);
};
} // namespace
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
/// NumPredsLeft reaches zero, release the successor node.
void ScheduleTopDownLive::releaseSucc(SUnit *SU, SDep *SuccEdge) {
SUnit *SuccSU = SuccEdge->getSUnit();
#ifndef NDEBUG
if (SuccSU->NumPredsLeft == 0) {
dbgs() << "*** Scheduling failed! ***\n";
SuccSU->dump(this);
dbgs() << " has been released too many times!\n";
llvm_unreachable(0);
}
#endif
--SuccSU->NumPredsLeft;
if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
releaseNode(SuccSU);
}
/// releaseSuccessors - Call releaseSucc on each of SU's successors.
void ScheduleTopDownLive::releaseSuccessors(SUnit *SU) {
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
I != E; ++I) {
releaseSucc(SU, &*I);
}
}
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void ScheduleTopDownLive::Schedule() {
BuildSchedGraph(&Pass->getAnalysis<AliasAnalysis>());
DEBUG(dbgs() << "********** MI Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
// Release any successors of the special Entry node. It is currently unused,
// but we keep up appearances.
releaseSuccessors(&EntrySU);
// Release all DAG roots for scheduling.
for (std::vector<SUnit>::iterator I = SUnits.begin(), E = SUnits.end();
I != E; ++I) {
// A SUnit is ready to schedule if it has no predecessors.
if (I->Preds.empty())
releaseNode(&(*I));
}
InsertPos = Begin;
while (SUnit *SU = pickNode()) {
DEBUG(dbgs() << "*** Scheduling Instruction:\n"; SU->dump(this));
// Move the instruction to its new location in the instruction stream.
MachineInstr *MI = SU->getInstr();
if (&*InsertPos == MI)
++InsertPos;
else {
BB->splice(InsertPos, BB, MI);
Pass->LIS->handleMove(MI);
if (Begin == InsertPos)
Begin = MI;
}
// Release dependent instructions for scheduling.
releaseSuccessors(SU);
}
}
bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
// Initialize the context of the pass.
MF = &mf;
MLI = &getAnalysis<MachineLoopInfo>();
MDT = &getAnalysis<MachineDominatorTree>();
LIS = &getAnalysis<LiveIntervals>();
TII = MF->getTarget().getInstrInfo();
// Select the scheduler, or set the default.
MachineSchedRegistry::ScheduleDAGCtor Ctor =
MachineSchedRegistry::getDefault();
if (!Ctor) {
Ctor = MachineSchedOpt;
MachineSchedRegistry::setDefault(Ctor);
}
// Instantiate the selected scheduler.
OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
// Visit all machine basic blocks.
for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
MBB != MBBEnd; ++MBB) {
// Break the block into scheduling regions [I, RegionEnd), and schedule each
// region as soon as it is discovered.
unsigned RemainingCount = MBB->size();
for(MachineBasicBlock::iterator RegionEnd = MBB->end();
RegionEnd != MBB->begin();) {
Scheduler->StartBlock(MBB);
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
MachineBasicBlock::iterator I = RegionEnd;
for(;I != MBB->begin(); --I, --RemainingCount) {
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
break;
}
if (I == RegionEnd) {
// Skip empty scheduling regions.
RegionEnd = llvm::prior(RegionEnd);
--RemainingCount;
continue;
}
// Skip regions with one instruction.
if (I == llvm::prior(RegionEnd)) {
RegionEnd = llvm::prior(RegionEnd);
continue;
}
DEBUG(dbgs() << "MachineScheduling " << MF->getFunction()->getName()
<< ":BB#" << MBB->getNumber() << "\n From: " << *I << " To: ";
if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
else dbgs() << "End";
dbgs() << " Remaining: " << RemainingCount << "\n");
// Inform ScheduleDAGInstrs of the region being scheduled. It calls back
// to our Schedule() method.
Scheduler->Run(MBB, I, RegionEnd, MBB->size());
RegionEnd = Scheduler->Begin;
}
assert(RemainingCount == 0 && "Instruction count mismatch!");
Scheduler->FinishBlock();
}
return true;
}
void MachineScheduler::print(raw_ostream &O, const Module* m) const {
// unimplemented
}
//===----------------------------------------------------------------------===//
// Placeholder for extending the machine instruction scheduler.
//===----------------------------------------------------------------------===//
namespace {
class DefaultMachineScheduler : public ScheduleDAGInstrs {
MachineScheduler *Pass;
public:
DefaultMachineScheduler(MachineScheduler *P):
ScheduleDAGInstrs(*P->MF, *P->MLI, *P->MDT, /*IsPostRA=*/false, P->LIS),
Pass(P) {}
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void Schedule();
};
} // namespace
static ScheduleDAGInstrs *createDefaultMachineSched(MachineScheduler *P) {
return new DefaultMachineScheduler(P);
}
static MachineSchedRegistry
SchedDefaultRegistry("default", "Activate the scheduler pass, "
"but don't reorder instructions",
createDefaultMachineSched);
/// Schedule - This is called back from ScheduleDAGInstrs::Run() when it's
/// time to do some work.
void DefaultMachineScheduler::Schedule() {
BuildSchedGraph(&Pass->getAnalysis<AliasAnalysis>());
DEBUG(dbgs() << "********** MI Scheduling **********\n");
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
SUnits[su].dumpAll(this));
// TODO: Put interesting things here.
//
// When this is fully implemented, it will become a subclass of
// ScheduleTopDownLive. So this driver will disappear.
}
//===----------------------------------------------------------------------===//
// Machine Instruction Shuffler for Correctness Testing
//===----------------------------------------------------------------------===//
#ifndef NDEBUG
namespace {
// Nodes with a higher number have higher priority. This way we attempt to
// schedule the latest instructions earliest.
//
// TODO: Relies on the property of the BuildSchedGraph that results in SUnits
// being ordered in sequence top-down.
struct ShuffleSUnitOrder {
bool operator()(SUnit *A, SUnit *B) const {
return A->NodeNum < B->NodeNum;
}
};
/// Reorder instructions as much as possible.
class InstructionShuffler : public ScheduleTopDownLive {
std::priority_queue<SUnit*, std::vector<SUnit*>, ShuffleSUnitOrder> Queue;
public:
InstructionShuffler(MachineScheduler *P):
ScheduleTopDownLive(P) {}
/// ScheduleTopDownLive Interface
virtual SUnit *pickNode() {
if (Queue.empty()) return NULL;
SUnit *SU = Queue.top();
Queue.pop();
return SU;
}
virtual void releaseNode(SUnit *SU) {
Queue.push(SU);
}
};
} // namespace
static ScheduleDAGInstrs *createInstructionShuffler(MachineScheduler *P) {
return new InstructionShuffler(P);
}
static MachineSchedRegistry ShufflerRegistry("shuffle",
"Shuffle machine instructions",
createInstructionShuffler);
#endif // !NDEBUG