llvm-project/llvm/lib/IR/Instruction.cpp

756 lines
26 KiB
C++

//===-- Instruction.cpp - Implement the Instruction class -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Instruction class for the IR library.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
using namespace llvm;
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
Instruction *InsertBefore)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
// If requested, insert this instruction into a basic block...
if (InsertBefore) {
BasicBlock *BB = InsertBefore->getParent();
assert(BB && "Instruction to insert before is not in a basic block!");
BB->getInstList().insert(InsertBefore->getIterator(), this);
}
}
Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
BasicBlock *InsertAtEnd)
: User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
// append this instruction into the basic block
assert(InsertAtEnd && "Basic block to append to may not be NULL!");
InsertAtEnd->getInstList().push_back(this);
}
Instruction::~Instruction() {
assert(!Parent && "Instruction still linked in the program!");
if (hasMetadataHashEntry())
clearMetadataHashEntries();
}
void Instruction::setParent(BasicBlock *P) {
Parent = P;
}
const Module *Instruction::getModule() const {
return getParent()->getModule();
}
const Function *Instruction::getFunction() const {
return getParent()->getParent();
}
void Instruction::removeFromParent() {
getParent()->getInstList().remove(getIterator());
}
iplist<Instruction>::iterator Instruction::eraseFromParent() {
return getParent()->getInstList().erase(getIterator());
}
/// Insert an unlinked instruction into a basic block immediately before the
/// specified instruction.
void Instruction::insertBefore(Instruction *InsertPos) {
InsertPos->getParent()->getInstList().insert(InsertPos->getIterator(), this);
}
/// Insert an unlinked instruction into a basic block immediately after the
/// specified instruction.
void Instruction::insertAfter(Instruction *InsertPos) {
InsertPos->getParent()->getInstList().insertAfter(InsertPos->getIterator(),
this);
}
/// Unlink this instruction from its current basic block and insert it into the
/// basic block that MovePos lives in, right before MovePos.
void Instruction::moveBefore(Instruction *MovePos) {
moveBefore(*MovePos->getParent(), MovePos->getIterator());
}
void Instruction::moveAfter(Instruction *MovePos) {
moveBefore(*MovePos->getParent(), ++MovePos->getIterator());
}
void Instruction::moveBefore(BasicBlock &BB,
SymbolTableList<Instruction>::iterator I) {
assert(I == BB.end() || I->getParent() == &BB);
BB.getInstList().splice(I, getParent()->getInstList(), getIterator());
}
void Instruction::setHasNoUnsignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
}
void Instruction::setHasNoSignedWrap(bool b) {
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
}
void Instruction::setIsExact(bool b) {
cast<PossiblyExactOperator>(this)->setIsExact(b);
}
bool Instruction::hasNoUnsignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
}
bool Instruction::hasNoSignedWrap() const {
return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
}
void Instruction::dropPoisonGeneratingFlags() {
switch (getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Mul:
case Instruction::Shl:
cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(false);
cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(false);
break;
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::AShr:
case Instruction::LShr:
cast<PossiblyExactOperator>(this)->setIsExact(false);
break;
case Instruction::GetElementPtr:
cast<GetElementPtrInst>(this)->setIsInBounds(false);
break;
}
// TODO: FastMathFlags!
}
bool Instruction::isExact() const {
return cast<PossiblyExactOperator>(this)->isExact();
}
void Instruction::setFast(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFast(B);
}
void Instruction::setHasAllowReassoc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReassoc(B);
}
void Instruction::setHasNoNaNs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoNaNs(B);
}
void Instruction::setHasNoInfs(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoInfs(B);
}
void Instruction::setHasNoSignedZeros(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
}
void Instruction::setHasAllowReciprocal(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
}
void Instruction::setHasApproxFunc(bool B) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setHasApproxFunc(B);
}
void Instruction::setFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
cast<FPMathOperator>(this)->setFastMathFlags(FMF);
}
void Instruction::copyFastMathFlags(FastMathFlags FMF) {
assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
}
bool Instruction::isFast() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->isFast();
}
bool Instruction::hasAllowReassoc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReassoc();
}
bool Instruction::hasNoNaNs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoNaNs();
}
bool Instruction::hasNoInfs() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoInfs();
}
bool Instruction::hasNoSignedZeros() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasNoSignedZeros();
}
bool Instruction::hasAllowReciprocal() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowReciprocal();
}
bool Instruction::hasAllowContract() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasAllowContract();
}
bool Instruction::hasApproxFunc() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->hasApproxFunc();
}
FastMathFlags Instruction::getFastMathFlags() const {
assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
return cast<FPMathOperator>(this)->getFastMathFlags();
}
void Instruction::copyFastMathFlags(const Instruction *I) {
copyFastMathFlags(I->getFastMathFlags());
}
void Instruction::copyIRFlags(const Value *V, bool IncludeWrapFlags) {
// Copy the wrapping flags.
if (IncludeWrapFlags && isa<OverflowingBinaryOperator>(this)) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
setHasNoSignedWrap(OB->hasNoSignedWrap());
setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
}
}
// Copy the exact flag.
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(PE->isExact());
// Copy the fast-math flags.
if (auto *FP = dyn_cast<FPMathOperator>(V))
if (isa<FPMathOperator>(this))
copyFastMathFlags(FP->getFastMathFlags());
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setIsInBounds(SrcGEP->isInBounds() | DestGEP->isInBounds());
}
void Instruction::andIRFlags(const Value *V) {
if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
if (isa<OverflowingBinaryOperator>(this)) {
setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
}
}
if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
if (isa<PossiblyExactOperator>(this))
setIsExact(isExact() & PE->isExact());
if (auto *FP = dyn_cast<FPMathOperator>(V)) {
if (isa<FPMathOperator>(this)) {
FastMathFlags FM = getFastMathFlags();
FM &= FP->getFastMathFlags();
copyFastMathFlags(FM);
}
}
if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(V))
if (auto *DestGEP = dyn_cast<GetElementPtrInst>(this))
DestGEP->setIsInBounds(SrcGEP->isInBounds() & DestGEP->isInBounds());
}
const char *Instruction::getOpcodeName(unsigned OpCode) {
switch (OpCode) {
// Terminators
case Ret: return "ret";
case Br: return "br";
case Switch: return "switch";
case IndirectBr: return "indirectbr";
case Invoke: return "invoke";
case Resume: return "resume";
case Unreachable: return "unreachable";
case CleanupRet: return "cleanupret";
case CatchRet: return "catchret";
case CatchPad: return "catchpad";
case CatchSwitch: return "catchswitch";
case CallBr: return "callbr";
// Standard unary operators...
case FNeg: return "fneg";
// Standard binary operators...
case Add: return "add";
case FAdd: return "fadd";
case Sub: return "sub";
case FSub: return "fsub";
case Mul: return "mul";
case FMul: return "fmul";
case UDiv: return "udiv";
case SDiv: return "sdiv";
case FDiv: return "fdiv";
case URem: return "urem";
case SRem: return "srem";
case FRem: return "frem";
// Logical operators...
case And: return "and";
case Or : return "or";
case Xor: return "xor";
// Memory instructions...
case Alloca: return "alloca";
case Load: return "load";
case Store: return "store";
case AtomicCmpXchg: return "cmpxchg";
case AtomicRMW: return "atomicrmw";
case Fence: return "fence";
case GetElementPtr: return "getelementptr";
// Convert instructions...
case Trunc: return "trunc";
case ZExt: return "zext";
case SExt: return "sext";
case FPTrunc: return "fptrunc";
case FPExt: return "fpext";
case FPToUI: return "fptoui";
case FPToSI: return "fptosi";
case UIToFP: return "uitofp";
case SIToFP: return "sitofp";
case IntToPtr: return "inttoptr";
case PtrToInt: return "ptrtoint";
case BitCast: return "bitcast";
case AddrSpaceCast: return "addrspacecast";
// Other instructions...
case ICmp: return "icmp";
case FCmp: return "fcmp";
case PHI: return "phi";
case Select: return "select";
case Call: return "call";
case Shl: return "shl";
case LShr: return "lshr";
case AShr: return "ashr";
case VAArg: return "va_arg";
case ExtractElement: return "extractelement";
case InsertElement: return "insertelement";
case ShuffleVector: return "shufflevector";
case ExtractValue: return "extractvalue";
case InsertValue: return "insertvalue";
case LandingPad: return "landingpad";
case CleanupPad: return "cleanuppad";
case Freeze: return "freeze";
default: return "<Invalid operator> ";
}
}
/// Return true if both instructions have the same special state. This must be
/// kept in sync with FunctionComparator::cmpOperations in
/// lib/Transforms/IPO/MergeFunctions.cpp.
static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
bool IgnoreAlignment = false) {
assert(I1->getOpcode() == I2->getOpcode() &&
"Can not compare special state of different instructions");
if (const AllocaInst *AI = dyn_cast<AllocaInst>(I1))
return AI->getAllocatedType() == cast<AllocaInst>(I2)->getAllocatedType() &&
(AI->getAlignment() == cast<AllocaInst>(I2)->getAlignment() ||
IgnoreAlignment);
if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
(LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
IgnoreAlignment) &&
LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
LI->getSyncScopeID() == cast<LoadInst>(I2)->getSyncScopeID();
if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
(SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
IgnoreAlignment) &&
SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
SI->getSyncScopeID() == cast<StoreInst>(I2)->getSyncScopeID();
if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
if (const CallInst *CI = dyn_cast<CallInst>(I1))
return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallInst>(I2));
if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<InvokeInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<InvokeInst>(I2));
if (const CallBrInst *CI = dyn_cast<CallBrInst>(I1))
return CI->getCallingConv() == cast<CallBrInst>(I2)->getCallingConv() &&
CI->getAttributes() == cast<CallBrInst>(I2)->getAttributes() &&
CI->hasIdenticalOperandBundleSchema(*cast<CallBrInst>(I2));
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
FI->getSyncScopeID() == cast<FenceInst>(I2)->getSyncScopeID();
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
CXI->getSuccessOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
CXI->getFailureOrdering() ==
cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
CXI->getSyncScopeID() ==
cast<AtomicCmpXchgInst>(I2)->getSyncScopeID();
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
RMWI->getSyncScopeID() == cast<AtomicRMWInst>(I2)->getSyncScopeID();
return true;
}
bool Instruction::isIdenticalTo(const Instruction *I) const {
return isIdenticalToWhenDefined(I) &&
SubclassOptionalData == I->SubclassOptionalData;
}
bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
getType() != I->getType())
return false;
// If both instructions have no operands, they are identical.
if (getNumOperands() == 0 && I->getNumOperands() == 0)
return haveSameSpecialState(this, I);
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same.
if (!std::equal(op_begin(), op_end(), I->op_begin()))
return false;
if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
const PHINode *otherPHI = cast<PHINode>(I);
return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
otherPHI->block_begin());
}
return haveSameSpecialState(this, I);
}
// Keep this in sync with FunctionComparator::cmpOperations in
// lib/Transforms/IPO/MergeFunctions.cpp.
bool Instruction::isSameOperationAs(const Instruction *I,
unsigned flags) const {
bool IgnoreAlignment = flags & CompareIgnoringAlignment;
bool UseScalarTypes = flags & CompareUsingScalarTypes;
if (getOpcode() != I->getOpcode() ||
getNumOperands() != I->getNumOperands() ||
(UseScalarTypes ?
getType()->getScalarType() != I->getType()->getScalarType() :
getType() != I->getType()))
return false;
// We have two instructions of identical opcode and #operands. Check to see
// if all operands are the same type
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (UseScalarTypes ?
getOperand(i)->getType()->getScalarType() !=
I->getOperand(i)->getType()->getScalarType() :
getOperand(i)->getType() != I->getOperand(i)->getType())
return false;
return haveSameSpecialState(this, I, IgnoreAlignment);
}
bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
for (const Use &U : uses()) {
// PHI nodes uses values in the corresponding predecessor block. For other
// instructions, just check to see whether the parent of the use matches up.
const Instruction *I = cast<Instruction>(U.getUser());
const PHINode *PN = dyn_cast<PHINode>(I);
if (!PN) {
if (I->getParent() != BB)
return true;
continue;
}
if (PN->getIncomingBlock(U) != BB)
return true;
}
return false;
}
bool Instruction::mayReadFromMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::VAArg:
case Instruction::Load:
case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->doesNotReadMemory();
case Instruction::Store:
return !cast<StoreInst>(this)->isUnordered();
}
}
bool Instruction::mayWriteToMemory() const {
switch (getOpcode()) {
default: return false;
case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
case Instruction::Store:
case Instruction::VAArg:
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::CatchPad:
case Instruction::CatchRet:
return true;
case Instruction::Call:
case Instruction::Invoke:
case Instruction::CallBr:
return !cast<CallBase>(this)->onlyReadsMemory();
case Instruction::Load:
return !cast<LoadInst>(this)->isUnordered();
}
}
bool Instruction::isAtomic() const {
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Fence:
return true;
case Instruction::Load:
return cast<LoadInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
case Instruction::Store:
return cast<StoreInst>(this)->getOrdering() != AtomicOrdering::NotAtomic;
}
}
bool Instruction::hasAtomicLoad() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Load:
return true;
}
}
bool Instruction::hasAtomicStore() const {
assert(isAtomic());
switch (getOpcode()) {
default:
return false;
case Instruction::AtomicCmpXchg:
case Instruction::AtomicRMW:
case Instruction::Store:
return true;
}
}
bool Instruction::mayThrow() const {
if (const CallInst *CI = dyn_cast<CallInst>(this))
return !CI->doesNotThrow();
if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
return CRI->unwindsToCaller();
if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(this))
return CatchSwitch->unwindsToCaller();
return isa<ResumeInst>(this);
}
bool Instruction::isSafeToRemove() const {
return (!isa<CallInst>(this) || !this->mayHaveSideEffects()) &&
!this->isTerminator();
}
bool Instruction::isLifetimeStartOrEnd() const {
auto II = dyn_cast<IntrinsicInst>(this);
if (!II)
return false;
Intrinsic::ID ID = II->getIntrinsicID();
return ID == Intrinsic::lifetime_start || ID == Intrinsic::lifetime_end;
}
const Instruction *Instruction::getNextNonDebugInstruction() const {
for (const Instruction *I = getNextNode(); I; I = I->getNextNode())
if (!isa<DbgInfoIntrinsic>(I))
return I;
return nullptr;
}
const Instruction *Instruction::getPrevNonDebugInstruction() const {
for (const Instruction *I = getPrevNode(); I; I = I->getPrevNode())
if (!isa<DbgInfoIntrinsic>(I))
return I;
return nullptr;
}
bool Instruction::isAssociative() const {
unsigned Opcode = getOpcode();
if (isAssociative(Opcode))
return true;
switch (Opcode) {
case FMul:
case FAdd:
return cast<FPMathOperator>(this)->hasAllowReassoc() &&
cast<FPMathOperator>(this)->hasNoSignedZeros();
default:
return false;
}
}
unsigned Instruction::getNumSuccessors() const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getNumSuccessors();
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
BasicBlock *Instruction::getSuccessor(unsigned idx) const {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<const CLASS *>(this)->getSuccessor(idx);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::setSuccessor(unsigned idx, BasicBlock *B) {
switch (getOpcode()) {
#define HANDLE_TERM_INST(N, OPC, CLASS) \
case Instruction::OPC: \
return static_cast<CLASS *>(this)->setSuccessor(idx, B);
#include "llvm/IR/Instruction.def"
default:
break;
}
llvm_unreachable("not a terminator");
}
void Instruction::replaceSuccessorWith(BasicBlock *OldBB, BasicBlock *NewBB) {
for (unsigned Idx = 0, NumSuccessors = Instruction::getNumSuccessors();
Idx != NumSuccessors; ++Idx)
if (getSuccessor(Idx) == OldBB)
setSuccessor(Idx, NewBB);
}
Instruction *Instruction::cloneImpl() const {
llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
}
void Instruction::swapProfMetadata() {
MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
if (!ProfileData || ProfileData->getNumOperands() != 3 ||
!isa<MDString>(ProfileData->getOperand(0)))
return;
MDString *MDName = cast<MDString>(ProfileData->getOperand(0));
if (MDName->getString() != "branch_weights")
return;
// The first operand is the name. Fetch them backwards and build a new one.
Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
ProfileData->getOperand(1)};
setMetadata(LLVMContext::MD_prof,
MDNode::get(ProfileData->getContext(), Ops));
}
void Instruction::copyMetadata(const Instruction &SrcInst,
ArrayRef<unsigned> WL) {
if (!SrcInst.hasMetadata())
return;
DenseSet<unsigned> WLS;
for (unsigned M : WL)
WLS.insert(M);
// Otherwise, enumerate and copy over metadata from the old instruction to the
// new one.
SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
SrcInst.getAllMetadataOtherThanDebugLoc(TheMDs);
for (const auto &MD : TheMDs) {
if (WL.empty() || WLS.count(MD.first))
setMetadata(MD.first, MD.second);
}
if (WL.empty() || WLS.count(LLVMContext::MD_dbg))
setDebugLoc(SrcInst.getDebugLoc());
}
Instruction *Instruction::clone() const {
Instruction *New = nullptr;
switch (getOpcode()) {
default:
llvm_unreachable("Unhandled Opcode.");
#define HANDLE_INST(num, opc, clas) \
case Instruction::opc: \
New = cast<clas>(this)->cloneImpl(); \
break;
#include "llvm/IR/Instruction.def"
#undef HANDLE_INST
}
New->SubclassOptionalData = SubclassOptionalData;
New->copyMetadata(*this);
return New;
}
void Instruction::setProfWeight(uint64_t W) {
assert(isa<CallBase>(this) &&
"Can only set weights for call like instructions");
SmallVector<uint32_t, 1> Weights;
Weights.push_back(W);
MDBuilder MDB(getContext());
setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights));
}