llvm-project/llvm/test/CodeGen/WebAssembly/reg-stackify.ll

269 lines
8.1 KiB
LLVM

; RUN: llc < %s -asm-verbose=false -verify-machineinstrs | FileCheck %s
; Test the register stackifier pass.
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"
; No because of pointer aliasing.
; CHECK-LABEL: no0:
; CHECK: return $1{{$}}
define i32 @no0(i32* %p, i32* %q) {
%t = load i32, i32* %q
store i32 0, i32* %p
ret i32 %t
}
; No because of side effects.
; CHECK-LABEL: no1:
; CHECK: return $1{{$}}
define i32 @no1(i32* %p, i32* dereferenceable(4) %q) {
%t = load volatile i32, i32* %q, !invariant.load !0
store volatile i32 0, i32* %p
ret i32 %t
}
; Yes because of invariant load and no side effects.
; CHECK-LABEL: yes0:
; CHECK: return $pop0{{$}}
define i32 @yes0(i32* %p, i32* dereferenceable(4) %q) {
%t = load i32, i32* %q, !invariant.load !0
store i32 0, i32* %p
ret i32 %t
}
; Yes because of no intervening side effects.
; CHECK-LABEL: yes1:
; CHECK: return $pop0{{$}}
define i32 @yes1(i32* %q) {
%t = load volatile i32, i32* %q
ret i32 %t
}
; Don't schedule stack uses into the stack. To reduce register pressure, the
; scheduler might be tempted to move the definition of $2 down. However, this
; would risk getting incorrect liveness if the instructions are later
; rearranged to make the stack contiguous.
; CHECK-LABEL: stack_uses:
; CHECK-NEXT: .param i32, i32, i32, i32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: block{{$}}
; CHECK-NEXT: i32.const $push13=, 1{{$}}
; CHECK-NEXT: i32.lt_s $push0=, $0, $pop13{{$}}
; CHECK-NEXT: i32.const $push1=, 2{{$}}
; CHECK-NEXT: i32.lt_s $push2=, $1, $pop1{{$}}
; CHECK-NEXT: i32.xor $push5=, $pop0, $pop2{{$}}
; CHECK-NEXT: i32.const $push12=, 1{{$}}
; CHECK-NEXT: i32.lt_s $push3=, $2, $pop12{{$}}
; CHECK-NEXT: i32.const $push11=, 2{{$}}
; CHECK-NEXT: i32.lt_s $push4=, $3, $pop11{{$}}
; CHECK-NEXT: i32.xor $push6=, $pop3, $pop4{{$}}
; CHECK-NEXT: i32.xor $push7=, $pop5, $pop6{{$}}
; CHECK-NEXT: i32.const $push10=, 1{{$}}
; CHECK-NEXT: i32.ne $push8=, $pop7, $pop10{{$}}
; CHECK-NEXT: br_if $pop8, 0{{$}}
; CHECK-NEXT: i32.const $push9=, 0{{$}}
; CHECK-NEXT: return $pop9{{$}}
; CHECK-NEXT: .LBB4_2:
; CHECK-NEXT: end_block{{$}}
; CHECK-NEXT: i32.const $push14=, 1{{$}}
; CHECK-NEXT: return $pop14{{$}}
define i32 @stack_uses(i32 %x, i32 %y, i32 %z, i32 %w) {
entry:
%c = icmp sle i32 %x, 0
%d = icmp sle i32 %y, 1
%e = icmp sle i32 %z, 0
%f = icmp sle i32 %w, 1
%g = xor i1 %c, %d
%h = xor i1 %e, %f
%i = xor i1 %g, %h
br i1 %i, label %true, label %false
true:
ret i32 0
false:
ret i32 1
}
; Test an interesting case where the load has multiple uses and cannot
; be trivially stackified. However, it can be stackified with a tee_local.
; CHECK-LABEL: multiple_uses:
; CHECK-NEXT: .param i32, i32, i32{{$}}
; CHECK-NEXT: .local i32{{$}}
; CHECK-NEXT: block{{$}}
; CHECK-NEXT: i32.load $push0=, 0($2){{$}}
; CHECK-NEXT: tee_local $push3=, $3=, $pop0{{$}}
; CHECK-NEXT: i32.ge_u $push1=, $pop3, $1{{$}}
; CHECK-NEXT: br_if $pop1, 0{{$}}
; CHECK-NEXT: i32.lt_u $push2=, $3, $0{{$}}
; CHECK-NEXT: br_if $pop2, 0{{$}}
; CHECK-NEXT: i32.store $discard=, 0($2), $3{{$}}
; CHECK-NEXT: .LBB5_3:
; CHECK-NEXT: end_block{{$}}
; CHECK-NEXT: return{{$}}
define void @multiple_uses(i32* %arg0, i32* %arg1, i32* %arg2) nounwind {
bb:
br label %loop
loop:
%tmp7 = load i32, i32* %arg2
%tmp8 = inttoptr i32 %tmp7 to i32*
%tmp9 = icmp uge i32* %tmp8, %arg1
%tmp10 = icmp ult i32* %tmp8, %arg0
%tmp11 = or i1 %tmp9, %tmp10
br i1 %tmp11, label %back, label %then
then:
store i32 %tmp7, i32* %arg2
br label %back
back:
br i1 undef, label %return, label %loop
return:
ret void
}
; Don't stackify stores effects across other instructions with side effects.
; CHECK: side_effects:
; CHECK: store
; CHECK-NEXT: call
; CHECK-NEXT: store
; CHECK-NEXT: call
declare void @evoke_side_effects()
define hidden void @stackify_store_across_side_effects(double* nocapture %d) {
entry:
store double 2.0, double* %d
call void @evoke_side_effects()
store double 2.0, double* %d
call void @evoke_side_effects()
ret void
}
; Div instructions have side effects and can't be reordered, but this entire
; function should still be able to be stackified because it's already in
; tree order.
; CHECK-LABEL: div_tree:
; CHECK-NEXT: .param i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32, i32{{$}}
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: i32.div_s $push0=, $0, $1
; CHECK-NEXT: i32.div_s $push1=, $2, $3
; CHECK-NEXT: i32.div_s $push2=, $pop0, $pop1
; CHECK-NEXT: i32.div_s $push3=, $4, $5
; CHECK-NEXT: i32.div_s $push4=, $6, $7
; CHECK-NEXT: i32.div_s $push5=, $pop3, $pop4
; CHECK-NEXT: i32.div_s $push6=, $pop2, $pop5
; CHECK-NEXT: i32.div_s $push7=, $8, $9
; CHECK-NEXT: i32.div_s $push8=, $10, $11
; CHECK-NEXT: i32.div_s $push9=, $pop7, $pop8
; CHECK-NEXT: i32.div_s $push10=, $12, $13
; CHECK-NEXT: i32.div_s $push11=, $14, $15
; CHECK-NEXT: i32.div_s $push12=, $pop10, $pop11
; CHECK-NEXT: i32.div_s $push13=, $pop9, $pop12
; CHECK-NEXT: i32.div_s $push14=, $pop6, $pop13
; CHECK-NEXT: return $pop14
define i32 @div_tree(i32 %a, i32 %b, i32 %c, i32 %d, i32 %e, i32 %f, i32 %g, i32 %h, i32 %i, i32 %j, i32 %k, i32 %l, i32 %m, i32 %n, i32 %o, i32 %p) {
entry:
%div = sdiv i32 %a, %b
%div1 = sdiv i32 %c, %d
%div2 = sdiv i32 %div, %div1
%div3 = sdiv i32 %e, %f
%div4 = sdiv i32 %g, %h
%div5 = sdiv i32 %div3, %div4
%div6 = sdiv i32 %div2, %div5
%div7 = sdiv i32 %i, %j
%div8 = sdiv i32 %k, %l
%div9 = sdiv i32 %div7, %div8
%div10 = sdiv i32 %m, %n
%div11 = sdiv i32 %o, %p
%div12 = sdiv i32 %div10, %div11
%div13 = sdiv i32 %div9, %div12
%div14 = sdiv i32 %div6, %div13
ret i32 %div14
}
; A simple multiple-use case.
; CHECK-LABEL: simple_multiple_use:
; CHECK-NEXT: .param i32, i32{{$}}
; CHECK-NEXT: i32.mul $push0=, $1, $0{{$}}
; CHECK-NEXT: tee_local $push1=, $0=, $pop0{{$}}
; CHECK-NEXT: call use_a@FUNCTION, $pop1{{$}}
; CHECK-NEXT: call use_b@FUNCTION, $0{{$}}
; CHECK-NEXT: return{{$}}
declare void @use_a(i32)
declare void @use_b(i32)
define void @simple_multiple_use(i32 %x, i32 %y) {
%mul = mul i32 %y, %x
call void @use_a(i32 %mul)
call void @use_b(i32 %mul)
ret void
}
; Multiple uses of the same value in one instruction.
; CHECK-LABEL: multiple_uses_in_same_insn:
; CHECK-NEXT: .param i32, i32{{$}}
; CHECK-NEXT: i32.mul $push0=, $1, $0{{$}}
; CHECK-NEXT: tee_local $push1=, $0=, $pop0{{$}}
; CHECK-NEXT: call use_2@FUNCTION, $pop1, $0{{$}}
; CHECK-NEXT: return{{$}}
declare void @use_2(i32, i32)
define void @multiple_uses_in_same_insn(i32 %x, i32 %y) {
%mul = mul i32 %y, %x
call void @use_2(i32 %mul, i32 %mul)
ret void
}
; Commute operands to achieve better stackifying.
; CHECK-LABEL: commute:
; CHECK-NEXT: .result i32{{$}}
; CHECK-NEXT: i32.call $push0=, red@FUNCTION{{$}}
; CHECK-NEXT: i32.call $push1=, green@FUNCTION{{$}}
; CHECK-NEXT: i32.add $push2=, $pop0, $pop1{{$}}
; CHECK-NEXT: i32.call $push3=, blue@FUNCTION{{$}}
; CHECK-NEXT: i32.add $push4=, $pop2, $pop3{{$}}
; CHECK-NEXT: return $pop4{{$}}
declare i32 @red()
declare i32 @green()
declare i32 @blue()
define i32 @commute() {
%call = call i32 @red()
%call1 = call i32 @green()
%add = add i32 %call1, %call
%call2 = call i32 @blue()
%add3 = add i32 %add, %call2
ret i32 %add3
}
; Don't stackify a register when it would move a the def of the register past
; an implicit get_local for the register.
; CHECK-LABEL: no_stackify_past_use:
; CHECK: i32.call $1=, callee@FUNCTION, $0
; CHECK: i32.const $push0=, 1
; CHECK: i32.add $push1=, $0, $pop0
; CHECK: i32.call $push2=, callee@FUNCTION, $pop1
; CHECK: i32.add $push3=, $1, $pop2
; CHECK: i32.mul $push4=, $1, $pop3
; CHECK: return $pop4
declare i32 @callee(i32)
define i32 @no_stackify_past_use(i32 %arg) {
%tmp1 = call i32 @callee(i32 %arg)
%tmp2 = add i32 %arg, 1
%tmp3 = call i32 @callee(i32 %tmp2)
%tmp5 = add i32 %tmp3, %tmp1
%tmp6 = mul i32 %tmp5, %tmp1
ret i32 %tmp6
}
!0 = !{}