llvm-project/clang/utils/TableGen/ClangOpenCLBuiltinEmitter.cpp

1197 lines
43 KiB
C++

//===- ClangOpenCLBuiltinEmitter.cpp - Generate Clang OpenCL Builtin handling
//
// The LLVM Compiler Infrastructure
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These backends consume the definitions of OpenCL builtin functions in
// clang/lib/Sema/OpenCLBuiltins.td and produce builtin handling code for
// inclusion in SemaLookup.cpp, or a test file that calls all declared builtins.
//
//===----------------------------------------------------------------------===//
#include "TableGenBackends.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
using namespace llvm;
namespace {
// A list of signatures that are shared by one or more builtin functions.
struct BuiltinTableEntries {
SmallVector<StringRef, 4> Names;
std::vector<std::pair<const Record *, unsigned>> Signatures;
};
// This tablegen backend emits code for checking whether a function is an
// OpenCL builtin function. If so, all overloads of this function are
// added to the LookupResult. The generated include file is used by
// SemaLookup.cpp
//
// For a successful lookup of e.g. the "cos" builtin, isOpenCLBuiltin("cos")
// returns a pair <Index, Len>.
// BuiltinTable[Index] to BuiltinTable[Index + Len] contains the pairs
// <SigIndex, SigLen> of the overloads of "cos".
// SignatureTable[SigIndex] to SignatureTable[SigIndex + SigLen] contains
// one of the signatures of "cos". The SignatureTable entry can be
// referenced by other functions, e.g. "sin", to exploit the fact that
// many OpenCL builtins share the same signature.
//
// The file generated by this TableGen emitter contains the following:
//
// * Structs and enums to represent types and function signatures.
//
// * const char *FunctionExtensionTable[]
// List of space-separated OpenCL extensions. A builtin references an
// entry in this table when the builtin requires a particular (set of)
// extension(s) to be enabled.
//
// * OpenCLTypeStruct TypeTable[]
// Type information for return types and arguments.
//
// * unsigned SignatureTable[]
// A list of types representing function signatures. Each entry is an index
// into the above TypeTable. Multiple entries following each other form a
// signature, where the first entry is the return type and subsequent
// entries are the argument types.
//
// * OpenCLBuiltinStruct BuiltinTable[]
// Each entry represents one overload of an OpenCL builtin function and
// consists of an index into the SignatureTable and the number of arguments.
//
// * std::pair<unsigned, unsigned> isOpenCLBuiltin(llvm::StringRef Name)
// Find out whether a string matches an existing OpenCL builtin function
// name and return an index into BuiltinTable and the number of overloads.
//
// * void OCL2Qual(Sema&, OpenCLTypeStruct, std::vector<QualType>&)
// Convert an OpenCLTypeStruct type to a list of QualType instances.
// One OpenCLTypeStruct can represent multiple types, primarily when using
// GenTypes.
//
class BuiltinNameEmitter {
public:
BuiltinNameEmitter(RecordKeeper &Records, raw_ostream &OS)
: Records(Records), OS(OS) {}
// Entrypoint to generate the functions and structures for checking
// whether a function is an OpenCL builtin function.
void Emit();
private:
// A list of indices into the builtin function table.
using BuiltinIndexListTy = SmallVector<unsigned, 11>;
// Contains OpenCL builtin functions and related information, stored as
// Record instances. They are coming from the associated TableGen file.
RecordKeeper &Records;
// The output file.
raw_ostream &OS;
// Helper function for BuiltinNameEmitter::EmitDeclarations. Generate enum
// definitions in the Output string parameter, and save their Record instances
// in the List parameter.
// \param Types (in) List containing the Types to extract.
// \param TypesSeen (inout) List containing the Types already extracted.
// \param Output (out) String containing the enums to emit in the output file.
// \param List (out) List containing the extracted Types, except the Types in
// TypesSeen.
void ExtractEnumTypes(std::vector<Record *> &Types,
StringMap<bool> &TypesSeen, std::string &Output,
std::vector<const Record *> &List);
// Emit the enum or struct used in the generated file.
// Populate the TypeList at the same time.
void EmitDeclarations();
// Parse the Records generated by TableGen to populate the SignaturesList,
// FctOverloadMap and TypeMap.
void GetOverloads();
// Compare two lists of signatures and check that e.g. the OpenCL version,
// function attributes, and extension are equal for each signature.
// \param Candidate (in) Entry in the SignatureListMap to check.
// \param SignatureList (in) List of signatures of the considered function.
// \returns true if the two lists of signatures are identical.
bool CanReuseSignature(
BuiltinIndexListTy *Candidate,
std::vector<std::pair<const Record *, unsigned>> &SignatureList);
// Group functions with the same list of signatures by populating the
// SignatureListMap.
// Some builtin functions have the same list of signatures, for example the
// "sin" and "cos" functions. To save space in the BuiltinTable, the
// "isOpenCLBuiltin" function will have the same output for these two
// function names.
void GroupBySignature();
// Emit the FunctionExtensionTable that lists all function extensions.
void EmitExtensionTable();
// Emit the TypeTable containing all types used by OpenCL builtins.
void EmitTypeTable();
// Emit the SignatureTable. This table contains all the possible signatures.
// A signature is stored as a list of indexes of the TypeTable.
// The first index references the return type (mandatory), and the followings
// reference its arguments.
// E.g.:
// 15, 2, 15 can represent a function with the signature:
// int func(float, int)
// The "int" type being at the index 15 in the TypeTable.
void EmitSignatureTable();
// Emit the BuiltinTable table. This table contains all the overloads of
// each function, and is a struct OpenCLBuiltinDecl.
// E.g.:
// // 891 convert_float2_rtn
// { 58, 2, 3, 100, 0 },
// This means that the signature of this convert_float2_rtn overload has
// 1 argument (+1 for the return type), stored at index 58 in
// the SignatureTable. This prototype requires extension "3" in the
// FunctionExtensionTable. The last two values represent the minimum (1.0)
// and maximum (0, meaning no max version) OpenCL version in which this
// overload is supported.
void EmitBuiltinTable();
// Emit a StringMatcher function to check whether a function name is an
// OpenCL builtin function name.
void EmitStringMatcher();
// Emit a function returning the clang QualType instance associated with
// the TableGen Record Type.
void EmitQualTypeFinder();
// Contains a list of the available signatures, without the name of the
// function. Each pair consists of a signature and a cumulative index.
// E.g.: <<float, float>, 0>,
// <<float, int, int, 2>>,
// <<float>, 5>,
// ...
// <<double, double>, 35>.
std::vector<std::pair<std::vector<Record *>, unsigned>> SignaturesList;
// Map the name of a builtin function to its prototypes (instances of the
// TableGen "Builtin" class).
// Each prototype is registered as a pair of:
// <pointer to the "Builtin" instance,
// cumulative index of the associated signature in the SignaturesList>
// E.g.: The function cos: (float cos(float), double cos(double), ...)
// <"cos", <<ptrToPrototype0, 5>,
// <ptrToPrototype1, 35>,
// <ptrToPrototype2, 79>>
// ptrToPrototype1 has the following signature: <double, double>
MapVector<StringRef, std::vector<std::pair<const Record *, unsigned>>>
FctOverloadMap;
// Contains the map of OpenCL types to their index in the TypeTable.
MapVector<const Record *, unsigned> TypeMap;
// List of OpenCL function extensions mapping extension strings to
// an index into the FunctionExtensionTable.
StringMap<unsigned> FunctionExtensionIndex;
// List of OpenCL type names in the same order as in enum OpenCLTypeID.
// This list does not contain generic types.
std::vector<const Record *> TypeList;
// Same as TypeList, but for generic types only.
std::vector<const Record *> GenTypeList;
// Map an ordered vector of signatures to their original Record instances,
// and to a list of function names that share these signatures.
//
// For example, suppose the "cos" and "sin" functions have only three
// signatures, and these signatures are at index Ix in the SignatureTable:
// cos | sin | Signature | Index
// float cos(float) | float sin(float) | Signature1 | I1
// double cos(double) | double sin(double) | Signature2 | I2
// half cos(half) | half sin(half) | Signature3 | I3
//
// Then we will create a mapping of the vector of signatures:
// SignatureListMap[<I1, I2, I3>] = <
// <"cos", "sin">,
// <Signature1, Signature2, Signature3>>
// The function "tan", having the same signatures, would be mapped to the
// same entry (<I1, I2, I3>).
MapVector<BuiltinIndexListTy *, BuiltinTableEntries> SignatureListMap;
};
/// Base class for emitting a file (e.g. header or test) from OpenCLBuiltins.td
class OpenCLBuiltinFileEmitterBase {
public:
OpenCLBuiltinFileEmitterBase(RecordKeeper &Records, raw_ostream &OS)
: Records(Records), OS(OS) {}
virtual ~OpenCLBuiltinFileEmitterBase() = default;
// Entrypoint to generate the functions for testing all OpenCL builtin
// functions.
virtual void emit() = 0;
protected:
struct TypeFlags {
TypeFlags() : IsConst(false), IsVolatile(false), IsPointer(false) {}
bool IsConst : 1;
bool IsVolatile : 1;
bool IsPointer : 1;
StringRef AddrSpace;
};
// Return a string representation of the given type, such that it can be
// used as a type in OpenCL C code.
std::string getTypeString(const Record *Type, TypeFlags Flags,
int VectorSize) const;
// Return the type(s) and vector size(s) for the given type. For
// non-GenericTypes, the resulting vectors will contain 1 element. For
// GenericTypes, the resulting vectors typically contain multiple elements.
void getTypeLists(Record *Type, TypeFlags &Flags,
std::vector<Record *> &TypeList,
std::vector<int64_t> &VectorList) const;
// Expand the TableGen Records representing a builtin function signature into
// one or more function signatures. Return them as a vector of a vector of
// strings, with each string containing an OpenCL C type and optional
// qualifiers.
//
// The Records may contain GenericTypes, which expand into multiple
// signatures. Repeated occurrences of GenericType in a signature expand to
// the same types. For example [char, FGenType, FGenType] expands to:
// [char, float, float]
// [char, float2, float2]
// [char, float3, float3]
// ...
void
expandTypesInSignature(const std::vector<Record *> &Signature,
SmallVectorImpl<SmallVector<std::string, 2>> &Types);
// Emit extension enabling pragmas.
void emitExtensionSetup();
// Emit an #if guard for a Builtin's extension. Return the corresponding
// closing #endif, or an empty string if no extension #if guard was emitted.
std::string emitExtensionGuard(const Record *Builtin);
// Emit an #if guard for a Builtin's language version. Return the
// corresponding closing #endif, or an empty string if no version #if guard
// was emitted.
std::string emitVersionGuard(const Record *Builtin);
// Contains OpenCL builtin functions and related information, stored as
// Record instances. They are coming from the associated TableGen file.
RecordKeeper &Records;
// The output file.
raw_ostream &OS;
};
// OpenCL builtin test generator. This class processes the same TableGen input
// as BuiltinNameEmitter, but generates a .cl file that contains a call to each
// builtin function described in the .td input.
class OpenCLBuiltinTestEmitter : public OpenCLBuiltinFileEmitterBase {
public:
OpenCLBuiltinTestEmitter(RecordKeeper &Records, raw_ostream &OS)
: OpenCLBuiltinFileEmitterBase(Records, OS) {}
// Entrypoint to generate the functions for testing all OpenCL builtin
// functions.
void emit() override;
};
} // namespace
void BuiltinNameEmitter::Emit() {
emitSourceFileHeader("OpenCL Builtin handling", OS);
OS << "#include \"llvm/ADT/StringRef.h\"\n";
OS << "using namespace clang;\n\n";
// Emit enums and structs.
EmitDeclarations();
// Parse the Records to populate the internal lists.
GetOverloads();
GroupBySignature();
// Emit tables.
EmitExtensionTable();
EmitTypeTable();
EmitSignatureTable();
EmitBuiltinTable();
// Emit functions.
EmitStringMatcher();
EmitQualTypeFinder();
}
void BuiltinNameEmitter::ExtractEnumTypes(std::vector<Record *> &Types,
StringMap<bool> &TypesSeen,
std::string &Output,
std::vector<const Record *> &List) {
raw_string_ostream SS(Output);
for (const auto *T : Types) {
if (TypesSeen.find(T->getValueAsString("Name")) == TypesSeen.end()) {
SS << " OCLT_" + T->getValueAsString("Name") << ",\n";
// Save the type names in the same order as their enum value. Note that
// the Record can be a VectorType or something else, only the name is
// important.
List.push_back(T);
TypesSeen.insert(std::make_pair(T->getValueAsString("Name"), true));
}
}
SS.flush();
}
void BuiltinNameEmitter::EmitDeclarations() {
// Enum of scalar type names (float, int, ...) and generic type sets.
OS << "enum OpenCLTypeID {\n";
StringMap<bool> TypesSeen;
std::string GenTypeEnums;
std::string TypeEnums;
// Extract generic types and non-generic types separately, to keep
// gentypes at the end of the enum which simplifies the special handling
// for gentypes in SemaLookup.
std::vector<Record *> GenTypes =
Records.getAllDerivedDefinitions("GenericType");
ExtractEnumTypes(GenTypes, TypesSeen, GenTypeEnums, GenTypeList);
std::vector<Record *> Types = Records.getAllDerivedDefinitions("Type");
ExtractEnumTypes(Types, TypesSeen, TypeEnums, TypeList);
OS << TypeEnums;
OS << GenTypeEnums;
OS << "};\n";
// Structure definitions.
OS << R"(
// Image access qualifier.
enum OpenCLAccessQual : unsigned char {
OCLAQ_None,
OCLAQ_ReadOnly,
OCLAQ_WriteOnly,
OCLAQ_ReadWrite
};
// Represents a return type or argument type.
struct OpenCLTypeStruct {
// A type (e.g. float, int, ...).
const OpenCLTypeID ID;
// Vector size (if applicable; 0 for scalars and generic types).
const unsigned VectorWidth;
// 0 if the type is not a pointer.
const bool IsPointer : 1;
// 0 if the type is not const.
const bool IsConst : 1;
// 0 if the type is not volatile.
const bool IsVolatile : 1;
// Access qualifier.
const OpenCLAccessQual AccessQualifier;
// Address space of the pointer (if applicable).
const LangAS AS;
};
// One overload of an OpenCL builtin function.
struct OpenCLBuiltinStruct {
// Index of the signature in the OpenCLTypeStruct table.
const unsigned SigTableIndex;
// Entries between index SigTableIndex and (SigTableIndex + NumTypes - 1) in
// the SignatureTable represent the complete signature. The first type at
// index SigTableIndex is the return type.
const unsigned NumTypes;
// Function attribute __attribute__((pure))
const bool IsPure : 1;
// Function attribute __attribute__((const))
const bool IsConst : 1;
// Function attribute __attribute__((convergent))
const bool IsConv : 1;
// OpenCL extension(s) required for this overload.
const unsigned short Extension;
// OpenCL versions in which this overload is available.
const unsigned short Versions;
};
)";
}
// Verify that the combination of GenTypes in a signature is supported.
// To simplify the logic for creating overloads in SemaLookup, only allow
// a signature to contain different GenTypes if these GenTypes represent
// the same number of actual scalar or vector types.
//
// Exit with a fatal error if an unsupported construct is encountered.
static void VerifySignature(const std::vector<Record *> &Signature,
const Record *BuiltinRec) {
unsigned GenTypeVecSizes = 1;
unsigned GenTypeTypes = 1;
for (const auto *T : Signature) {
// Check all GenericType arguments in this signature.
if (T->isSubClassOf("GenericType")) {
// Check number of vector sizes.
unsigned NVecSizes =
T->getValueAsDef("VectorList")->getValueAsListOfInts("List").size();
if (NVecSizes != GenTypeVecSizes && NVecSizes != 1) {
if (GenTypeVecSizes > 1) {
// We already saw a gentype with a different number of vector sizes.
PrintFatalError(BuiltinRec->getLoc(),
"number of vector sizes should be equal or 1 for all gentypes "
"in a declaration");
}
GenTypeVecSizes = NVecSizes;
}
// Check number of data types.
unsigned NTypes =
T->getValueAsDef("TypeList")->getValueAsListOfDefs("List").size();
if (NTypes != GenTypeTypes && NTypes != 1) {
if (GenTypeTypes > 1) {
// We already saw a gentype with a different number of types.
PrintFatalError(BuiltinRec->getLoc(),
"number of types should be equal or 1 for all gentypes "
"in a declaration");
}
GenTypeTypes = NTypes;
}
}
}
}
void BuiltinNameEmitter::GetOverloads() {
// Populate the TypeMap.
std::vector<Record *> Types = Records.getAllDerivedDefinitions("Type");
unsigned I = 0;
for (const auto &T : Types) {
TypeMap.insert(std::make_pair(T, I++));
}
// Populate the SignaturesList and the FctOverloadMap.
unsigned CumulativeSignIndex = 0;
std::vector<Record *> Builtins = Records.getAllDerivedDefinitions("Builtin");
for (const auto *B : Builtins) {
StringRef BName = B->getValueAsString("Name");
if (FctOverloadMap.find(BName) == FctOverloadMap.end()) {
FctOverloadMap.insert(std::make_pair(
BName, std::vector<std::pair<const Record *, unsigned>>{}));
}
auto Signature = B->getValueAsListOfDefs("Signature");
// Reuse signatures to avoid unnecessary duplicates.
auto it =
llvm::find_if(SignaturesList,
[&](const std::pair<std::vector<Record *>, unsigned> &a) {
return a.first == Signature;
});
unsigned SignIndex;
if (it == SignaturesList.end()) {
VerifySignature(Signature, B);
SignaturesList.push_back(std::make_pair(Signature, CumulativeSignIndex));
SignIndex = CumulativeSignIndex;
CumulativeSignIndex += Signature.size();
} else {
SignIndex = it->second;
}
FctOverloadMap[BName].push_back(std::make_pair(B, SignIndex));
}
}
void BuiltinNameEmitter::EmitExtensionTable() {
OS << "static const char *FunctionExtensionTable[] = {\n";
unsigned Index = 0;
std::vector<Record *> FuncExtensions =
Records.getAllDerivedDefinitions("FunctionExtension");
for (const auto &FE : FuncExtensions) {
// Emit OpenCL extension table entry.
OS << " // " << Index << ": " << FE->getName() << "\n"
<< " \"" << FE->getValueAsString("ExtName") << "\",\n";
// Record index of this extension.
FunctionExtensionIndex[FE->getName()] = Index++;
}
OS << "};\n\n";
}
void BuiltinNameEmitter::EmitTypeTable() {
OS << "static const OpenCLTypeStruct TypeTable[] = {\n";
for (const auto &T : TypeMap) {
const char *AccessQual =
StringSwitch<const char *>(T.first->getValueAsString("AccessQualifier"))
.Case("RO", "OCLAQ_ReadOnly")
.Case("WO", "OCLAQ_WriteOnly")
.Case("RW", "OCLAQ_ReadWrite")
.Default("OCLAQ_None");
OS << " // " << T.second << "\n"
<< " {OCLT_" << T.first->getValueAsString("Name") << ", "
<< T.first->getValueAsInt("VecWidth") << ", "
<< T.first->getValueAsBit("IsPointer") << ", "
<< T.first->getValueAsBit("IsConst") << ", "
<< T.first->getValueAsBit("IsVolatile") << ", "
<< AccessQual << ", "
<< T.first->getValueAsString("AddrSpace") << "},\n";
}
OS << "};\n\n";
}
void BuiltinNameEmitter::EmitSignatureTable() {
// Store a type (e.g. int, float, int2, ...). The type is stored as an index
// of a struct OpenCLType table. Multiple entries following each other form a
// signature.
OS << "static const unsigned short SignatureTable[] = {\n";
for (const auto &P : SignaturesList) {
OS << " // " << P.second << "\n ";
for (const Record *R : P.first) {
unsigned Entry = TypeMap.find(R)->second;
if (Entry > USHRT_MAX) {
// Report an error when seeing an entry that is too large for the
// current index type (unsigned short). When hitting this, the type
// of SignatureTable will need to be changed.
PrintFatalError("Entry in SignatureTable exceeds limit.");
}
OS << Entry << ", ";
}
OS << "\n";
}
OS << "};\n\n";
}
// Encode a range MinVersion..MaxVersion into a single bit mask that can be
// checked against LangOpts using isOpenCLVersionContainedInMask().
// This must be kept in sync with OpenCLVersionID in OpenCLOptions.h.
// (Including OpenCLOptions.h here would be a layering violation.)
static unsigned short EncodeVersions(unsigned int MinVersion,
unsigned int MaxVersion) {
unsigned short Encoded = 0;
// A maximum version of 0 means available in all later versions.
if (MaxVersion == 0) {
MaxVersion = UINT_MAX;
}
unsigned VersionIDs[] = {100, 110, 120, 200, 300};
for (unsigned I = 0; I < sizeof(VersionIDs) / sizeof(VersionIDs[0]); I++) {
if (VersionIDs[I] >= MinVersion && VersionIDs[I] < MaxVersion) {
Encoded |= 1 << I;
}
}
return Encoded;
}
void BuiltinNameEmitter::EmitBuiltinTable() {
unsigned Index = 0;
OS << "static const OpenCLBuiltinStruct BuiltinTable[] = {\n";
for (const auto &SLM : SignatureListMap) {
OS << " // " << (Index + 1) << ": ";
for (const auto &Name : SLM.second.Names) {
OS << Name << ", ";
}
OS << "\n";
for (const auto &Overload : SLM.second.Signatures) {
StringRef ExtName = Overload.first->getValueAsDef("Extension")->getName();
unsigned int MinVersion =
Overload.first->getValueAsDef("MinVersion")->getValueAsInt("ID");
unsigned int MaxVersion =
Overload.first->getValueAsDef("MaxVersion")->getValueAsInt("ID");
OS << " { " << Overload.second << ", "
<< Overload.first->getValueAsListOfDefs("Signature").size() << ", "
<< (Overload.first->getValueAsBit("IsPure")) << ", "
<< (Overload.first->getValueAsBit("IsConst")) << ", "
<< (Overload.first->getValueAsBit("IsConv")) << ", "
<< FunctionExtensionIndex[ExtName] << ", "
<< EncodeVersions(MinVersion, MaxVersion) << " },\n";
Index++;
}
}
OS << "};\n\n";
}
bool BuiltinNameEmitter::CanReuseSignature(
BuiltinIndexListTy *Candidate,
std::vector<std::pair<const Record *, unsigned>> &SignatureList) {
assert(Candidate->size() == SignatureList.size() &&
"signature lists should have the same size");
auto &CandidateSigs =
SignatureListMap.find(Candidate)->second.Signatures;
for (unsigned Index = 0; Index < Candidate->size(); Index++) {
const Record *Rec = SignatureList[Index].first;
const Record *Rec2 = CandidateSigs[Index].first;
if (Rec->getValueAsBit("IsPure") == Rec2->getValueAsBit("IsPure") &&
Rec->getValueAsBit("IsConst") == Rec2->getValueAsBit("IsConst") &&
Rec->getValueAsBit("IsConv") == Rec2->getValueAsBit("IsConv") &&
Rec->getValueAsDef("MinVersion")->getValueAsInt("ID") ==
Rec2->getValueAsDef("MinVersion")->getValueAsInt("ID") &&
Rec->getValueAsDef("MaxVersion")->getValueAsInt("ID") ==
Rec2->getValueAsDef("MaxVersion")->getValueAsInt("ID") &&
Rec->getValueAsDef("Extension")->getName() ==
Rec2->getValueAsDef("Extension")->getName()) {
return true;
}
}
return false;
}
void BuiltinNameEmitter::GroupBySignature() {
// List of signatures known to be emitted.
std::vector<BuiltinIndexListTy *> KnownSignatures;
for (auto &Fct : FctOverloadMap) {
bool FoundReusableSig = false;
// Gather all signatures for the current function.
auto *CurSignatureList = new BuiltinIndexListTy();
for (const auto &Signature : Fct.second) {
CurSignatureList->push_back(Signature.second);
}
// Sort the list to facilitate future comparisons.
llvm::sort(*CurSignatureList);
// Check if we have already seen another function with the same list of
// signatures. If so, just add the name of the function.
for (auto *Candidate : KnownSignatures) {
if (Candidate->size() == CurSignatureList->size() &&
*Candidate == *CurSignatureList) {
if (CanReuseSignature(Candidate, Fct.second)) {
SignatureListMap.find(Candidate)->second.Names.push_back(Fct.first);
FoundReusableSig = true;
}
}
}
if (FoundReusableSig) {
delete CurSignatureList;
} else {
// Add a new entry.
SignatureListMap[CurSignatureList] = {
SmallVector<StringRef, 4>(1, Fct.first), Fct.second};
KnownSignatures.push_back(CurSignatureList);
}
}
for (auto *I : KnownSignatures) {
delete I;
}
}
void BuiltinNameEmitter::EmitStringMatcher() {
std::vector<StringMatcher::StringPair> ValidBuiltins;
unsigned CumulativeIndex = 1;
for (const auto &SLM : SignatureListMap) {
const auto &Ovl = SLM.second.Signatures;
// A single signature list may be used by different builtins. Return the
// same <index, length> pair for each of those builtins.
for (const auto &FctName : SLM.second.Names) {
std::string RetStmt;
raw_string_ostream SS(RetStmt);
SS << "return std::make_pair(" << CumulativeIndex << ", " << Ovl.size()
<< ");";
SS.flush();
ValidBuiltins.push_back(
StringMatcher::StringPair(std::string(FctName), RetStmt));
}
CumulativeIndex += Ovl.size();
}
OS << R"(
// Find out whether a string matches an existing OpenCL builtin function name.
// Returns: A pair <0, 0> if no name matches.
// A pair <Index, Len> indexing the BuiltinTable if the name is
// matching an OpenCL builtin function.
static std::pair<unsigned, unsigned> isOpenCLBuiltin(llvm::StringRef Name) {
)";
StringMatcher("Name", ValidBuiltins, OS).Emit(0, true);
OS << " return std::make_pair(0, 0);\n";
OS << "} // isOpenCLBuiltin\n";
}
void BuiltinNameEmitter::EmitQualTypeFinder() {
OS << R"(
static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name);
static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name);
// Convert an OpenCLTypeStruct type to a list of QualTypes.
// Generic types represent multiple types and vector sizes, thus a vector
// is returned. The conversion is done in two steps:
// Step 1: A switch statement fills a vector with scalar base types for the
// Cartesian product of (vector sizes) x (types) for generic types,
// or a single scalar type for non generic types.
// Step 2: Qualifiers and other type properties such as vector size are
// applied.
static void OCL2Qual(Sema &S, const OpenCLTypeStruct &Ty,
llvm::SmallVectorImpl<QualType> &QT) {
ASTContext &Context = S.Context;
// Number of scalar types in the GenType.
unsigned GenTypeNumTypes;
// Pointer to the list of vector sizes for the GenType.
llvm::ArrayRef<unsigned> GenVectorSizes;
)";
// Generate list of vector sizes for each generic type.
for (const auto *VectList : Records.getAllDerivedDefinitions("IntList")) {
OS << " constexpr unsigned List"
<< VectList->getValueAsString("Name") << "[] = {";
for (const auto V : VectList->getValueAsListOfInts("List")) {
OS << V << ", ";
}
OS << "};\n";
}
// Step 1.
// Start of switch statement over all types.
OS << "\n switch (Ty.ID) {\n";
// Switch cases for image types (Image2d, Image3d, ...)
std::vector<Record *> ImageTypes =
Records.getAllDerivedDefinitions("ImageType");
// Map an image type name to its 3 access-qualified types (RO, WO, RW).
StringMap<SmallVector<Record *, 3>> ImageTypesMap;
for (auto *IT : ImageTypes) {
auto Entry = ImageTypesMap.find(IT->getValueAsString("Name"));
if (Entry == ImageTypesMap.end()) {
SmallVector<Record *, 3> ImageList;
ImageList.push_back(IT);
ImageTypesMap.insert(
std::make_pair(IT->getValueAsString("Name"), ImageList));
} else {
Entry->second.push_back(IT);
}
}
// Emit the cases for the image types. For an image type name, there are 3
// corresponding QualTypes ("RO", "WO", "RW"). The "AccessQualifier" field
// tells which one is needed. Emit a switch statement that puts the
// corresponding QualType into "QT".
for (const auto &ITE : ImageTypesMap) {
OS << " case OCLT_" << ITE.getKey() << ":\n"
<< " switch (Ty.AccessQualifier) {\n"
<< " case OCLAQ_None:\n"
<< " llvm_unreachable(\"Image without access qualifier\");\n";
for (const auto &Image : ITE.getValue()) {
OS << StringSwitch<const char *>(
Image->getValueAsString("AccessQualifier"))
.Case("RO", " case OCLAQ_ReadOnly:\n")
.Case("WO", " case OCLAQ_WriteOnly:\n")
.Case("RW", " case OCLAQ_ReadWrite:\n")
<< " QT.push_back("
<< Image->getValueAsDef("QTExpr")->getValueAsString("TypeExpr")
<< ");\n"
<< " break;\n";
}
OS << " }\n"
<< " break;\n";
}
// Switch cases for generic types.
for (const auto *GenType : Records.getAllDerivedDefinitions("GenericType")) {
OS << " case OCLT_" << GenType->getValueAsString("Name") << ": {\n";
// Build the Cartesian product of (vector sizes) x (types). Only insert
// the plain scalar types for now; other type information such as vector
// size and type qualifiers will be added after the switch statement.
std::vector<Record *> BaseTypes =
GenType->getValueAsDef("TypeList")->getValueAsListOfDefs("List");
// Collect all QualTypes for a single vector size into TypeList.
OS << " SmallVector<QualType, " << BaseTypes.size() << "> TypeList;\n";
for (const auto *T : BaseTypes) {
StringRef Ext =
T->getValueAsDef("Extension")->getValueAsString("ExtName");
if (!Ext.empty()) {
OS << " if (S.getPreprocessor().isMacroDefined(\"" << Ext
<< "\")) {\n ";
}
OS << " TypeList.push_back("
<< T->getValueAsDef("QTExpr")->getValueAsString("TypeExpr") << ");\n";
if (!Ext.empty()) {
OS << " }\n";
}
}
OS << " GenTypeNumTypes = TypeList.size();\n";
// Duplicate the TypeList for every vector size.
std::vector<int64_t> VectorList =
GenType->getValueAsDef("VectorList")->getValueAsListOfInts("List");
OS << " QT.reserve(" << VectorList.size() * BaseTypes.size() << ");\n"
<< " for (unsigned I = 0; I < " << VectorList.size() << "; I++) {\n"
<< " QT.append(TypeList);\n"
<< " }\n";
// GenVectorSizes is the list of vector sizes for this GenType.
OS << " GenVectorSizes = List"
<< GenType->getValueAsDef("VectorList")->getValueAsString("Name")
<< ";\n"
<< " break;\n"
<< " }\n";
}
// Switch cases for non generic, non image types (int, int4, float, ...).
// Only insert the plain scalar type; vector information and type qualifiers
// are added in step 2.
std::vector<Record *> Types = Records.getAllDerivedDefinitions("Type");
StringMap<bool> TypesSeen;
for (const auto *T : Types) {
// Check this is not an image type
if (ImageTypesMap.find(T->getValueAsString("Name")) != ImageTypesMap.end())
continue;
// Check we have not seen this Type
if (TypesSeen.find(T->getValueAsString("Name")) != TypesSeen.end())
continue;
TypesSeen.insert(std::make_pair(T->getValueAsString("Name"), true));
// Check the Type does not have an "abstract" QualType
auto QT = T->getValueAsDef("QTExpr");
if (QT->getValueAsBit("IsAbstract") == 1)
continue;
// Emit the cases for non generic, non image types.
OS << " case OCLT_" << T->getValueAsString("Name") << ":\n";
StringRef Ext = T->getValueAsDef("Extension")->getValueAsString("ExtName");
// If this type depends on an extension, ensure the extension macro is
// defined.
if (!Ext.empty()) {
OS << " if (S.getPreprocessor().isMacroDefined(\"" << Ext
<< "\")) {\n ";
}
OS << " QT.push_back(" << QT->getValueAsString("TypeExpr") << ");\n";
if (!Ext.empty()) {
OS << " }\n";
}
OS << " break;\n";
}
// End of switch statement.
OS << " } // end of switch (Ty.ID)\n\n";
// Step 2.
// Add ExtVector types if this was a generic type, as the switch statement
// above only populated the list with scalar types. This completes the
// construction of the Cartesian product of (vector sizes) x (types).
OS << " // Construct the different vector types for each generic type.\n";
OS << " if (Ty.ID >= " << TypeList.size() << ") {";
OS << R"(
for (unsigned I = 0; I < QT.size(); I++) {
// For scalars, size is 1.
if (GenVectorSizes[I / GenTypeNumTypes] != 1) {
QT[I] = Context.getExtVectorType(QT[I],
GenVectorSizes[I / GenTypeNumTypes]);
}
}
}
)";
// Assign the right attributes to the types (e.g. vector size).
OS << R"(
// Set vector size for non-generic vector types.
if (Ty.VectorWidth > 1) {
for (unsigned Index = 0; Index < QT.size(); Index++) {
QT[Index] = Context.getExtVectorType(QT[Index], Ty.VectorWidth);
}
}
if (Ty.IsVolatile != 0) {
for (unsigned Index = 0; Index < QT.size(); Index++) {
QT[Index] = Context.getVolatileType(QT[Index]);
}
}
if (Ty.IsConst != 0) {
for (unsigned Index = 0; Index < QT.size(); Index++) {
QT[Index] = Context.getConstType(QT[Index]);
}
}
// Transform the type to a pointer as the last step, if necessary.
// Builtin functions only have pointers on [const|volatile], no
// [const|volatile] pointers, so this is ok to do it as a last step.
if (Ty.IsPointer != 0) {
for (unsigned Index = 0; Index < QT.size(); Index++) {
QT[Index] = Context.getAddrSpaceQualType(QT[Index], Ty.AS);
QT[Index] = Context.getPointerType(QT[Index]);
}
}
)";
// End of the "OCL2Qual" function.
OS << "\n} // OCL2Qual\n";
}
std::string OpenCLBuiltinFileEmitterBase::getTypeString(const Record *Type,
TypeFlags Flags,
int VectorSize) const {
std::string S;
if (Type->getValueAsBit("IsConst") || Flags.IsConst) {
S += "const ";
}
if (Type->getValueAsBit("IsVolatile") || Flags.IsVolatile) {
S += "volatile ";
}
auto PrintAddrSpace = [&S](StringRef AddrSpace) {
S += StringSwitch<const char *>(AddrSpace)
.Case("clang::LangAS::opencl_private", "__private")
.Case("clang::LangAS::opencl_global", "__global")
.Case("clang::LangAS::opencl_constant", "__constant")
.Case("clang::LangAS::opencl_local", "__local")
.Case("clang::LangAS::opencl_generic", "__generic")
.Default("__private");
S += " ";
};
if (Flags.IsPointer) {
PrintAddrSpace(Flags.AddrSpace);
} else if (Type->getValueAsBit("IsPointer")) {
PrintAddrSpace(Type->getValueAsString("AddrSpace"));
}
StringRef Acc = Type->getValueAsString("AccessQualifier");
if (Acc != "") {
S += StringSwitch<const char *>(Acc)
.Case("RO", "__read_only ")
.Case("WO", "__write_only ")
.Case("RW", "__read_write ");
}
S += Type->getValueAsString("Name").str();
if (VectorSize > 1) {
S += std::to_string(VectorSize);
}
if (Type->getValueAsBit("IsPointer") || Flags.IsPointer) {
S += " *";
}
return S;
}
void OpenCLBuiltinFileEmitterBase::getTypeLists(
Record *Type, TypeFlags &Flags, std::vector<Record *> &TypeList,
std::vector<int64_t> &VectorList) const {
bool isGenType = Type->isSubClassOf("GenericType");
if (isGenType) {
TypeList = Type->getValueAsDef("TypeList")->getValueAsListOfDefs("List");
VectorList =
Type->getValueAsDef("VectorList")->getValueAsListOfInts("List");
return;
}
if (Type->isSubClassOf("PointerType") || Type->isSubClassOf("ConstType") ||
Type->isSubClassOf("VolatileType")) {
StringRef SubTypeName = Type->getValueAsString("Name");
Record *PossibleGenType = Records.getDef(SubTypeName);
if (PossibleGenType && PossibleGenType->isSubClassOf("GenericType")) {
// When PointerType, ConstType, or VolatileType is applied to a
// GenericType, the flags need to be taken from the subtype, not from the
// GenericType.
Flags.IsPointer = Type->getValueAsBit("IsPointer");
Flags.IsConst = Type->getValueAsBit("IsConst");
Flags.IsVolatile = Type->getValueAsBit("IsVolatile");
Flags.AddrSpace = Type->getValueAsString("AddrSpace");
getTypeLists(PossibleGenType, Flags, TypeList, VectorList);
return;
}
}
// Not a GenericType, so just insert the single type.
TypeList.push_back(Type);
VectorList.push_back(Type->getValueAsInt("VecWidth"));
}
void OpenCLBuiltinFileEmitterBase::expandTypesInSignature(
const std::vector<Record *> &Signature,
SmallVectorImpl<SmallVector<std::string, 2>> &Types) {
// Find out if there are any GenTypes in this signature, and if so, calculate
// into how many signatures they will expand.
unsigned NumSignatures = 1;
SmallVector<SmallVector<std::string, 4>, 4> ExpandedGenTypes;
for (const auto &Arg : Signature) {
SmallVector<std::string, 4> ExpandedArg;
std::vector<Record *> TypeList;
std::vector<int64_t> VectorList;
TypeFlags Flags;
getTypeLists(Arg, Flags, TypeList, VectorList);
// Insert the Cartesian product of the types and vector sizes.
for (const auto &Vector : VectorList) {
for (const auto &Type : TypeList) {
ExpandedArg.push_back(getTypeString(Type, Flags, Vector));
}
}
NumSignatures = std::max<unsigned>(NumSignatures, ExpandedArg.size());
ExpandedGenTypes.push_back(ExpandedArg);
}
// Now the total number of signatures is known. Populate the return list with
// all signatures.
for (unsigned I = 0; I < NumSignatures; I++) {
SmallVector<std::string, 2> Args;
// Process a single signature.
for (unsigned ArgNum = 0; ArgNum < Signature.size(); ArgNum++) {
// For differently-sized GenTypes in a parameter list, the smaller
// GenTypes just repeat, so index modulo the number of expanded types.
size_t TypeIndex = I % ExpandedGenTypes[ArgNum].size();
Args.push_back(ExpandedGenTypes[ArgNum][TypeIndex]);
}
Types.push_back(Args);
}
}
void OpenCLBuiltinFileEmitterBase::emitExtensionSetup() {
OS << R"(
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#pragma OPENCL EXTENSION cl_khr_int64_base_atomics : enable
#pragma OPENCL EXTENSION cl_khr_int64_extended_atomics : enable
#pragma OPENCL EXTENSION cl_khr_gl_msaa_sharing : enable
#pragma OPENCL EXTENSION cl_khr_mipmap_image_writes : enable
#pragma OPENCL EXTENSION cl_khr_3d_image_writes : enable
)";
}
std::string
OpenCLBuiltinFileEmitterBase::emitExtensionGuard(const Record *Builtin) {
StringRef Extensions =
Builtin->getValueAsDef("Extension")->getValueAsString("ExtName");
if (Extensions.empty())
return "";
OS << "#if";
SmallVector<StringRef, 2> ExtVec;
Extensions.split(ExtVec, " ");
bool isFirst = true;
for (StringRef Ext : ExtVec) {
if (!isFirst) {
OS << " &&";
}
OS << " defined(" << Ext << ")";
isFirst = false;
}
OS << "\n";
return "#endif // Extension\n";
}
std::string
OpenCLBuiltinFileEmitterBase::emitVersionGuard(const Record *Builtin) {
std::string OptionalEndif;
auto PrintOpenCLVersion = [this](int Version) {
OS << "CL_VERSION_" << (Version / 100) << "_" << ((Version % 100) / 10);
};
int MinVersion = Builtin->getValueAsDef("MinVersion")->getValueAsInt("ID");
if (MinVersion != 100) {
// OpenCL 1.0 is the default minimum version.
OS << "#if __OPENCL_C_VERSION__ >= ";
PrintOpenCLVersion(MinVersion);
OS << "\n";
OptionalEndif = "#endif // MinVersion\n" + OptionalEndif;
}
int MaxVersion = Builtin->getValueAsDef("MaxVersion")->getValueAsInt("ID");
if (MaxVersion) {
OS << "#if __OPENCL_C_VERSION__ < ";
PrintOpenCLVersion(MaxVersion);
OS << "\n";
OptionalEndif = "#endif // MaxVersion\n" + OptionalEndif;
}
return OptionalEndif;
}
void OpenCLBuiltinTestEmitter::emit() {
emitSourceFileHeader("OpenCL Builtin exhaustive testing", OS);
emitExtensionSetup();
// Ensure each test has a unique name by numbering them.
unsigned TestID = 0;
// Iterate over all builtins.
std::vector<Record *> Builtins = Records.getAllDerivedDefinitions("Builtin");
for (const auto *B : Builtins) {
StringRef Name = B->getValueAsString("Name");
SmallVector<SmallVector<std::string, 2>, 4> FTypes;
expandTypesInSignature(B->getValueAsListOfDefs("Signature"), FTypes);
OS << "// Test " << Name << "\n";
std::string OptionalExtensionEndif = emitExtensionGuard(B);
std::string OptionalVersionEndif = emitVersionGuard(B);
for (const auto &Signature : FTypes) {
// Emit function declaration.
OS << Signature[0] << " test" << TestID++ << "_" << Name << "(";
if (Signature.size() > 1) {
for (unsigned I = 1; I < Signature.size(); I++) {
if (I != 1)
OS << ", ";
OS << Signature[I] << " arg" << I;
}
}
OS << ") {\n";
// Emit function body.
OS << " ";
if (Signature[0] != "void") {
OS << "return ";
}
OS << Name << "(";
for (unsigned I = 1; I < Signature.size(); I++) {
if (I != 1)
OS << ", ";
OS << "arg" << I;
}
OS << ");\n";
// End of function body.
OS << "}\n";
}
OS << OptionalVersionEndif;
OS << OptionalExtensionEndif;
}
}
void clang::EmitClangOpenCLBuiltins(RecordKeeper &Records, raw_ostream &OS) {
BuiltinNameEmitter NameChecker(Records, OS);
NameChecker.Emit();
}
void clang::EmitClangOpenCLBuiltinTests(RecordKeeper &Records,
raw_ostream &OS) {
OpenCLBuiltinTestEmitter TestFileGenerator(Records, OS);
TestFileGenerator.emit();
}