llvm-project/compiler-rt/lib/xray/xray_inmemory_log.cc

279 lines
9.0 KiB
C++

//===-- xray_inmemory_log.cc ------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of a simple in-memory log of XRay events. This defines a
// logging function that's compatible with the XRay handler interface, and
// routines for exporting data to files.
//
//===----------------------------------------------------------------------===//
#include <cassert>
#include <cstdio>
#include <fcntl.h>
#include <mutex>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <thread>
#include <unistd.h>
#if defined(__x86_64__)
#include <x86intrin.h>
#elif defined(__arm__)
static const int64_t NanosecondsPerSecond = 1000LL * 1000 * 1000;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
#include "sanitizer_common/sanitizer_libc.h"
#include "xray/xray_records.h"
#include "xray_defs.h"
#include "xray_flags.h"
#include "xray_interface_internal.h"
// __xray_InMemoryRawLog will use a thread-local aligned buffer capped to a
// certain size (32kb by default) and use it as if it were a circular buffer for
// events. We store simple fixed-sized entries in the log for external analysis.
extern "C" {
void __xray_InMemoryRawLog(int32_t FuncId,
XRayEntryType Type) XRAY_NEVER_INSTRUMENT;
}
namespace __xray {
std::mutex LogMutex;
static void retryingWriteAll(int Fd, char *Begin,
char *End) XRAY_NEVER_INSTRUMENT {
if (Begin == End)
return;
auto TotalBytes = std::distance(Begin, End);
while (auto Written = write(Fd, Begin, TotalBytes)) {
if (Written < 0) {
if (errno == EINTR)
continue; // Try again.
Report("Failed to write; errno = %d", errno);
return;
}
TotalBytes -= Written;
if (TotalBytes == 0)
break;
Begin += Written;
}
}
#if defined(__x86_64__)
static std::pair<ssize_t, bool>
retryingReadSome(int Fd, char *Begin, char *End) XRAY_NEVER_INSTRUMENT {
auto BytesToRead = std::distance(Begin, End);
ssize_t BytesRead;
ssize_t TotalBytesRead = 0;
while (BytesToRead && (BytesRead = read(Fd, Begin, BytesToRead))) {
if (BytesRead == -1) {
if (errno == EINTR)
continue;
Report("Read error; errno = %d", errno);
return std::make_pair(TotalBytesRead, false);
}
TotalBytesRead += BytesRead;
BytesToRead -= BytesRead;
Begin += BytesRead;
}
return std::make_pair(TotalBytesRead, true);
}
static bool readValueFromFile(const char *Filename,
long long *Value) XRAY_NEVER_INSTRUMENT {
int Fd = open(Filename, O_RDONLY | O_CLOEXEC);
if (Fd == -1)
return false;
static constexpr size_t BufSize = 256;
char Line[BufSize] = {};
ssize_t BytesRead;
bool Success;
std::tie(BytesRead, Success) = retryingReadSome(Fd, Line, Line + BufSize);
if (!Success)
return false;
close(Fd);
char *End = nullptr;
long long Tmp = internal_simple_strtoll(Line, &End, 10);
bool Result = false;
if (Line[0] != '\0' && (*End == '\n' || *End == '\0')) {
*Value = Tmp;
Result = true;
}
return Result;
}
#endif /* CPU architecture */
class ThreadExitFlusher {
int Fd;
XRayRecord *Start;
size_t &Offset;
public:
explicit ThreadExitFlusher(int Fd, XRayRecord *Start,
size_t &Offset) XRAY_NEVER_INSTRUMENT
: Fd(Fd),
Start(Start),
Offset(Offset) {}
~ThreadExitFlusher() XRAY_NEVER_INSTRUMENT {
std::lock_guard<std::mutex> L(LogMutex);
if (Fd > 0 && Start != nullptr) {
retryingWriteAll(Fd, reinterpret_cast<char *>(Start),
reinterpret_cast<char *>(Start + Offset));
// Because this thread's exit could be the last one trying to write to the
// file and that we're not able to close out the file properly, we sync
// instead and hope that the pending writes are flushed as the thread
// exits.
fsync(Fd);
}
}
};
} // namespace __xray
using namespace __xray;
void PrintToStdErr(const char *Buffer) XRAY_NEVER_INSTRUMENT {
fprintf(stderr, "%s", Buffer);
}
void __xray_InMemoryRawLog(int32_t FuncId,
XRayEntryType Type) XRAY_NEVER_INSTRUMENT {
using Buffer =
std::aligned_storage<sizeof(XRayRecord), alignof(XRayRecord)>::type;
static constexpr size_t BuffLen = 1024;
thread_local static Buffer InMemoryBuffer[BuffLen] = {};
thread_local static size_t Offset = 0;
static int Fd = [] {
// FIXME: Figure out how to make this less stderr-dependent.
SetPrintfAndReportCallback(PrintToStdErr);
// Open a temporary file once for the log.
static char TmpFilename[256] = {};
static char TmpWildcardPattern[] = "XXXXXX";
auto E = internal_strncat(TmpFilename, flags()->xray_logfile_base,
sizeof(TmpFilename) - 10);
if (static_cast<size_t>((E + 6) - TmpFilename) >
(sizeof(TmpFilename) - 1)) {
Report("XRay log file base too long: %s", flags()->xray_logfile_base);
return -1;
}
internal_strncat(TmpFilename, TmpWildcardPattern,
sizeof(TmpWildcardPattern) - 1);
int Fd = mkstemp(TmpFilename);
if (Fd == -1) {
Report("XRay: Failed opening temporary file '%s'; not logging events.",
TmpFilename);
return -1;
}
if (Verbosity())
fprintf(stderr, "XRay: Log file in '%s'\n", TmpFilename);
// Get the cycle frequency from SysFS on Linux.
long long CPUFrequency = -1;
#if defined(__x86_64__)
if (readValueFromFile("/sys/devices/system/cpu/cpu0/tsc_freq_khz",
&CPUFrequency)) {
CPUFrequency *= 1000;
} else if (readValueFromFile(
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq",
&CPUFrequency)) {
CPUFrequency *= 1000;
} else {
Report("Unable to determine CPU frequency for TSC accounting.");
}
#elif defined(__arm__)
// There is no instruction like RDTSCP in user mode on ARM. ARM's CP15 does
// not have a constant frequency like TSC on x86(_64), it may go faster
// or slower depending on CPU turbo or power saving mode. Furthermore,
// to read from CP15 on ARM a kernel modification or a driver is needed.
// We can not require this from users of compiler-rt.
// So on ARM we use clock_gettime() which gives the result in nanoseconds.
// To get the measurements per second, we scale this by the number of
// nanoseconds per second, pretending that the TSC frequency is 1GHz and
// one TSC tick is 1 nanosecond.
CPUFrequency = NanosecondsPerSecond;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
// Since we're here, we get to write the header. We set it up so that the
// header will only be written once, at the start, and let the threads
// logging do writes which just append.
XRayFileHeader Header;
Header.Version = 1;
Header.Type = FileTypes::NAIVE_LOG;
Header.CycleFrequency =
CPUFrequency == -1 ? 0 : static_cast<uint64_t>(CPUFrequency);
// FIXME: Actually check whether we have 'constant_tsc' and 'nonstop_tsc'
// before setting the values in the header.
Header.ConstantTSC = 1;
Header.NonstopTSC = 1;
retryingWriteAll(Fd, reinterpret_cast<char *>(&Header),
reinterpret_cast<char *>(&Header) + sizeof(Header));
return Fd;
}();
if (Fd == -1)
return;
thread_local __xray::ThreadExitFlusher Flusher(
Fd, reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer), Offset);
thread_local pid_t TId = syscall(SYS_gettid);
// First we get the useful data, and stuff it into the already aligned buffer
// through a pointer offset.
auto &R = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer)[Offset];
R.RecordType = RecordTypes::NORMAL;
#if defined(__x86_64__)
{
unsigned CPU;
R.TSC = __rdtscp(&CPU);
R.CPU = CPU;
}
#elif defined(__arm__)
{
timespec TS;
int result = clock_gettime(CLOCK_REALTIME, &TS);
if (result != 0) {
Report("clock_gettime() returned %d, errno=%d.", result, int(errno));
TS.tv_sec = 0;
TS.tv_nsec = 0;
}
R.TSC = TS.tv_sec * NanosecondsPerSecond + TS.tv_nsec;
R.CPU = 0;
}
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */
R.TId = TId;
R.Type = Type;
R.FuncId = FuncId;
++Offset;
if (Offset == BuffLen) {
std::lock_guard<std::mutex> L(LogMutex);
auto RecordBuffer = reinterpret_cast<__xray::XRayRecord *>(InMemoryBuffer);
retryingWriteAll(Fd, reinterpret_cast<char *>(RecordBuffer),
reinterpret_cast<char *>(RecordBuffer + Offset));
Offset = 0;
}
}
static auto Unused = [] {
if (flags()->xray_naive_log)
__xray_set_handler(__xray_InMemoryRawLog);
return true;
}();