llvm-project/llvm/lib/Target/Hexagon/HexagonSubtarget.cpp

385 lines
12 KiB
C++

//===-- HexagonSubtarget.cpp - Hexagon Subtarget Information --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Hexagon specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "HexagonSubtarget.h"
#include "Hexagon.h"
#include "HexagonRegisterInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include <map>
using namespace llvm;
#define DEBUG_TYPE "hexagon-subtarget"
#define GET_SUBTARGETINFO_CTOR
#define GET_SUBTARGETINFO_TARGET_DESC
#include "HexagonGenSubtargetInfo.inc"
static cl::opt<bool> EnableMemOps("enable-hexagon-memops",
cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(true),
cl::desc("Generate V4 MEMOP in code generation for Hexagon target"));
static cl::opt<bool> DisableMemOps("disable-hexagon-memops",
cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(false),
cl::desc("Do not generate V4 MEMOP in code generation for Hexagon target"));
static cl::opt<bool> EnableIEEERndNear("enable-hexagon-ieee-rnd-near",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Generate non-chopped conversion from fp to int."));
static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(true));
static cl::opt<bool> EnableHexagonHVXDouble("enable-hexagon-hvx-double",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Hexagon Double Vector eXtensions"));
static cl::opt<bool> EnableHexagonHVX("enable-hexagon-hvx",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable Hexagon Vector eXtensions"));
static cl::opt<bool> EnableTCLatencySched("enable-tc-latency-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(false));
static cl::opt<bool> EnableDotCurSched("enable-cur-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(true),
cl::desc("Enable the scheduler to generate .cur"));
static cl::opt<bool> EnableVecFrwdSched("enable-evec-frwd-sched",
cl::Hidden, cl::ZeroOrMore, cl::init(true));
static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Disable Hexagon MI Scheduling"));
static cl::opt<bool> EnableSubregLiveness("hexagon-subreg-liveness",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("Enable subregister liveness tracking for Hexagon"));
static cl::opt<bool> OverrideLongCalls("hexagon-long-calls",
cl::Hidden, cl::ZeroOrMore, cl::init(false),
cl::desc("If present, forces/disables the use of long calls"));
void HexagonSubtarget::initializeEnvironment() {
UseMemOps = false;
ModeIEEERndNear = false;
UseBSBScheduling = false;
}
HexagonSubtarget &
HexagonSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS) {
CPUString = HEXAGON_MC::selectHexagonCPU(getTargetTriple(), CPU);
static std::map<StringRef, HexagonArchEnum> CpuTable {
{ "hexagonv4", V4 },
{ "hexagonv5", V5 },
{ "hexagonv55", V55 },
{ "hexagonv60", V60 },
};
auto foundIt = CpuTable.find(CPUString);
if (foundIt != CpuTable.end())
HexagonArchVersion = foundIt->second;
else
llvm_unreachable("Unrecognized Hexagon processor version");
UseHVXOps = false;
UseHVXDblOps = false;
UseLongCalls = false;
ParseSubtargetFeatures(CPUString, FS);
if (EnableHexagonHVX.getPosition())
UseHVXOps = EnableHexagonHVX;
if (EnableHexagonHVXDouble.getPosition())
UseHVXDblOps = EnableHexagonHVXDouble;
if (OverrideLongCalls.getPosition())
UseLongCalls = OverrideLongCalls;
return *this;
}
HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
StringRef FS, const TargetMachine &TM)
: HexagonGenSubtargetInfo(TT, CPU, FS), CPUString(CPU),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
FrameLowering() {
initializeEnvironment();
// Initialize scheduling itinerary for the specified CPU.
InstrItins = getInstrItineraryForCPU(CPUString);
// UseMemOps on by default unless disabled explicitly
if (DisableMemOps)
UseMemOps = false;
else if (EnableMemOps)
UseMemOps = true;
else
UseMemOps = false;
if (EnableIEEERndNear)
ModeIEEERndNear = true;
else
ModeIEEERndNear = false;
UseBSBScheduling = hasV60TOps() && EnableBSBSched;
}
void HexagonSubtarget::HexagonDAGMutation::apply(ScheduleDAGInstrs *DAG) {
for (auto &SU : DAG->SUnits) {
if (!SU.isInstr())
continue;
SmallVector<SDep, 4> Erase;
for (auto &D : SU.Preds)
if (D.getKind() == SDep::Output && D.getReg() == Hexagon::USR_OVF)
Erase.push_back(D);
for (auto &E : Erase)
SU.removePred(E);
}
for (auto &SU : DAG->SUnits) {
// Update the latency of chain edges between v60 vector load or store
// instructions to be 1. These instructions cannot be scheduled in the
// same packet.
MachineInstr &MI1 = *SU.getInstr();
auto *QII = static_cast<const HexagonInstrInfo*>(DAG->TII);
bool IsStoreMI1 = MI1.mayStore();
bool IsLoadMI1 = MI1.mayLoad();
if (!QII->isV60VectorInstruction(MI1) || !(IsStoreMI1 || IsLoadMI1))
continue;
for (auto &SI : SU.Succs) {
if (SI.getKind() != SDep::Order || SI.getLatency() != 0)
continue;
MachineInstr &MI2 = *SI.getSUnit()->getInstr();
if (!QII->isV60VectorInstruction(MI2))
continue;
if ((IsStoreMI1 && MI2.mayStore()) || (IsLoadMI1 && MI2.mayLoad())) {
SI.setLatency(1);
SU.setHeightDirty();
// Change the dependence in the opposite direction too.
for (auto &PI : SI.getSUnit()->Preds) {
if (PI.getSUnit() != &SU || PI.getKind() != SDep::Order)
continue;
PI.setLatency(1);
SI.getSUnit()->setDepthDirty();
}
}
}
}
}
void HexagonSubtarget::getPostRAMutations(
std::vector<std::unique_ptr<ScheduleDAGMutation>> &Mutations) const {
Mutations.push_back(make_unique<HexagonSubtarget::HexagonDAGMutation>());
}
// Pin the vtable to this file.
void HexagonSubtarget::anchor() {}
bool HexagonSubtarget::enableMachineScheduler() const {
if (DisableHexagonMISched.getNumOccurrences())
return !DisableHexagonMISched;
return true;
}
bool HexagonSubtarget::enableSubRegLiveness() const {
return EnableSubregLiveness;
}
// This helper function is responsible for increasing the latency only.
void HexagonSubtarget::updateLatency(MachineInstr &SrcInst,
MachineInstr &DstInst, SDep &Dep) const {
if (!hasV60TOps())
return;
auto &QII = static_cast<const HexagonInstrInfo&>(*getInstrInfo());
if (EnableVecFrwdSched && QII.addLatencyToSchedule(SrcInst, DstInst)) {
// Vec frwd scheduling.
Dep.setLatency(Dep.getLatency() + 1);
} else if (useBSBScheduling() &&
QII.isLateInstrFeedsEarlyInstr(SrcInst, DstInst)) {
// BSB scheduling.
Dep.setLatency(Dep.getLatency() + 1);
} else if (EnableTCLatencySched) {
// TClass latency scheduling.
// Check if SrcInst produces in 2C an operand of DstInst taken in stage 2B.
if (QII.isTC1(SrcInst) || QII.isTC2(SrcInst))
if (!QII.isTC1(DstInst) && !QII.isTC2(DstInst))
Dep.setLatency(Dep.getLatency() + 1);
}
}
/// If the SUnit has a zero latency edge, return the other SUnit.
static SUnit *getZeroLatency(SUnit *N, SmallVector<SDep, 4> &Deps) {
for (auto &I : Deps)
if (I.isAssignedRegDep() && I.getLatency() == 0 &&
!I.getSUnit()->getInstr()->isPseudo())
return I.getSUnit();
return nullptr;
}
/// Change the latency between the two SUnits.
void HexagonSubtarget::changeLatency(SUnit *Src, SmallVector<SDep, 4> &Deps,
SUnit *Dst, unsigned Lat) const {
MachineInstr &SrcI = *Src->getInstr();
for (auto &I : Deps) {
if (I.getSUnit() != Dst)
continue;
I.setLatency(Lat);
SUnit *UpdateDst = I.getSUnit();
updateLatency(SrcI, *UpdateDst->getInstr(), I);
// Update the latency of opposite edge too.
for (auto &PI : UpdateDst->Preds) {
if (PI.getSUnit() != Src || !PI.isAssignedRegDep())
continue;
PI.setLatency(Lat);
updateLatency(SrcI, *UpdateDst->getInstr(), PI);
}
}
}
// Return true if these are the best two instructions to schedule
// together with a zero latency. Only one dependence should have a zero
// latency. If there are multiple choices, choose the best, and change
// ther others, if needed.
bool HexagonSubtarget::isBestZeroLatency(SUnit *Src, SUnit *Dst,
const HexagonInstrInfo *TII) const {
MachineInstr &SrcInst = *Src->getInstr();
MachineInstr &DstInst = *Dst->getInstr();
if (SrcInst.isPHI() || DstInst.isPHI())
return false;
// Check if the Dst instruction is the best candidate first.
SUnit *Best = nullptr;
SUnit *DstBest = nullptr;
SUnit *SrcBest = getZeroLatency(Dst, Dst->Preds);
if (SrcBest == nullptr || Src->NodeNum >= SrcBest->NodeNum) {
// Check that Src doesn't have a better candidate.
DstBest = getZeroLatency(Src, Src->Succs);
if (DstBest == nullptr || Dst->NodeNum <= DstBest->NodeNum)
Best = Dst;
}
if (Best != Dst)
return false;
// The caller frequents adds the same dependence twice. If so, then
// return true for this case too.
if (Src == SrcBest && Dst == DstBest)
return true;
// Reassign the latency for the previous bests, which requires setting
// the dependence edge in both directions.
if (SrcBest != nullptr)
changeLatency(SrcBest, SrcBest->Succs, Dst, 1);
if (DstBest != nullptr)
changeLatency(Src, Src->Succs, DstBest, 1);
// If there is an edge from SrcBest to DstBst, then try to change that
// to 0 now.
if (SrcBest && DstBest)
changeLatency(SrcBest, SrcBest->Succs, DstBest, 0);
return true;
}
// Update the latency of a Phi when the Phi bridges two instructions that
// require a multi-cycle latency.
void HexagonSubtarget::changePhiLatency(MachineInstr &SrcInst, SUnit *Dst,
SDep &Dep) const {
if (!SrcInst.isPHI() || Dst->NumPreds == 0 || Dep.getLatency() != 0)
return;
for (const SDep &PI : Dst->Preds) {
if (PI.getLatency() != 0)
continue;
Dep.setLatency(2);
break;
}
}
/// \brief Perform target specific adjustments to the latency of a schedule
/// dependency.
void HexagonSubtarget::adjustSchedDependency(SUnit *Src, SUnit *Dst,
SDep &Dep) const {
MachineInstr *SrcInst = Src->getInstr();
MachineInstr *DstInst = Dst->getInstr();
if (!Src->isInstr() || !Dst->isInstr())
return;
const HexagonInstrInfo *QII = static_cast<const HexagonInstrInfo *>(getInstrInfo());
// Instructions with .new operands have zero latency.
if (QII->canExecuteInBundle(*SrcInst, *DstInst) &&
isBestZeroLatency(Src, Dst, QII)) {
Dep.setLatency(0);
return;
}
if (!hasV60TOps())
return;
// Don't adjust the latency of post-increment part of the instruction.
if (QII->isPostIncrement(*SrcInst) && Dep.isAssignedRegDep()) {
if (SrcInst->mayStore())
return;
if (Dep.getReg() != SrcInst->getOperand(0).getReg())
return;
} else if (QII->isPostIncrement(*DstInst) && Dep.getKind() == SDep::Anti) {
if (DstInst->mayStore())
return;
if (Dep.getReg() != DstInst->getOperand(0).getReg())
return;
} else if (QII->isPostIncrement(*DstInst) && DstInst->mayStore() &&
Dep.isAssignedRegDep()) {
MachineOperand &Op = DstInst->getOperand(DstInst->getNumOperands() - 1);
if (Op.isReg() && Dep.getReg() != Op.getReg())
return;
}
// Check if we need to change any the latency values when Phis are added.
if (useBSBScheduling() && SrcInst->isPHI()) {
changePhiLatency(*SrcInst, Dst, Dep);
return;
}
// If it's a REG_SEQUENCE, use its destination instruction to determine
// the correct latency.
if (DstInst->isRegSequence() && Dst->NumSuccs == 1)
DstInst = Dst->Succs[0].getSUnit()->getInstr();
// Try to schedule uses near definitions to generate .cur.
if (EnableDotCurSched && QII->isToBeScheduledASAP(*SrcInst, *DstInst) &&
isBestZeroLatency(Src, Dst, QII)) {
Dep.setLatency(0);
return;
}
updateLatency(*SrcInst, *DstInst, Dep);
}
unsigned HexagonSubtarget::getL1CacheLineSize() const {
return 32;
}
unsigned HexagonSubtarget::getL1PrefetchDistance() const {
return 32;
}