forked from OSchip/llvm-project
264 lines
9.6 KiB
C++
264 lines
9.6 KiB
C++
//===----- KaleidoscopeJIT.h - A simple JIT for Kaleidoscope ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Contains a simple JIT definition for use in the kaleidoscope tutorials.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
|
|
#define LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
|
|
|
|
#include "RemoteJITUtils.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ExecutionEngine/ExecutionEngine.h"
|
|
#include "llvm/ExecutionEngine/JITSymbol.h"
|
|
#include "llvm/ExecutionEngine/RuntimeDyld.h"
|
|
#include "llvm/ExecutionEngine/SectionMemoryManager.h"
|
|
#include "llvm/ExecutionEngine/Orc/CompileOnDemandLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
|
|
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/LambdaResolver.h"
|
|
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
|
|
#include "llvm/ExecutionEngine/Orc/OrcRemoteTargetClient.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/Support/DynamicLibrary.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <memory>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
class PrototypeAST;
|
|
class ExprAST;
|
|
|
|
/// FunctionAST - This class represents a function definition itself.
|
|
class FunctionAST {
|
|
std::unique_ptr<PrototypeAST> Proto;
|
|
std::unique_ptr<ExprAST> Body;
|
|
|
|
public:
|
|
FunctionAST(std::unique_ptr<PrototypeAST> Proto,
|
|
std::unique_ptr<ExprAST> Body)
|
|
: Proto(std::move(Proto)), Body(std::move(Body)) {}
|
|
const PrototypeAST& getProto() const;
|
|
const std::string& getName() const;
|
|
llvm::Function *codegen();
|
|
};
|
|
|
|
/// This will compile FnAST to IR, rename the function to add the given
|
|
/// suffix (needed to prevent a name-clash with the function's stub),
|
|
/// and then take ownership of the module that the function was compiled
|
|
/// into.
|
|
std::unique_ptr<llvm::Module>
|
|
irgenAndTakeOwnership(FunctionAST &FnAST, const std::string &Suffix);
|
|
|
|
namespace llvm {
|
|
namespace orc {
|
|
|
|
// Typedef the remote-client API.
|
|
typedef remote::OrcRemoteTargetClient<FDRPCChannel> MyRemote;
|
|
|
|
class KaleidoscopeJIT {
|
|
private:
|
|
std::unique_ptr<TargetMachine> TM;
|
|
const DataLayout DL;
|
|
ObjectLinkingLayer<> ObjectLayer;
|
|
IRCompileLayer<decltype(ObjectLayer)> CompileLayer;
|
|
|
|
typedef std::function<std::unique_ptr<Module>(std::unique_ptr<Module>)>
|
|
OptimizeFunction;
|
|
|
|
IRTransformLayer<decltype(CompileLayer), OptimizeFunction> OptimizeLayer;
|
|
|
|
JITCompileCallbackManager *CompileCallbackMgr;
|
|
std::unique_ptr<IndirectStubsManager> IndirectStubsMgr;
|
|
MyRemote &Remote;
|
|
|
|
public:
|
|
typedef decltype(OptimizeLayer)::ModuleSetHandleT ModuleHandle;
|
|
|
|
KaleidoscopeJIT(MyRemote &Remote)
|
|
: TM(EngineBuilder().selectTarget()),
|
|
DL(TM->createDataLayout()),
|
|
CompileLayer(ObjectLayer, SimpleCompiler(*TM)),
|
|
OptimizeLayer(CompileLayer,
|
|
[this](std::unique_ptr<Module> M) {
|
|
return optimizeModule(std::move(M));
|
|
}),
|
|
Remote(Remote) {
|
|
auto CCMgrOrErr = Remote.enableCompileCallbacks(0);
|
|
if (!CCMgrOrErr) {
|
|
logAllUnhandledErrors(CCMgrOrErr.takeError(), errs(),
|
|
"Error enabling remote compile callbacks:");
|
|
exit(1);
|
|
}
|
|
CompileCallbackMgr = &*CCMgrOrErr;
|
|
std::unique_ptr<MyRemote::RCIndirectStubsManager> ISM;
|
|
if (auto Err = Remote.createIndirectStubsManager(ISM)) {
|
|
logAllUnhandledErrors(std::move(Err), errs(),
|
|
"Error creating indirect stubs manager:");
|
|
exit(1);
|
|
}
|
|
IndirectStubsMgr = std::move(ISM);
|
|
llvm::sys::DynamicLibrary::LoadLibraryPermanently(nullptr);
|
|
}
|
|
|
|
TargetMachine &getTargetMachine() { return *TM; }
|
|
|
|
ModuleHandle addModule(std::unique_ptr<Module> M) {
|
|
|
|
// Build our symbol resolver:
|
|
// Lambda 1: Look back into the JIT itself to find symbols that are part of
|
|
// the same "logical dylib".
|
|
// Lambda 2: Search for external symbols in the host process.
|
|
auto Resolver = createLambdaResolver(
|
|
[&](const std::string &Name) {
|
|
if (auto Sym = IndirectStubsMgr->findStub(Name, false))
|
|
return Sym;
|
|
if (auto Sym = OptimizeLayer.findSymbol(Name, false))
|
|
return Sym;
|
|
return JITSymbol(nullptr);
|
|
},
|
|
[&](const std::string &Name) {
|
|
if (auto AddrOrErr = Remote.getSymbolAddress(Name))
|
|
return JITSymbol(*AddrOrErr, JITSymbolFlags::Exported);
|
|
else {
|
|
logAllUnhandledErrors(AddrOrErr.takeError(), errs(),
|
|
"Error resolving remote symbol:");
|
|
exit(1);
|
|
}
|
|
return JITSymbol(nullptr);
|
|
});
|
|
|
|
std::unique_ptr<MyRemote::RCMemoryManager> MemMgr;
|
|
if (auto Err = Remote.createRemoteMemoryManager(MemMgr)) {
|
|
logAllUnhandledErrors(std::move(Err), errs(),
|
|
"Error creating remote memory manager:");
|
|
exit(1);
|
|
}
|
|
|
|
// Build a singlton module set to hold our module.
|
|
std::vector<std::unique_ptr<Module>> Ms;
|
|
Ms.push_back(std::move(M));
|
|
|
|
// Add the set to the JIT with the resolver we created above and a newly
|
|
// created SectionMemoryManager.
|
|
return OptimizeLayer.addModuleSet(std::move(Ms),
|
|
std::move(MemMgr),
|
|
std::move(Resolver));
|
|
}
|
|
|
|
Error addFunctionAST(std::unique_ptr<FunctionAST> FnAST) {
|
|
// Create a CompileCallback - this is the re-entry point into the compiler
|
|
// for functions that haven't been compiled yet.
|
|
auto CCInfo = CompileCallbackMgr->getCompileCallback();
|
|
|
|
// Create an indirect stub. This serves as the functions "canonical
|
|
// definition" - an unchanging (constant address) entry point to the
|
|
// function implementation.
|
|
// Initially we point the stub's function-pointer at the compile callback
|
|
// that we just created. In the compile action for the callback (see below)
|
|
// we will update the stub's function pointer to point at the function
|
|
// implementation that we just implemented.
|
|
if (auto Err = IndirectStubsMgr->createStub(mangle(FnAST->getName()),
|
|
CCInfo.getAddress(),
|
|
JITSymbolFlags::Exported))
|
|
return Err;
|
|
|
|
// Move ownership of FnAST to a shared pointer - C++11 lambdas don't support
|
|
// capture-by-move, which is be required for unique_ptr.
|
|
auto SharedFnAST = std::shared_ptr<FunctionAST>(std::move(FnAST));
|
|
|
|
// Set the action to compile our AST. This lambda will be run if/when
|
|
// execution hits the compile callback (via the stub).
|
|
//
|
|
// The steps to compile are:
|
|
// (1) IRGen the function.
|
|
// (2) Add the IR module to the JIT to make it executable like any other
|
|
// module.
|
|
// (3) Use findSymbol to get the address of the compiled function.
|
|
// (4) Update the stub pointer to point at the implementation so that
|
|
/// subsequent calls go directly to it and bypass the compiler.
|
|
// (5) Return the address of the implementation: this lambda will actually
|
|
// be run inside an attempted call to the function, and we need to
|
|
// continue on to the implementation to complete the attempted call.
|
|
// The JIT runtime (the resolver block) will use the return address of
|
|
// this function as the address to continue at once it has reset the
|
|
// CPU state to what it was immediately before the call.
|
|
CCInfo.setCompileAction(
|
|
[this, SharedFnAST]() {
|
|
auto M = irgenAndTakeOwnership(*SharedFnAST, "$impl");
|
|
addModule(std::move(M));
|
|
auto Sym = findSymbol(SharedFnAST->getName() + "$impl");
|
|
assert(Sym && "Couldn't find compiled function?");
|
|
JITTargetAddress SymAddr = Sym.getAddress();
|
|
if (auto Err =
|
|
IndirectStubsMgr->updatePointer(mangle(SharedFnAST->getName()),
|
|
SymAddr)) {
|
|
logAllUnhandledErrors(std::move(Err), errs(),
|
|
"Error updating function pointer: ");
|
|
exit(1);
|
|
}
|
|
|
|
return SymAddr;
|
|
});
|
|
|
|
return Error::success();
|
|
}
|
|
|
|
Error executeRemoteExpr(JITTargetAddress ExprAddr) {
|
|
return Remote.callVoidVoid(ExprAddr);
|
|
}
|
|
|
|
JITSymbol findSymbol(const std::string Name) {
|
|
return OptimizeLayer.findSymbol(mangle(Name), true);
|
|
}
|
|
|
|
void removeModule(ModuleHandle H) {
|
|
OptimizeLayer.removeModuleSet(H);
|
|
}
|
|
|
|
private:
|
|
|
|
std::string mangle(const std::string &Name) {
|
|
std::string MangledName;
|
|
raw_string_ostream MangledNameStream(MangledName);
|
|
Mangler::getNameWithPrefix(MangledNameStream, Name, DL);
|
|
return MangledNameStream.str();
|
|
}
|
|
|
|
std::unique_ptr<Module> optimizeModule(std::unique_ptr<Module> M) {
|
|
// Create a function pass manager.
|
|
auto FPM = llvm::make_unique<legacy::FunctionPassManager>(M.get());
|
|
|
|
// Add some optimizations.
|
|
FPM->add(createInstructionCombiningPass());
|
|
FPM->add(createReassociatePass());
|
|
FPM->add(createGVNPass());
|
|
FPM->add(createCFGSimplificationPass());
|
|
FPM->doInitialization();
|
|
|
|
// Run the optimizations over all functions in the module being added to
|
|
// the JIT.
|
|
for (auto &F : *M)
|
|
FPM->run(F);
|
|
|
|
return M;
|
|
}
|
|
|
|
};
|
|
|
|
} // end namespace orc
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_EXECUTIONENGINE_ORC_KALEIDOSCOPEJIT_H
|