forked from OSchip/llvm-project
483 lines
17 KiB
C++
483 lines
17 KiB
C++
//===- TruncInstCombine.cpp -----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// TruncInstCombine - looks for expression dags post-dominated by TruncInst and
|
|
// for each eligible dag, it will create a reduced bit-width expression, replace
|
|
// the old expression with this new one and remove the old expression.
|
|
// Eligible expression dag is such that:
|
|
// 1. Contains only supported instructions.
|
|
// 2. Supported leaves: ZExtInst, SExtInst, TruncInst and Constant value.
|
|
// 3. Can be evaluated into type with reduced legal bit-width.
|
|
// 4. All instructions in the dag must not have users outside the dag.
|
|
// The only exception is for {ZExt, SExt}Inst with operand type equal to
|
|
// the new reduced type evaluated in (3).
|
|
//
|
|
// The motivation for this optimization is that evaluating and expression using
|
|
// smaller bit-width is preferable, especially for vectorization where we can
|
|
// fit more values in one vectorized instruction. In addition, this optimization
|
|
// may decrease the number of cast instructions, but will not increase it.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AggressiveInstCombineInternal.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "aggressive-instcombine"
|
|
|
|
STATISTIC(
|
|
NumDAGsReduced,
|
|
"Number of truncations eliminated by reducing bit width of expression DAG");
|
|
STATISTIC(NumInstrsReduced,
|
|
"Number of instructions whose bit width was reduced");
|
|
|
|
/// Given an instruction and a container, it fills all the relevant operands of
|
|
/// that instruction, with respect to the Trunc expression dag optimizaton.
|
|
static void getRelevantOperands(Instruction *I, SmallVectorImpl<Value *> &Ops) {
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// These CastInst are considered leaves of the evaluated expression, thus,
|
|
// their operands are not relevent.
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
Ops.push_back(I->getOperand(0));
|
|
Ops.push_back(I->getOperand(1));
|
|
break;
|
|
case Instruction::Select:
|
|
Ops.push_back(I->getOperand(1));
|
|
Ops.push_back(I->getOperand(2));
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unreachable!");
|
|
}
|
|
}
|
|
|
|
bool TruncInstCombine::buildTruncExpressionDag() {
|
|
SmallVector<Value *, 8> Worklist;
|
|
SmallVector<Instruction *, 8> Stack;
|
|
// Clear old expression dag.
|
|
InstInfoMap.clear();
|
|
|
|
Worklist.push_back(CurrentTruncInst->getOperand(0));
|
|
|
|
while (!Worklist.empty()) {
|
|
Value *Curr = Worklist.back();
|
|
|
|
if (isa<Constant>(Curr)) {
|
|
Worklist.pop_back();
|
|
continue;
|
|
}
|
|
|
|
auto *I = dyn_cast<Instruction>(Curr);
|
|
if (!I)
|
|
return false;
|
|
|
|
if (!Stack.empty() && Stack.back() == I) {
|
|
// Already handled all instruction operands, can remove it from both the
|
|
// Worklist and the Stack, and add it to the instruction info map.
|
|
Worklist.pop_back();
|
|
Stack.pop_back();
|
|
// Insert I to the Info map.
|
|
InstInfoMap.insert(std::make_pair(I, Info()));
|
|
continue;
|
|
}
|
|
|
|
if (InstInfoMap.count(I)) {
|
|
Worklist.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Add the instruction to the stack before start handling its operands.
|
|
Stack.push_back(I);
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// trunc(trunc(x)) -> trunc(x)
|
|
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
|
|
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new
|
|
// dest
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
case Instruction::Select: {
|
|
SmallVector<Value *, 2> Operands;
|
|
getRelevantOperands(I, Operands);
|
|
append_range(Worklist, Operands);
|
|
break;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here:
|
|
// 1. shufflevector, extractelement, insertelement
|
|
// 2. udiv, urem
|
|
// 3. phi node(and loop handling)
|
|
// ...
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned TruncInstCombine::getMinBitWidth() {
|
|
SmallVector<Value *, 8> Worklist;
|
|
SmallVector<Instruction *, 8> Stack;
|
|
|
|
Value *Src = CurrentTruncInst->getOperand(0);
|
|
Type *DstTy = CurrentTruncInst->getType();
|
|
unsigned TruncBitWidth = DstTy->getScalarSizeInBits();
|
|
unsigned OrigBitWidth =
|
|
CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
|
|
|
|
if (isa<Constant>(Src))
|
|
return TruncBitWidth;
|
|
|
|
Worklist.push_back(Src);
|
|
InstInfoMap[cast<Instruction>(Src)].ValidBitWidth = TruncBitWidth;
|
|
|
|
while (!Worklist.empty()) {
|
|
Value *Curr = Worklist.back();
|
|
|
|
if (isa<Constant>(Curr)) {
|
|
Worklist.pop_back();
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, it must be an instruction.
|
|
auto *I = cast<Instruction>(Curr);
|
|
|
|
auto &Info = InstInfoMap[I];
|
|
|
|
SmallVector<Value *, 2> Operands;
|
|
getRelevantOperands(I, Operands);
|
|
|
|
if (!Stack.empty() && Stack.back() == I) {
|
|
// Already handled all instruction operands, can remove it from both, the
|
|
// Worklist and the Stack, and update MinBitWidth.
|
|
Worklist.pop_back();
|
|
Stack.pop_back();
|
|
for (auto *Operand : Operands)
|
|
if (auto *IOp = dyn_cast<Instruction>(Operand))
|
|
Info.MinBitWidth =
|
|
std::max(Info.MinBitWidth, InstInfoMap[IOp].MinBitWidth);
|
|
continue;
|
|
}
|
|
|
|
// Add the instruction to the stack before start handling its operands.
|
|
Stack.push_back(I);
|
|
unsigned ValidBitWidth = Info.ValidBitWidth;
|
|
|
|
// Update minimum bit-width before handling its operands. This is required
|
|
// when the instruction is part of a loop.
|
|
Info.MinBitWidth = std::max(Info.MinBitWidth, Info.ValidBitWidth);
|
|
|
|
for (auto *Operand : Operands)
|
|
if (auto *IOp = dyn_cast<Instruction>(Operand)) {
|
|
// If we already calculated the minimum bit-width for this valid
|
|
// bit-width, or for a smaller valid bit-width, then just keep the
|
|
// answer we already calculated.
|
|
unsigned IOpBitwidth = InstInfoMap.lookup(IOp).ValidBitWidth;
|
|
if (IOpBitwidth >= ValidBitWidth)
|
|
continue;
|
|
InstInfoMap[IOp].ValidBitWidth = ValidBitWidth;
|
|
Worklist.push_back(IOp);
|
|
}
|
|
}
|
|
unsigned MinBitWidth = InstInfoMap.lookup(cast<Instruction>(Src)).MinBitWidth;
|
|
assert(MinBitWidth >= TruncBitWidth);
|
|
|
|
if (MinBitWidth > TruncBitWidth) {
|
|
// In this case reducing expression with vector type might generate a new
|
|
// vector type, which is not preferable as it might result in generating
|
|
// sub-optimal code.
|
|
if (DstTy->isVectorTy())
|
|
return OrigBitWidth;
|
|
// Use the smallest integer type in the range [MinBitWidth, OrigBitWidth).
|
|
Type *Ty = DL.getSmallestLegalIntType(DstTy->getContext(), MinBitWidth);
|
|
// Update minimum bit-width with the new destination type bit-width if
|
|
// succeeded to find such, otherwise, with original bit-width.
|
|
MinBitWidth = Ty ? Ty->getScalarSizeInBits() : OrigBitWidth;
|
|
} else { // MinBitWidth == TruncBitWidth
|
|
// In this case the expression can be evaluated with the trunc instruction
|
|
// destination type, and trunc instruction can be omitted. However, we
|
|
// should not perform the evaluation if the original type is a legal scalar
|
|
// type and the target type is illegal.
|
|
bool FromLegal = MinBitWidth == 1 || DL.isLegalInteger(OrigBitWidth);
|
|
bool ToLegal = MinBitWidth == 1 || DL.isLegalInteger(MinBitWidth);
|
|
if (!DstTy->isVectorTy() && FromLegal && !ToLegal)
|
|
return OrigBitWidth;
|
|
}
|
|
return MinBitWidth;
|
|
}
|
|
|
|
Type *TruncInstCombine::getBestTruncatedType() {
|
|
if (!buildTruncExpressionDag())
|
|
return nullptr;
|
|
|
|
// We don't want to duplicate instructions, which isn't profitable. Thus, we
|
|
// can't shrink something that has multiple users, unless all users are
|
|
// post-dominated by the trunc instruction, i.e., were visited during the
|
|
// expression evaluation.
|
|
unsigned DesiredBitWidth = 0;
|
|
for (auto Itr : InstInfoMap) {
|
|
Instruction *I = Itr.first;
|
|
if (I->hasOneUse())
|
|
continue;
|
|
bool IsExtInst = (isa<ZExtInst>(I) || isa<SExtInst>(I));
|
|
for (auto *U : I->users())
|
|
if (auto *UI = dyn_cast<Instruction>(U))
|
|
if (UI != CurrentTruncInst && !InstInfoMap.count(UI)) {
|
|
if (!IsExtInst)
|
|
return nullptr;
|
|
// If this is an extension from the dest type, we can eliminate it,
|
|
// even if it has multiple users. Thus, update the DesiredBitWidth and
|
|
// validate all extension instructions agrees on same DesiredBitWidth.
|
|
unsigned ExtInstBitWidth =
|
|
I->getOperand(0)->getType()->getScalarSizeInBits();
|
|
if (DesiredBitWidth && DesiredBitWidth != ExtInstBitWidth)
|
|
return nullptr;
|
|
DesiredBitWidth = ExtInstBitWidth;
|
|
}
|
|
}
|
|
|
|
unsigned OrigBitWidth =
|
|
CurrentTruncInst->getOperand(0)->getType()->getScalarSizeInBits();
|
|
|
|
// Initialize MinBitWidth for shift instructions with the minimum number
|
|
// that is greater than shift amount (i.e. shift amount + 1).
|
|
// For `lshr` adjust MinBitWidth so that all potentially truncated
|
|
// bits of the value-to-be-shifted are zeros.
|
|
// For `ashr` adjust MinBitWidth so that all potentially truncated
|
|
// bits of the value-to-be-shifted are sign bits (all zeros or ones)
|
|
// and even one (first) untruncated bit is sign bit.
|
|
// Exit early if MinBitWidth is not less than original bitwidth.
|
|
for (auto &Itr : InstInfoMap) {
|
|
Instruction *I = Itr.first;
|
|
if (I->isShift()) {
|
|
KnownBits KnownRHS = computeKnownBits(I->getOperand(1), DL);
|
|
unsigned MinBitWidth = KnownRHS.getMaxValue()
|
|
.uadd_sat(APInt(OrigBitWidth, 1))
|
|
.getLimitedValue(OrigBitWidth);
|
|
if (MinBitWidth == OrigBitWidth)
|
|
return nullptr;
|
|
if (I->getOpcode() == Instruction::LShr) {
|
|
KnownBits KnownLHS = computeKnownBits(I->getOperand(0), DL);
|
|
MinBitWidth =
|
|
std::max(MinBitWidth, KnownLHS.getMaxValue().getActiveBits());
|
|
}
|
|
if (I->getOpcode() == Instruction::AShr) {
|
|
unsigned NumSignBits = ComputeNumSignBits(I->getOperand(0), DL);
|
|
MinBitWidth = std::max(MinBitWidth, OrigBitWidth - NumSignBits + 1);
|
|
}
|
|
if (MinBitWidth >= OrigBitWidth)
|
|
return nullptr;
|
|
Itr.second.MinBitWidth = MinBitWidth;
|
|
}
|
|
}
|
|
|
|
// Calculate minimum allowed bit-width allowed for shrinking the currently
|
|
// visited truncate's operand.
|
|
unsigned MinBitWidth = getMinBitWidth();
|
|
|
|
// Check that we can shrink to smaller bit-width than original one and that
|
|
// it is similar to the DesiredBitWidth is such exists.
|
|
if (MinBitWidth >= OrigBitWidth ||
|
|
(DesiredBitWidth && DesiredBitWidth != MinBitWidth))
|
|
return nullptr;
|
|
|
|
return IntegerType::get(CurrentTruncInst->getContext(), MinBitWidth);
|
|
}
|
|
|
|
/// Given a reduced scalar type \p Ty and a \p V value, return a reduced type
|
|
/// for \p V, according to its type, if it vector type, return the vector
|
|
/// version of \p Ty, otherwise return \p Ty.
|
|
static Type *getReducedType(Value *V, Type *Ty) {
|
|
assert(Ty && !Ty->isVectorTy() && "Expect Scalar Type");
|
|
if (auto *VTy = dyn_cast<VectorType>(V->getType()))
|
|
return VectorType::get(Ty, VTy->getElementCount());
|
|
return Ty;
|
|
}
|
|
|
|
Value *TruncInstCombine::getReducedOperand(Value *V, Type *SclTy) {
|
|
Type *Ty = getReducedType(V, SclTy);
|
|
if (auto *C = dyn_cast<Constant>(V)) {
|
|
C = ConstantExpr::getIntegerCast(C, Ty, false);
|
|
// If we got a constantexpr back, try to simplify it with DL info.
|
|
return ConstantFoldConstant(C, DL, &TLI);
|
|
}
|
|
|
|
auto *I = cast<Instruction>(V);
|
|
Info Entry = InstInfoMap.lookup(I);
|
|
assert(Entry.NewValue);
|
|
return Entry.NewValue;
|
|
}
|
|
|
|
void TruncInstCombine::ReduceExpressionDag(Type *SclTy) {
|
|
NumInstrsReduced += InstInfoMap.size();
|
|
for (auto &Itr : InstInfoMap) { // Forward
|
|
Instruction *I = Itr.first;
|
|
TruncInstCombine::Info &NodeInfo = Itr.second;
|
|
|
|
assert(!NodeInfo.NewValue && "Instruction has been evaluated");
|
|
|
|
IRBuilder<> Builder(I);
|
|
Value *Res = nullptr;
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt: {
|
|
Type *Ty = getReducedType(I, SclTy);
|
|
// If the source type of the cast is the type we're trying for then we can
|
|
// just return the source. There's no need to insert it because it is not
|
|
// new.
|
|
if (I->getOperand(0)->getType() == Ty) {
|
|
assert(!isa<TruncInst>(I) && "Cannot reach here with TruncInst");
|
|
NodeInfo.NewValue = I->getOperand(0);
|
|
continue;
|
|
}
|
|
// Otherwise, must be the same type of cast, so just reinsert a new one.
|
|
// This also handles the case of zext(trunc(x)) -> zext(x).
|
|
Res = Builder.CreateIntCast(I->getOperand(0), Ty,
|
|
Opc == Instruction::SExt);
|
|
|
|
// Update Worklist entries with new value if needed.
|
|
// There are three possible changes to the Worklist:
|
|
// 1. Update Old-TruncInst -> New-TruncInst.
|
|
// 2. Remove Old-TruncInst (if New node is not TruncInst).
|
|
// 3. Add New-TruncInst (if Old node was not TruncInst).
|
|
auto *Entry = find(Worklist, I);
|
|
if (Entry != Worklist.end()) {
|
|
if (auto *NewCI = dyn_cast<TruncInst>(Res))
|
|
*Entry = NewCI;
|
|
else
|
|
Worklist.erase(Entry);
|
|
} else if (auto *NewCI = dyn_cast<TruncInst>(Res))
|
|
Worklist.push_back(NewCI);
|
|
break;
|
|
}
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr: {
|
|
Value *LHS = getReducedOperand(I->getOperand(0), SclTy);
|
|
Value *RHS = getReducedOperand(I->getOperand(1), SclTy);
|
|
Res = Builder.CreateBinOp((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
// Preserve `exact` flag since truncation doesn't change exactness
|
|
if (auto *PEO = dyn_cast<PossiblyExactOperator>(I))
|
|
if (auto *ResI = dyn_cast<Instruction>(Res))
|
|
ResI->setIsExact(PEO->isExact());
|
|
break;
|
|
}
|
|
case Instruction::Select: {
|
|
Value *Op0 = I->getOperand(0);
|
|
Value *LHS = getReducedOperand(I->getOperand(1), SclTy);
|
|
Value *RHS = getReducedOperand(I->getOperand(2), SclTy);
|
|
Res = Builder.CreateSelect(Op0, LHS, RHS);
|
|
break;
|
|
}
|
|
default:
|
|
llvm_unreachable("Unhandled instruction");
|
|
}
|
|
|
|
NodeInfo.NewValue = Res;
|
|
if (auto *ResI = dyn_cast<Instruction>(Res))
|
|
ResI->takeName(I);
|
|
}
|
|
|
|
Value *Res = getReducedOperand(CurrentTruncInst->getOperand(0), SclTy);
|
|
Type *DstTy = CurrentTruncInst->getType();
|
|
if (Res->getType() != DstTy) {
|
|
IRBuilder<> Builder(CurrentTruncInst);
|
|
Res = Builder.CreateIntCast(Res, DstTy, false);
|
|
if (auto *ResI = dyn_cast<Instruction>(Res))
|
|
ResI->takeName(CurrentTruncInst);
|
|
}
|
|
CurrentTruncInst->replaceAllUsesWith(Res);
|
|
|
|
// Erase old expression dag, which was replaced by the reduced expression dag.
|
|
// We iterate backward, which means we visit the instruction before we visit
|
|
// any of its operands, this way, when we get to the operand, we already
|
|
// removed the instructions (from the expression dag) that uses it.
|
|
CurrentTruncInst->eraseFromParent();
|
|
for (auto I = InstInfoMap.rbegin(), E = InstInfoMap.rend(); I != E; ++I) {
|
|
// We still need to check that the instruction has no users before we erase
|
|
// it, because {SExt, ZExt}Inst Instruction might have other users that was
|
|
// not reduced, in such case, we need to keep that instruction.
|
|
if (I->first->use_empty())
|
|
I->first->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
bool TruncInstCombine::run(Function &F) {
|
|
bool MadeIRChange = false;
|
|
|
|
// Collect all TruncInst in the function into the Worklist for evaluating.
|
|
for (auto &BB : F) {
|
|
// Ignore unreachable basic block.
|
|
if (!DT.isReachableFromEntry(&BB))
|
|
continue;
|
|
for (auto &I : BB)
|
|
if (auto *CI = dyn_cast<TruncInst>(&I))
|
|
Worklist.push_back(CI);
|
|
}
|
|
|
|
// Process all TruncInst in the Worklist, for each instruction:
|
|
// 1. Check if it dominates an eligible expression dag to be reduced.
|
|
// 2. Create a reduced expression dag and replace the old one with it.
|
|
while (!Worklist.empty()) {
|
|
CurrentTruncInst = Worklist.pop_back_val();
|
|
|
|
if (Type *NewDstSclTy = getBestTruncatedType()) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "ICE: TruncInstCombine reducing type of expression dag "
|
|
"dominated by: "
|
|
<< CurrentTruncInst << '\n');
|
|
ReduceExpressionDag(NewDstSclTy);
|
|
++NumDAGsReduced;
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
return MadeIRChange;
|
|
}
|