forked from OSchip/llvm-project
2994 lines
103 KiB
C++
2994 lines
103 KiB
C++
//===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//==-----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Defines an instruction selector for the AMDGPU target.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUArgumentUsageInfo.h"
|
|
#include "AMDGPUISelLowering.h" // For AMDGPUISD
|
|
#include "AMDGPUInstrInfo.h"
|
|
#include "AMDGPUPerfHintAnalysis.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIDefines.h"
|
|
#include "SIISelLowering.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/FunctionLoweringInfo.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGISel.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#ifdef EXPENSIVE_CHECKS
|
|
#include "llvm/IR/Dominators.h"
|
|
#endif
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <new>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "isel"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
class R600InstrInfo;
|
|
|
|
} // end namespace llvm
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Instruction Selector Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
static bool isNullConstantOrUndef(SDValue V) {
|
|
if (V.isUndef())
|
|
return true;
|
|
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(V);
|
|
return Const != nullptr && Const->isNullValue();
|
|
}
|
|
|
|
static bool getConstantValue(SDValue N, uint32_t &Out) {
|
|
// This is only used for packed vectors, where ussing 0 for undef should
|
|
// always be good.
|
|
if (N.isUndef()) {
|
|
Out = 0;
|
|
return true;
|
|
}
|
|
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N)) {
|
|
Out = C->getAPIntValue().getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N)) {
|
|
Out = C->getValueAPF().bitcastToAPInt().getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// TODO: Handle undef as zero
|
|
static SDNode *packConstantV2I16(const SDNode *N, SelectionDAG &DAG,
|
|
bool Negate = false) {
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && N->getNumOperands() == 2);
|
|
uint32_t LHSVal, RHSVal;
|
|
if (getConstantValue(N->getOperand(0), LHSVal) &&
|
|
getConstantValue(N->getOperand(1), RHSVal)) {
|
|
SDLoc SL(N);
|
|
uint32_t K = Negate ?
|
|
(-LHSVal & 0xffff) | (-RHSVal << 16) :
|
|
(LHSVal & 0xffff) | (RHSVal << 16);
|
|
return DAG.getMachineNode(AMDGPU::S_MOV_B32, SL, N->getValueType(0),
|
|
DAG.getTargetConstant(K, SL, MVT::i32));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static SDNode *packNegConstantV2I16(const SDNode *N, SelectionDAG &DAG) {
|
|
return packConstantV2I16(N, DAG, true);
|
|
}
|
|
|
|
/// AMDGPU specific code to select AMDGPU machine instructions for
|
|
/// SelectionDAG operations.
|
|
class AMDGPUDAGToDAGISel : public SelectionDAGISel {
|
|
// Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
|
|
// make the right decision when generating code for different targets.
|
|
const GCNSubtarget *Subtarget;
|
|
|
|
// Default FP mode for the current function.
|
|
AMDGPU::SIModeRegisterDefaults Mode;
|
|
|
|
bool EnableLateStructurizeCFG;
|
|
|
|
public:
|
|
explicit AMDGPUDAGToDAGISel(TargetMachine *TM = nullptr,
|
|
CodeGenOpt::Level OptLevel = CodeGenOpt::Default)
|
|
: SelectionDAGISel(*TM, OptLevel) {
|
|
EnableLateStructurizeCFG = AMDGPUTargetMachine::EnableLateStructurizeCFG;
|
|
}
|
|
~AMDGPUDAGToDAGISel() override = default;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AMDGPUArgumentUsageInfo>();
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
#ifdef EXPENSIVE_CHECKS
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
#endif
|
|
SelectionDAGISel::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool matchLoadD16FromBuildVector(SDNode *N) const;
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
void PreprocessISelDAG() override;
|
|
void Select(SDNode *N) override;
|
|
StringRef getPassName() const override;
|
|
void PostprocessISelDAG() override;
|
|
|
|
protected:
|
|
void SelectBuildVector(SDNode *N, unsigned RegClassID);
|
|
|
|
private:
|
|
std::pair<SDValue, SDValue> foldFrameIndex(SDValue N) const;
|
|
bool isNoNanSrc(SDValue N) const;
|
|
bool isInlineImmediate(const SDNode *N, bool Negated = false) const;
|
|
bool isNegInlineImmediate(const SDNode *N) const {
|
|
return isInlineImmediate(N, true);
|
|
}
|
|
|
|
bool isInlineImmediate16(int64_t Imm) const {
|
|
return AMDGPU::isInlinableLiteral16(Imm, Subtarget->hasInv2PiInlineImm());
|
|
}
|
|
|
|
bool isInlineImmediate32(int64_t Imm) const {
|
|
return AMDGPU::isInlinableLiteral32(Imm, Subtarget->hasInv2PiInlineImm());
|
|
}
|
|
|
|
bool isInlineImmediate64(int64_t Imm) const {
|
|
return AMDGPU::isInlinableLiteral64(Imm, Subtarget->hasInv2PiInlineImm());
|
|
}
|
|
|
|
bool isInlineImmediate(const APFloat &Imm) const {
|
|
return Subtarget->getInstrInfo()->isInlineConstant(Imm);
|
|
}
|
|
|
|
bool isVGPRImm(const SDNode *N) const;
|
|
bool isUniformLoad(const SDNode *N) const;
|
|
bool isUniformBr(const SDNode *N) const;
|
|
|
|
MachineSDNode *buildSMovImm64(SDLoc &DL, uint64_t Val, EVT VT) const;
|
|
|
|
SDNode *glueCopyToOp(SDNode *N, SDValue NewChain, SDValue Glue) const;
|
|
SDNode *glueCopyToM0(SDNode *N, SDValue Val) const;
|
|
SDNode *glueCopyToM0LDSInit(SDNode *N) const;
|
|
|
|
const TargetRegisterClass *getOperandRegClass(SDNode *N, unsigned OpNo) const;
|
|
virtual bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base, SDValue &Offset);
|
|
virtual bool SelectADDRIndirect(SDValue Addr, SDValue &Base, SDValue &Offset);
|
|
bool isDSOffsetLegal(SDValue Base, unsigned Offset,
|
|
unsigned OffsetBits) const;
|
|
bool SelectDS1Addr1Offset(SDValue Ptr, SDValue &Base, SDValue &Offset) const;
|
|
bool SelectDS64Bit4ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
|
|
SDValue &Offset1) const;
|
|
bool SelectDS128Bit8ByteAligned(SDValue Ptr, SDValue &Base, SDValue &Offset0,
|
|
SDValue &Offset1) const;
|
|
bool SelectDSReadWrite2(SDValue Ptr, SDValue &Base, SDValue &Offset0,
|
|
SDValue &Offset1, bool IsDS128) const;
|
|
bool SelectMUBUF(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
|
|
SDValue &SOffset, SDValue &Offset, SDValue &Offen,
|
|
SDValue &Idxen, SDValue &Addr64, SDValue &GLC, SDValue &SLC,
|
|
SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
|
|
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc, SDValue &VAddr,
|
|
SDValue &SOffset, SDValue &Offset, SDValue &GLC,
|
|
SDValue &SLC, SDValue &TFE, SDValue &DLC,
|
|
SDValue &SWZ) const;
|
|
bool SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &VAddr, SDValue &SOffset, SDValue &Offset,
|
|
SDValue &SLC) const;
|
|
bool SelectMUBUFScratchOffen(SDNode *Parent,
|
|
SDValue Addr, SDValue &RSrc, SDValue &VAddr,
|
|
SDValue &SOffset, SDValue &ImmOffset) const;
|
|
bool SelectMUBUFScratchOffset(SDNode *Parent,
|
|
SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
|
|
SDValue &Offset) const;
|
|
|
|
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &SOffset,
|
|
SDValue &Offset, SDValue &GLC, SDValue &SLC,
|
|
SDValue &TFE, SDValue &DLC, SDValue &SWZ) const;
|
|
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
|
|
SDValue &Offset, SDValue &SLC) const;
|
|
bool SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc, SDValue &Soffset,
|
|
SDValue &Offset) const;
|
|
|
|
template <bool IsSigned>
|
|
bool SelectFlatOffset(SDNode *N, SDValue Addr, SDValue &VAddr,
|
|
SDValue &Offset) const;
|
|
bool SelectGlobalSAddr(SDNode *N, SDValue Addr, SDValue &SAddr,
|
|
SDValue &VOffset, SDValue &Offset) const;
|
|
|
|
bool SelectSMRDOffset(SDValue ByteOffsetNode, SDValue &Offset,
|
|
bool &Imm) const;
|
|
SDValue Expand32BitAddress(SDValue Addr) const;
|
|
bool SelectSMRD(SDValue Addr, SDValue &SBase, SDValue &Offset,
|
|
bool &Imm) const;
|
|
bool SelectSMRDImm(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
|
|
bool SelectSMRDImm32(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
|
|
bool SelectSMRDSgpr(SDValue Addr, SDValue &SBase, SDValue &Offset) const;
|
|
bool SelectSMRDBufferImm(SDValue Addr, SDValue &Offset) const;
|
|
bool SelectSMRDBufferImm32(SDValue Addr, SDValue &Offset) const;
|
|
bool SelectMOVRELOffset(SDValue Index, SDValue &Base, SDValue &Offset) const;
|
|
|
|
bool SelectVOP3Mods_NNaN(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
bool SelectVOP3ModsImpl(SDValue In, SDValue &Src, unsigned &SrcMods) const;
|
|
bool SelectVOP3Mods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
bool SelectVOP3NoMods(SDValue In, SDValue &Src) const;
|
|
bool SelectVOP3Mods0(SDValue In, SDValue &Src, SDValue &SrcMods,
|
|
SDValue &Clamp, SDValue &Omod) const;
|
|
bool SelectVOP3NoMods0(SDValue In, SDValue &Src, SDValue &SrcMods,
|
|
SDValue &Clamp, SDValue &Omod) const;
|
|
|
|
bool SelectVOP3OMods(SDValue In, SDValue &Src,
|
|
SDValue &Clamp, SDValue &Omod) const;
|
|
|
|
bool SelectVOP3PMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
|
|
bool SelectVOP3OpSel(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
|
|
bool SelectVOP3OpSelMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
bool SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src, unsigned &Mods) const;
|
|
bool SelectVOP3PMadMixMods(SDValue In, SDValue &Src, SDValue &SrcMods) const;
|
|
|
|
SDValue getHi16Elt(SDValue In) const;
|
|
|
|
SDValue getMaterializedScalarImm32(int64_t Val, const SDLoc &DL) const;
|
|
|
|
void SelectADD_SUB_I64(SDNode *N);
|
|
void SelectAddcSubb(SDNode *N);
|
|
void SelectUADDO_USUBO(SDNode *N);
|
|
void SelectDIV_SCALE(SDNode *N);
|
|
void SelectMAD_64_32(SDNode *N);
|
|
void SelectFMA_W_CHAIN(SDNode *N);
|
|
void SelectFMUL_W_CHAIN(SDNode *N);
|
|
|
|
SDNode *getS_BFE(unsigned Opcode, const SDLoc &DL, SDValue Val,
|
|
uint32_t Offset, uint32_t Width);
|
|
void SelectS_BFEFromShifts(SDNode *N);
|
|
void SelectS_BFE(SDNode *N);
|
|
bool isCBranchSCC(const SDNode *N) const;
|
|
void SelectBRCOND(SDNode *N);
|
|
void SelectFMAD_FMA(SDNode *N);
|
|
void SelectATOMIC_CMP_SWAP(SDNode *N);
|
|
void SelectDSAppendConsume(SDNode *N, unsigned IntrID);
|
|
void SelectDS_GWS(SDNode *N, unsigned IntrID);
|
|
void SelectInterpP1F16(SDNode *N);
|
|
void SelectINTRINSIC_W_CHAIN(SDNode *N);
|
|
void SelectINTRINSIC_WO_CHAIN(SDNode *N);
|
|
void SelectINTRINSIC_VOID(SDNode *N);
|
|
|
|
protected:
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "AMDGPUGenDAGISel.inc"
|
|
};
|
|
|
|
class R600DAGToDAGISel : public AMDGPUDAGToDAGISel {
|
|
const R600Subtarget *Subtarget;
|
|
|
|
bool isConstantLoad(const MemSDNode *N, int cbID) const;
|
|
bool SelectGlobalValueConstantOffset(SDValue Addr, SDValue& IntPtr);
|
|
bool SelectGlobalValueVariableOffset(SDValue Addr, SDValue &BaseReg,
|
|
SDValue& Offset);
|
|
public:
|
|
explicit R600DAGToDAGISel(TargetMachine *TM, CodeGenOpt::Level OptLevel) :
|
|
AMDGPUDAGToDAGISel(TM, OptLevel) {}
|
|
|
|
void Select(SDNode *N) override;
|
|
|
|
bool SelectADDRIndirect(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) override;
|
|
bool SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) override;
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void PreprocessISelDAG() override {}
|
|
|
|
protected:
|
|
// Include the pieces autogenerated from the target description.
|
|
#include "R600GenDAGISel.inc"
|
|
};
|
|
|
|
static SDValue stripBitcast(SDValue Val) {
|
|
return Val.getOpcode() == ISD::BITCAST ? Val.getOperand(0) : Val;
|
|
}
|
|
|
|
// Figure out if this is really an extract of the high 16-bits of a dword.
|
|
static bool isExtractHiElt(SDValue In, SDValue &Out) {
|
|
In = stripBitcast(In);
|
|
if (In.getOpcode() != ISD::TRUNCATE)
|
|
return false;
|
|
|
|
SDValue Srl = In.getOperand(0);
|
|
if (Srl.getOpcode() == ISD::SRL) {
|
|
if (ConstantSDNode *ShiftAmt = dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
|
|
if (ShiftAmt->getZExtValue() == 16) {
|
|
Out = stripBitcast(Srl.getOperand(0));
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Look through operations that obscure just looking at the low 16-bits of the
|
|
// same register.
|
|
static SDValue stripExtractLoElt(SDValue In) {
|
|
if (In.getOpcode() == ISD::TRUNCATE) {
|
|
SDValue Src = In.getOperand(0);
|
|
if (Src.getValueType().getSizeInBits() == 32)
|
|
return stripBitcast(Src);
|
|
}
|
|
|
|
return In;
|
|
}
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel, "amdgpu-isel",
|
|
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo)
|
|
INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
#ifdef EXPENSIVE_CHECKS
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
#endif
|
|
INITIALIZE_PASS_END(AMDGPUDAGToDAGISel, "amdgpu-isel",
|
|
"AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
|
|
|
|
/// This pass converts a legalized DAG into a AMDGPU-specific
|
|
// DAG, ready for instruction scheduling.
|
|
FunctionPass *llvm::createAMDGPUISelDag(TargetMachine *TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new AMDGPUDAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
/// This pass converts a legalized DAG into a R600-specific
|
|
// DAG, ready for instruction scheduling.
|
|
FunctionPass *llvm::createR600ISelDag(TargetMachine *TM,
|
|
CodeGenOpt::Level OptLevel) {
|
|
return new R600DAGToDAGISel(TM, OptLevel);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
|
|
#ifdef EXPENSIVE_CHECKS
|
|
DominatorTree & DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
LoopInfo * LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
for (auto &L : LI->getLoopsInPreorder()) {
|
|
assert(L->isLCSSAForm(DT));
|
|
}
|
|
#endif
|
|
Subtarget = &MF.getSubtarget<GCNSubtarget>();
|
|
Mode = AMDGPU::SIModeRegisterDefaults(MF.getFunction());
|
|
return SelectionDAGISel::runOnMachineFunction(MF);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode *N) const {
|
|
assert(Subtarget->d16PreservesUnusedBits());
|
|
MVT VT = N->getValueType(0).getSimpleVT();
|
|
if (VT != MVT::v2i16 && VT != MVT::v2f16)
|
|
return false;
|
|
|
|
SDValue Lo = N->getOperand(0);
|
|
SDValue Hi = N->getOperand(1);
|
|
|
|
LoadSDNode *LdHi = dyn_cast<LoadSDNode>(stripBitcast(Hi));
|
|
|
|
// build_vector lo, (load ptr) -> load_d16_hi ptr, lo
|
|
// build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
|
|
// build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
|
|
|
|
// Need to check for possible indirect dependencies on the other half of the
|
|
// vector to avoid introducing a cycle.
|
|
if (LdHi && Hi.hasOneUse() && !LdHi->isPredecessorOf(Lo.getNode())) {
|
|
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
|
|
|
|
SDValue TiedIn = CurDAG->getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Lo);
|
|
SDValue Ops[] = {
|
|
LdHi->getChain(), LdHi->getBasePtr(), TiedIn
|
|
};
|
|
|
|
unsigned LoadOp = AMDGPUISD::LOAD_D16_HI;
|
|
if (LdHi->getMemoryVT() == MVT::i8) {
|
|
LoadOp = LdHi->getExtensionType() == ISD::SEXTLOAD ?
|
|
AMDGPUISD::LOAD_D16_HI_I8 : AMDGPUISD::LOAD_D16_HI_U8;
|
|
} else {
|
|
assert(LdHi->getMemoryVT() == MVT::i16);
|
|
}
|
|
|
|
SDValue NewLoadHi =
|
|
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdHi), VTList,
|
|
Ops, LdHi->getMemoryVT(),
|
|
LdHi->getMemOperand());
|
|
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadHi);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdHi, 1), NewLoadHi.getValue(1));
|
|
return true;
|
|
}
|
|
|
|
// build_vector (load ptr), hi -> load_d16_lo ptr, hi
|
|
// build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
|
|
// build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
|
|
LoadSDNode *LdLo = dyn_cast<LoadSDNode>(stripBitcast(Lo));
|
|
if (LdLo && Lo.hasOneUse()) {
|
|
SDValue TiedIn = getHi16Elt(Hi);
|
|
if (!TiedIn || LdLo->isPredecessorOf(TiedIn.getNode()))
|
|
return false;
|
|
|
|
SDVTList VTList = CurDAG->getVTList(VT, MVT::Other);
|
|
unsigned LoadOp = AMDGPUISD::LOAD_D16_LO;
|
|
if (LdLo->getMemoryVT() == MVT::i8) {
|
|
LoadOp = LdLo->getExtensionType() == ISD::SEXTLOAD ?
|
|
AMDGPUISD::LOAD_D16_LO_I8 : AMDGPUISD::LOAD_D16_LO_U8;
|
|
} else {
|
|
assert(LdLo->getMemoryVT() == MVT::i16);
|
|
}
|
|
|
|
TiedIn = CurDAG->getNode(ISD::BITCAST, SDLoc(N), VT, TiedIn);
|
|
|
|
SDValue Ops[] = {
|
|
LdLo->getChain(), LdLo->getBasePtr(), TiedIn
|
|
};
|
|
|
|
SDValue NewLoadLo =
|
|
CurDAG->getMemIntrinsicNode(LoadOp, SDLoc(LdLo), VTList,
|
|
Ops, LdLo->getMemoryVT(),
|
|
LdLo->getMemOperand());
|
|
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), NewLoadLo);
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(LdLo, 1), NewLoadLo.getValue(1));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
|
|
if (!Subtarget->d16PreservesUnusedBits())
|
|
return;
|
|
|
|
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_end();
|
|
|
|
bool MadeChange = false;
|
|
while (Position != CurDAG->allnodes_begin()) {
|
|
SDNode *N = &*--Position;
|
|
if (N->use_empty())
|
|
continue;
|
|
|
|
switch (N->getOpcode()) {
|
|
case ISD::BUILD_VECTOR:
|
|
MadeChange |= matchLoadD16FromBuildVector(N);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (MadeChange) {
|
|
CurDAG->RemoveDeadNodes();
|
|
LLVM_DEBUG(dbgs() << "After PreProcess:\n";
|
|
CurDAG->dump(););
|
|
}
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N) const {
|
|
if (TM.Options.NoNaNsFPMath)
|
|
return true;
|
|
|
|
// TODO: Move into isKnownNeverNaN
|
|
if (N->getFlags().hasNoNaNs())
|
|
return true;
|
|
|
|
return CurDAG->isKnownNeverNaN(N);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode *N,
|
|
bool Negated) const {
|
|
if (N->isUndef())
|
|
return true;
|
|
|
|
const SIInstrInfo *TII = Subtarget->getInstrInfo();
|
|
if (Negated) {
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
|
|
return TII->isInlineConstant(-C->getAPIntValue());
|
|
|
|
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
|
|
return TII->isInlineConstant(-C->getValueAPF().bitcastToAPInt());
|
|
|
|
} else {
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N))
|
|
return TII->isInlineConstant(C->getAPIntValue());
|
|
|
|
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(N))
|
|
return TII->isInlineConstant(C->getValueAPF().bitcastToAPInt());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Determine the register class for \p OpNo
|
|
/// \returns The register class of the virtual register that will be used for
|
|
/// the given operand number \OpNo or NULL if the register class cannot be
|
|
/// determined.
|
|
const TargetRegisterClass *AMDGPUDAGToDAGISel::getOperandRegClass(SDNode *N,
|
|
unsigned OpNo) const {
|
|
if (!N->isMachineOpcode()) {
|
|
if (N->getOpcode() == ISD::CopyToReg) {
|
|
Register Reg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
|
|
if (Reg.isVirtual()) {
|
|
MachineRegisterInfo &MRI = CurDAG->getMachineFunction().getRegInfo();
|
|
return MRI.getRegClass(Reg);
|
|
}
|
|
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const GCNSubtarget *>(Subtarget)->getRegisterInfo();
|
|
return TRI->getPhysRegClass(Reg);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
switch (N->getMachineOpcode()) {
|
|
default: {
|
|
const MCInstrDesc &Desc =
|
|
Subtarget->getInstrInfo()->get(N->getMachineOpcode());
|
|
unsigned OpIdx = Desc.getNumDefs() + OpNo;
|
|
if (OpIdx >= Desc.getNumOperands())
|
|
return nullptr;
|
|
int RegClass = Desc.OpInfo[OpIdx].RegClass;
|
|
if (RegClass == -1)
|
|
return nullptr;
|
|
|
|
return Subtarget->getRegisterInfo()->getRegClass(RegClass);
|
|
}
|
|
case AMDGPU::REG_SEQUENCE: {
|
|
unsigned RCID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
const TargetRegisterClass *SuperRC =
|
|
Subtarget->getRegisterInfo()->getRegClass(RCID);
|
|
|
|
SDValue SubRegOp = N->getOperand(OpNo + 1);
|
|
unsigned SubRegIdx = cast<ConstantSDNode>(SubRegOp)->getZExtValue();
|
|
return Subtarget->getRegisterInfo()->getSubClassWithSubReg(SuperRC,
|
|
SubRegIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
SDNode *AMDGPUDAGToDAGISel::glueCopyToOp(SDNode *N, SDValue NewChain,
|
|
SDValue Glue) const {
|
|
SmallVector <SDValue, 8> Ops;
|
|
Ops.push_back(NewChain); // Replace the chain.
|
|
for (unsigned i = 1, e = N->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
|
|
Ops.push_back(Glue);
|
|
return CurDAG->MorphNodeTo(N, N->getOpcode(), N->getVTList(), Ops);
|
|
}
|
|
|
|
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0(SDNode *N, SDValue Val) const {
|
|
const SITargetLowering& Lowering =
|
|
*static_cast<const SITargetLowering*>(getTargetLowering());
|
|
|
|
assert(N->getOperand(0).getValueType() == MVT::Other && "Expected chain");
|
|
|
|
SDValue M0 = Lowering.copyToM0(*CurDAG, N->getOperand(0), SDLoc(N), Val);
|
|
return glueCopyToOp(N, M0, M0.getValue(1));
|
|
}
|
|
|
|
SDNode *AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode *N) const {
|
|
unsigned AS = cast<MemSDNode>(N)->getAddressSpace();
|
|
if (AS == AMDGPUAS::LOCAL_ADDRESS) {
|
|
if (Subtarget->ldsRequiresM0Init())
|
|
return glueCopyToM0(N, CurDAG->getTargetConstant(-1, SDLoc(N), MVT::i32));
|
|
} else if (AS == AMDGPUAS::REGION_ADDRESS) {
|
|
MachineFunction &MF = CurDAG->getMachineFunction();
|
|
unsigned Value = MF.getInfo<SIMachineFunctionInfo>()->getGDSSize();
|
|
return
|
|
glueCopyToM0(N, CurDAG->getTargetConstant(Value, SDLoc(N), MVT::i32));
|
|
}
|
|
return N;
|
|
}
|
|
|
|
MachineSDNode *AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc &DL, uint64_t Imm,
|
|
EVT VT) const {
|
|
SDNode *Lo = CurDAG->getMachineNode(
|
|
AMDGPU::S_MOV_B32, DL, MVT::i32,
|
|
CurDAG->getTargetConstant(Imm & 0xFFFFFFFF, DL, MVT::i32));
|
|
SDNode *Hi =
|
|
CurDAG->getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32,
|
|
CurDAG->getTargetConstant(Imm >> 32, DL, MVT::i32));
|
|
const SDValue Ops[] = {
|
|
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
|
|
SDValue(Lo, 0), CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
|
|
SDValue(Hi, 0), CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32)};
|
|
|
|
return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL, VT, Ops);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode *N, unsigned RegClassID) {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumVectorElts = VT.getVectorNumElements();
|
|
EVT EltVT = VT.getVectorElementType();
|
|
SDLoc DL(N);
|
|
SDValue RegClass = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
|
|
|
|
if (NumVectorElts == 1) {
|
|
CurDAG->SelectNodeTo(N, AMDGPU::COPY_TO_REGCLASS, EltVT, N->getOperand(0),
|
|
RegClass);
|
|
return;
|
|
}
|
|
|
|
assert(NumVectorElts <= 32 && "Vectors with more than 32 elements not "
|
|
"supported yet");
|
|
// 32 = Max Num Vector Elements
|
|
// 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
|
|
// 1 = Vector Register Class
|
|
SmallVector<SDValue, 32 * 2 + 1> RegSeqArgs(NumVectorElts * 2 + 1);
|
|
|
|
bool IsGCN = CurDAG->getSubtarget().getTargetTriple().getArch() ==
|
|
Triple::amdgcn;
|
|
RegSeqArgs[0] = CurDAG->getTargetConstant(RegClassID, DL, MVT::i32);
|
|
bool IsRegSeq = true;
|
|
unsigned NOps = N->getNumOperands();
|
|
for (unsigned i = 0; i < NOps; i++) {
|
|
// XXX: Why is this here?
|
|
if (isa<RegisterSDNode>(N->getOperand(i))) {
|
|
IsRegSeq = false;
|
|
break;
|
|
}
|
|
unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
|
|
: R600RegisterInfo::getSubRegFromChannel(i);
|
|
RegSeqArgs[1 + (2 * i)] = N->getOperand(i);
|
|
RegSeqArgs[1 + (2 * i) + 1] = CurDAG->getTargetConstant(Sub, DL, MVT::i32);
|
|
}
|
|
if (NOps != NumVectorElts) {
|
|
// Fill in the missing undef elements if this was a scalar_to_vector.
|
|
assert(N->getOpcode() == ISD::SCALAR_TO_VECTOR && NOps < NumVectorElts);
|
|
MachineSDNode *ImpDef = CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,
|
|
DL, EltVT);
|
|
for (unsigned i = NOps; i < NumVectorElts; ++i) {
|
|
unsigned Sub = IsGCN ? SIRegisterInfo::getSubRegFromChannel(i)
|
|
: R600RegisterInfo::getSubRegFromChannel(i);
|
|
RegSeqArgs[1 + (2 * i)] = SDValue(ImpDef, 0);
|
|
RegSeqArgs[1 + (2 * i) + 1] =
|
|
CurDAG->getTargetConstant(Sub, DL, MVT::i32);
|
|
}
|
|
}
|
|
|
|
if (!IsRegSeq)
|
|
SelectCode(N);
|
|
CurDAG->SelectNodeTo(N, AMDGPU::REG_SEQUENCE, N->getVTList(), RegSeqArgs);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::Select(SDNode *N) {
|
|
unsigned int Opc = N->getOpcode();
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return; // Already selected.
|
|
}
|
|
|
|
// isa<MemSDNode> almost works but is slightly too permissive for some DS
|
|
// intrinsics.
|
|
if (Opc == ISD::LOAD || Opc == ISD::STORE || isa<AtomicSDNode>(N) ||
|
|
(Opc == AMDGPUISD::ATOMIC_INC || Opc == AMDGPUISD::ATOMIC_DEC ||
|
|
Opc == ISD::ATOMIC_LOAD_FADD ||
|
|
Opc == AMDGPUISD::ATOMIC_LOAD_FMIN ||
|
|
Opc == AMDGPUISD::ATOMIC_LOAD_FMAX)) {
|
|
N = glueCopyToM0LDSInit(N);
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
switch (Opc) {
|
|
default:
|
|
break;
|
|
// We are selecting i64 ADD here instead of custom lower it during
|
|
// DAG legalization, so we can fold some i64 ADDs used for address
|
|
// calculation into the LOAD and STORE instructions.
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE: {
|
|
if (N->getValueType(0) != MVT::i64)
|
|
break;
|
|
|
|
SelectADD_SUB_I64(N);
|
|
return;
|
|
}
|
|
case ISD::ADDCARRY:
|
|
case ISD::SUBCARRY:
|
|
if (N->getValueType(0) != MVT::i32)
|
|
break;
|
|
|
|
SelectAddcSubb(N);
|
|
return;
|
|
case ISD::UADDO:
|
|
case ISD::USUBO: {
|
|
SelectUADDO_USUBO(N);
|
|
return;
|
|
}
|
|
case AMDGPUISD::FMUL_W_CHAIN: {
|
|
SelectFMUL_W_CHAIN(N);
|
|
return;
|
|
}
|
|
case AMDGPUISD::FMA_W_CHAIN: {
|
|
SelectFMA_W_CHAIN(N);
|
|
return;
|
|
}
|
|
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
case ISD::BUILD_VECTOR: {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumVectorElts = VT.getVectorNumElements();
|
|
if (VT.getScalarSizeInBits() == 16) {
|
|
if (Opc == ISD::BUILD_VECTOR && NumVectorElts == 2) {
|
|
if (SDNode *Packed = packConstantV2I16(N, *CurDAG)) {
|
|
ReplaceNode(N, Packed);
|
|
return;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
assert(VT.getVectorElementType().bitsEq(MVT::i32));
|
|
unsigned RegClassID =
|
|
SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts * 32)->getID();
|
|
SelectBuildVector(N, RegClassID);
|
|
return;
|
|
}
|
|
case ISD::BUILD_PAIR: {
|
|
SDValue RC, SubReg0, SubReg1;
|
|
SDLoc DL(N);
|
|
if (N->getValueType(0) == MVT::i128) {
|
|
RC = CurDAG->getTargetConstant(AMDGPU::SGPR_128RegClassID, DL, MVT::i32);
|
|
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32);
|
|
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32);
|
|
} else if (N->getValueType(0) == MVT::i64) {
|
|
RC = CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32);
|
|
SubReg0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
|
|
SubReg1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
|
|
} else {
|
|
llvm_unreachable("Unhandled value type for BUILD_PAIR");
|
|
}
|
|
const SDValue Ops[] = { RC, N->getOperand(0), SubReg0,
|
|
N->getOperand(1), SubReg1 };
|
|
ReplaceNode(N, CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, DL,
|
|
N->getValueType(0), Ops));
|
|
return;
|
|
}
|
|
|
|
case ISD::Constant:
|
|
case ISD::ConstantFP: {
|
|
if (N->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N))
|
|
break;
|
|
|
|
uint64_t Imm;
|
|
if (ConstantFPSDNode *FP = dyn_cast<ConstantFPSDNode>(N))
|
|
Imm = FP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
else {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N);
|
|
Imm = C->getZExtValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
ReplaceNode(N, buildSMovImm64(DL, Imm, N->getValueType(0)));
|
|
return;
|
|
}
|
|
case AMDGPUISD::BFE_I32:
|
|
case AMDGPUISD::BFE_U32: {
|
|
// There is a scalar version available, but unlike the vector version which
|
|
// has a separate operand for the offset and width, the scalar version packs
|
|
// the width and offset into a single operand. Try to move to the scalar
|
|
// version if the offsets are constant, so that we can try to keep extended
|
|
// loads of kernel arguments in SGPRs.
|
|
|
|
// TODO: Technically we could try to pattern match scalar bitshifts of
|
|
// dynamic values, but it's probably not useful.
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!Offset)
|
|
break;
|
|
|
|
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
|
|
if (!Width)
|
|
break;
|
|
|
|
bool Signed = Opc == AMDGPUISD::BFE_I32;
|
|
|
|
uint32_t OffsetVal = Offset->getZExtValue();
|
|
uint32_t WidthVal = Width->getZExtValue();
|
|
|
|
ReplaceNode(N, getS_BFE(Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32,
|
|
SDLoc(N), N->getOperand(0), OffsetVal, WidthVal));
|
|
return;
|
|
}
|
|
case AMDGPUISD::DIV_SCALE: {
|
|
SelectDIV_SCALE(N);
|
|
return;
|
|
}
|
|
case AMDGPUISD::MAD_I64_I32:
|
|
case AMDGPUISD::MAD_U64_U32: {
|
|
SelectMAD_64_32(N);
|
|
return;
|
|
}
|
|
case ISD::CopyToReg: {
|
|
const SITargetLowering& Lowering =
|
|
*static_cast<const SITargetLowering*>(getTargetLowering());
|
|
N = Lowering.legalizeTargetIndependentNode(N, *CurDAG);
|
|
break;
|
|
}
|
|
case ISD::AND:
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
case ISD::SIGN_EXTEND_INREG:
|
|
if (N->getValueType(0) != MVT::i32)
|
|
break;
|
|
|
|
SelectS_BFE(N);
|
|
return;
|
|
case ISD::BRCOND:
|
|
SelectBRCOND(N);
|
|
return;
|
|
case ISD::FMAD:
|
|
case ISD::FMA:
|
|
SelectFMAD_FMA(N);
|
|
return;
|
|
case AMDGPUISD::ATOMIC_CMP_SWAP:
|
|
SelectATOMIC_CMP_SWAP(N);
|
|
return;
|
|
case AMDGPUISD::CVT_PKRTZ_F16_F32:
|
|
case AMDGPUISD::CVT_PKNORM_I16_F32:
|
|
case AMDGPUISD::CVT_PKNORM_U16_F32:
|
|
case AMDGPUISD::CVT_PK_U16_U32:
|
|
case AMDGPUISD::CVT_PK_I16_I32: {
|
|
// Hack around using a legal type if f16 is illegal.
|
|
if (N->getValueType(0) == MVT::i32) {
|
|
MVT NewVT = Opc == AMDGPUISD::CVT_PKRTZ_F16_F32 ? MVT::v2f16 : MVT::v2i16;
|
|
N = CurDAG->MorphNodeTo(N, N->getOpcode(), CurDAG->getVTList(NewVT),
|
|
{ N->getOperand(0), N->getOperand(1) });
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
}
|
|
case ISD::INTRINSIC_W_CHAIN: {
|
|
SelectINTRINSIC_W_CHAIN(N);
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_WO_CHAIN: {
|
|
SelectINTRINSIC_WO_CHAIN(N);
|
|
return;
|
|
}
|
|
case ISD::INTRINSIC_VOID: {
|
|
SelectINTRINSIC_VOID(N);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode *N) const {
|
|
const BasicBlock *BB = FuncInfo->MBB->getBasicBlock();
|
|
const Instruction *Term = BB->getTerminator();
|
|
return Term->getMetadata("amdgpu.uniform") ||
|
|
Term->getMetadata("structurizecfg.uniform");
|
|
}
|
|
|
|
StringRef AMDGPUDAGToDAGISel::getPassName() const {
|
|
return "AMDGPU DAG->DAG Pattern Instruction Selection";
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Complex Patterns
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
ConstantSDNode *C;
|
|
SDLoc DL(Addr);
|
|
|
|
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
|
|
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
|
|
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
|
|
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
|
|
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
|
|
Base = Addr.getOperand(0);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else {
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val,
|
|
const SDLoc &DL) const {
|
|
SDNode *Mov = CurDAG->getMachineNode(
|
|
AMDGPU::S_MOV_B32, DL, MVT::i32,
|
|
CurDAG->getTargetConstant(Val, DL, MVT::i32));
|
|
return SDValue(Mov, 0);
|
|
}
|
|
|
|
// FIXME: Should only handle addcarry/subcarry
|
|
void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode *N) {
|
|
SDLoc DL(N);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
|
|
unsigned Opcode = N->getOpcode();
|
|
bool ConsumeCarry = (Opcode == ISD::ADDE || Opcode == ISD::SUBE);
|
|
bool ProduceCarry =
|
|
ConsumeCarry || Opcode == ISD::ADDC || Opcode == ISD::SUBC;
|
|
bool IsAdd = Opcode == ISD::ADD || Opcode == ISD::ADDC || Opcode == ISD::ADDE;
|
|
|
|
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
|
|
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
|
|
|
|
SDNode *Lo0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
DL, MVT::i32, LHS, Sub0);
|
|
SDNode *Hi0 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
DL, MVT::i32, LHS, Sub1);
|
|
|
|
SDNode *Lo1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
DL, MVT::i32, RHS, Sub0);
|
|
SDNode *Hi1 = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
|
|
DL, MVT::i32, RHS, Sub1);
|
|
|
|
SDVTList VTList = CurDAG->getVTList(MVT::i32, MVT::Glue);
|
|
|
|
static const unsigned OpcMap[2][2][2] = {
|
|
{{AMDGPU::S_SUB_U32, AMDGPU::S_ADD_U32},
|
|
{AMDGPU::V_SUB_CO_U32_e32, AMDGPU::V_ADD_CO_U32_e32}},
|
|
{{AMDGPU::S_SUBB_U32, AMDGPU::S_ADDC_U32},
|
|
{AMDGPU::V_SUBB_U32_e32, AMDGPU::V_ADDC_U32_e32}}};
|
|
|
|
unsigned Opc = OpcMap[0][N->isDivergent()][IsAdd];
|
|
unsigned CarryOpc = OpcMap[1][N->isDivergent()][IsAdd];
|
|
|
|
SDNode *AddLo;
|
|
if (!ConsumeCarry) {
|
|
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0) };
|
|
AddLo = CurDAG->getMachineNode(Opc, DL, VTList, Args);
|
|
} else {
|
|
SDValue Args[] = { SDValue(Lo0, 0), SDValue(Lo1, 0), N->getOperand(2) };
|
|
AddLo = CurDAG->getMachineNode(CarryOpc, DL, VTList, Args);
|
|
}
|
|
SDValue AddHiArgs[] = {
|
|
SDValue(Hi0, 0),
|
|
SDValue(Hi1, 0),
|
|
SDValue(AddLo, 1)
|
|
};
|
|
SDNode *AddHi = CurDAG->getMachineNode(CarryOpc, DL, VTList, AddHiArgs);
|
|
|
|
SDValue RegSequenceArgs[] = {
|
|
CurDAG->getTargetConstant(AMDGPU::SReg_64RegClassID, DL, MVT::i32),
|
|
SDValue(AddLo,0),
|
|
Sub0,
|
|
SDValue(AddHi,0),
|
|
Sub1,
|
|
};
|
|
SDNode *RegSequence = CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
|
|
MVT::i64, RegSequenceArgs);
|
|
|
|
if (ProduceCarry) {
|
|
// Replace the carry-use
|
|
ReplaceUses(SDValue(N, 1), SDValue(AddHi, 1));
|
|
}
|
|
|
|
// Replace the remaining uses.
|
|
ReplaceNode(N, RegSequence);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode *N) {
|
|
SDLoc DL(N);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue CI = N->getOperand(2);
|
|
|
|
if (N->isDivergent()) {
|
|
unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::V_ADDC_U32_e64
|
|
: AMDGPU::V_SUBB_U32_e64;
|
|
CurDAG->SelectNodeTo(
|
|
N, Opc, N->getVTList(),
|
|
{LHS, RHS, CI,
|
|
CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
|
|
} else {
|
|
unsigned Opc = N->getOpcode() == ISD::ADDCARRY ? AMDGPU::S_ADD_CO_PSEUDO
|
|
: AMDGPU::S_SUB_CO_PSEUDO;
|
|
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), {LHS, RHS, CI});
|
|
}
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode *N) {
|
|
// The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
|
|
// carry out despite the _i32 name. These were renamed in VI to _U32.
|
|
// FIXME: We should probably rename the opcodes here.
|
|
bool IsAdd = N->getOpcode() == ISD::UADDO;
|
|
bool IsVALU = N->isDivergent();
|
|
|
|
for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); UI != E;
|
|
++UI)
|
|
if (UI.getUse().getResNo() == 1) {
|
|
if ((IsAdd && (UI->getOpcode() != ISD::ADDCARRY)) ||
|
|
(!IsAdd && (UI->getOpcode() != ISD::SUBCARRY))) {
|
|
IsVALU = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (IsVALU) {
|
|
unsigned Opc = IsAdd ? AMDGPU::V_ADD_CO_U32_e64 : AMDGPU::V_SUB_CO_U32_e64;
|
|
|
|
CurDAG->SelectNodeTo(
|
|
N, Opc, N->getVTList(),
|
|
{N->getOperand(0), N->getOperand(1),
|
|
CurDAG->getTargetConstant(0, {}, MVT::i1) /*clamp bit*/});
|
|
} else {
|
|
unsigned Opc = N->getOpcode() == ISD::UADDO ? AMDGPU::S_UADDO_PSEUDO
|
|
: AMDGPU::S_USUBO_PSEUDO;
|
|
|
|
CurDAG->SelectNodeTo(N, Opc, N->getVTList(),
|
|
{N->getOperand(0), N->getOperand(1)});
|
|
}
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode *N) {
|
|
SDLoc SL(N);
|
|
// src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
|
|
SDValue Ops[10];
|
|
|
|
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[6], Ops[7]);
|
|
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
|
|
SelectVOP3Mods(N->getOperand(3), Ops[5], Ops[4]);
|
|
Ops[8] = N->getOperand(0);
|
|
Ops[9] = N->getOperand(4);
|
|
|
|
CurDAG->SelectNodeTo(N, AMDGPU::V_FMA_F32, N->getVTList(), Ops);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode *N) {
|
|
SDLoc SL(N);
|
|
// src0_modifiers, src0, src1_modifiers, src1, clamp, omod
|
|
SDValue Ops[8];
|
|
|
|
SelectVOP3Mods0(N->getOperand(1), Ops[1], Ops[0], Ops[4], Ops[5]);
|
|
SelectVOP3Mods(N->getOperand(2), Ops[3], Ops[2]);
|
|
Ops[6] = N->getOperand(0);
|
|
Ops[7] = N->getOperand(3);
|
|
|
|
CurDAG->SelectNodeTo(N, AMDGPU::V_MUL_F32_e64, N->getVTList(), Ops);
|
|
}
|
|
|
|
// We need to handle this here because tablegen doesn't support matching
|
|
// instructions with multiple outputs.
|
|
void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode *N) {
|
|
SDLoc SL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(VT == MVT::f32 || VT == MVT::f64);
|
|
|
|
unsigned Opc
|
|
= (VT == MVT::f64) ? AMDGPU::V_DIV_SCALE_F64 : AMDGPU::V_DIV_SCALE_F32;
|
|
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2) };
|
|
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
|
|
}
|
|
|
|
// We need to handle this here because tablegen doesn't support matching
|
|
// instructions with multiple outputs.
|
|
void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode *N) {
|
|
SDLoc SL(N);
|
|
bool Signed = N->getOpcode() == AMDGPUISD::MAD_I64_I32;
|
|
unsigned Opc = Signed ? AMDGPU::V_MAD_I64_I32 : AMDGPU::V_MAD_U64_U32;
|
|
|
|
SDValue Clamp = CurDAG->getTargetConstant(0, SL, MVT::i1);
|
|
SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
|
|
Clamp };
|
|
CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base, unsigned Offset,
|
|
unsigned OffsetBits) const {
|
|
if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
|
|
(OffsetBits == 8 && !isUInt<8>(Offset)))
|
|
return false;
|
|
|
|
if (Subtarget->hasUsableDSOffset() ||
|
|
Subtarget->unsafeDSOffsetFoldingEnabled())
|
|
return true;
|
|
|
|
// On Southern Islands instruction with a negative base value and an offset
|
|
// don't seem to work.
|
|
return CurDAG->SignBitIsZero(Base);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) const {
|
|
SDLoc DL(Addr);
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
SDValue N0 = Addr.getOperand(0);
|
|
SDValue N1 = Addr.getOperand(1);
|
|
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
|
|
if (isDSOffsetLegal(N0, C1->getSExtValue(), 16)) {
|
|
// (add n0, c0)
|
|
Base = N0;
|
|
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
|
|
return true;
|
|
}
|
|
} else if (Addr.getOpcode() == ISD::SUB) {
|
|
// sub C, x -> add (sub 0, x), C
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
|
|
int64_t ByteOffset = C->getSExtValue();
|
|
if (isUInt<16>(ByteOffset)) {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
|
|
// XXX - This is kind of hacky. Create a dummy sub node so we can check
|
|
// the known bits in isDSOffsetLegal. We need to emit the selected node
|
|
// here, so this is thrown away.
|
|
SDValue Sub = CurDAG->getNode(ISD::SUB, DL, MVT::i32,
|
|
Zero, Addr.getOperand(1));
|
|
|
|
if (isDSOffsetLegal(Sub, ByteOffset, 16)) {
|
|
SmallVector<SDValue, 3> Opnds;
|
|
Opnds.push_back(Zero);
|
|
Opnds.push_back(Addr.getOperand(1));
|
|
|
|
// FIXME: Select to VOP3 version for with-carry.
|
|
unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
|
|
if (Subtarget->hasAddNoCarry()) {
|
|
SubOp = AMDGPU::V_SUB_U32_e64;
|
|
Opnds.push_back(
|
|
CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
|
|
}
|
|
|
|
MachineSDNode *MachineSub =
|
|
CurDAG->getMachineNode(SubOp, DL, MVT::i32, Opnds);
|
|
|
|
Base = SDValue(MachineSub, 0);
|
|
Offset = CurDAG->getTargetConstant(ByteOffset, DL, MVT::i16);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
|
|
// If we have a constant address, prefer to put the constant into the
|
|
// offset. This can save moves to load the constant address since multiple
|
|
// operations can share the zero base address register, and enables merging
|
|
// into read2 / write2 instructions.
|
|
|
|
SDLoc DL(Addr);
|
|
|
|
if (isUInt<16>(CAddr->getZExtValue())) {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
MachineSDNode *MovZero = CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32,
|
|
DL, MVT::i32, Zero);
|
|
Base = SDValue(MovZero, 0);
|
|
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// default case
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
// TODO: If offset is too big, put low 16-bit into offset.
|
|
bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset0,
|
|
SDValue &Offset1) const {
|
|
return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, false);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset0,
|
|
SDValue &Offset1) const {
|
|
return SelectDSReadWrite2(Addr, Base, Offset0, Offset1, true);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset0, SDValue &Offset1,
|
|
bool IsDS128) const {
|
|
SDLoc DL(Addr);
|
|
unsigned Align = IsDS128 ? 8 : 4;
|
|
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
SDValue N0 = Addr.getOperand(0);
|
|
SDValue N1 = Addr.getOperand(1);
|
|
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
|
|
unsigned OffsetValue0 = C1->getZExtValue() / Align;
|
|
unsigned OffsetValue1 = OffsetValue0 + 1;
|
|
// (add n0, c0)
|
|
if (isDSOffsetLegal(N0, OffsetValue1, 8)) {
|
|
Base = N0;
|
|
Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8);
|
|
Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8);
|
|
return true;
|
|
}
|
|
} else if (Addr.getOpcode() == ISD::SUB) {
|
|
// sub C, x -> add (sub 0, x), C
|
|
if (const ConstantSDNode *C =
|
|
dyn_cast<ConstantSDNode>(Addr.getOperand(0))) {
|
|
unsigned OffsetValue0 = C->getZExtValue() / Align;
|
|
unsigned OffsetValue1 = OffsetValue0 + 1;
|
|
|
|
if (isUInt<8>(OffsetValue0)) {
|
|
SDLoc DL(Addr);
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
|
|
// XXX - This is kind of hacky. Create a dummy sub node so we can check
|
|
// the known bits in isDSOffsetLegal. We need to emit the selected node
|
|
// here, so this is thrown away.
|
|
SDValue Sub =
|
|
CurDAG->getNode(ISD::SUB, DL, MVT::i32, Zero, Addr.getOperand(1));
|
|
|
|
if (isDSOffsetLegal(Sub, OffsetValue1, 8)) {
|
|
SmallVector<SDValue, 3> Opnds;
|
|
Opnds.push_back(Zero);
|
|
Opnds.push_back(Addr.getOperand(1));
|
|
unsigned SubOp = AMDGPU::V_SUB_CO_U32_e32;
|
|
if (Subtarget->hasAddNoCarry()) {
|
|
SubOp = AMDGPU::V_SUB_U32_e64;
|
|
Opnds.push_back(
|
|
CurDAG->getTargetConstant(0, {}, MVT::i1)); // clamp bit
|
|
}
|
|
|
|
MachineSDNode *MachineSub = CurDAG->getMachineNode(
|
|
SubOp, DL, (IsDS128 ? MVT::i64 : MVT::i32), Opnds);
|
|
|
|
Base = SDValue(MachineSub, 0);
|
|
Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8);
|
|
Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
} else if (const ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
|
|
unsigned OffsetValue0 = CAddr->getZExtValue() / Align;
|
|
unsigned OffsetValue1 = OffsetValue0 + 1;
|
|
bool OffsetIsAligned = Align * OffsetValue0 == CAddr->getZExtValue();
|
|
|
|
if (isUInt<8>(OffsetValue0) && isUInt<8>(OffsetValue1) && OffsetIsAligned) {
|
|
SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
MachineSDNode *MovZero =
|
|
CurDAG->getMachineNode(AMDGPU::V_MOV_B32_e32, DL, MVT::i32, Zero);
|
|
Base = SDValue(MovZero, 0);
|
|
Offset0 = CurDAG->getTargetConstant(OffsetValue0, DL, MVT::i8);
|
|
Offset1 = CurDAG->getTargetConstant(OffsetValue1, DL, MVT::i8);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// default case
|
|
|
|
Base = Addr;
|
|
Offset0 = CurDAG->getTargetConstant(0, DL, MVT::i8);
|
|
Offset1 = CurDAG->getTargetConstant(1, DL, MVT::i8);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr, SDValue &Ptr,
|
|
SDValue &VAddr, SDValue &SOffset,
|
|
SDValue &Offset, SDValue &Offen,
|
|
SDValue &Idxen, SDValue &Addr64,
|
|
SDValue &GLC, SDValue &SLC,
|
|
SDValue &TFE, SDValue &DLC,
|
|
SDValue &SWZ) const {
|
|
// Subtarget prefers to use flat instruction
|
|
// FIXME: This should be a pattern predicate and not reach here
|
|
if (Subtarget->useFlatForGlobal())
|
|
return false;
|
|
|
|
SDLoc DL(Addr);
|
|
|
|
if (!GLC.getNode())
|
|
GLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
if (!SLC.getNode())
|
|
SLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
TFE = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
DLC = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
SWZ = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
|
|
Idxen = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
Offen = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
Addr64 = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
SOffset = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
|
|
ConstantSDNode *C1 = nullptr;
|
|
SDValue N0 = Addr;
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
C1 = cast<ConstantSDNode>(Addr.getOperand(1));
|
|
if (isUInt<32>(C1->getZExtValue()))
|
|
N0 = Addr.getOperand(0);
|
|
else
|
|
C1 = nullptr;
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::ADD) {
|
|
// (add N2, N3) -> addr64, or
|
|
// (add (add N2, N3), C1) -> addr64
|
|
SDValue N2 = N0.getOperand(0);
|
|
SDValue N3 = N0.getOperand(1);
|
|
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
|
|
|
|
if (N2->isDivergent()) {
|
|
if (N3->isDivergent()) {
|
|
// Both N2 and N3 are divergent. Use N0 (the result of the add) as the
|
|
// addr64, and construct the resource from a 0 address.
|
|
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
|
|
VAddr = N0;
|
|
} else {
|
|
// N2 is divergent, N3 is not.
|
|
Ptr = N3;
|
|
VAddr = N2;
|
|
}
|
|
} else {
|
|
// N2 is not divergent.
|
|
Ptr = N2;
|
|
VAddr = N3;
|
|
}
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
|
|
} else if (N0->isDivergent()) {
|
|
// N0 is divergent. Use it as the addr64, and construct the resource from a
|
|
// 0 address.
|
|
Ptr = SDValue(buildSMovImm64(DL, 0, MVT::v2i32), 0);
|
|
VAddr = N0;
|
|
Addr64 = CurDAG->getTargetConstant(1, DL, MVT::i1);
|
|
} else {
|
|
// N0 -> offset, or
|
|
// (N0 + C1) -> offset
|
|
VAddr = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
Ptr = N0;
|
|
}
|
|
|
|
if (!C1) {
|
|
// No offset.
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue())) {
|
|
// Legal offset for instruction.
|
|
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
// Illegal offset, store it in soffset.
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i16);
|
|
SOffset =
|
|
SDValue(CurDAG->getMachineNode(
|
|
AMDGPU::S_MOV_B32, DL, MVT::i32,
|
|
CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32)),
|
|
0);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &VAddr, SDValue &SOffset,
|
|
SDValue &Offset, SDValue &GLC,
|
|
SDValue &SLC, SDValue &TFE,
|
|
SDValue &DLC, SDValue &SWZ) const {
|
|
SDValue Ptr, Offen, Idxen, Addr64;
|
|
|
|
// addr64 bit was removed for volcanic islands.
|
|
// FIXME: This should be a pattern predicate and not reach here
|
|
if (!Subtarget->hasAddr64())
|
|
return false;
|
|
|
|
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
|
|
GLC, SLC, TFE, DLC, SWZ))
|
|
return false;
|
|
|
|
ConstantSDNode *C = cast<ConstantSDNode>(Addr64);
|
|
if (C->getSExtValue()) {
|
|
SDLoc DL(Addr);
|
|
|
|
const SITargetLowering& Lowering =
|
|
*static_cast<const SITargetLowering*>(getTargetLowering());
|
|
|
|
SRsrc = SDValue(Lowering.wrapAddr64Rsrc(*CurDAG, DL, Ptr), 0);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &VAddr, SDValue &SOffset,
|
|
SDValue &Offset,
|
|
SDValue &SLC) const {
|
|
SLC = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i1);
|
|
SDValue GLC, TFE, DLC, SWZ;
|
|
|
|
return SelectMUBUFAddr64(Addr, SRsrc, VAddr, SOffset, Offset, GLC, SLC, TFE, DLC, SWZ);
|
|
}
|
|
|
|
static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
|
|
auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
|
|
return PSV && PSV->isStack();
|
|
}
|
|
|
|
std::pair<SDValue, SDValue> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N) const {
|
|
SDLoc DL(N);
|
|
const MachineFunction &MF = CurDAG->getMachineFunction();
|
|
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (auto FI = dyn_cast<FrameIndexSDNode>(N)) {
|
|
SDValue TFI = CurDAG->getTargetFrameIndex(FI->getIndex(),
|
|
FI->getValueType(0));
|
|
|
|
// If we can resolve this to a frame index access, this will be relative to
|
|
// either the stack or frame pointer SGPR.
|
|
return std::make_pair(
|
|
TFI, CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32));
|
|
}
|
|
|
|
// If we don't know this private access is a local stack object, it needs to
|
|
// be relative to the entry point's scratch wave offset.
|
|
return std::make_pair(N, CurDAG->getTargetConstant(0, DL, MVT::i32));
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode *Parent,
|
|
SDValue Addr, SDValue &Rsrc,
|
|
SDValue &VAddr, SDValue &SOffset,
|
|
SDValue &ImmOffset) const {
|
|
|
|
SDLoc DL(Addr);
|
|
MachineFunction &MF = CurDAG->getMachineFunction();
|
|
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
Rsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
|
|
|
|
if (ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr)) {
|
|
int64_t Imm = CAddr->getSExtValue();
|
|
const int64_t NullPtr =
|
|
AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS);
|
|
// Don't fold null pointer.
|
|
if (Imm != NullPtr) {
|
|
SDValue HighBits = CurDAG->getTargetConstant(Imm & ~4095, DL, MVT::i32);
|
|
MachineSDNode *MovHighBits = CurDAG->getMachineNode(
|
|
AMDGPU::V_MOV_B32_e32, DL, MVT::i32, HighBits);
|
|
VAddr = SDValue(MovHighBits, 0);
|
|
|
|
// In a call sequence, stores to the argument stack area are relative to the
|
|
// stack pointer.
|
|
const MachinePointerInfo &PtrInfo
|
|
= cast<MemSDNode>(Parent)->getPointerInfo();
|
|
SOffset = isStackPtrRelative(PtrInfo)
|
|
? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
|
|
: CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
ImmOffset = CurDAG->getTargetConstant(Imm & 4095, DL, MVT::i16);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
// (add n0, c1)
|
|
|
|
SDValue N0 = Addr.getOperand(0);
|
|
SDValue N1 = Addr.getOperand(1);
|
|
|
|
// Offsets in vaddr must be positive if range checking is enabled.
|
|
//
|
|
// The total computation of vaddr + soffset + offset must not overflow. If
|
|
// vaddr is negative, even if offset is 0 the sgpr offset add will end up
|
|
// overflowing.
|
|
//
|
|
// Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
|
|
// always perform a range check. If a negative vaddr base index was used,
|
|
// this would fail the range check. The overall address computation would
|
|
// compute a valid address, but this doesn't happen due to the range
|
|
// check. For out-of-bounds MUBUF loads, a 0 is returned.
|
|
//
|
|
// Therefore it should be safe to fold any VGPR offset on gfx9 into the
|
|
// MUBUF vaddr, but not on older subtargets which can only do this if the
|
|
// sign bit is known 0.
|
|
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
|
|
if (SIInstrInfo::isLegalMUBUFImmOffset(C1->getZExtValue()) &&
|
|
(!Subtarget->privateMemoryResourceIsRangeChecked() ||
|
|
CurDAG->SignBitIsZero(N0))) {
|
|
std::tie(VAddr, SOffset) = foldFrameIndex(N0);
|
|
ImmOffset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i16);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// (node)
|
|
std::tie(VAddr, SOffset) = foldFrameIndex(Addr);
|
|
ImmOffset = CurDAG->getTargetConstant(0, DL, MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode *Parent,
|
|
SDValue Addr,
|
|
SDValue &SRsrc,
|
|
SDValue &SOffset,
|
|
SDValue &Offset) const {
|
|
ConstantSDNode *CAddr = dyn_cast<ConstantSDNode>(Addr);
|
|
if (!CAddr || !SIInstrInfo::isLegalMUBUFImmOffset(CAddr->getZExtValue()))
|
|
return false;
|
|
|
|
SDLoc DL(Addr);
|
|
MachineFunction &MF = CurDAG->getMachineFunction();
|
|
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
SRsrc = CurDAG->getRegister(Info->getScratchRSrcReg(), MVT::v4i32);
|
|
|
|
const MachinePointerInfo &PtrInfo = cast<MemSDNode>(Parent)->getPointerInfo();
|
|
|
|
// FIXME: Get from MachinePointerInfo? We should only be using the frame
|
|
// offset if we know this is in a call sequence.
|
|
SOffset = isStackPtrRelative(PtrInfo)
|
|
? CurDAG->getRegister(Info->getStackPtrOffsetReg(), MVT::i32)
|
|
: CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
|
|
Offset = CurDAG->getTargetConstant(CAddr->getZExtValue(), DL, MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &SOffset, SDValue &Offset,
|
|
SDValue &GLC, SDValue &SLC,
|
|
SDValue &TFE, SDValue &DLC,
|
|
SDValue &SWZ) const {
|
|
SDValue Ptr, VAddr, Offen, Idxen, Addr64;
|
|
const SIInstrInfo *TII =
|
|
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
|
|
|
|
if (!SelectMUBUF(Addr, Ptr, VAddr, SOffset, Offset, Offen, Idxen, Addr64,
|
|
GLC, SLC, TFE, DLC, SWZ))
|
|
return false;
|
|
|
|
if (!cast<ConstantSDNode>(Offen)->getSExtValue() &&
|
|
!cast<ConstantSDNode>(Idxen)->getSExtValue() &&
|
|
!cast<ConstantSDNode>(Addr64)->getSExtValue()) {
|
|
uint64_t Rsrc = TII->getDefaultRsrcDataFormat() |
|
|
APInt::getAllOnesValue(32).getZExtValue(); // Size
|
|
SDLoc DL(Addr);
|
|
|
|
const SITargetLowering& Lowering =
|
|
*static_cast<const SITargetLowering*>(getTargetLowering());
|
|
|
|
SRsrc = SDValue(Lowering.buildRSRC(*CurDAG, DL, Ptr, 0, Rsrc), 0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &Soffset, SDValue &Offset
|
|
) const {
|
|
SDValue GLC, SLC, TFE, DLC, SWZ;
|
|
|
|
return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
|
|
}
|
|
bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr, SDValue &SRsrc,
|
|
SDValue &Soffset, SDValue &Offset,
|
|
SDValue &SLC) const {
|
|
SDValue GLC, TFE, DLC, SWZ;
|
|
|
|
return SelectMUBUFOffset(Addr, SRsrc, Soffset, Offset, GLC, SLC, TFE, DLC, SWZ);
|
|
}
|
|
|
|
// Find a load or store from corresponding pattern root.
|
|
// Roots may be build_vector, bitconvert or their combinations.
|
|
static MemSDNode* findMemSDNode(SDNode *N) {
|
|
N = AMDGPUTargetLowering::stripBitcast(SDValue(N,0)).getNode();
|
|
if (MemSDNode *MN = dyn_cast<MemSDNode>(N))
|
|
return MN;
|
|
assert(isa<BuildVectorSDNode>(N));
|
|
for (SDValue V : N->op_values())
|
|
if (MemSDNode *MN =
|
|
dyn_cast<MemSDNode>(AMDGPUTargetLowering::stripBitcast(V)))
|
|
return MN;
|
|
llvm_unreachable("cannot find MemSDNode in the pattern!");
|
|
}
|
|
|
|
static bool getBaseWithOffsetUsingSplitOR(SelectionDAG &DAG, SDValue Addr,
|
|
SDValue &N0, SDValue &N1) {
|
|
if (Addr.getValueType() == MVT::i64 && Addr.getOpcode() == ISD::BITCAST &&
|
|
Addr.getOperand(0).getOpcode() == ISD::BUILD_VECTOR) {
|
|
// As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
|
|
// (i64 (bitcast (v2i32 (build_vector
|
|
// (or (extract_vector_elt V, 0), OFFSET),
|
|
// (extract_vector_elt V, 1)))))
|
|
SDValue Lo = Addr.getOperand(0).getOperand(0);
|
|
if (Lo.getOpcode() == ISD::OR && DAG.isBaseWithConstantOffset(Lo)) {
|
|
SDValue BaseLo = Lo.getOperand(0);
|
|
SDValue BaseHi = Addr.getOperand(0).getOperand(1);
|
|
// Check that split base (Lo and Hi) are extracted from the same one.
|
|
if (BaseLo.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
BaseHi.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
BaseLo.getOperand(0) == BaseHi.getOperand(0) &&
|
|
// Lo is statically extracted from index 0.
|
|
isa<ConstantSDNode>(BaseLo.getOperand(1)) &&
|
|
BaseLo.getConstantOperandVal(1) == 0 &&
|
|
// Hi is statically extracted from index 0.
|
|
isa<ConstantSDNode>(BaseHi.getOperand(1)) &&
|
|
BaseHi.getConstantOperandVal(1) == 1) {
|
|
N0 = BaseLo.getOperand(0).getOperand(0);
|
|
N1 = Lo.getOperand(1);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template <bool IsSigned>
|
|
bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode *N,
|
|
SDValue Addr,
|
|
SDValue &VAddr,
|
|
SDValue &Offset) const {
|
|
int64_t OffsetVal = 0;
|
|
|
|
if (Subtarget->hasFlatInstOffsets() &&
|
|
(!Subtarget->hasFlatSegmentOffsetBug() ||
|
|
findMemSDNode(N)->getAddressSpace() != AMDGPUAS::FLAT_ADDRESS)) {
|
|
SDValue N0, N1;
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
N0 = Addr.getOperand(0);
|
|
N1 = Addr.getOperand(1);
|
|
} else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
|
|
assert(N0 && N1 && isa<ConstantSDNode>(N1));
|
|
}
|
|
if (N0 && N1) {
|
|
uint64_t COffsetVal = cast<ConstantSDNode>(N1)->getSExtValue();
|
|
|
|
const SIInstrInfo *TII = Subtarget->getInstrInfo();
|
|
unsigned AS = findMemSDNode(N)->getAddressSpace();
|
|
if (TII->isLegalFLATOffset(COffsetVal, AS, IsSigned)) {
|
|
Addr = N0;
|
|
OffsetVal = COffsetVal;
|
|
} else {
|
|
// If the offset doesn't fit, put the low bits into the offset field and
|
|
// add the rest.
|
|
//
|
|
// For a FLAT instruction the hardware decides whether to access
|
|
// global/scratch/shared memory based on the high bits of vaddr,
|
|
// ignoring the offset field, so we have to ensure that when we add
|
|
// remainder to vaddr it still points into the same underlying object.
|
|
// The easiest way to do that is to make sure that we split the offset
|
|
// into two pieces that are both >= 0 or both <= 0.
|
|
|
|
SDLoc DL(N);
|
|
uint64_t RemainderOffset = COffsetVal;
|
|
uint64_t ImmField = 0;
|
|
const unsigned NumBits = TII->getNumFlatOffsetBits(AS, IsSigned);
|
|
if (IsSigned) {
|
|
// Use signed division by a power of two to truncate towards 0.
|
|
int64_t D = 1LL << (NumBits - 1);
|
|
RemainderOffset = (static_cast<int64_t>(COffsetVal) / D) * D;
|
|
ImmField = COffsetVal - RemainderOffset;
|
|
} else if (static_cast<int64_t>(COffsetVal) >= 0) {
|
|
ImmField = COffsetVal & maskTrailingOnes<uint64_t>(NumBits);
|
|
RemainderOffset = COffsetVal - ImmField;
|
|
}
|
|
assert(TII->isLegalFLATOffset(ImmField, AS, IsSigned));
|
|
assert(RemainderOffset + ImmField == COffsetVal);
|
|
|
|
OffsetVal = ImmField;
|
|
|
|
// TODO: Should this try to use a scalar add pseudo if the base address
|
|
// is uniform and saddr is usable?
|
|
SDValue Sub0 = CurDAG->getTargetConstant(AMDGPU::sub0, DL, MVT::i32);
|
|
SDValue Sub1 = CurDAG->getTargetConstant(AMDGPU::sub1, DL, MVT::i32);
|
|
|
|
SDNode *N0Lo = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
|
|
MVT::i32, N0, Sub0);
|
|
SDNode *N0Hi = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
|
|
MVT::i32, N0, Sub1);
|
|
|
|
SDValue AddOffsetLo =
|
|
getMaterializedScalarImm32(Lo_32(RemainderOffset), DL);
|
|
SDValue AddOffsetHi =
|
|
getMaterializedScalarImm32(Hi_32(RemainderOffset), DL);
|
|
|
|
SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i1);
|
|
SDValue Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
|
|
SDNode *Add =
|
|
CurDAG->getMachineNode(AMDGPU::V_ADD_CO_U32_e64, DL, VTs,
|
|
{AddOffsetLo, SDValue(N0Lo, 0), Clamp});
|
|
|
|
SDNode *Addc = CurDAG->getMachineNode(
|
|
AMDGPU::V_ADDC_U32_e64, DL, VTs,
|
|
{AddOffsetHi, SDValue(N0Hi, 0), SDValue(Add, 1), Clamp});
|
|
|
|
SDValue RegSequenceArgs[] = {
|
|
CurDAG->getTargetConstant(AMDGPU::VReg_64RegClassID, DL, MVT::i32),
|
|
SDValue(Add, 0), Sub0, SDValue(Addc, 0), Sub1};
|
|
|
|
Addr = SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, DL,
|
|
MVT::i64, RegSequenceArgs),
|
|
0);
|
|
}
|
|
}
|
|
}
|
|
|
|
VAddr = Addr;
|
|
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
// If this matches zero_extend i32:x, return x
|
|
static SDValue matchZExtFromI32(SDValue Op) {
|
|
if (Op.getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
|
|
SDValue ExtSrc = Op.getOperand(0);
|
|
return (ExtSrc.getValueType() == MVT::i32) ? ExtSrc : SDValue();
|
|
}
|
|
|
|
// Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
|
|
bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode *N,
|
|
SDValue Addr,
|
|
SDValue &SAddr,
|
|
SDValue &VOffset,
|
|
SDValue &Offset) const {
|
|
int64_t ImmOffset = 0;
|
|
|
|
// Match the immediate offset first, which canonically is moved as low as
|
|
// possible.
|
|
if (CurDAG->isBaseWithConstantOffset(Addr)) {
|
|
SDValue LHS = Addr.getOperand(0);
|
|
SDValue RHS = Addr.getOperand(1);
|
|
|
|
int64_t COffsetVal = cast<ConstantSDNode>(RHS)->getSExtValue();
|
|
const SIInstrInfo *TII = Subtarget->getInstrInfo();
|
|
|
|
// TODO: Could split larger constant into VGPR offset.
|
|
if (TII->isLegalFLATOffset(COffsetVal, AMDGPUAS::GLOBAL_ADDRESS, true)) {
|
|
Addr = LHS;
|
|
ImmOffset = COffsetVal;
|
|
}
|
|
}
|
|
|
|
// Match the variable offset.
|
|
if (Addr.getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
SDValue LHS = Addr.getOperand(0);
|
|
SDValue RHS = Addr.getOperand(1);
|
|
|
|
if (!LHS->isDivergent()) {
|
|
// add (i64 sgpr), (zero_extend (i32 vgpr))
|
|
if (SDValue ZextRHS = matchZExtFromI32(RHS)) {
|
|
SAddr = LHS;
|
|
VOffset = ZextRHS;
|
|
}
|
|
}
|
|
|
|
if (!SAddr && !RHS->isDivergent()) {
|
|
// add (zero_extend (i32 vgpr)), (i64 sgpr)
|
|
if (SDValue ZextLHS = matchZExtFromI32(LHS)) {
|
|
SAddr = RHS;
|
|
VOffset = ZextLHS;
|
|
}
|
|
}
|
|
|
|
if (!SAddr)
|
|
return false;
|
|
|
|
Offset = CurDAG->getTargetConstant(ImmOffset, SDLoc(), MVT::i16);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode,
|
|
SDValue &Offset, bool &Imm) const {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(ByteOffsetNode);
|
|
if (!C) {
|
|
if (ByteOffsetNode.getValueType().isScalarInteger() &&
|
|
ByteOffsetNode.getValueType().getSizeInBits() == 32) {
|
|
Offset = ByteOffsetNode;
|
|
Imm = false;
|
|
return true;
|
|
}
|
|
if (ByteOffsetNode.getOpcode() == ISD::ZERO_EXTEND) {
|
|
if (ByteOffsetNode.getOperand(0).getValueType().getSizeInBits() == 32) {
|
|
Offset = ByteOffsetNode.getOperand(0);
|
|
Imm = false;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDLoc SL(ByteOffsetNode);
|
|
// GFX9 and GFX10 have signed byte immediate offsets.
|
|
int64_t ByteOffset = C->getSExtValue();
|
|
Optional<int64_t> EncodedOffset =
|
|
AMDGPU::getSMRDEncodedOffset(*Subtarget, ByteOffset, false);
|
|
if (EncodedOffset) {
|
|
Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
|
|
Imm = true;
|
|
return true;
|
|
}
|
|
|
|
// SGPR and literal offsets are unsigned.
|
|
if (ByteOffset < 0)
|
|
return false;
|
|
|
|
EncodedOffset = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget, ByteOffset);
|
|
if (EncodedOffset) {
|
|
Offset = CurDAG->getTargetConstant(*EncodedOffset, SL, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
if (!isUInt<32>(ByteOffset) && !isInt<32>(ByteOffset))
|
|
return false;
|
|
|
|
SDValue C32Bit = CurDAG->getTargetConstant(ByteOffset, SL, MVT::i32);
|
|
Offset = SDValue(
|
|
CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, C32Bit), 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
SDValue AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr) const {
|
|
if (Addr.getValueType() != MVT::i32)
|
|
return Addr;
|
|
|
|
// Zero-extend a 32-bit address.
|
|
SDLoc SL(Addr);
|
|
|
|
const MachineFunction &MF = CurDAG->getMachineFunction();
|
|
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
unsigned AddrHiVal = Info->get32BitAddressHighBits();
|
|
SDValue AddrHi = CurDAG->getTargetConstant(AddrHiVal, SL, MVT::i32);
|
|
|
|
const SDValue Ops[] = {
|
|
CurDAG->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID, SL, MVT::i32),
|
|
Addr,
|
|
CurDAG->getTargetConstant(AMDGPU::sub0, SL, MVT::i32),
|
|
SDValue(CurDAG->getMachineNode(AMDGPU::S_MOV_B32, SL, MVT::i32, AddrHi),
|
|
0),
|
|
CurDAG->getTargetConstant(AMDGPU::sub1, SL, MVT::i32),
|
|
};
|
|
|
|
return SDValue(CurDAG->getMachineNode(AMDGPU::REG_SEQUENCE, SL, MVT::i64,
|
|
Ops), 0);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr, SDValue &SBase,
|
|
SDValue &Offset, bool &Imm) const {
|
|
SDLoc SL(Addr);
|
|
|
|
// A 32-bit (address + offset) should not cause unsigned 32-bit integer
|
|
// wraparound, because s_load instructions perform the addition in 64 bits.
|
|
if ((Addr.getValueType() != MVT::i32 ||
|
|
Addr->getFlags().hasNoUnsignedWrap())) {
|
|
SDValue N0, N1;
|
|
// Extract the base and offset if possible.
|
|
if (CurDAG->isBaseWithConstantOffset(Addr) ||
|
|
Addr.getOpcode() == ISD::ADD) {
|
|
N0 = Addr.getOperand(0);
|
|
N1 = Addr.getOperand(1);
|
|
} else if (getBaseWithOffsetUsingSplitOR(*CurDAG, Addr, N0, N1)) {
|
|
assert(N0 && N1 && isa<ConstantSDNode>(N1));
|
|
}
|
|
if (N0 && N1) {
|
|
if (SelectSMRDOffset(N1, Offset, Imm)) {
|
|
SBase = Expand32BitAddress(N0);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
SBase = Expand32BitAddress(Addr);
|
|
Offset = CurDAG->getTargetConstant(0, SL, MVT::i32);
|
|
Imm = true;
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr, SDValue &SBase,
|
|
SDValue &Offset) const {
|
|
bool Imm = false;
|
|
return SelectSMRD(Addr, SBase, Offset, Imm) && Imm;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr, SDValue &SBase,
|
|
SDValue &Offset) const {
|
|
|
|
assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
|
|
|
|
bool Imm = false;
|
|
if (!SelectSMRD(Addr, SBase, Offset, Imm))
|
|
return false;
|
|
|
|
return !Imm && isa<ConstantSDNode>(Offset);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr, SDValue &SBase,
|
|
SDValue &Offset) const {
|
|
bool Imm = false;
|
|
return SelectSMRD(Addr, SBase, Offset, Imm) && !Imm &&
|
|
!isa<ConstantSDNode>(Offset);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr,
|
|
SDValue &Offset) const {
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
|
|
// The immediate offset for S_BUFFER instructions is unsigned.
|
|
if (auto Imm =
|
|
AMDGPU::getSMRDEncodedOffset(*Subtarget, C->getZExtValue(), true)) {
|
|
Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr,
|
|
SDValue &Offset) const {
|
|
assert(Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Addr)) {
|
|
if (auto Imm = AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget,
|
|
C->getZExtValue())) {
|
|
Offset = CurDAG->getTargetConstant(*Imm, SDLoc(Addr), MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index,
|
|
SDValue &Base,
|
|
SDValue &Offset) const {
|
|
SDLoc DL(Index);
|
|
|
|
if (CurDAG->isBaseWithConstantOffset(Index)) {
|
|
SDValue N0 = Index.getOperand(0);
|
|
SDValue N1 = Index.getOperand(1);
|
|
ConstantSDNode *C1 = cast<ConstantSDNode>(N1);
|
|
|
|
// (add n0, c0)
|
|
// Don't peel off the offset (c0) if doing so could possibly lead
|
|
// the base (n0) to be negative.
|
|
// (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
|
|
if (C1->getSExtValue() <= 0 || CurDAG->SignBitIsZero(N0) ||
|
|
(Index->getOpcode() == ISD::OR && C1->getSExtValue() >= 0)) {
|
|
Base = N0;
|
|
Offset = CurDAG->getTargetConstant(C1->getZExtValue(), DL, MVT::i32);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (isa<ConstantSDNode>(Index))
|
|
return false;
|
|
|
|
Base = Index;
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
SDNode *AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode, const SDLoc &DL,
|
|
SDValue Val, uint32_t Offset,
|
|
uint32_t Width) {
|
|
// Transformation function, pack the offset and width of a BFE into
|
|
// the format expected by the S_BFE_I32 / S_BFE_U32. In the second
|
|
// source, bits [5:0] contain the offset and bits [22:16] the width.
|
|
uint32_t PackedVal = Offset | (Width << 16);
|
|
SDValue PackedConst = CurDAG->getTargetConstant(PackedVal, DL, MVT::i32);
|
|
|
|
return CurDAG->getMachineNode(Opcode, DL, MVT::i32, Val, PackedConst);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode *N) {
|
|
// "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
|
|
// "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
|
|
// Predicate: 0 < b <= c < 32
|
|
|
|
const SDValue &Shl = N->getOperand(0);
|
|
ConstantSDNode *B = dyn_cast<ConstantSDNode>(Shl->getOperand(1));
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
|
|
if (B && C) {
|
|
uint32_t BVal = B->getZExtValue();
|
|
uint32_t CVal = C->getZExtValue();
|
|
|
|
if (0 < BVal && BVal <= CVal && CVal < 32) {
|
|
bool Signed = N->getOpcode() == ISD::SRA;
|
|
unsigned Opcode = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
|
|
|
|
ReplaceNode(N, getS_BFE(Opcode, SDLoc(N), Shl.getOperand(0), CVal - BVal,
|
|
32 - CVal));
|
|
return;
|
|
}
|
|
}
|
|
SelectCode(N);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
case ISD::AND:
|
|
if (N->getOperand(0).getOpcode() == ISD::SRL) {
|
|
// "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
|
|
// Predicate: isMask(mask)
|
|
const SDValue &Srl = N->getOperand(0);
|
|
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(Srl.getOperand(1));
|
|
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
|
|
if (Shift && Mask) {
|
|
uint32_t ShiftVal = Shift->getZExtValue();
|
|
uint32_t MaskVal = Mask->getZExtValue();
|
|
|
|
if (isMask_32(MaskVal)) {
|
|
uint32_t WidthVal = countPopulation(MaskVal);
|
|
|
|
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
|
|
Srl.getOperand(0), ShiftVal, WidthVal));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case ISD::SRL:
|
|
if (N->getOperand(0).getOpcode() == ISD::AND) {
|
|
// "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
|
|
// Predicate: isMask(mask >> b)
|
|
const SDValue &And = N->getOperand(0);
|
|
ConstantSDNode *Shift = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
ConstantSDNode *Mask = dyn_cast<ConstantSDNode>(And->getOperand(1));
|
|
|
|
if (Shift && Mask) {
|
|
uint32_t ShiftVal = Shift->getZExtValue();
|
|
uint32_t MaskVal = Mask->getZExtValue() >> ShiftVal;
|
|
|
|
if (isMask_32(MaskVal)) {
|
|
uint32_t WidthVal = countPopulation(MaskVal);
|
|
|
|
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_U32, SDLoc(N),
|
|
And.getOperand(0), ShiftVal, WidthVal));
|
|
return;
|
|
}
|
|
}
|
|
} else if (N->getOperand(0).getOpcode() == ISD::SHL) {
|
|
SelectS_BFEFromShifts(N);
|
|
return;
|
|
}
|
|
break;
|
|
case ISD::SRA:
|
|
if (N->getOperand(0).getOpcode() == ISD::SHL) {
|
|
SelectS_BFEFromShifts(N);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ISD::SIGN_EXTEND_INREG: {
|
|
// sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
|
|
SDValue Src = N->getOperand(0);
|
|
if (Src.getOpcode() != ISD::SRL)
|
|
break;
|
|
|
|
const ConstantSDNode *Amt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
|
|
if (!Amt)
|
|
break;
|
|
|
|
unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
|
|
ReplaceNode(N, getS_BFE(AMDGPU::S_BFE_I32, SDLoc(N), Src.getOperand(0),
|
|
Amt->getZExtValue(), Width));
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode *N) const {
|
|
assert(N->getOpcode() == ISD::BRCOND);
|
|
if (!N->hasOneUse())
|
|
return false;
|
|
|
|
SDValue Cond = N->getOperand(1);
|
|
if (Cond.getOpcode() == ISD::CopyToReg)
|
|
Cond = Cond.getOperand(2);
|
|
|
|
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse())
|
|
return false;
|
|
|
|
MVT VT = Cond.getOperand(0).getSimpleValueType();
|
|
if (VT == MVT::i32)
|
|
return true;
|
|
|
|
if (VT == MVT::i64) {
|
|
auto ST = static_cast<const GCNSubtarget *>(Subtarget);
|
|
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
return (CC == ISD::SETEQ || CC == ISD::SETNE) && ST->hasScalarCompareEq64();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode *N) {
|
|
SDValue Cond = N->getOperand(1);
|
|
|
|
if (Cond.isUndef()) {
|
|
CurDAG->SelectNodeTo(N, AMDGPU::SI_BR_UNDEF, MVT::Other,
|
|
N->getOperand(2), N->getOperand(0));
|
|
return;
|
|
}
|
|
|
|
const GCNSubtarget *ST = static_cast<const GCNSubtarget *>(Subtarget);
|
|
const SIRegisterInfo *TRI = ST->getRegisterInfo();
|
|
|
|
bool UseSCCBr = isCBranchSCC(N) && isUniformBr(N);
|
|
unsigned BrOp = UseSCCBr ? AMDGPU::S_CBRANCH_SCC1 : AMDGPU::S_CBRANCH_VCCNZ;
|
|
Register CondReg = UseSCCBr ? AMDGPU::SCC : TRI->getVCC();
|
|
SDLoc SL(N);
|
|
|
|
if (!UseSCCBr) {
|
|
// This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
|
|
// analyzed what generates the vcc value, so we do not know whether vcc
|
|
// bits for disabled lanes are 0. Thus we need to mask out bits for
|
|
// disabled lanes.
|
|
//
|
|
// For the case that we select S_CBRANCH_SCC1 and it gets
|
|
// changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
|
|
// SIInstrInfo::moveToVALU which inserts the S_AND).
|
|
//
|
|
// We could add an analysis of what generates the vcc value here and omit
|
|
// the S_AND when is unnecessary. But it would be better to add a separate
|
|
// pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
|
|
// catches both cases.
|
|
Cond = SDValue(CurDAG->getMachineNode(ST->isWave32() ? AMDGPU::S_AND_B32
|
|
: AMDGPU::S_AND_B64,
|
|
SL, MVT::i1,
|
|
CurDAG->getRegister(ST->isWave32() ? AMDGPU::EXEC_LO
|
|
: AMDGPU::EXEC,
|
|
MVT::i1),
|
|
Cond),
|
|
0);
|
|
}
|
|
|
|
SDValue VCC = CurDAG->getCopyToReg(N->getOperand(0), SL, CondReg, Cond);
|
|
CurDAG->SelectNodeTo(N, BrOp, MVT::Other,
|
|
N->getOperand(2), // Basic Block
|
|
VCC.getValue(0));
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode *N) {
|
|
MVT VT = N->getSimpleValueType(0);
|
|
bool IsFMA = N->getOpcode() == ISD::FMA;
|
|
if (VT != MVT::f32 || (!Subtarget->hasMadMixInsts() &&
|
|
!Subtarget->hasFmaMixInsts()) ||
|
|
((IsFMA && Subtarget->hasMadMixInsts()) ||
|
|
(!IsFMA && Subtarget->hasFmaMixInsts()))) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDValue Src0 = N->getOperand(0);
|
|
SDValue Src1 = N->getOperand(1);
|
|
SDValue Src2 = N->getOperand(2);
|
|
unsigned Src0Mods, Src1Mods, Src2Mods;
|
|
|
|
// Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
|
|
// using the conversion from f16.
|
|
bool Sel0 = SelectVOP3PMadMixModsImpl(Src0, Src0, Src0Mods);
|
|
bool Sel1 = SelectVOP3PMadMixModsImpl(Src1, Src1, Src1Mods);
|
|
bool Sel2 = SelectVOP3PMadMixModsImpl(Src2, Src2, Src2Mods);
|
|
|
|
assert((IsFMA || !Mode.allFP32Denormals()) &&
|
|
"fmad selected with denormals enabled");
|
|
// TODO: We can select this with f32 denormals enabled if all the sources are
|
|
// converted from f16 (in which case fmad isn't legal).
|
|
|
|
if (Sel0 || Sel1 || Sel2) {
|
|
// For dummy operands.
|
|
SDValue Zero = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
|
|
SDValue Ops[] = {
|
|
CurDAG->getTargetConstant(Src0Mods, SDLoc(), MVT::i32), Src0,
|
|
CurDAG->getTargetConstant(Src1Mods, SDLoc(), MVT::i32), Src1,
|
|
CurDAG->getTargetConstant(Src2Mods, SDLoc(), MVT::i32), Src2,
|
|
CurDAG->getTargetConstant(0, SDLoc(), MVT::i1),
|
|
Zero, Zero
|
|
};
|
|
|
|
CurDAG->SelectNodeTo(N,
|
|
IsFMA ? AMDGPU::V_FMA_MIX_F32 : AMDGPU::V_MAD_MIX_F32,
|
|
MVT::f32, Ops);
|
|
} else {
|
|
SelectCode(N);
|
|
}
|
|
}
|
|
|
|
// This is here because there isn't a way to use the generated sub0_sub1 as the
|
|
// subreg index to EXTRACT_SUBREG in tablegen.
|
|
void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode *N) {
|
|
MemSDNode *Mem = cast<MemSDNode>(N);
|
|
unsigned AS = Mem->getAddressSpace();
|
|
if (AS == AMDGPUAS::FLAT_ADDRESS) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
MVT VT = N->getSimpleValueType(0);
|
|
bool Is32 = (VT == MVT::i32);
|
|
SDLoc SL(N);
|
|
|
|
MachineSDNode *CmpSwap = nullptr;
|
|
if (Subtarget->hasAddr64()) {
|
|
SDValue SRsrc, VAddr, SOffset, Offset, SLC;
|
|
|
|
if (SelectMUBUFAddr64(Mem->getBasePtr(), SRsrc, VAddr, SOffset, Offset, SLC)) {
|
|
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN :
|
|
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN;
|
|
SDValue CmpVal = Mem->getOperand(2);
|
|
|
|
// XXX - Do we care about glue operands?
|
|
|
|
SDValue Ops[] = {
|
|
CmpVal, VAddr, SRsrc, SOffset, Offset, SLC, Mem->getChain()
|
|
};
|
|
|
|
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
|
|
}
|
|
}
|
|
|
|
if (!CmpSwap) {
|
|
SDValue SRsrc, SOffset, Offset, SLC;
|
|
if (SelectMUBUFOffset(Mem->getBasePtr(), SRsrc, SOffset, Offset, SLC)) {
|
|
unsigned Opcode = Is32 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN :
|
|
AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN;
|
|
|
|
SDValue CmpVal = Mem->getOperand(2);
|
|
SDValue Ops[] = {
|
|
CmpVal, SRsrc, SOffset, Offset, SLC, Mem->getChain()
|
|
};
|
|
|
|
CmpSwap = CurDAG->getMachineNode(Opcode, SL, Mem->getVTList(), Ops);
|
|
}
|
|
}
|
|
|
|
if (!CmpSwap) {
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
MachineMemOperand *MMO = Mem->getMemOperand();
|
|
CurDAG->setNodeMemRefs(CmpSwap, {MMO});
|
|
|
|
unsigned SubReg = Is32 ? AMDGPU::sub0 : AMDGPU::sub0_sub1;
|
|
SDValue Extract
|
|
= CurDAG->getTargetExtractSubreg(SubReg, SL, VT, SDValue(CmpSwap, 0));
|
|
|
|
ReplaceUses(SDValue(N, 0), Extract);
|
|
ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 1));
|
|
CurDAG->RemoveDeadNode(N);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode *N, unsigned IntrID) {
|
|
// The address is assumed to be uniform, so if it ends up in a VGPR, it will
|
|
// be copied to an SGPR with readfirstlane.
|
|
unsigned Opc = IntrID == Intrinsic::amdgcn_ds_append ?
|
|
AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue Ptr = N->getOperand(2);
|
|
MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
|
|
MachineMemOperand *MMO = M->getMemOperand();
|
|
bool IsGDS = M->getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
|
|
|
|
SDValue Offset;
|
|
if (CurDAG->isBaseWithConstantOffset(Ptr)) {
|
|
SDValue PtrBase = Ptr.getOperand(0);
|
|
SDValue PtrOffset = Ptr.getOperand(1);
|
|
|
|
const APInt &OffsetVal = cast<ConstantSDNode>(PtrOffset)->getAPIntValue();
|
|
if (isDSOffsetLegal(PtrBase, OffsetVal.getZExtValue(), 16)) {
|
|
N = glueCopyToM0(N, PtrBase);
|
|
Offset = CurDAG->getTargetConstant(OffsetVal, SDLoc(), MVT::i32);
|
|
}
|
|
}
|
|
|
|
if (!Offset) {
|
|
N = glueCopyToM0(N, Ptr);
|
|
Offset = CurDAG->getTargetConstant(0, SDLoc(), MVT::i32);
|
|
}
|
|
|
|
SDValue Ops[] = {
|
|
Offset,
|
|
CurDAG->getTargetConstant(IsGDS, SDLoc(), MVT::i32),
|
|
Chain,
|
|
N->getOperand(N->getNumOperands() - 1) // New glue
|
|
};
|
|
|
|
SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
|
|
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
|
|
}
|
|
|
|
static unsigned gwsIntrinToOpcode(unsigned IntrID) {
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_ds_gws_init:
|
|
return AMDGPU::DS_GWS_INIT;
|
|
case Intrinsic::amdgcn_ds_gws_barrier:
|
|
return AMDGPU::DS_GWS_BARRIER;
|
|
case Intrinsic::amdgcn_ds_gws_sema_v:
|
|
return AMDGPU::DS_GWS_SEMA_V;
|
|
case Intrinsic::amdgcn_ds_gws_sema_br:
|
|
return AMDGPU::DS_GWS_SEMA_BR;
|
|
case Intrinsic::amdgcn_ds_gws_sema_p:
|
|
return AMDGPU::DS_GWS_SEMA_P;
|
|
case Intrinsic::amdgcn_ds_gws_sema_release_all:
|
|
return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
|
|
default:
|
|
llvm_unreachable("not a gws intrinsic");
|
|
}
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode *N, unsigned IntrID) {
|
|
if (IntrID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
|
|
!Subtarget->hasGWSSemaReleaseAll()) {
|
|
// Let this error.
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
// Chain, intrinsic ID, vsrc, offset
|
|
const bool HasVSrc = N->getNumOperands() == 4;
|
|
assert(HasVSrc || N->getNumOperands() == 3);
|
|
|
|
SDLoc SL(N);
|
|
SDValue BaseOffset = N->getOperand(HasVSrc ? 3 : 2);
|
|
int ImmOffset = 0;
|
|
MemIntrinsicSDNode *M = cast<MemIntrinsicSDNode>(N);
|
|
MachineMemOperand *MMO = M->getMemOperand();
|
|
|
|
// Don't worry if the offset ends up in a VGPR. Only one lane will have
|
|
// effect, so SIFixSGPRCopies will validly insert readfirstlane.
|
|
|
|
// The resource id offset is computed as (<isa opaque base> + M0[21:16] +
|
|
// offset field) % 64. Some versions of the programming guide omit the m0
|
|
// part, or claim it's from offset 0.
|
|
if (ConstantSDNode *ConstOffset = dyn_cast<ConstantSDNode>(BaseOffset)) {
|
|
// If we have a constant offset, try to use the 0 in m0 as the base.
|
|
// TODO: Look into changing the default m0 initialization value. If the
|
|
// default -1 only set the low 16-bits, we could leave it as-is and add 1 to
|
|
// the immediate offset.
|
|
glueCopyToM0(N, CurDAG->getTargetConstant(0, SL, MVT::i32));
|
|
ImmOffset = ConstOffset->getZExtValue();
|
|
} else {
|
|
if (CurDAG->isBaseWithConstantOffset(BaseOffset)) {
|
|
ImmOffset = BaseOffset.getConstantOperandVal(1);
|
|
BaseOffset = BaseOffset.getOperand(0);
|
|
}
|
|
|
|
// Prefer to do the shift in an SGPR since it should be possible to use m0
|
|
// as the result directly. If it's already an SGPR, it will be eliminated
|
|
// later.
|
|
SDNode *SGPROffset
|
|
= CurDAG->getMachineNode(AMDGPU::V_READFIRSTLANE_B32, SL, MVT::i32,
|
|
BaseOffset);
|
|
// Shift to offset in m0
|
|
SDNode *M0Base
|
|
= CurDAG->getMachineNode(AMDGPU::S_LSHL_B32, SL, MVT::i32,
|
|
SDValue(SGPROffset, 0),
|
|
CurDAG->getTargetConstant(16, SL, MVT::i32));
|
|
glueCopyToM0(N, SDValue(M0Base, 0));
|
|
}
|
|
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue OffsetField = CurDAG->getTargetConstant(ImmOffset, SL, MVT::i32);
|
|
|
|
// TODO: Can this just be removed from the instruction?
|
|
SDValue GDS = CurDAG->getTargetConstant(1, SL, MVT::i1);
|
|
|
|
const unsigned Opc = gwsIntrinToOpcode(IntrID);
|
|
SmallVector<SDValue, 5> Ops;
|
|
if (HasVSrc)
|
|
Ops.push_back(N->getOperand(2));
|
|
Ops.push_back(OffsetField);
|
|
Ops.push_back(GDS);
|
|
Ops.push_back(Chain);
|
|
|
|
SDNode *Selected = CurDAG->SelectNodeTo(N, Opc, N->getVTList(), Ops);
|
|
CurDAG->setNodeMemRefs(cast<MachineSDNode>(Selected), {MMO});
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode *N) {
|
|
if (Subtarget->getLDSBankCount() != 16) {
|
|
// This is a single instruction with a pattern.
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
|
|
// This requires 2 instructions. It is possible to write a pattern to support
|
|
// this, but the generated isel emitter doesn't correctly deal with multiple
|
|
// output instructions using the same physical register input. The copy to m0
|
|
// is incorrectly placed before the second instruction.
|
|
//
|
|
// TODO: Match source modifiers.
|
|
//
|
|
// def : Pat <
|
|
// (int_amdgcn_interp_p1_f16
|
|
// (VOP3Mods f32:$src0, i32:$src0_modifiers),
|
|
// (i32 timm:$attrchan), (i32 timm:$attr),
|
|
// (i1 timm:$high), M0),
|
|
// (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
|
|
// timm:$attrchan, 0,
|
|
// (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
|
|
// let Predicates = [has16BankLDS];
|
|
// }
|
|
|
|
// 16 bank LDS
|
|
SDValue ToM0 = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, AMDGPU::M0,
|
|
N->getOperand(5), SDValue());
|
|
|
|
SDVTList VTs = CurDAG->getVTList(MVT::f32, MVT::Other);
|
|
|
|
SDNode *InterpMov =
|
|
CurDAG->getMachineNode(AMDGPU::V_INTERP_MOV_F32, DL, VTs, {
|
|
CurDAG->getTargetConstant(2, DL, MVT::i32), // P0
|
|
N->getOperand(3), // Attr
|
|
N->getOperand(2), // Attrchan
|
|
ToM0.getValue(1) // In glue
|
|
});
|
|
|
|
SDNode *InterpP1LV =
|
|
CurDAG->getMachineNode(AMDGPU::V_INTERP_P1LV_F16, DL, MVT::f32, {
|
|
CurDAG->getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
|
|
N->getOperand(1), // Src0
|
|
N->getOperand(3), // Attr
|
|
N->getOperand(2), // Attrchan
|
|
CurDAG->getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
|
|
SDValue(InterpMov, 0), // Src2 - holds two f16 values selected by high
|
|
N->getOperand(4), // high
|
|
CurDAG->getTargetConstant(0, DL, MVT::i1), // $clamp
|
|
CurDAG->getTargetConstant(0, DL, MVT::i32), // $omod
|
|
SDValue(InterpMov, 1)
|
|
});
|
|
|
|
CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), SDValue(InterpP1LV, 0));
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode *N) {
|
|
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_ds_append:
|
|
case Intrinsic::amdgcn_ds_consume: {
|
|
if (N->getValueType(0) != MVT::i32)
|
|
break;
|
|
SelectDSAppendConsume(N, IntrID);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode *N) {
|
|
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
unsigned Opcode;
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_wqm:
|
|
Opcode = AMDGPU::WQM;
|
|
break;
|
|
case Intrinsic::amdgcn_softwqm:
|
|
Opcode = AMDGPU::SOFT_WQM;
|
|
break;
|
|
case Intrinsic::amdgcn_wwm:
|
|
Opcode = AMDGPU::WWM;
|
|
break;
|
|
case Intrinsic::amdgcn_interp_p1_f16:
|
|
SelectInterpP1F16(N);
|
|
return;
|
|
default:
|
|
SelectCode(N);
|
|
return;
|
|
}
|
|
|
|
SDValue Src = N->getOperand(1);
|
|
CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), {Src});
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode *N) {
|
|
unsigned IntrID = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntrID) {
|
|
case Intrinsic::amdgcn_ds_gws_init:
|
|
case Intrinsic::amdgcn_ds_gws_barrier:
|
|
case Intrinsic::amdgcn_ds_gws_sema_v:
|
|
case Intrinsic::amdgcn_ds_gws_sema_br:
|
|
case Intrinsic::amdgcn_ds_gws_sema_p:
|
|
case Intrinsic::amdgcn_ds_gws_sema_release_all:
|
|
SelectDS_GWS(N, IntrID);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In, SDValue &Src,
|
|
unsigned &Mods) const {
|
|
Mods = 0;
|
|
Src = In;
|
|
|
|
if (Src.getOpcode() == ISD::FNEG) {
|
|
Mods |= SISrcMods::NEG;
|
|
Src = Src.getOperand(0);
|
|
}
|
|
|
|
if (Src.getOpcode() == ISD::FABS) {
|
|
Mods |= SISrcMods::ABS;
|
|
Src = Src.getOperand(0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
unsigned Mods;
|
|
if (SelectVOP3ModsImpl(In, Src, Mods)) {
|
|
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
SelectVOP3Mods(In, Src, SrcMods);
|
|
return isNoNanSrc(Src);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In, SDValue &Src) const {
|
|
if (In.getOpcode() == ISD::FABS || In.getOpcode() == ISD::FNEG)
|
|
return false;
|
|
|
|
Src = In;
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods, SDValue &Clamp,
|
|
SDValue &Omod) const {
|
|
SDLoc DL(In);
|
|
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
|
|
return SelectVOP3Mods(In, Src, SrcMods);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In, SDValue &Src,
|
|
SDValue &Clamp, SDValue &Omod) const {
|
|
Src = In;
|
|
|
|
SDLoc DL(In);
|
|
Clamp = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
Omod = CurDAG->getTargetConstant(0, DL, MVT::i1);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
unsigned Mods = 0;
|
|
Src = In;
|
|
|
|
if (Src.getOpcode() == ISD::FNEG) {
|
|
Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
|
|
Src = Src.getOperand(0);
|
|
}
|
|
|
|
if (Src.getOpcode() == ISD::BUILD_VECTOR) {
|
|
unsigned VecMods = Mods;
|
|
|
|
SDValue Lo = stripBitcast(Src.getOperand(0));
|
|
SDValue Hi = stripBitcast(Src.getOperand(1));
|
|
|
|
if (Lo.getOpcode() == ISD::FNEG) {
|
|
Lo = stripBitcast(Lo.getOperand(0));
|
|
Mods ^= SISrcMods::NEG;
|
|
}
|
|
|
|
if (Hi.getOpcode() == ISD::FNEG) {
|
|
Hi = stripBitcast(Hi.getOperand(0));
|
|
Mods ^= SISrcMods::NEG_HI;
|
|
}
|
|
|
|
if (isExtractHiElt(Lo, Lo))
|
|
Mods |= SISrcMods::OP_SEL_0;
|
|
|
|
if (isExtractHiElt(Hi, Hi))
|
|
Mods |= SISrcMods::OP_SEL_1;
|
|
|
|
Lo = stripExtractLoElt(Lo);
|
|
Hi = stripExtractLoElt(Hi);
|
|
|
|
if (Lo == Hi && !isInlineImmediate(Lo.getNode())) {
|
|
// Really a scalar input. Just select from the low half of the register to
|
|
// avoid packing.
|
|
|
|
Src = Lo;
|
|
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
Mods = VecMods;
|
|
}
|
|
|
|
// Packed instructions do not have abs modifiers.
|
|
Mods |= SISrcMods::OP_SEL_1;
|
|
|
|
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
Src = In;
|
|
// FIXME: Handle op_sel
|
|
SrcMods = CurDAG->getTargetConstant(0, SDLoc(In), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
// FIXME: Handle op_sel
|
|
return SelectVOP3Mods(In, Src, SrcMods);
|
|
}
|
|
|
|
// The return value is not whether the match is possible (which it always is),
|
|
// but whether or not it a conversion is really used.
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In, SDValue &Src,
|
|
unsigned &Mods) const {
|
|
Mods = 0;
|
|
SelectVOP3ModsImpl(In, Src, Mods);
|
|
|
|
if (Src.getOpcode() == ISD::FP_EXTEND) {
|
|
Src = Src.getOperand(0);
|
|
assert(Src.getValueType() == MVT::f16);
|
|
Src = stripBitcast(Src);
|
|
|
|
// Be careful about folding modifiers if we already have an abs. fneg is
|
|
// applied last, so we don't want to apply an earlier fneg.
|
|
if ((Mods & SISrcMods::ABS) == 0) {
|
|
unsigned ModsTmp;
|
|
SelectVOP3ModsImpl(Src, Src, ModsTmp);
|
|
|
|
if ((ModsTmp & SISrcMods::NEG) != 0)
|
|
Mods ^= SISrcMods::NEG;
|
|
|
|
if ((ModsTmp & SISrcMods::ABS) != 0)
|
|
Mods |= SISrcMods::ABS;
|
|
}
|
|
|
|
// op_sel/op_sel_hi decide the source type and source.
|
|
// If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
|
|
// If the sources's op_sel is set, it picks the high half of the source
|
|
// register.
|
|
|
|
Mods |= SISrcMods::OP_SEL_1;
|
|
if (isExtractHiElt(Src, Src)) {
|
|
Mods |= SISrcMods::OP_SEL_0;
|
|
|
|
// TODO: Should we try to look for neg/abs here?
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In, SDValue &Src,
|
|
SDValue &SrcMods) const {
|
|
unsigned Mods = 0;
|
|
SelectVOP3PMadMixModsImpl(In, Src, Mods);
|
|
SrcMods = CurDAG->getTargetConstant(Mods, SDLoc(In), MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
SDValue AMDGPUDAGToDAGISel::getHi16Elt(SDValue In) const {
|
|
if (In.isUndef())
|
|
return CurDAG->getUNDEF(MVT::i32);
|
|
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(In)) {
|
|
SDLoc SL(In);
|
|
return CurDAG->getConstant(C->getZExtValue() << 16, SL, MVT::i32);
|
|
}
|
|
|
|
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(In)) {
|
|
SDLoc SL(In);
|
|
return CurDAG->getConstant(
|
|
C->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL, MVT::i32);
|
|
}
|
|
|
|
SDValue Src;
|
|
if (isExtractHiElt(In, Src))
|
|
return Src;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode * N) const {
|
|
assert(CurDAG->getTarget().getTargetTriple().getArch() == Triple::amdgcn);
|
|
|
|
const SIRegisterInfo *SIRI =
|
|
static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
|
|
const SIInstrInfo * SII =
|
|
static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
|
|
|
|
unsigned Limit = 0;
|
|
bool AllUsesAcceptSReg = true;
|
|
for (SDNode::use_iterator U = N->use_begin(), E = SDNode::use_end();
|
|
Limit < 10 && U != E; ++U, ++Limit) {
|
|
const TargetRegisterClass *RC = getOperandRegClass(*U, U.getOperandNo());
|
|
|
|
// If the register class is unknown, it could be an unknown
|
|
// register class that needs to be an SGPR, e.g. an inline asm
|
|
// constraint
|
|
if (!RC || SIRI->isSGPRClass(RC))
|
|
return false;
|
|
|
|
if (RC != &AMDGPU::VS_32RegClass) {
|
|
AllUsesAcceptSReg = false;
|
|
SDNode * User = *U;
|
|
if (User->isMachineOpcode()) {
|
|
unsigned Opc = User->getMachineOpcode();
|
|
MCInstrDesc Desc = SII->get(Opc);
|
|
if (Desc.isCommutable()) {
|
|
unsigned OpIdx = Desc.getNumDefs() + U.getOperandNo();
|
|
unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
|
|
if (SII->findCommutedOpIndices(Desc, OpIdx, CommuteIdx1)) {
|
|
unsigned CommutedOpNo = CommuteIdx1 - Desc.getNumDefs();
|
|
const TargetRegisterClass *CommutedRC = getOperandRegClass(*U, CommutedOpNo);
|
|
if (CommutedRC == &AMDGPU::VS_32RegClass)
|
|
AllUsesAcceptSReg = true;
|
|
}
|
|
}
|
|
}
|
|
// If "AllUsesAcceptSReg == false" so far we haven't suceeded
|
|
// commuting current user. This means have at least one use
|
|
// that strictly require VGPR. Thus, we will not attempt to commute
|
|
// other user instructions.
|
|
if (!AllUsesAcceptSReg)
|
|
break;
|
|
}
|
|
}
|
|
return !AllUsesAcceptSReg && (Limit < 10);
|
|
}
|
|
|
|
bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode * N) const {
|
|
auto Ld = cast<LoadSDNode>(N);
|
|
|
|
return Ld->getAlignment() >= 4 &&
|
|
(
|
|
(
|
|
(
|
|
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
Ld->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
|
|
)
|
|
&&
|
|
!N->isDivergent()
|
|
)
|
|
||
|
|
(
|
|
Subtarget->getScalarizeGlobalBehavior() &&
|
|
Ld->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS &&
|
|
Ld->isSimple() &&
|
|
!N->isDivergent() &&
|
|
static_cast<const SITargetLowering *>(
|
|
getTargetLowering())->isMemOpHasNoClobberedMemOperand(N)
|
|
)
|
|
);
|
|
}
|
|
|
|
void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
|
|
const AMDGPUTargetLowering& Lowering =
|
|
*static_cast<const AMDGPUTargetLowering*>(getTargetLowering());
|
|
bool IsModified = false;
|
|
do {
|
|
IsModified = false;
|
|
|
|
// Go over all selected nodes and try to fold them a bit more
|
|
SelectionDAG::allnodes_iterator Position = CurDAG->allnodes_begin();
|
|
while (Position != CurDAG->allnodes_end()) {
|
|
SDNode *Node = &*Position++;
|
|
MachineSDNode *MachineNode = dyn_cast<MachineSDNode>(Node);
|
|
if (!MachineNode)
|
|
continue;
|
|
|
|
SDNode *ResNode = Lowering.PostISelFolding(MachineNode, *CurDAG);
|
|
if (ResNode != Node) {
|
|
if (ResNode)
|
|
ReplaceUses(Node, ResNode);
|
|
IsModified = true;
|
|
}
|
|
}
|
|
CurDAG->RemoveDeadNodes();
|
|
} while (IsModified);
|
|
}
|
|
|
|
bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
|
|
Subtarget = &MF.getSubtarget<R600Subtarget>();
|
|
return SelectionDAGISel::runOnMachineFunction(MF);
|
|
}
|
|
|
|
bool R600DAGToDAGISel::isConstantLoad(const MemSDNode *N, int CbId) const {
|
|
if (!N->readMem())
|
|
return false;
|
|
if (CbId == -1)
|
|
return N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
|
|
N->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT;
|
|
|
|
return N->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0 + CbId;
|
|
}
|
|
|
|
bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr,
|
|
SDValue& IntPtr) {
|
|
if (ConstantSDNode *Cst = dyn_cast<ConstantSDNode>(Addr)) {
|
|
IntPtr = CurDAG->getIntPtrConstant(Cst->getZExtValue() / 4, SDLoc(Addr),
|
|
true);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr,
|
|
SDValue& BaseReg, SDValue &Offset) {
|
|
if (!isa<ConstantSDNode>(Addr)) {
|
|
BaseReg = Addr;
|
|
Offset = CurDAG->getIntPtrConstant(0, SDLoc(Addr), true);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void R600DAGToDAGISel::Select(SDNode *N) {
|
|
unsigned int Opc = N->getOpcode();
|
|
if (N->isMachineOpcode()) {
|
|
N->setNodeId(-1);
|
|
return; // Already selected.
|
|
}
|
|
|
|
switch (Opc) {
|
|
default: break;
|
|
case AMDGPUISD::BUILD_VERTICAL_VECTOR:
|
|
case ISD::SCALAR_TO_VECTOR:
|
|
case ISD::BUILD_VECTOR: {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumVectorElts = VT.getVectorNumElements();
|
|
unsigned RegClassID;
|
|
// BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
|
|
// that adds a 128 bits reg copy when going through TwoAddressInstructions
|
|
// pass. We want to avoid 128 bits copies as much as possible because they
|
|
// can't be bundled by our scheduler.
|
|
switch(NumVectorElts) {
|
|
case 2: RegClassID = R600::R600_Reg64RegClassID; break;
|
|
case 4:
|
|
if (Opc == AMDGPUISD::BUILD_VERTICAL_VECTOR)
|
|
RegClassID = R600::R600_Reg128VerticalRegClassID;
|
|
else
|
|
RegClassID = R600::R600_Reg128RegClassID;
|
|
break;
|
|
default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
|
|
}
|
|
SelectBuildVector(N, RegClassID);
|
|
return;
|
|
}
|
|
}
|
|
|
|
SelectCode(N);
|
|
}
|
|
|
|
bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
ConstantSDNode *C;
|
|
SDLoc DL(Addr);
|
|
|
|
if ((C = dyn_cast<ConstantSDNode>(Addr))) {
|
|
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else if ((Addr.getOpcode() == AMDGPUISD::DWORDADDR) &&
|
|
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(0)))) {
|
|
Base = CurDAG->getRegister(R600::INDIRECT_BASE_ADDR, MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else if ((Addr.getOpcode() == ISD::ADD || Addr.getOpcode() == ISD::OR) &&
|
|
(C = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))) {
|
|
Base = Addr.getOperand(0);
|
|
Offset = CurDAG->getTargetConstant(C->getZExtValue(), DL, MVT::i32);
|
|
} else {
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, DL, MVT::i32);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr, SDValue &Base,
|
|
SDValue &Offset) {
|
|
ConstantSDNode *IMMOffset;
|
|
|
|
if (Addr.getOpcode() == ISD::ADD
|
|
&& (IMMOffset = dyn_cast<ConstantSDNode>(Addr.getOperand(1)))
|
|
&& isInt<16>(IMMOffset->getZExtValue())) {
|
|
|
|
Base = Addr.getOperand(0);
|
|
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
|
|
MVT::i32);
|
|
return true;
|
|
// If the pointer address is constant, we can move it to the offset field.
|
|
} else if ((IMMOffset = dyn_cast<ConstantSDNode>(Addr))
|
|
&& isInt<16>(IMMOffset->getZExtValue())) {
|
|
Base = CurDAG->getCopyFromReg(CurDAG->getEntryNode(),
|
|
SDLoc(CurDAG->getEntryNode()),
|
|
R600::ZERO, MVT::i32);
|
|
Offset = CurDAG->getTargetConstant(IMMOffset->getZExtValue(), SDLoc(Addr),
|
|
MVT::i32);
|
|
return true;
|
|
}
|
|
|
|
// Default case, no offset
|
|
Base = Addr;
|
|
Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), MVT::i32);
|
|
return true;
|
|
}
|