![]() rGf39978b84f1d3a1da6c32db48f64c8daae64b3ad led to and/or exposed an issue with IndVarSimplification for a loop where a i32 phi node is no longer replaced by a widened (i64) phi node, because the SCEVs of a sign-extend no longer folded the same way. I'm unsure how to properly explain this because it's all rather complicated, but in short: SCEVs don't fold as nicely as they used to and this caused a difference. While investigating this, I found that IndVarSimplify can actually optimise the case in the way we want to if it chooses the widened IV to be 'signed' (the i32 IV is both sign and zero-extended). Oddly enough, there is some level of indeterminism in the way the algorithm works, it just picks the sign of the 'first' zext/sext user, where the order of the users-iterator is not guaranteed to be the same on each invocation of the pass (e.g. shown by first running loop-rotate, which puts the users in a different order). While I think the fix is valid in the sense that consistently picking _any_ order is better than having an nondeterministic order, I can use a bit of advice from people more familiar in this area of the code-base. For example, I'm not sure if this fix is hiding another issue where the IndVarSimplify pass could actually draw the same conclusions (i.e. that it only needs an i64 phi node) if it does a bit more work, regardless of whether it chooses the induction variable to be signed or unsigned. I'm also not sure if choosing signed is better than unsigned, or whether that just happens to be beneficial only in this individual case. Any feedback would be much appreciated! Reviewed By: reames Differential Revision: https://reviews.llvm.org/D112573 |
||
---|---|---|
.github/workflows | ||
clang | ||
clang-tools-extra | ||
cmake/Modules | ||
compiler-rt | ||
cross-project-tests | ||
flang | ||
libc | ||
libclc | ||
libcxx | ||
libcxxabi | ||
libunwind | ||
lld | ||
lldb | ||
llvm | ||
mlir | ||
openmp | ||
polly | ||
pstl | ||
runtimes | ||
utils | ||
.arcconfig | ||
.arclint | ||
.clang-format | ||
.clang-tidy | ||
.git-blame-ignore-revs | ||
.gitignore | ||
.mailmap | ||
CONTRIBUTING.md | ||
README.md | ||
SECURITY.md |
README.md
The LLVM Compiler Infrastructure
This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Getting Started with the LLVM System
Taken from https://llvm.org/docs/GettingStarted.html.
Overview
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Getting the Source Code and Building LLVM
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
cmake -S llvm -B build -G <generator> [options]
Some common build system generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some common options:
-
-DLLVM_ENABLE_PROJECTS='...'
--- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, compiler-rt,cross-project-tests, flang, libc, libclc, libcxx, libcxxabi, libunwind, lld, lldb, mlir, openmp, polly, or pstl.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local
). -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build build [-- [options] <target>]
or your build system specified above directly.-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, use the option-j NNN
, whereNNN
is the number of parallel jobs, e.g. the number of CPUs you have.
-
-
For more information see CMake
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.