forked from OSchip/llvm-project
6158 lines
241 KiB
C++
6158 lines
241 KiB
C++
//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//===----------------------------------------------------------------------===/
|
|
//
|
|
// This file implements C++ template instantiation for declarations.
|
|
//
|
|
//===----------------------------------------------------------------------===/
|
|
|
|
#include "clang/AST/ASTConsumer.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/ASTMutationListener.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/DeclVisitor.h"
|
|
#include "clang/AST/DependentDiagnostic.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/PrettyDeclStackTrace.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/SemaInternal.h"
|
|
#include "clang/Sema/Template.h"
|
|
#include "clang/Sema/TemplateInstCallback.h"
|
|
#include "llvm/Support/TimeProfiler.h"
|
|
|
|
using namespace clang;
|
|
|
|
static bool isDeclWithinFunction(const Decl *D) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
if (DC->isFunctionOrMethod())
|
|
return true;
|
|
|
|
if (DC->isRecord())
|
|
return cast<CXXRecordDecl>(DC)->isLocalClass();
|
|
|
|
return false;
|
|
}
|
|
|
|
template<typename DeclT>
|
|
static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
if (!OldDecl->getQualifierLoc())
|
|
return false;
|
|
|
|
assert((NewDecl->getFriendObjectKind() ||
|
|
!OldDecl->getLexicalDeclContext()->isDependentContext()) &&
|
|
"non-friend with qualified name defined in dependent context");
|
|
Sema::ContextRAII SavedContext(
|
|
SemaRef,
|
|
const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
|
|
? NewDecl->getLexicalDeclContext()
|
|
: OldDecl->getLexicalDeclContext()));
|
|
|
|
NestedNameSpecifierLoc NewQualifierLoc
|
|
= SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
|
|
TemplateArgs);
|
|
|
|
if (!NewQualifierLoc)
|
|
return true;
|
|
|
|
NewDecl->setQualifierInfo(NewQualifierLoc);
|
|
return false;
|
|
}
|
|
|
|
bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
|
|
DeclaratorDecl *NewDecl) {
|
|
return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
|
|
}
|
|
|
|
bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
|
|
TagDecl *NewDecl) {
|
|
return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
|
|
}
|
|
|
|
// Include attribute instantiation code.
|
|
#include "clang/Sema/AttrTemplateInstantiate.inc"
|
|
|
|
static void instantiateDependentAlignedAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
|
|
if (Aligned->isAlignmentExpr()) {
|
|
// The alignment expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
|
|
if (!Result.isInvalid())
|
|
S.AddAlignedAttr(New, *Aligned, Result.getAs<Expr>(), IsPackExpansion);
|
|
} else {
|
|
TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
|
|
TemplateArgs, Aligned->getLocation(),
|
|
DeclarationName());
|
|
if (Result)
|
|
S.AddAlignedAttr(New, *Aligned, Result, IsPackExpansion);
|
|
}
|
|
}
|
|
|
|
static void instantiateDependentAlignedAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AlignedAttr *Aligned, Decl *New) {
|
|
if (!Aligned->isPackExpansion()) {
|
|
instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
|
|
return;
|
|
}
|
|
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
if (Aligned->isAlignmentExpr())
|
|
S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
|
|
Unexpanded);
|
|
else
|
|
S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
|
|
Unexpanded);
|
|
assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
|
|
|
|
// Determine whether we can expand this attribute pack yet.
|
|
bool Expand = true, RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
// FIXME: Use the actual location of the ellipsis.
|
|
SourceLocation EllipsisLoc = Aligned->getLocation();
|
|
if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
|
|
Unexpanded, TemplateArgs, Expand,
|
|
RetainExpansion, NumExpansions))
|
|
return;
|
|
|
|
if (!Expand) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
|
|
instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
|
|
} else {
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
|
|
instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void instantiateDependentAssumeAlignedAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AssumeAlignedAttr *Aligned, Decl *New) {
|
|
// The alignment expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
Expr *E, *OE = nullptr;
|
|
ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
E = Result.getAs<Expr>();
|
|
|
|
if (Aligned->getOffset()) {
|
|
Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
OE = Result.getAs<Expr>();
|
|
}
|
|
|
|
S.AddAssumeAlignedAttr(New, *Aligned, E, OE);
|
|
}
|
|
|
|
static void instantiateDependentAlignValueAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AlignValueAttr *Aligned, Decl *New) {
|
|
// The alignment expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
|
|
if (!Result.isInvalid())
|
|
S.AddAlignValueAttr(New, *Aligned, Result.getAs<Expr>());
|
|
}
|
|
|
|
static void instantiateDependentAllocAlignAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AllocAlignAttr *Align, Decl *New) {
|
|
Expr *Param = IntegerLiteral::Create(
|
|
S.getASTContext(),
|
|
llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
|
|
S.getASTContext().UnsignedLongLongTy, Align->getLocation());
|
|
S.AddAllocAlignAttr(New, *Align, Param);
|
|
}
|
|
|
|
static Expr *instantiateDependentFunctionAttrCondition(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
|
|
Expr *Cond = nullptr;
|
|
{
|
|
Sema::ContextRAII SwitchContext(S, New);
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return nullptr;
|
|
Cond = Result.getAs<Expr>();
|
|
}
|
|
if (!Cond->isTypeDependent()) {
|
|
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
|
|
if (Converted.isInvalid())
|
|
return nullptr;
|
|
Cond = Converted.get();
|
|
}
|
|
|
|
SmallVector<PartialDiagnosticAt, 8> Diags;
|
|
if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
|
|
!Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
|
|
S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
|
|
for (const auto &P : Diags)
|
|
S.Diag(P.first, P.second);
|
|
return nullptr;
|
|
}
|
|
return Cond;
|
|
}
|
|
|
|
static void instantiateDependentEnableIfAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
|
|
Expr *Cond = instantiateDependentFunctionAttrCondition(
|
|
S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
|
|
|
|
if (Cond)
|
|
New->addAttr(new (S.getASTContext()) EnableIfAttr(S.getASTContext(), *EIA,
|
|
Cond, EIA->getMessage()));
|
|
}
|
|
|
|
static void instantiateDependentDiagnoseIfAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
|
|
Expr *Cond = instantiateDependentFunctionAttrCondition(
|
|
S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
|
|
|
|
if (Cond)
|
|
New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
|
|
S.getASTContext(), *DIA, Cond, DIA->getMessage(),
|
|
DIA->getDiagnosticType(), DIA->getArgDependent(), New));
|
|
}
|
|
|
|
// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
|
|
// template A as the base and arguments from TemplateArgs.
|
|
static void instantiateDependentCUDALaunchBoundsAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const CUDALaunchBoundsAttr &Attr, Decl *New) {
|
|
// The alignment expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
Expr *MaxThreads = Result.getAs<Expr>();
|
|
|
|
Expr *MinBlocks = nullptr;
|
|
if (Attr.getMinBlocks()) {
|
|
Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
MinBlocks = Result.getAs<Expr>();
|
|
}
|
|
|
|
S.AddLaunchBoundsAttr(New, Attr, MaxThreads, MinBlocks);
|
|
}
|
|
|
|
static void
|
|
instantiateDependentModeAttr(Sema &S,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const ModeAttr &Attr, Decl *New) {
|
|
S.AddModeAttr(New, Attr, Attr.getMode(),
|
|
/*InInstantiation=*/true);
|
|
}
|
|
|
|
/// Instantiation of 'declare simd' attribute and its arguments.
|
|
static void instantiateOMPDeclareSimdDeclAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
|
|
// Allow 'this' in clauses with varlists.
|
|
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
|
|
New = FTD->getTemplatedDecl();
|
|
auto *FD = cast<FunctionDecl>(New);
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
|
|
SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
|
|
SmallVector<unsigned, 4> LinModifiers;
|
|
|
|
auto SubstExpr = [&](Expr *E) -> ExprResult {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
|
|
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
|
|
Sema::ContextRAII SavedContext(S, FD);
|
|
LocalInstantiationScope Local(S);
|
|
if (FD->getNumParams() > PVD->getFunctionScopeIndex())
|
|
Local.InstantiatedLocal(
|
|
PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
|
|
return S.SubstExpr(E, TemplateArgs);
|
|
}
|
|
Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
|
|
FD->isCXXInstanceMember());
|
|
return S.SubstExpr(E, TemplateArgs);
|
|
};
|
|
|
|
// Substitute a single OpenMP clause, which is a potentially-evaluated
|
|
// full-expression.
|
|
auto Subst = [&](Expr *E) -> ExprResult {
|
|
EnterExpressionEvaluationContext Evaluated(
|
|
S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
ExprResult Res = SubstExpr(E);
|
|
if (Res.isInvalid())
|
|
return Res;
|
|
return S.ActOnFinishFullExpr(Res.get(), false);
|
|
};
|
|
|
|
ExprResult Simdlen;
|
|
if (auto *E = Attr.getSimdlen())
|
|
Simdlen = Subst(E);
|
|
|
|
if (Attr.uniforms_size() > 0) {
|
|
for(auto *E : Attr.uniforms()) {
|
|
ExprResult Inst = Subst(E);
|
|
if (Inst.isInvalid())
|
|
continue;
|
|
Uniforms.push_back(Inst.get());
|
|
}
|
|
}
|
|
|
|
auto AI = Attr.alignments_begin();
|
|
for (auto *E : Attr.aligneds()) {
|
|
ExprResult Inst = Subst(E);
|
|
if (Inst.isInvalid())
|
|
continue;
|
|
Aligneds.push_back(Inst.get());
|
|
Inst = ExprEmpty();
|
|
if (*AI)
|
|
Inst = S.SubstExpr(*AI, TemplateArgs);
|
|
Alignments.push_back(Inst.get());
|
|
++AI;
|
|
}
|
|
|
|
auto SI = Attr.steps_begin();
|
|
for (auto *E : Attr.linears()) {
|
|
ExprResult Inst = Subst(E);
|
|
if (Inst.isInvalid())
|
|
continue;
|
|
Linears.push_back(Inst.get());
|
|
Inst = ExprEmpty();
|
|
if (*SI)
|
|
Inst = S.SubstExpr(*SI, TemplateArgs);
|
|
Steps.push_back(Inst.get());
|
|
++SI;
|
|
}
|
|
LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
|
|
(void)S.ActOnOpenMPDeclareSimdDirective(
|
|
S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
|
|
Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
|
|
Attr.getRange());
|
|
}
|
|
|
|
/// Instantiation of 'declare variant' attribute and its arguments.
|
|
static void instantiateOMPDeclareVariantAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const OMPDeclareVariantAttr &Attr, Decl *New) {
|
|
// Allow 'this' in clauses with varlists.
|
|
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
|
|
New = FTD->getTemplatedDecl();
|
|
auto *FD = cast<FunctionDecl>(New);
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
|
|
|
|
auto &&SubstExpr = [FD, ThisContext, &S, &TemplateArgs](Expr *E) {
|
|
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
|
|
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
|
|
Sema::ContextRAII SavedContext(S, FD);
|
|
LocalInstantiationScope Local(S);
|
|
if (FD->getNumParams() > PVD->getFunctionScopeIndex())
|
|
Local.InstantiatedLocal(
|
|
PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
|
|
return S.SubstExpr(E, TemplateArgs);
|
|
}
|
|
Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
|
|
FD->isCXXInstanceMember());
|
|
return S.SubstExpr(E, TemplateArgs);
|
|
};
|
|
|
|
// Substitute a single OpenMP clause, which is a potentially-evaluated
|
|
// full-expression.
|
|
auto &&Subst = [&SubstExpr, &S](Expr *E) {
|
|
EnterExpressionEvaluationContext Evaluated(
|
|
S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
ExprResult Res = SubstExpr(E);
|
|
if (Res.isInvalid())
|
|
return Res;
|
|
return S.ActOnFinishFullExpr(Res.get(), false);
|
|
};
|
|
|
|
ExprResult VariantFuncRef;
|
|
if (Expr *E = Attr.getVariantFuncRef()) {
|
|
// Do not mark function as is used to prevent its emission if this is the
|
|
// only place where it is used.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
VariantFuncRef = Subst(E);
|
|
}
|
|
|
|
// Copy the template version of the OMPTraitInfo and run substitute on all
|
|
// score and condition expressiosn.
|
|
OMPTraitInfo &TI = S.getASTContext().getNewOMPTraitInfo();
|
|
TI = *Attr.getTraitInfos();
|
|
|
|
// Try to substitute template parameters in score and condition expressions.
|
|
auto SubstScoreOrConditionExpr = [&S, Subst](Expr *&E, bool) {
|
|
if (E) {
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult ER = Subst(E);
|
|
if (ER.isUsable())
|
|
E = ER.get();
|
|
else
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
if (TI.anyScoreOrCondition(SubstScoreOrConditionExpr))
|
|
return;
|
|
|
|
Expr *E = VariantFuncRef.get();
|
|
// Check function/variant ref for `omp declare variant` but not for `omp
|
|
// begin declare variant` (which use implicit attributes).
|
|
Optional<std::pair<FunctionDecl *, Expr *>> DeclVarData =
|
|
S.checkOpenMPDeclareVariantFunction(S.ConvertDeclToDeclGroup(New),
|
|
VariantFuncRef.get(), TI,
|
|
Attr.getRange());
|
|
|
|
if (!DeclVarData)
|
|
return;
|
|
|
|
E = DeclVarData.getValue().second;
|
|
FD = DeclVarData.getValue().first;
|
|
|
|
if (auto *VariantDRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
|
|
if (auto *VariantFD = dyn_cast<FunctionDecl>(VariantDRE->getDecl())) {
|
|
if (auto *VariantFTD = VariantFD->getDescribedFunctionTemplate()) {
|
|
if (!VariantFTD->isThisDeclarationADefinition())
|
|
return;
|
|
Sema::TentativeAnalysisScope Trap(S);
|
|
const TemplateArgumentList *TAL = TemplateArgumentList::CreateCopy(
|
|
S.Context, TemplateArgs.getInnermost());
|
|
|
|
auto *SubstFD = S.InstantiateFunctionDeclaration(VariantFTD, TAL,
|
|
New->getLocation());
|
|
if (!SubstFD)
|
|
return;
|
|
QualType NewType = S.Context.mergeFunctionTypes(
|
|
SubstFD->getType(), FD->getType(),
|
|
/* OfBlockPointer */ false,
|
|
/* Unqualified */ false, /* AllowCXX */ true);
|
|
if (NewType.isNull())
|
|
return;
|
|
S.InstantiateFunctionDefinition(
|
|
New->getLocation(), SubstFD, /* Recursive */ true,
|
|
/* DefinitionRequired */ false, /* AtEndOfTU */ false);
|
|
SubstFD->setInstantiationIsPending(!SubstFD->isDefined());
|
|
E = DeclRefExpr::Create(S.Context, NestedNameSpecifierLoc(),
|
|
SourceLocation(), SubstFD,
|
|
/* RefersToEnclosingVariableOrCapture */ false,
|
|
/* NameLoc */ SubstFD->getLocation(),
|
|
SubstFD->getType(), ExprValueKind::VK_RValue);
|
|
}
|
|
}
|
|
}
|
|
|
|
S.ActOnOpenMPDeclareVariantDirective(FD, E, TI, Attr.getRange());
|
|
}
|
|
|
|
static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
|
|
// Both min and max expression are constant expressions.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
Expr *MinExpr = Result.getAs<Expr>();
|
|
|
|
Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
Expr *MaxExpr = Result.getAs<Expr>();
|
|
|
|
S.addAMDGPUFlatWorkGroupSizeAttr(New, Attr, MinExpr, MaxExpr);
|
|
}
|
|
|
|
static ExplicitSpecifier
|
|
instantiateExplicitSpecifier(Sema &S,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
ExplicitSpecifier ES, FunctionDecl *New) {
|
|
if (!ES.getExpr())
|
|
return ES;
|
|
Expr *OldCond = ES.getExpr();
|
|
Expr *Cond = nullptr;
|
|
{
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs);
|
|
if (SubstResult.isInvalid()) {
|
|
return ExplicitSpecifier::Invalid();
|
|
}
|
|
Cond = SubstResult.get();
|
|
}
|
|
ExplicitSpecifier Result(Cond, ES.getKind());
|
|
if (!Cond->isTypeDependent())
|
|
S.tryResolveExplicitSpecifier(Result);
|
|
return Result;
|
|
}
|
|
|
|
static void instantiateDependentAMDGPUWavesPerEUAttr(
|
|
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
|
|
// Both min and max expression are constant expressions.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
Expr *MinExpr = Result.getAs<Expr>();
|
|
|
|
Expr *MaxExpr = nullptr;
|
|
if (auto Max = Attr.getMax()) {
|
|
Result = S.SubstExpr(Max, TemplateArgs);
|
|
if (Result.isInvalid())
|
|
return;
|
|
MaxExpr = Result.getAs<Expr>();
|
|
}
|
|
|
|
S.addAMDGPUWavesPerEUAttr(New, Attr, MinExpr, MaxExpr);
|
|
}
|
|
|
|
void Sema::InstantiateAttrsForDecl(
|
|
const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
|
|
Decl *New, LateInstantiatedAttrVec *LateAttrs,
|
|
LocalInstantiationScope *OuterMostScope) {
|
|
if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
|
|
for (const auto *TmplAttr : Tmpl->attrs()) {
|
|
// FIXME: If any of the special case versions from InstantiateAttrs become
|
|
// applicable to template declaration, we'll need to add them here.
|
|
CXXThisScopeRAII ThisScope(
|
|
*this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
|
|
Qualifiers(), ND->isCXXInstanceMember());
|
|
|
|
Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
|
|
TmplAttr, Context, *this, TemplateArgs);
|
|
if (NewAttr)
|
|
New->addAttr(NewAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
static Sema::RetainOwnershipKind
|
|
attrToRetainOwnershipKind(const Attr *A) {
|
|
switch (A->getKind()) {
|
|
case clang::attr::CFConsumed:
|
|
return Sema::RetainOwnershipKind::CF;
|
|
case clang::attr::OSConsumed:
|
|
return Sema::RetainOwnershipKind::OS;
|
|
case clang::attr::NSConsumed:
|
|
return Sema::RetainOwnershipKind::NS;
|
|
default:
|
|
llvm_unreachable("Wrong argument supplied");
|
|
}
|
|
}
|
|
|
|
void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
const Decl *Tmpl, Decl *New,
|
|
LateInstantiatedAttrVec *LateAttrs,
|
|
LocalInstantiationScope *OuterMostScope) {
|
|
for (const auto *TmplAttr : Tmpl->attrs()) {
|
|
// FIXME: This should be generalized to more than just the AlignedAttr.
|
|
const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
|
|
if (Aligned && Aligned->isAlignmentDependent()) {
|
|
instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr)) {
|
|
instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr)) {
|
|
instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
|
|
instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
|
|
continue;
|
|
}
|
|
|
|
|
|
if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
|
|
instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
|
|
cast<FunctionDecl>(New));
|
|
continue;
|
|
}
|
|
|
|
if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
|
|
instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
|
|
cast<FunctionDecl>(New));
|
|
continue;
|
|
}
|
|
|
|
if (const auto *CUDALaunchBounds =
|
|
dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
|
|
instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
|
|
*CUDALaunchBounds, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
|
|
instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
|
|
instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *OMPAttr = dyn_cast<OMPDeclareVariantAttr>(TmplAttr)) {
|
|
instantiateOMPDeclareVariantAttr(*this, TemplateArgs, *OMPAttr, New);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *AMDGPUFlatWorkGroupSize =
|
|
dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
|
|
instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
|
|
*this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
|
|
}
|
|
|
|
if (const auto *AMDGPUFlatWorkGroupSize =
|
|
dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
|
|
instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
|
|
*AMDGPUFlatWorkGroupSize, New);
|
|
}
|
|
|
|
// Existing DLL attribute on the instantiation takes precedence.
|
|
if (TmplAttr->getKind() == attr::DLLExport ||
|
|
TmplAttr->getKind() == attr::DLLImport) {
|
|
if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (const auto *ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
|
|
AddParameterABIAttr(New, *ABIAttr, ABIAttr->getABI());
|
|
continue;
|
|
}
|
|
|
|
if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
|
|
isa<CFConsumedAttr>(TmplAttr)) {
|
|
AddXConsumedAttr(New, *TmplAttr, attrToRetainOwnershipKind(TmplAttr),
|
|
/*template instantiation=*/true);
|
|
continue;
|
|
}
|
|
|
|
if (auto *A = dyn_cast<PointerAttr>(TmplAttr)) {
|
|
if (!New->hasAttr<PointerAttr>())
|
|
New->addAttr(A->clone(Context));
|
|
continue;
|
|
}
|
|
|
|
if (auto *A = dyn_cast<OwnerAttr>(TmplAttr)) {
|
|
if (!New->hasAttr<OwnerAttr>())
|
|
New->addAttr(A->clone(Context));
|
|
continue;
|
|
}
|
|
|
|
assert(!TmplAttr->isPackExpansion());
|
|
if (TmplAttr->isLateParsed() && LateAttrs) {
|
|
// Late parsed attributes must be instantiated and attached after the
|
|
// enclosing class has been instantiated. See Sema::InstantiateClass.
|
|
LocalInstantiationScope *Saved = nullptr;
|
|
if (CurrentInstantiationScope)
|
|
Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
|
|
LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
|
|
} else {
|
|
// Allow 'this' within late-parsed attributes.
|
|
auto *ND = cast<NamedDecl>(New);
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
|
|
CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
|
|
ND->isCXXInstanceMember());
|
|
|
|
Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
|
|
*this, TemplateArgs);
|
|
if (NewAttr)
|
|
New->addAttr(NewAttr);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Get the previous declaration of a declaration for the purposes of template
|
|
/// instantiation. If this finds a previous declaration, then the previous
|
|
/// declaration of the instantiation of D should be an instantiation of the
|
|
/// result of this function.
|
|
template<typename DeclT>
|
|
static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
|
|
DeclT *Result = D->getPreviousDecl();
|
|
|
|
// If the declaration is within a class, and the previous declaration was
|
|
// merged from a different definition of that class, then we don't have a
|
|
// previous declaration for the purpose of template instantiation.
|
|
if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
|
|
D->getLexicalDeclContext() != Result->getLexicalDeclContext())
|
|
return nullptr;
|
|
|
|
return Result;
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
|
|
llvm_unreachable("Translation units cannot be instantiated");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
|
|
llvm_unreachable("pragma comment cannot be instantiated");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
|
|
PragmaDetectMismatchDecl *D) {
|
|
llvm_unreachable("pragma comment cannot be instantiated");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
|
|
llvm_unreachable("extern \"C\" context cannot be instantiated");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitMSGuidDecl(MSGuidDecl *D) {
|
|
llvm_unreachable("GUID declaration cannot be instantiated");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitTemplateParamObjectDecl(
|
|
TemplateParamObjectDecl *D) {
|
|
llvm_unreachable("template parameter objects cannot be instantiated");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
|
|
LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
|
|
D->getIdentifier());
|
|
Owner->addDecl(Inst);
|
|
return Inst;
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
|
|
llvm_unreachable("Namespaces cannot be instantiated");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
|
|
NamespaceAliasDecl *Inst
|
|
= NamespaceAliasDecl::Create(SemaRef.Context, Owner,
|
|
D->getNamespaceLoc(),
|
|
D->getAliasLoc(),
|
|
D->getIdentifier(),
|
|
D->getQualifierLoc(),
|
|
D->getTargetNameLoc(),
|
|
D->getNamespace());
|
|
Owner->addDecl(Inst);
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
|
|
bool IsTypeAlias) {
|
|
bool Invalid = false;
|
|
TypeSourceInfo *DI = D->getTypeSourceInfo();
|
|
if (DI->getType()->isInstantiationDependentType() ||
|
|
DI->getType()->isVariablyModifiedType()) {
|
|
DI = SemaRef.SubstType(DI, TemplateArgs,
|
|
D->getLocation(), D->getDeclName());
|
|
if (!DI) {
|
|
Invalid = true;
|
|
DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
|
|
}
|
|
} else {
|
|
SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
|
|
}
|
|
|
|
// HACK: g++ has a bug where it gets the value kind of ?: wrong.
|
|
// libstdc++ relies upon this bug in its implementation of common_type.
|
|
// If we happen to be processing that implementation, fake up the g++ ?:
|
|
// semantics. See LWG issue 2141 for more information on the bug.
|
|
const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
|
|
CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
|
|
if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
|
|
DT->isReferenceType() &&
|
|
RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
|
|
RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
|
|
D->getIdentifier() && D->getIdentifier()->isStr("type") &&
|
|
SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
|
|
// Fold it to the (non-reference) type which g++ would have produced.
|
|
DI = SemaRef.Context.getTrivialTypeSourceInfo(
|
|
DI->getType().getNonReferenceType());
|
|
|
|
// Create the new typedef
|
|
TypedefNameDecl *Typedef;
|
|
if (IsTypeAlias)
|
|
Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
|
|
D->getLocation(), D->getIdentifier(), DI);
|
|
else
|
|
Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
|
|
D->getLocation(), D->getIdentifier(), DI);
|
|
if (Invalid)
|
|
Typedef->setInvalidDecl();
|
|
|
|
// If the old typedef was the name for linkage purposes of an anonymous
|
|
// tag decl, re-establish that relationship for the new typedef.
|
|
if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
|
|
TagDecl *oldTag = oldTagType->getDecl();
|
|
if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
|
|
TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
|
|
assert(!newTag->hasNameForLinkage());
|
|
newTag->setTypedefNameForAnonDecl(Typedef);
|
|
}
|
|
}
|
|
|
|
if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
|
|
NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
|
|
TemplateArgs);
|
|
if (!InstPrev)
|
|
return nullptr;
|
|
|
|
TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
|
|
|
|
// If the typedef types are not identical, reject them.
|
|
SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
|
|
|
|
Typedef->setPreviousDecl(InstPrevTypedef);
|
|
}
|
|
|
|
SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
|
|
|
|
if (D->getUnderlyingType()->getAs<DependentNameType>())
|
|
SemaRef.inferGslPointerAttribute(Typedef);
|
|
|
|
Typedef->setAccess(D->getAccess());
|
|
|
|
return Typedef;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
|
|
Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
|
|
if (Typedef)
|
|
Owner->addDecl(Typedef);
|
|
return Typedef;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
|
|
Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
|
|
if (Typedef)
|
|
Owner->addDecl(Typedef);
|
|
return Typedef;
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
|
|
// Create a local instantiation scope for this type alias template, which
|
|
// will contain the instantiations of the template parameters.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
|
|
TemplateParameterList *TempParams = D->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
TypeAliasDecl *Pattern = D->getTemplatedDecl();
|
|
|
|
TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
|
|
if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
|
|
DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
|
|
if (!Found.empty()) {
|
|
PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
|
|
}
|
|
}
|
|
|
|
TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
|
|
InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
|
|
if (!AliasInst)
|
|
return nullptr;
|
|
|
|
TypeAliasTemplateDecl *Inst
|
|
= TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
|
|
D->getDeclName(), InstParams, AliasInst);
|
|
AliasInst->setDescribedAliasTemplate(Inst);
|
|
if (PrevAliasTemplate)
|
|
Inst->setPreviousDecl(PrevAliasTemplate);
|
|
|
|
Inst->setAccess(D->getAccess());
|
|
|
|
if (!PrevAliasTemplate)
|
|
Inst->setInstantiatedFromMemberTemplate(D);
|
|
|
|
Owner->addDecl(Inst);
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
|
|
auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
|
|
D->getIdentifier());
|
|
NewBD->setReferenced(D->isReferenced());
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
|
|
return NewBD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
|
|
// Transform the bindings first.
|
|
SmallVector<BindingDecl*, 16> NewBindings;
|
|
for (auto *OldBD : D->bindings())
|
|
NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
|
|
ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
|
|
|
|
auto *NewDD = cast_or_null<DecompositionDecl>(
|
|
VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
|
|
|
|
if (!NewDD || NewDD->isInvalidDecl())
|
|
for (auto *NewBD : NewBindings)
|
|
NewBD->setInvalidDecl();
|
|
|
|
return NewDD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
|
|
return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
|
|
bool InstantiatingVarTemplate,
|
|
ArrayRef<BindingDecl*> *Bindings) {
|
|
|
|
// Do substitution on the type of the declaration
|
|
TypeSourceInfo *DI = SemaRef.SubstType(
|
|
D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
|
|
D->getDeclName(), /*AllowDeducedTST*/true);
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
if (DI->getType()->isFunctionType()) {
|
|
SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
|
|
<< D->isStaticDataMember() << DI->getType();
|
|
return nullptr;
|
|
}
|
|
|
|
DeclContext *DC = Owner;
|
|
if (D->isLocalExternDecl())
|
|
SemaRef.adjustContextForLocalExternDecl(DC);
|
|
|
|
// Build the instantiated declaration.
|
|
VarDecl *Var;
|
|
if (Bindings)
|
|
Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
|
|
D->getLocation(), DI->getType(), DI,
|
|
D->getStorageClass(), *Bindings);
|
|
else
|
|
Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
|
|
D->getLocation(), D->getIdentifier(), DI->getType(),
|
|
DI, D->getStorageClass());
|
|
|
|
// In ARC, infer 'retaining' for variables of retainable type.
|
|
if (SemaRef.getLangOpts().ObjCAutoRefCount &&
|
|
SemaRef.inferObjCARCLifetime(Var))
|
|
Var->setInvalidDecl();
|
|
|
|
if (SemaRef.getLangOpts().OpenCL)
|
|
SemaRef.deduceOpenCLAddressSpace(Var);
|
|
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(D, Var))
|
|
return nullptr;
|
|
|
|
SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
|
|
StartingScope, InstantiatingVarTemplate);
|
|
|
|
if (D->isNRVOVariable()) {
|
|
QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType();
|
|
if (SemaRef.isCopyElisionCandidate(ReturnType, Var, Sema::CES_Strict))
|
|
Var->setNRVOVariable(true);
|
|
}
|
|
|
|
Var->setImplicit(D->isImplicit());
|
|
|
|
if (Var->isStaticLocal())
|
|
SemaRef.CheckStaticLocalForDllExport(Var);
|
|
|
|
return Var;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
|
|
AccessSpecDecl* AD
|
|
= AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
|
|
D->getAccessSpecifierLoc(), D->getColonLoc());
|
|
Owner->addHiddenDecl(AD);
|
|
return AD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
|
|
bool Invalid = false;
|
|
TypeSourceInfo *DI = D->getTypeSourceInfo();
|
|
if (DI->getType()->isInstantiationDependentType() ||
|
|
DI->getType()->isVariablyModifiedType()) {
|
|
DI = SemaRef.SubstType(DI, TemplateArgs,
|
|
D->getLocation(), D->getDeclName());
|
|
if (!DI) {
|
|
DI = D->getTypeSourceInfo();
|
|
Invalid = true;
|
|
} else if (DI->getType()->isFunctionType()) {
|
|
// C++ [temp.arg.type]p3:
|
|
// If a declaration acquires a function type through a type
|
|
// dependent on a template-parameter and this causes a
|
|
// declaration that does not use the syntactic form of a
|
|
// function declarator to have function type, the program is
|
|
// ill-formed.
|
|
SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
|
|
<< DI->getType();
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
|
|
}
|
|
|
|
Expr *BitWidth = D->getBitWidth();
|
|
if (Invalid)
|
|
BitWidth = nullptr;
|
|
else if (BitWidth) {
|
|
// The bit-width expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
ExprResult InstantiatedBitWidth
|
|
= SemaRef.SubstExpr(BitWidth, TemplateArgs);
|
|
if (InstantiatedBitWidth.isInvalid()) {
|
|
Invalid = true;
|
|
BitWidth = nullptr;
|
|
} else
|
|
BitWidth = InstantiatedBitWidth.getAs<Expr>();
|
|
}
|
|
|
|
FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
|
|
DI->getType(), DI,
|
|
cast<RecordDecl>(Owner),
|
|
D->getLocation(),
|
|
D->isMutable(),
|
|
BitWidth,
|
|
D->getInClassInitStyle(),
|
|
D->getInnerLocStart(),
|
|
D->getAccess(),
|
|
nullptr);
|
|
if (!Field) {
|
|
cast<Decl>(Owner)->setInvalidDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
|
|
|
|
if (Field->hasAttrs())
|
|
SemaRef.CheckAlignasUnderalignment(Field);
|
|
|
|
if (Invalid)
|
|
Field->setInvalidDecl();
|
|
|
|
if (!Field->getDeclName()) {
|
|
// Keep track of where this decl came from.
|
|
SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
|
|
}
|
|
if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
|
|
if (Parent->isAnonymousStructOrUnion() &&
|
|
Parent->getRedeclContext()->isFunctionOrMethod())
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
|
|
}
|
|
|
|
Field->setImplicit(D->isImplicit());
|
|
Field->setAccess(D->getAccess());
|
|
Owner->addDecl(Field);
|
|
|
|
return Field;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
|
|
bool Invalid = false;
|
|
TypeSourceInfo *DI = D->getTypeSourceInfo();
|
|
|
|
if (DI->getType()->isVariablyModifiedType()) {
|
|
SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
|
|
<< D;
|
|
Invalid = true;
|
|
} else if (DI->getType()->isInstantiationDependentType()) {
|
|
DI = SemaRef.SubstType(DI, TemplateArgs,
|
|
D->getLocation(), D->getDeclName());
|
|
if (!DI) {
|
|
DI = D->getTypeSourceInfo();
|
|
Invalid = true;
|
|
} else if (DI->getType()->isFunctionType()) {
|
|
// C++ [temp.arg.type]p3:
|
|
// If a declaration acquires a function type through a type
|
|
// dependent on a template-parameter and this causes a
|
|
// declaration that does not use the syntactic form of a
|
|
// function declarator to have function type, the program is
|
|
// ill-formed.
|
|
SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
|
|
<< DI->getType();
|
|
Invalid = true;
|
|
}
|
|
} else {
|
|
SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
|
|
}
|
|
|
|
MSPropertyDecl *Property = MSPropertyDecl::Create(
|
|
SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
|
|
DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
|
|
|
|
SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
|
|
StartingScope);
|
|
|
|
if (Invalid)
|
|
Property->setInvalidDecl();
|
|
|
|
Property->setAccess(D->getAccess());
|
|
Owner->addDecl(Property);
|
|
|
|
return Property;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
|
|
NamedDecl **NamedChain =
|
|
new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
|
|
|
|
int i = 0;
|
|
for (auto *PI : D->chain()) {
|
|
NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
|
|
TemplateArgs);
|
|
if (!Next)
|
|
return nullptr;
|
|
|
|
NamedChain[i++] = Next;
|
|
}
|
|
|
|
QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
|
|
IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
|
|
SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
|
|
{NamedChain, D->getChainingSize()});
|
|
|
|
for (const auto *Attr : D->attrs())
|
|
IndirectField->addAttr(Attr->clone(SemaRef.Context));
|
|
|
|
IndirectField->setImplicit(D->isImplicit());
|
|
IndirectField->setAccess(D->getAccess());
|
|
Owner->addDecl(IndirectField);
|
|
return IndirectField;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
|
|
// Handle friend type expressions by simply substituting template
|
|
// parameters into the pattern type and checking the result.
|
|
if (TypeSourceInfo *Ty = D->getFriendType()) {
|
|
TypeSourceInfo *InstTy;
|
|
// If this is an unsupported friend, don't bother substituting template
|
|
// arguments into it. The actual type referred to won't be used by any
|
|
// parts of Clang, and may not be valid for instantiating. Just use the
|
|
// same info for the instantiated friend.
|
|
if (D->isUnsupportedFriend()) {
|
|
InstTy = Ty;
|
|
} else {
|
|
InstTy = SemaRef.SubstType(Ty, TemplateArgs,
|
|
D->getLocation(), DeclarationName());
|
|
}
|
|
if (!InstTy)
|
|
return nullptr;
|
|
|
|
FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
|
|
D->getFriendLoc(), InstTy);
|
|
if (!FD)
|
|
return nullptr;
|
|
|
|
FD->setAccess(AS_public);
|
|
FD->setUnsupportedFriend(D->isUnsupportedFriend());
|
|
Owner->addDecl(FD);
|
|
return FD;
|
|
}
|
|
|
|
NamedDecl *ND = D->getFriendDecl();
|
|
assert(ND && "friend decl must be a decl or a type!");
|
|
|
|
// All of the Visit implementations for the various potential friend
|
|
// declarations have to be carefully written to work for friend
|
|
// objects, with the most important detail being that the target
|
|
// decl should almost certainly not be placed in Owner.
|
|
Decl *NewND = Visit(ND);
|
|
if (!NewND) return nullptr;
|
|
|
|
FriendDecl *FD =
|
|
FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
|
|
cast<NamedDecl>(NewND), D->getFriendLoc());
|
|
FD->setAccess(AS_public);
|
|
FD->setUnsupportedFriend(D->isUnsupportedFriend());
|
|
Owner->addDecl(FD);
|
|
return FD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
|
|
Expr *AssertExpr = D->getAssertExpr();
|
|
|
|
// The expression in a static assertion is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
ExprResult InstantiatedAssertExpr
|
|
= SemaRef.SubstExpr(AssertExpr, TemplateArgs);
|
|
if (InstantiatedAssertExpr.isInvalid())
|
|
return nullptr;
|
|
|
|
return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
|
|
InstantiatedAssertExpr.get(),
|
|
D->getMessage(),
|
|
D->getRParenLoc(),
|
|
D->isFailed());
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
|
|
EnumDecl *PrevDecl = nullptr;
|
|
if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
|
|
NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
|
|
PatternPrev,
|
|
TemplateArgs);
|
|
if (!Prev) return nullptr;
|
|
PrevDecl = cast<EnumDecl>(Prev);
|
|
}
|
|
|
|
EnumDecl *Enum =
|
|
EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
|
|
D->getLocation(), D->getIdentifier(), PrevDecl,
|
|
D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
|
|
if (D->isFixed()) {
|
|
if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
|
|
// If we have type source information for the underlying type, it means it
|
|
// has been explicitly set by the user. Perform substitution on it before
|
|
// moving on.
|
|
SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
|
|
TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
|
|
DeclarationName());
|
|
if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
|
|
Enum->setIntegerType(SemaRef.Context.IntTy);
|
|
else
|
|
Enum->setIntegerTypeSourceInfo(NewTI);
|
|
} else {
|
|
assert(!D->getIntegerType()->isDependentType()
|
|
&& "Dependent type without type source info");
|
|
Enum->setIntegerType(D->getIntegerType());
|
|
}
|
|
}
|
|
|
|
SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
|
|
|
|
Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
|
|
Enum->setAccess(D->getAccess());
|
|
// Forward the mangling number from the template to the instantiated decl.
|
|
SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
|
|
// See if the old tag was defined along with a declarator.
|
|
// If it did, mark the new tag as being associated with that declarator.
|
|
if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
|
|
SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
|
|
// See if the old tag was defined along with a typedef.
|
|
// If it did, mark the new tag as being associated with that typedef.
|
|
if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
|
|
SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
|
|
if (SubstQualifier(D, Enum)) return nullptr;
|
|
Owner->addDecl(Enum);
|
|
|
|
EnumDecl *Def = D->getDefinition();
|
|
if (Def && Def != D) {
|
|
// If this is an out-of-line definition of an enum member template, check
|
|
// that the underlying types match in the instantiation of both
|
|
// declarations.
|
|
if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
|
|
SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
|
|
QualType DefnUnderlying =
|
|
SemaRef.SubstType(TI->getType(), TemplateArgs,
|
|
UnderlyingLoc, DeclarationName());
|
|
SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
|
|
DefnUnderlying, /*IsFixed=*/true, Enum);
|
|
}
|
|
}
|
|
|
|
// C++11 [temp.inst]p1: The implicit instantiation of a class template
|
|
// specialization causes the implicit instantiation of the declarations, but
|
|
// not the definitions of scoped member enumerations.
|
|
//
|
|
// DR1484 clarifies that enumeration definitions inside of a template
|
|
// declaration aren't considered entities that can be separately instantiated
|
|
// from the rest of the entity they are declared inside of.
|
|
if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
|
|
InstantiateEnumDefinition(Enum, Def);
|
|
}
|
|
|
|
return Enum;
|
|
}
|
|
|
|
void TemplateDeclInstantiator::InstantiateEnumDefinition(
|
|
EnumDecl *Enum, EnumDecl *Pattern) {
|
|
Enum->startDefinition();
|
|
|
|
// Update the location to refer to the definition.
|
|
Enum->setLocation(Pattern->getLocation());
|
|
|
|
SmallVector<Decl*, 4> Enumerators;
|
|
|
|
EnumConstantDecl *LastEnumConst = nullptr;
|
|
for (auto *EC : Pattern->enumerators()) {
|
|
// The specified value for the enumerator.
|
|
ExprResult Value((Expr *)nullptr);
|
|
if (Expr *UninstValue = EC->getInitExpr()) {
|
|
// The enumerator's value expression is a constant expression.
|
|
EnterExpressionEvaluationContext Unevaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
|
|
Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
|
|
}
|
|
|
|
// Drop the initial value and continue.
|
|
bool isInvalid = false;
|
|
if (Value.isInvalid()) {
|
|
Value = nullptr;
|
|
isInvalid = true;
|
|
}
|
|
|
|
EnumConstantDecl *EnumConst
|
|
= SemaRef.CheckEnumConstant(Enum, LastEnumConst,
|
|
EC->getLocation(), EC->getIdentifier(),
|
|
Value.get());
|
|
|
|
if (isInvalid) {
|
|
if (EnumConst)
|
|
EnumConst->setInvalidDecl();
|
|
Enum->setInvalidDecl();
|
|
}
|
|
|
|
if (EnumConst) {
|
|
SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
|
|
|
|
EnumConst->setAccess(Enum->getAccess());
|
|
Enum->addDecl(EnumConst);
|
|
Enumerators.push_back(EnumConst);
|
|
LastEnumConst = EnumConst;
|
|
|
|
if (Pattern->getDeclContext()->isFunctionOrMethod() &&
|
|
!Enum->isScoped()) {
|
|
// If the enumeration is within a function or method, record the enum
|
|
// constant as a local.
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
|
|
}
|
|
}
|
|
}
|
|
|
|
SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
|
|
Enumerators, nullptr, ParsedAttributesView());
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
|
|
llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
|
|
llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
|
|
bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
// Create a local instantiation scope for this class template, which
|
|
// will contain the instantiations of the template parameters.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
TemplateParameterList *TempParams = D->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
CXXRecordDecl *Pattern = D->getTemplatedDecl();
|
|
|
|
// Instantiate the qualifier. We have to do this first in case
|
|
// we're a friend declaration, because if we are then we need to put
|
|
// the new declaration in the appropriate context.
|
|
NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
|
|
TemplateArgs);
|
|
if (!QualifierLoc)
|
|
return nullptr;
|
|
}
|
|
|
|
CXXRecordDecl *PrevDecl = nullptr;
|
|
ClassTemplateDecl *PrevClassTemplate = nullptr;
|
|
|
|
if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
|
|
DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
|
|
if (!Found.empty()) {
|
|
PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
|
|
if (PrevClassTemplate)
|
|
PrevDecl = PrevClassTemplate->getTemplatedDecl();
|
|
}
|
|
}
|
|
|
|
// If this isn't a friend, then it's a member template, in which
|
|
// case we just want to build the instantiation in the
|
|
// specialization. If it is a friend, we want to build it in
|
|
// the appropriate context.
|
|
DeclContext *DC = Owner;
|
|
if (isFriend) {
|
|
if (QualifierLoc) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
DC = SemaRef.computeDeclContext(SS);
|
|
if (!DC) return nullptr;
|
|
} else {
|
|
DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
|
|
Pattern->getDeclContext(),
|
|
TemplateArgs);
|
|
}
|
|
|
|
// Look for a previous declaration of the template in the owning
|
|
// context.
|
|
LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
|
|
Sema::LookupOrdinaryName,
|
|
SemaRef.forRedeclarationInCurContext());
|
|
SemaRef.LookupQualifiedName(R, DC);
|
|
|
|
if (R.isSingleResult()) {
|
|
PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
|
|
if (PrevClassTemplate)
|
|
PrevDecl = PrevClassTemplate->getTemplatedDecl();
|
|
}
|
|
|
|
if (!PrevClassTemplate && QualifierLoc) {
|
|
SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
|
|
<< D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
|
|
<< QualifierLoc.getSourceRange();
|
|
return nullptr;
|
|
}
|
|
|
|
bool AdoptedPreviousTemplateParams = false;
|
|
if (PrevClassTemplate) {
|
|
bool Complain = true;
|
|
|
|
// HACK: libstdc++ 4.2.1 contains an ill-formed friend class
|
|
// template for struct std::tr1::__detail::_Map_base, where the
|
|
// template parameters of the friend declaration don't match the
|
|
// template parameters of the original declaration. In this one
|
|
// case, we don't complain about the ill-formed friend
|
|
// declaration.
|
|
if (isFriend && Pattern->getIdentifier() &&
|
|
Pattern->getIdentifier()->isStr("_Map_base") &&
|
|
DC->isNamespace() &&
|
|
cast<NamespaceDecl>(DC)->getIdentifier() &&
|
|
cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) {
|
|
DeclContext *DCParent = DC->getParent();
|
|
if (DCParent->isNamespace() &&
|
|
cast<NamespaceDecl>(DCParent)->getIdentifier() &&
|
|
cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) {
|
|
if (cast<Decl>(DCParent)->isInStdNamespace())
|
|
Complain = false;
|
|
}
|
|
}
|
|
|
|
TemplateParameterList *PrevParams
|
|
= PrevClassTemplate->getMostRecentDecl()->getTemplateParameters();
|
|
|
|
// Make sure the parameter lists match.
|
|
if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams,
|
|
Complain,
|
|
Sema::TPL_TemplateMatch)) {
|
|
if (Complain)
|
|
return nullptr;
|
|
|
|
AdoptedPreviousTemplateParams = true;
|
|
InstParams = PrevParams;
|
|
}
|
|
|
|
// Do some additional validation, then merge default arguments
|
|
// from the existing declarations.
|
|
if (!AdoptedPreviousTemplateParams &&
|
|
SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
|
|
Sema::TPC_ClassTemplate))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
|
|
SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
|
|
Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
|
|
/*DelayTypeCreation=*/true);
|
|
|
|
if (QualifierLoc)
|
|
RecordInst->setQualifierInfo(QualifierLoc);
|
|
|
|
SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
|
|
StartingScope);
|
|
|
|
ClassTemplateDecl *Inst
|
|
= ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
|
|
D->getIdentifier(), InstParams, RecordInst);
|
|
assert(!(isFriend && Owner->isDependentContext()));
|
|
Inst->setPreviousDecl(PrevClassTemplate);
|
|
|
|
RecordInst->setDescribedClassTemplate(Inst);
|
|
|
|
if (isFriend) {
|
|
if (PrevClassTemplate)
|
|
Inst->setAccess(PrevClassTemplate->getAccess());
|
|
else
|
|
Inst->setAccess(D->getAccess());
|
|
|
|
Inst->setObjectOfFriendDecl();
|
|
// TODO: do we want to track the instantiation progeny of this
|
|
// friend target decl?
|
|
} else {
|
|
Inst->setAccess(D->getAccess());
|
|
if (!PrevClassTemplate)
|
|
Inst->setInstantiatedFromMemberTemplate(D);
|
|
}
|
|
|
|
// Trigger creation of the type for the instantiation.
|
|
SemaRef.Context.getInjectedClassNameType(RecordInst,
|
|
Inst->getInjectedClassNameSpecialization());
|
|
|
|
// Finish handling of friends.
|
|
if (isFriend) {
|
|
DC->makeDeclVisibleInContext(Inst);
|
|
Inst->setLexicalDeclContext(Owner);
|
|
RecordInst->setLexicalDeclContext(Owner);
|
|
return Inst;
|
|
}
|
|
|
|
if (D->isOutOfLine()) {
|
|
Inst->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
}
|
|
|
|
Owner->addDecl(Inst);
|
|
|
|
if (!PrevClassTemplate) {
|
|
// Queue up any out-of-line partial specializations of this member
|
|
// class template; the client will force their instantiation once
|
|
// the enclosing class has been instantiated.
|
|
SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
|
|
D->getPartialSpecializations(PartialSpecs);
|
|
for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
|
|
if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
|
|
OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
|
|
}
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
|
|
ClassTemplatePartialSpecializationDecl *D) {
|
|
ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
|
|
|
|
// Lookup the already-instantiated declaration in the instantiation
|
|
// of the class template and return that.
|
|
DeclContext::lookup_result Found
|
|
= Owner->lookup(ClassTemplate->getDeclName());
|
|
if (Found.empty())
|
|
return nullptr;
|
|
|
|
ClassTemplateDecl *InstClassTemplate
|
|
= dyn_cast<ClassTemplateDecl>(Found.front());
|
|
if (!InstClassTemplate)
|
|
return nullptr;
|
|
|
|
if (ClassTemplatePartialSpecializationDecl *Result
|
|
= InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
|
|
return Result;
|
|
|
|
return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
|
|
assert(D->getTemplatedDecl()->isStaticDataMember() &&
|
|
"Only static data member templates are allowed.");
|
|
|
|
// Create a local instantiation scope for this variable template, which
|
|
// will contain the instantiations of the template parameters.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
TemplateParameterList *TempParams = D->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
VarDecl *Pattern = D->getTemplatedDecl();
|
|
VarTemplateDecl *PrevVarTemplate = nullptr;
|
|
|
|
if (getPreviousDeclForInstantiation(Pattern)) {
|
|
DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
|
|
if (!Found.empty())
|
|
PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
|
|
}
|
|
|
|
VarDecl *VarInst =
|
|
cast_or_null<VarDecl>(VisitVarDecl(Pattern,
|
|
/*InstantiatingVarTemplate=*/true));
|
|
if (!VarInst) return nullptr;
|
|
|
|
DeclContext *DC = Owner;
|
|
|
|
VarTemplateDecl *Inst = VarTemplateDecl::Create(
|
|
SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
|
|
VarInst);
|
|
VarInst->setDescribedVarTemplate(Inst);
|
|
Inst->setPreviousDecl(PrevVarTemplate);
|
|
|
|
Inst->setAccess(D->getAccess());
|
|
if (!PrevVarTemplate)
|
|
Inst->setInstantiatedFromMemberTemplate(D);
|
|
|
|
if (D->isOutOfLine()) {
|
|
Inst->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
}
|
|
|
|
Owner->addDecl(Inst);
|
|
|
|
if (!PrevVarTemplate) {
|
|
// Queue up any out-of-line partial specializations of this member
|
|
// variable template; the client will force their instantiation once
|
|
// the enclosing class has been instantiated.
|
|
SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
|
|
D->getPartialSpecializations(PartialSpecs);
|
|
for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
|
|
if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
|
|
OutOfLineVarPartialSpecs.push_back(
|
|
std::make_pair(Inst, PartialSpecs[I]));
|
|
}
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
|
|
VarTemplatePartialSpecializationDecl *D) {
|
|
assert(D->isStaticDataMember() &&
|
|
"Only static data member templates are allowed.");
|
|
|
|
VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
|
|
|
|
// Lookup the already-instantiated declaration and return that.
|
|
DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
|
|
assert(!Found.empty() && "Instantiation found nothing?");
|
|
|
|
VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
|
|
assert(InstVarTemplate && "Instantiation did not find a variable template?");
|
|
|
|
if (VarTemplatePartialSpecializationDecl *Result =
|
|
InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
|
|
return Result;
|
|
|
|
return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
|
|
// Create a local instantiation scope for this function template, which
|
|
// will contain the instantiations of the template parameters and then get
|
|
// merged with the local instantiation scope for the function template
|
|
// itself.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
|
|
TemplateParameterList *TempParams = D->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
FunctionDecl *Instantiated = nullptr;
|
|
if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
|
|
Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
|
|
InstParams));
|
|
else
|
|
Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
|
|
D->getTemplatedDecl(),
|
|
InstParams));
|
|
|
|
if (!Instantiated)
|
|
return nullptr;
|
|
|
|
// Link the instantiated function template declaration to the function
|
|
// template from which it was instantiated.
|
|
FunctionTemplateDecl *InstTemplate
|
|
= Instantiated->getDescribedFunctionTemplate();
|
|
InstTemplate->setAccess(D->getAccess());
|
|
assert(InstTemplate &&
|
|
"VisitFunctionDecl/CXXMethodDecl didn't create a template!");
|
|
|
|
bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
// Link the instantiation back to the pattern *unless* this is a
|
|
// non-definition friend declaration.
|
|
if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
|
|
!(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
|
|
InstTemplate->setInstantiatedFromMemberTemplate(D);
|
|
|
|
// Make declarations visible in the appropriate context.
|
|
if (!isFriend) {
|
|
Owner->addDecl(InstTemplate);
|
|
} else if (InstTemplate->getDeclContext()->isRecord() &&
|
|
!getPreviousDeclForInstantiation(D)) {
|
|
SemaRef.CheckFriendAccess(InstTemplate);
|
|
}
|
|
|
|
return InstTemplate;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
|
|
CXXRecordDecl *PrevDecl = nullptr;
|
|
if (D->isInjectedClassName())
|
|
PrevDecl = cast<CXXRecordDecl>(Owner);
|
|
else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
|
|
NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
|
|
PatternPrev,
|
|
TemplateArgs);
|
|
if (!Prev) return nullptr;
|
|
PrevDecl = cast<CXXRecordDecl>(Prev);
|
|
}
|
|
|
|
CXXRecordDecl *Record = CXXRecordDecl::Create(
|
|
SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
|
|
D->getLocation(), D->getIdentifier(), PrevDecl);
|
|
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(D, Record))
|
|
return nullptr;
|
|
|
|
SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
|
|
StartingScope);
|
|
|
|
Record->setImplicit(D->isImplicit());
|
|
// FIXME: Check against AS_none is an ugly hack to work around the issue that
|
|
// the tag decls introduced by friend class declarations don't have an access
|
|
// specifier. Remove once this area of the code gets sorted out.
|
|
if (D->getAccess() != AS_none)
|
|
Record->setAccess(D->getAccess());
|
|
if (!D->isInjectedClassName())
|
|
Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
|
|
|
|
// If the original function was part of a friend declaration,
|
|
// inherit its namespace state.
|
|
if (D->getFriendObjectKind())
|
|
Record->setObjectOfFriendDecl();
|
|
|
|
// Make sure that anonymous structs and unions are recorded.
|
|
if (D->isAnonymousStructOrUnion())
|
|
Record->setAnonymousStructOrUnion(true);
|
|
|
|
if (D->isLocalClass())
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
|
|
|
|
// Forward the mangling number from the template to the instantiated decl.
|
|
SemaRef.Context.setManglingNumber(Record,
|
|
SemaRef.Context.getManglingNumber(D));
|
|
|
|
// See if the old tag was defined along with a declarator.
|
|
// If it did, mark the new tag as being associated with that declarator.
|
|
if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
|
|
SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
|
|
|
|
// See if the old tag was defined along with a typedef.
|
|
// If it did, mark the new tag as being associated with that typedef.
|
|
if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
|
|
SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
|
|
|
|
Owner->addDecl(Record);
|
|
|
|
// DR1484 clarifies that the members of a local class are instantiated as part
|
|
// of the instantiation of their enclosing entity.
|
|
if (D->isCompleteDefinition() && D->isLocalClass()) {
|
|
Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
|
|
|
|
SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/true);
|
|
|
|
// For nested local classes, we will instantiate the members when we
|
|
// reach the end of the outermost (non-nested) local class.
|
|
if (!D->isCXXClassMember())
|
|
SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
|
|
TSK_ImplicitInstantiation);
|
|
|
|
// This class may have local implicit instantiations that need to be
|
|
// performed within this scope.
|
|
LocalInstantiations.perform();
|
|
}
|
|
|
|
SemaRef.DiagnoseUnusedNestedTypedefs(Record);
|
|
|
|
return Record;
|
|
}
|
|
|
|
/// Adjust the given function type for an instantiation of the
|
|
/// given declaration, to cope with modifications to the function's type that
|
|
/// aren't reflected in the type-source information.
|
|
///
|
|
/// \param D The declaration we're instantiating.
|
|
/// \param TInfo The already-instantiated type.
|
|
static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
|
|
FunctionDecl *D,
|
|
TypeSourceInfo *TInfo) {
|
|
const FunctionProtoType *OrigFunc
|
|
= D->getType()->castAs<FunctionProtoType>();
|
|
const FunctionProtoType *NewFunc
|
|
= TInfo->getType()->castAs<FunctionProtoType>();
|
|
if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
|
|
return TInfo->getType();
|
|
|
|
FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
|
|
NewEPI.ExtInfo = OrigFunc->getExtInfo();
|
|
return Context.getFunctionType(NewFunc->getReturnType(),
|
|
NewFunc->getParamTypes(), NewEPI);
|
|
}
|
|
|
|
/// Normal class members are of more specific types and therefore
|
|
/// don't make it here. This function serves three purposes:
|
|
/// 1) instantiating function templates
|
|
/// 2) substituting friend declarations
|
|
/// 3) substituting deduction guide declarations for nested class templates
|
|
Decl *TemplateDeclInstantiator::VisitFunctionDecl(
|
|
FunctionDecl *D, TemplateParameterList *TemplateParams,
|
|
RewriteKind FunctionRewriteKind) {
|
|
// Check whether there is already a function template specialization for
|
|
// this declaration.
|
|
FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
|
|
if (FunctionTemplate && !TemplateParams) {
|
|
ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
|
|
|
|
void *InsertPos = nullptr;
|
|
FunctionDecl *SpecFunc
|
|
= FunctionTemplate->findSpecialization(Innermost, InsertPos);
|
|
|
|
// If we already have a function template specialization, return it.
|
|
if (SpecFunc)
|
|
return SpecFunc;
|
|
}
|
|
|
|
bool isFriend;
|
|
if (FunctionTemplate)
|
|
isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
|
|
else
|
|
isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
bool MergeWithParentScope = (TemplateParams != nullptr) ||
|
|
Owner->isFunctionOrMethod() ||
|
|
!(isa<Decl>(Owner) &&
|
|
cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
|
|
LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
|
|
|
|
ExplicitSpecifier InstantiatedExplicitSpecifier;
|
|
if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
|
|
InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(
|
|
SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide);
|
|
if (InstantiatedExplicitSpecifier.isInvalid())
|
|
return nullptr;
|
|
}
|
|
|
|
SmallVector<ParmVarDecl *, 4> Params;
|
|
TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
|
|
if (!TInfo)
|
|
return nullptr;
|
|
QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
|
|
|
|
if (TemplateParams && TemplateParams->size()) {
|
|
auto *LastParam =
|
|
dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
|
|
if (LastParam && LastParam->isImplicit() &&
|
|
LastParam->hasTypeConstraint()) {
|
|
// In abbreviated templates, the type-constraints of invented template
|
|
// type parameters are instantiated with the function type, invalidating
|
|
// the TemplateParameterList which relied on the template type parameter
|
|
// not having a type constraint. Recreate the TemplateParameterList with
|
|
// the updated parameter list.
|
|
TemplateParams = TemplateParameterList::Create(
|
|
SemaRef.Context, TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
|
|
TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
|
|
}
|
|
}
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
|
|
TemplateArgs);
|
|
if (!QualifierLoc)
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: Concepts: Do not substitute into constraint expressions
|
|
Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
|
|
if (TrailingRequiresClause) {
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
|
|
TemplateArgs);
|
|
if (SubstRC.isInvalid())
|
|
return nullptr;
|
|
TrailingRequiresClause = SubstRC.get();
|
|
if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
|
|
return nullptr;
|
|
}
|
|
|
|
// If we're instantiating a local function declaration, put the result
|
|
// in the enclosing namespace; otherwise we need to find the instantiated
|
|
// context.
|
|
DeclContext *DC;
|
|
if (D->isLocalExternDecl()) {
|
|
DC = Owner;
|
|
SemaRef.adjustContextForLocalExternDecl(DC);
|
|
} else if (isFriend && QualifierLoc) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
DC = SemaRef.computeDeclContext(SS);
|
|
if (!DC) return nullptr;
|
|
} else {
|
|
DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
|
|
TemplateArgs);
|
|
}
|
|
|
|
DeclarationNameInfo NameInfo
|
|
= SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
|
|
|
|
if (FunctionRewriteKind != RewriteKind::None)
|
|
adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
|
|
|
|
FunctionDecl *Function;
|
|
if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
|
|
Function = CXXDeductionGuideDecl::Create(
|
|
SemaRef.Context, DC, D->getInnerLocStart(),
|
|
InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
|
|
D->getSourceRange().getEnd());
|
|
if (DGuide->isCopyDeductionCandidate())
|
|
cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate();
|
|
Function->setAccess(D->getAccess());
|
|
} else {
|
|
Function = FunctionDecl::Create(
|
|
SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
|
|
D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(),
|
|
D->hasWrittenPrototype(), D->getConstexprKind(),
|
|
TrailingRequiresClause);
|
|
Function->setRangeEnd(D->getSourceRange().getEnd());
|
|
Function->setUsesFPIntrin(D->usesFPIntrin());
|
|
}
|
|
|
|
if (D->isInlined())
|
|
Function->setImplicitlyInline();
|
|
|
|
if (QualifierLoc)
|
|
Function->setQualifierInfo(QualifierLoc);
|
|
|
|
if (D->isLocalExternDecl())
|
|
Function->setLocalExternDecl();
|
|
|
|
DeclContext *LexicalDC = Owner;
|
|
if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
|
|
assert(D->getDeclContext()->isFileContext());
|
|
LexicalDC = D->getDeclContext();
|
|
}
|
|
|
|
Function->setLexicalDeclContext(LexicalDC);
|
|
|
|
// Attach the parameters
|
|
for (unsigned P = 0; P < Params.size(); ++P)
|
|
if (Params[P])
|
|
Params[P]->setOwningFunction(Function);
|
|
Function->setParams(Params);
|
|
|
|
if (TrailingRequiresClause)
|
|
Function->setTrailingRequiresClause(TrailingRequiresClause);
|
|
|
|
if (TemplateParams) {
|
|
// Our resulting instantiation is actually a function template, since we
|
|
// are substituting only the outer template parameters. For example, given
|
|
//
|
|
// template<typename T>
|
|
// struct X {
|
|
// template<typename U> friend void f(T, U);
|
|
// };
|
|
//
|
|
// X<int> x;
|
|
//
|
|
// We are instantiating the friend function template "f" within X<int>,
|
|
// which means substituting int for T, but leaving "f" as a friend function
|
|
// template.
|
|
// Build the function template itself.
|
|
FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
|
|
Function->getLocation(),
|
|
Function->getDeclName(),
|
|
TemplateParams, Function);
|
|
Function->setDescribedFunctionTemplate(FunctionTemplate);
|
|
|
|
FunctionTemplate->setLexicalDeclContext(LexicalDC);
|
|
|
|
if (isFriend && D->isThisDeclarationADefinition()) {
|
|
FunctionTemplate->setInstantiatedFromMemberTemplate(
|
|
D->getDescribedFunctionTemplate());
|
|
}
|
|
} else if (FunctionTemplate) {
|
|
// Record this function template specialization.
|
|
ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
|
|
Function->setFunctionTemplateSpecialization(FunctionTemplate,
|
|
TemplateArgumentList::CreateCopy(SemaRef.Context,
|
|
Innermost),
|
|
/*InsertPos=*/nullptr);
|
|
} else if (isFriend && D->isThisDeclarationADefinition()) {
|
|
// Do not connect the friend to the template unless it's actually a
|
|
// definition. We don't want non-template functions to be marked as being
|
|
// template instantiations.
|
|
Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
|
|
}
|
|
|
|
if (isFriend)
|
|
Function->setObjectOfFriendDecl();
|
|
|
|
if (InitFunctionInstantiation(Function, D))
|
|
Function->setInvalidDecl();
|
|
|
|
bool IsExplicitSpecialization = false;
|
|
|
|
LookupResult Previous(
|
|
SemaRef, Function->getDeclName(), SourceLocation(),
|
|
D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
|
|
: Sema::LookupOrdinaryName,
|
|
D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
|
|
: SemaRef.forRedeclarationInCurContext());
|
|
|
|
if (DependentFunctionTemplateSpecializationInfo *Info
|
|
= D->getDependentSpecializationInfo()) {
|
|
assert(isFriend && "non-friend has dependent specialization info?");
|
|
|
|
// Instantiate the explicit template arguments.
|
|
TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
|
|
Info->getRAngleLoc());
|
|
if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
|
|
ExplicitArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Map the candidate templates to their instantiations.
|
|
for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
|
|
Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
|
|
Info->getTemplate(I),
|
|
TemplateArgs);
|
|
if (!Temp) return nullptr;
|
|
|
|
Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
|
|
}
|
|
|
|
if (SemaRef.CheckFunctionTemplateSpecialization(Function,
|
|
&ExplicitArgs,
|
|
Previous))
|
|
Function->setInvalidDecl();
|
|
|
|
IsExplicitSpecialization = true;
|
|
} else if (const ASTTemplateArgumentListInfo *Info =
|
|
D->getTemplateSpecializationArgsAsWritten()) {
|
|
// The name of this function was written as a template-id.
|
|
SemaRef.LookupQualifiedName(Previous, DC);
|
|
|
|
// Instantiate the explicit template arguments.
|
|
TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
|
|
Info->getRAngleLoc());
|
|
if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
|
|
ExplicitArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
if (SemaRef.CheckFunctionTemplateSpecialization(Function,
|
|
&ExplicitArgs,
|
|
Previous))
|
|
Function->setInvalidDecl();
|
|
|
|
IsExplicitSpecialization = true;
|
|
} else if (TemplateParams || !FunctionTemplate) {
|
|
// Look only into the namespace where the friend would be declared to
|
|
// find a previous declaration. This is the innermost enclosing namespace,
|
|
// as described in ActOnFriendFunctionDecl.
|
|
SemaRef.LookupQualifiedName(Previous, DC->getRedeclContext());
|
|
|
|
// In C++, the previous declaration we find might be a tag type
|
|
// (class or enum). In this case, the new declaration will hide the
|
|
// tag type. Note that this does does not apply if we're declaring a
|
|
// typedef (C++ [dcl.typedef]p4).
|
|
if (Previous.isSingleTagDecl())
|
|
Previous.clear();
|
|
|
|
// Filter out previous declarations that don't match the scope. The only
|
|
// effect this has is to remove declarations found in inline namespaces
|
|
// for friend declarations with unqualified names.
|
|
SemaRef.FilterLookupForScope(Previous, DC, /*Scope*/ nullptr,
|
|
/*ConsiderLinkage*/ true,
|
|
QualifierLoc.hasQualifier());
|
|
}
|
|
|
|
SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
|
|
IsExplicitSpecialization);
|
|
|
|
NamedDecl *PrincipalDecl = (TemplateParams
|
|
? cast<NamedDecl>(FunctionTemplate)
|
|
: Function);
|
|
|
|
// If the original function was part of a friend declaration,
|
|
// inherit its namespace state and add it to the owner.
|
|
if (isFriend) {
|
|
Function->setObjectOfFriendDecl();
|
|
if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
|
|
FT->setObjectOfFriendDecl();
|
|
DC->makeDeclVisibleInContext(PrincipalDecl);
|
|
|
|
bool QueuedInstantiation = false;
|
|
|
|
// C++11 [temp.friend]p4 (DR329):
|
|
// When a function is defined in a friend function declaration in a class
|
|
// template, the function is instantiated when the function is odr-used.
|
|
// The same restrictions on multiple declarations and definitions that
|
|
// apply to non-template function declarations and definitions also apply
|
|
// to these implicit definitions.
|
|
if (D->isThisDeclarationADefinition()) {
|
|
SemaRef.CheckForFunctionRedefinition(Function);
|
|
if (!Function->isInvalidDecl()) {
|
|
for (auto R : Function->redecls()) {
|
|
if (R == Function)
|
|
continue;
|
|
|
|
// If some prior declaration of this function has been used, we need
|
|
// to instantiate its definition.
|
|
if (!QueuedInstantiation && R->isUsed(false)) {
|
|
if (MemberSpecializationInfo *MSInfo =
|
|
Function->getMemberSpecializationInfo()) {
|
|
if (MSInfo->getPointOfInstantiation().isInvalid()) {
|
|
SourceLocation Loc = R->getLocation(); // FIXME
|
|
MSInfo->setPointOfInstantiation(Loc);
|
|
SemaRef.PendingLocalImplicitInstantiations.push_back(
|
|
std::make_pair(Function, Loc));
|
|
QueuedInstantiation = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the template parameter list against the previous declaration. The
|
|
// goal here is to pick up default arguments added since the friend was
|
|
// declared; we know the template parameter lists match, since otherwise
|
|
// we would not have picked this template as the previous declaration.
|
|
if (TemplateParams && FunctionTemplate->getPreviousDecl()) {
|
|
SemaRef.CheckTemplateParameterList(
|
|
TemplateParams,
|
|
FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
|
|
Function->isThisDeclarationADefinition()
|
|
? Sema::TPC_FriendFunctionTemplateDefinition
|
|
: Sema::TPC_FriendFunctionTemplate);
|
|
}
|
|
}
|
|
|
|
if (D->isExplicitlyDefaulted()) {
|
|
if (SubstDefaultedFunction(Function, D))
|
|
return nullptr;
|
|
}
|
|
if (D->isDeleted())
|
|
SemaRef.SetDeclDeleted(Function, D->getLocation());
|
|
|
|
if (Function->isLocalExternDecl() && !Function->getPreviousDecl())
|
|
DC->makeDeclVisibleInContext(PrincipalDecl);
|
|
|
|
if (Function->isOverloadedOperator() && !DC->isRecord() &&
|
|
PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
|
|
PrincipalDecl->setNonMemberOperator();
|
|
|
|
return Function;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
|
|
CXXMethodDecl *D, TemplateParameterList *TemplateParams,
|
|
Optional<const ASTTemplateArgumentListInfo *> ClassScopeSpecializationArgs,
|
|
RewriteKind FunctionRewriteKind) {
|
|
FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
|
|
if (FunctionTemplate && !TemplateParams) {
|
|
// We are creating a function template specialization from a function
|
|
// template. Check whether there is already a function template
|
|
// specialization for this particular set of template arguments.
|
|
ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
|
|
|
|
void *InsertPos = nullptr;
|
|
FunctionDecl *SpecFunc
|
|
= FunctionTemplate->findSpecialization(Innermost, InsertPos);
|
|
|
|
// If we already have a function template specialization, return it.
|
|
if (SpecFunc)
|
|
return SpecFunc;
|
|
}
|
|
|
|
bool isFriend;
|
|
if (FunctionTemplate)
|
|
isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
|
|
else
|
|
isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
|
|
|
|
bool MergeWithParentScope = (TemplateParams != nullptr) ||
|
|
!(isa<Decl>(Owner) &&
|
|
cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
|
|
LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
|
|
|
|
// Instantiate enclosing template arguments for friends.
|
|
SmallVector<TemplateParameterList *, 4> TempParamLists;
|
|
unsigned NumTempParamLists = 0;
|
|
if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
|
|
TempParamLists.resize(NumTempParamLists);
|
|
for (unsigned I = 0; I != NumTempParamLists; ++I) {
|
|
TemplateParameterList *TempParams = D->getTemplateParameterList(I);
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
TempParamLists[I] = InstParams;
|
|
}
|
|
}
|
|
|
|
ExplicitSpecifier InstantiatedExplicitSpecifier =
|
|
instantiateExplicitSpecifier(SemaRef, TemplateArgs,
|
|
ExplicitSpecifier::getFromDecl(D), D);
|
|
if (InstantiatedExplicitSpecifier.isInvalid())
|
|
return nullptr;
|
|
|
|
SmallVector<ParmVarDecl *, 4> Params;
|
|
TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
|
|
if (!TInfo)
|
|
return nullptr;
|
|
QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
|
|
|
|
if (TemplateParams && TemplateParams->size()) {
|
|
auto *LastParam =
|
|
dyn_cast<TemplateTypeParmDecl>(TemplateParams->asArray().back());
|
|
if (LastParam && LastParam->isImplicit() &&
|
|
LastParam->hasTypeConstraint()) {
|
|
// In abbreviated templates, the type-constraints of invented template
|
|
// type parameters are instantiated with the function type, invalidating
|
|
// the TemplateParameterList which relied on the template type parameter
|
|
// not having a type constraint. Recreate the TemplateParameterList with
|
|
// the updated parameter list.
|
|
TemplateParams = TemplateParameterList::Create(
|
|
SemaRef.Context, TemplateParams->getTemplateLoc(),
|
|
TemplateParams->getLAngleLoc(), TemplateParams->asArray(),
|
|
TemplateParams->getRAngleLoc(), TemplateParams->getRequiresClause());
|
|
}
|
|
}
|
|
|
|
NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
|
|
if (QualifierLoc) {
|
|
QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
|
|
TemplateArgs);
|
|
if (!QualifierLoc)
|
|
return nullptr;
|
|
}
|
|
|
|
// FIXME: Concepts: Do not substitute into constraint expressions
|
|
Expr *TrailingRequiresClause = D->getTrailingRequiresClause();
|
|
if (TrailingRequiresClause) {
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
|
|
Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext,
|
|
D->getMethodQualifiers(), ThisContext);
|
|
ExprResult SubstRC = SemaRef.SubstExpr(TrailingRequiresClause,
|
|
TemplateArgs);
|
|
if (SubstRC.isInvalid())
|
|
return nullptr;
|
|
TrailingRequiresClause = SubstRC.get();
|
|
if (!SemaRef.CheckConstraintExpression(TrailingRequiresClause))
|
|
return nullptr;
|
|
}
|
|
|
|
DeclContext *DC = Owner;
|
|
if (isFriend) {
|
|
if (QualifierLoc) {
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
DC = SemaRef.computeDeclContext(SS);
|
|
|
|
if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
|
|
return nullptr;
|
|
} else {
|
|
DC = SemaRef.FindInstantiatedContext(D->getLocation(),
|
|
D->getDeclContext(),
|
|
TemplateArgs);
|
|
}
|
|
if (!DC) return nullptr;
|
|
}
|
|
|
|
DeclarationNameInfo NameInfo
|
|
= SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
|
|
|
|
if (FunctionRewriteKind != RewriteKind::None)
|
|
adjustForRewrite(FunctionRewriteKind, D, T, TInfo, NameInfo);
|
|
|
|
// Build the instantiated method declaration.
|
|
CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
|
CXXMethodDecl *Method = nullptr;
|
|
|
|
SourceLocation StartLoc = D->getInnerLocStart();
|
|
if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
Method = CXXConstructorDecl::Create(
|
|
SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
|
|
InstantiatedExplicitSpecifier, Constructor->isInlineSpecified(), false,
|
|
Constructor->getConstexprKind(), InheritedConstructor(),
|
|
TrailingRequiresClause);
|
|
Method->setRangeEnd(Constructor->getEndLoc());
|
|
} else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
|
|
Method = CXXDestructorDecl::Create(
|
|
SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
|
|
Destructor->isInlineSpecified(), false, Destructor->getConstexprKind(),
|
|
TrailingRequiresClause);
|
|
Method->setRangeEnd(Destructor->getEndLoc());
|
|
} else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
|
|
Method = CXXConversionDecl::Create(
|
|
SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
|
|
Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier,
|
|
Conversion->getConstexprKind(), Conversion->getEndLoc(),
|
|
TrailingRequiresClause);
|
|
} else {
|
|
StorageClass SC = D->isStatic() ? SC_Static : SC_None;
|
|
Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo,
|
|
T, TInfo, SC, D->isInlineSpecified(),
|
|
D->getConstexprKind(), D->getEndLoc(),
|
|
TrailingRequiresClause);
|
|
}
|
|
|
|
if (D->isInlined())
|
|
Method->setImplicitlyInline();
|
|
|
|
if (QualifierLoc)
|
|
Method->setQualifierInfo(QualifierLoc);
|
|
|
|
if (TemplateParams) {
|
|
// Our resulting instantiation is actually a function template, since we
|
|
// are substituting only the outer template parameters. For example, given
|
|
//
|
|
// template<typename T>
|
|
// struct X {
|
|
// template<typename U> void f(T, U);
|
|
// };
|
|
//
|
|
// X<int> x;
|
|
//
|
|
// We are instantiating the member template "f" within X<int>, which means
|
|
// substituting int for T, but leaving "f" as a member function template.
|
|
// Build the function template itself.
|
|
FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
|
|
Method->getLocation(),
|
|
Method->getDeclName(),
|
|
TemplateParams, Method);
|
|
if (isFriend) {
|
|
FunctionTemplate->setLexicalDeclContext(Owner);
|
|
FunctionTemplate->setObjectOfFriendDecl();
|
|
} else if (D->isOutOfLine())
|
|
FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
Method->setDescribedFunctionTemplate(FunctionTemplate);
|
|
} else if (FunctionTemplate) {
|
|
// Record this function template specialization.
|
|
ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
|
|
Method->setFunctionTemplateSpecialization(FunctionTemplate,
|
|
TemplateArgumentList::CreateCopy(SemaRef.Context,
|
|
Innermost),
|
|
/*InsertPos=*/nullptr);
|
|
} else if (!isFriend) {
|
|
// Record that this is an instantiation of a member function.
|
|
Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
|
|
}
|
|
|
|
// If we are instantiating a member function defined
|
|
// out-of-line, the instantiation will have the same lexical
|
|
// context (which will be a namespace scope) as the template.
|
|
if (isFriend) {
|
|
if (NumTempParamLists)
|
|
Method->setTemplateParameterListsInfo(
|
|
SemaRef.Context,
|
|
llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists));
|
|
|
|
Method->setLexicalDeclContext(Owner);
|
|
Method->setObjectOfFriendDecl();
|
|
} else if (D->isOutOfLine())
|
|
Method->setLexicalDeclContext(D->getLexicalDeclContext());
|
|
|
|
// Attach the parameters
|
|
for (unsigned P = 0; P < Params.size(); ++P)
|
|
Params[P]->setOwningFunction(Method);
|
|
Method->setParams(Params);
|
|
|
|
if (InitMethodInstantiation(Method, D))
|
|
Method->setInvalidDecl();
|
|
|
|
LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
|
|
Sema::ForExternalRedeclaration);
|
|
|
|
bool IsExplicitSpecialization = false;
|
|
|
|
// If the name of this function was written as a template-id, instantiate
|
|
// the explicit template arguments.
|
|
if (DependentFunctionTemplateSpecializationInfo *Info
|
|
= D->getDependentSpecializationInfo()) {
|
|
assert(isFriend && "non-friend has dependent specialization info?");
|
|
|
|
// Instantiate the explicit template arguments.
|
|
TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
|
|
Info->getRAngleLoc());
|
|
if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
|
|
ExplicitArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Map the candidate templates to their instantiations.
|
|
for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
|
|
Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
|
|
Info->getTemplate(I),
|
|
TemplateArgs);
|
|
if (!Temp) return nullptr;
|
|
|
|
Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
|
|
}
|
|
|
|
if (SemaRef.CheckFunctionTemplateSpecialization(Method,
|
|
&ExplicitArgs,
|
|
Previous))
|
|
Method->setInvalidDecl();
|
|
|
|
IsExplicitSpecialization = true;
|
|
} else if (const ASTTemplateArgumentListInfo *Info =
|
|
ClassScopeSpecializationArgs.getValueOr(
|
|
D->getTemplateSpecializationArgsAsWritten())) {
|
|
SemaRef.LookupQualifiedName(Previous, DC);
|
|
|
|
TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
|
|
Info->getRAngleLoc());
|
|
if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
|
|
ExplicitArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
if (SemaRef.CheckFunctionTemplateSpecialization(Method,
|
|
&ExplicitArgs,
|
|
Previous))
|
|
Method->setInvalidDecl();
|
|
|
|
IsExplicitSpecialization = true;
|
|
} else if (ClassScopeSpecializationArgs) {
|
|
// Class-scope explicit specialization written without explicit template
|
|
// arguments.
|
|
SemaRef.LookupQualifiedName(Previous, DC);
|
|
if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous))
|
|
Method->setInvalidDecl();
|
|
|
|
IsExplicitSpecialization = true;
|
|
} else if (!FunctionTemplate || TemplateParams || isFriend) {
|
|
SemaRef.LookupQualifiedName(Previous, Record);
|
|
|
|
// In C++, the previous declaration we find might be a tag type
|
|
// (class or enum). In this case, the new declaration will hide the
|
|
// tag type. Note that this does does not apply if we're declaring a
|
|
// typedef (C++ [dcl.typedef]p4).
|
|
if (Previous.isSingleTagDecl())
|
|
Previous.clear();
|
|
}
|
|
|
|
SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
|
|
IsExplicitSpecialization);
|
|
|
|
if (D->isPure())
|
|
SemaRef.CheckPureMethod(Method, SourceRange());
|
|
|
|
// Propagate access. For a non-friend declaration, the access is
|
|
// whatever we're propagating from. For a friend, it should be the
|
|
// previous declaration we just found.
|
|
if (isFriend && Method->getPreviousDecl())
|
|
Method->setAccess(Method->getPreviousDecl()->getAccess());
|
|
else
|
|
Method->setAccess(D->getAccess());
|
|
if (FunctionTemplate)
|
|
FunctionTemplate->setAccess(Method->getAccess());
|
|
|
|
SemaRef.CheckOverrideControl(Method);
|
|
|
|
// If a function is defined as defaulted or deleted, mark it as such now.
|
|
if (D->isExplicitlyDefaulted()) {
|
|
if (SubstDefaultedFunction(Method, D))
|
|
return nullptr;
|
|
}
|
|
if (D->isDeletedAsWritten())
|
|
SemaRef.SetDeclDeleted(Method, Method->getLocation());
|
|
|
|
// If this is an explicit specialization, mark the implicitly-instantiated
|
|
// template specialization as being an explicit specialization too.
|
|
// FIXME: Is this necessary?
|
|
if (IsExplicitSpecialization && !isFriend)
|
|
SemaRef.CompleteMemberSpecialization(Method, Previous);
|
|
|
|
// If there's a function template, let our caller handle it.
|
|
if (FunctionTemplate) {
|
|
// do nothing
|
|
|
|
// Don't hide a (potentially) valid declaration with an invalid one.
|
|
} else if (Method->isInvalidDecl() && !Previous.empty()) {
|
|
// do nothing
|
|
|
|
// Otherwise, check access to friends and make them visible.
|
|
} else if (isFriend) {
|
|
// We only need to re-check access for methods which we didn't
|
|
// manage to match during parsing.
|
|
if (!D->getPreviousDecl())
|
|
SemaRef.CheckFriendAccess(Method);
|
|
|
|
Record->makeDeclVisibleInContext(Method);
|
|
|
|
// Otherwise, add the declaration. We don't need to do this for
|
|
// class-scope specializations because we'll have matched them with
|
|
// the appropriate template.
|
|
} else {
|
|
Owner->addDecl(Method);
|
|
}
|
|
|
|
// PR17480: Honor the used attribute to instantiate member function
|
|
// definitions
|
|
if (Method->hasAttr<UsedAttr>()) {
|
|
if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
|
|
SourceLocation Loc;
|
|
if (const MemberSpecializationInfo *MSInfo =
|
|
A->getMemberSpecializationInfo())
|
|
Loc = MSInfo->getPointOfInstantiation();
|
|
else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
|
|
Loc = Spec->getPointOfInstantiation();
|
|
SemaRef.MarkFunctionReferenced(Loc, Method);
|
|
}
|
|
}
|
|
|
|
return Method;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
|
|
return VisitCXXMethodDecl(D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
|
|
return VisitCXXMethodDecl(D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
|
|
return VisitCXXMethodDecl(D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
|
|
return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None,
|
|
/*ExpectParameterPack=*/ false);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
|
|
TemplateTypeParmDecl *D) {
|
|
// TODO: don't always clone when decls are refcounted.
|
|
assert(D->getTypeForDecl()->isTemplateTypeParmType());
|
|
|
|
Optional<unsigned> NumExpanded;
|
|
|
|
if (const TypeConstraint *TC = D->getTypeConstraint()) {
|
|
if (D->isPackExpansion() && !D->isExpandedParameterPack()) {
|
|
assert(TC->getTemplateArgsAsWritten() &&
|
|
"type parameter can only be an expansion when explicit arguments "
|
|
"are specified");
|
|
// The template type parameter pack's type is a pack expansion of types.
|
|
// Determine whether we need to expand this parameter pack into separate
|
|
// types.
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
for (auto &ArgLoc : TC->getTemplateArgsAsWritten()->arguments())
|
|
SemaRef.collectUnexpandedParameterPacks(ArgLoc, Unexpanded);
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
if (SemaRef.CheckParameterPacksForExpansion(
|
|
cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
|
|
->getEllipsisLoc(),
|
|
SourceRange(TC->getConceptNameLoc(),
|
|
TC->hasExplicitTemplateArgs() ?
|
|
TC->getTemplateArgsAsWritten()->getRAngleLoc() :
|
|
TC->getConceptNameInfo().getEndLoc()),
|
|
Unexpanded, TemplateArgs, Expand, RetainExpansion, NumExpanded))
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
|
|
SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
|
|
D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
|
|
D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack(),
|
|
D->hasTypeConstraint(), NumExpanded);
|
|
|
|
Inst->setAccess(AS_public);
|
|
Inst->setImplicit(D->isImplicit());
|
|
if (auto *TC = D->getTypeConstraint()) {
|
|
if (!D->isImplicit()) {
|
|
// Invented template parameter type constraints will be instantiated with
|
|
// the corresponding auto-typed parameter as it might reference other
|
|
// parameters.
|
|
|
|
// TODO: Concepts: do not instantiate the constraint (delayed constraint
|
|
// substitution)
|
|
const ASTTemplateArgumentListInfo *TemplArgInfo
|
|
= TC->getTemplateArgsAsWritten();
|
|
TemplateArgumentListInfo InstArgs;
|
|
|
|
if (TemplArgInfo) {
|
|
InstArgs.setLAngleLoc(TemplArgInfo->LAngleLoc);
|
|
InstArgs.setRAngleLoc(TemplArgInfo->RAngleLoc);
|
|
if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
|
|
TemplArgInfo->NumTemplateArgs,
|
|
InstArgs, TemplateArgs))
|
|
return nullptr;
|
|
}
|
|
if (SemaRef.AttachTypeConstraint(
|
|
TC->getNestedNameSpecifierLoc(), TC->getConceptNameInfo(),
|
|
TC->getNamedConcept(), &InstArgs, Inst,
|
|
D->isParameterPack()
|
|
? cast<CXXFoldExpr>(TC->getImmediatelyDeclaredConstraint())
|
|
->getEllipsisLoc()
|
|
: SourceLocation()))
|
|
return nullptr;
|
|
}
|
|
}
|
|
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
|
|
TypeSourceInfo *InstantiatedDefaultArg =
|
|
SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
|
|
D->getDefaultArgumentLoc(), D->getDeclName());
|
|
if (InstantiatedDefaultArg)
|
|
Inst->setDefaultArgument(InstantiatedDefaultArg);
|
|
}
|
|
|
|
// Introduce this template parameter's instantiation into the instantiation
|
|
// scope.
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
|
|
NonTypeTemplateParmDecl *D) {
|
|
// Substitute into the type of the non-type template parameter.
|
|
TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
|
|
SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
|
|
SmallVector<QualType, 4> ExpandedParameterPackTypes;
|
|
bool IsExpandedParameterPack = false;
|
|
TypeSourceInfo *DI;
|
|
QualType T;
|
|
bool Invalid = false;
|
|
|
|
if (D->isExpandedParameterPack()) {
|
|
// The non-type template parameter pack is an already-expanded pack
|
|
// expansion of types. Substitute into each of the expanded types.
|
|
ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
|
|
ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
|
|
for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
|
|
TypeSourceInfo *NewDI =
|
|
SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
|
|
D->getLocation(), D->getDeclName());
|
|
if (!NewDI)
|
|
return nullptr;
|
|
|
|
QualType NewT =
|
|
SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
|
|
if (NewT.isNull())
|
|
return nullptr;
|
|
|
|
ExpandedParameterPackTypesAsWritten.push_back(NewDI);
|
|
ExpandedParameterPackTypes.push_back(NewT);
|
|
}
|
|
|
|
IsExpandedParameterPack = true;
|
|
DI = D->getTypeSourceInfo();
|
|
T = DI->getType();
|
|
} else if (D->isPackExpansion()) {
|
|
// The non-type template parameter pack's type is a pack expansion of types.
|
|
// Determine whether we need to expand this parameter pack into separate
|
|
// types.
|
|
PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
|
|
TypeLoc Pattern = Expansion.getPatternLoc();
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> OrigNumExpansions
|
|
= Expansion.getTypePtr()->getNumExpansions();
|
|
Optional<unsigned> NumExpansions = OrigNumExpansions;
|
|
if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
|
|
Pattern.getSourceRange(),
|
|
Unexpanded,
|
|
TemplateArgs,
|
|
Expand, RetainExpansion,
|
|
NumExpansions))
|
|
return nullptr;
|
|
|
|
if (Expand) {
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
|
|
TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
|
|
D->getLocation(),
|
|
D->getDeclName());
|
|
if (!NewDI)
|
|
return nullptr;
|
|
|
|
QualType NewT =
|
|
SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
|
|
if (NewT.isNull())
|
|
return nullptr;
|
|
|
|
ExpandedParameterPackTypesAsWritten.push_back(NewDI);
|
|
ExpandedParameterPackTypes.push_back(NewT);
|
|
}
|
|
|
|
// Note that we have an expanded parameter pack. The "type" of this
|
|
// expanded parameter pack is the original expansion type, but callers
|
|
// will end up using the expanded parameter pack types for type-checking.
|
|
IsExpandedParameterPack = true;
|
|
DI = D->getTypeSourceInfo();
|
|
T = DI->getType();
|
|
} else {
|
|
// We cannot fully expand the pack expansion now, so substitute into the
|
|
// pattern and create a new pack expansion type.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
|
|
TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
|
|
D->getLocation(),
|
|
D->getDeclName());
|
|
if (!NewPattern)
|
|
return nullptr;
|
|
|
|
SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
|
|
DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
|
|
NumExpansions);
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
T = DI->getType();
|
|
}
|
|
} else {
|
|
// Simple case: substitution into a parameter that is not a parameter pack.
|
|
DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
|
|
D->getLocation(), D->getDeclName());
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
// Check that this type is acceptable for a non-type template parameter.
|
|
T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
|
|
if (T.isNull()) {
|
|
T = SemaRef.Context.IntTy;
|
|
Invalid = true;
|
|
}
|
|
}
|
|
|
|
NonTypeTemplateParmDecl *Param;
|
|
if (IsExpandedParameterPack)
|
|
Param = NonTypeTemplateParmDecl::Create(
|
|
SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
|
|
D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
|
|
D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
|
|
ExpandedParameterPackTypesAsWritten);
|
|
else
|
|
Param = NonTypeTemplateParmDecl::Create(
|
|
SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
|
|
D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
|
|
D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
|
|
|
|
if (AutoTypeLoc AutoLoc = DI->getTypeLoc().getContainedAutoTypeLoc())
|
|
if (AutoLoc.isConstrained())
|
|
if (SemaRef.AttachTypeConstraint(
|
|
AutoLoc, Param,
|
|
IsExpandedParameterPack
|
|
? DI->getTypeLoc().getAs<PackExpansionTypeLoc>()
|
|
.getEllipsisLoc()
|
|
: SourceLocation()))
|
|
Invalid = true;
|
|
|
|
Param->setAccess(AS_public);
|
|
Param->setImplicit(D->isImplicit());
|
|
if (Invalid)
|
|
Param->setInvalidDecl();
|
|
|
|
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
|
|
ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
|
|
if (!Value.isInvalid())
|
|
Param->setDefaultArgument(Value.get());
|
|
}
|
|
|
|
// Introduce this template parameter's instantiation into the instantiation
|
|
// scope.
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
|
|
return Param;
|
|
}
|
|
|
|
static void collectUnexpandedParameterPacks(
|
|
Sema &S,
|
|
TemplateParameterList *Params,
|
|
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
|
|
for (const auto &P : *Params) {
|
|
if (P->isTemplateParameterPack())
|
|
continue;
|
|
if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
|
|
S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
|
|
Unexpanded);
|
|
if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
|
|
collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
|
|
Unexpanded);
|
|
}
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
|
|
TemplateTemplateParmDecl *D) {
|
|
// Instantiate the template parameter list of the template template parameter.
|
|
TemplateParameterList *TempParams = D->getTemplateParameters();
|
|
TemplateParameterList *InstParams;
|
|
SmallVector<TemplateParameterList*, 8> ExpandedParams;
|
|
|
|
bool IsExpandedParameterPack = false;
|
|
|
|
if (D->isExpandedParameterPack()) {
|
|
// The template template parameter pack is an already-expanded pack
|
|
// expansion of template parameters. Substitute into each of the expanded
|
|
// parameters.
|
|
ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
|
|
for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
|
|
I != N; ++I) {
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
TemplateParameterList *Expansion =
|
|
SubstTemplateParams(D->getExpansionTemplateParameters(I));
|
|
if (!Expansion)
|
|
return nullptr;
|
|
ExpandedParams.push_back(Expansion);
|
|
}
|
|
|
|
IsExpandedParameterPack = true;
|
|
InstParams = TempParams;
|
|
} else if (D->isPackExpansion()) {
|
|
// The template template parameter pack expands to a pack of template
|
|
// template parameters. Determine whether we need to expand this parameter
|
|
// pack into separate parameters.
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
|
|
Unexpanded);
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
|
|
TempParams->getSourceRange(),
|
|
Unexpanded,
|
|
TemplateArgs,
|
|
Expand, RetainExpansion,
|
|
NumExpansions))
|
|
return nullptr;
|
|
|
|
if (Expand) {
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
|
|
if (!Expansion)
|
|
return nullptr;
|
|
ExpandedParams.push_back(Expansion);
|
|
}
|
|
|
|
// Note that we have an expanded parameter pack. The "type" of this
|
|
// expanded parameter pack is the original expansion type, but callers
|
|
// will end up using the expanded parameter pack types for type-checking.
|
|
IsExpandedParameterPack = true;
|
|
InstParams = TempParams;
|
|
} else {
|
|
// We cannot fully expand the pack expansion now, so just substitute
|
|
// into the pattern.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
|
|
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
}
|
|
} else {
|
|
// Perform the actual substitution of template parameters within a new,
|
|
// local instantiation scope.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
}
|
|
|
|
// Build the template template parameter.
|
|
TemplateTemplateParmDecl *Param;
|
|
if (IsExpandedParameterPack)
|
|
Param = TemplateTemplateParmDecl::Create(
|
|
SemaRef.Context, Owner, D->getLocation(),
|
|
D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
|
|
D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
|
|
else
|
|
Param = TemplateTemplateParmDecl::Create(
|
|
SemaRef.Context, Owner, D->getLocation(),
|
|
D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
|
|
D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
|
|
if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
|
|
NestedNameSpecifierLoc QualifierLoc =
|
|
D->getDefaultArgument().getTemplateQualifierLoc();
|
|
QualifierLoc =
|
|
SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
|
|
TemplateName TName = SemaRef.SubstTemplateName(
|
|
QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
|
|
D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
|
|
if (!TName.isNull())
|
|
Param->setDefaultArgument(
|
|
SemaRef.Context,
|
|
TemplateArgumentLoc(SemaRef.Context, TemplateArgument(TName),
|
|
D->getDefaultArgument().getTemplateQualifierLoc(),
|
|
D->getDefaultArgument().getTemplateNameLoc()));
|
|
}
|
|
Param->setAccess(AS_public);
|
|
Param->setImplicit(D->isImplicit());
|
|
|
|
// Introduce this template parameter's instantiation into the instantiation
|
|
// scope.
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
|
|
|
|
return Param;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
|
|
// Using directives are never dependent (and never contain any types or
|
|
// expressions), so they require no explicit instantiation work.
|
|
|
|
UsingDirectiveDecl *Inst
|
|
= UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
|
|
D->getNamespaceKeyLocation(),
|
|
D->getQualifierLoc(),
|
|
D->getIdentLocation(),
|
|
D->getNominatedNamespace(),
|
|
D->getCommonAncestor());
|
|
|
|
// Add the using directive to its declaration context
|
|
// only if this is not a function or method.
|
|
if (!Owner->isFunctionOrMethod())
|
|
Owner->addDecl(Inst);
|
|
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
|
|
|
|
// The nested name specifier may be dependent, for example
|
|
// template <typename T> struct t {
|
|
// struct s1 { T f1(); };
|
|
// struct s2 : s1 { using s1::f1; };
|
|
// };
|
|
// template struct t<int>;
|
|
// Here, in using s1::f1, s1 refers to t<T>::s1;
|
|
// we need to substitute for t<int>::s1.
|
|
NestedNameSpecifierLoc QualifierLoc
|
|
= SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
|
|
TemplateArgs);
|
|
if (!QualifierLoc)
|
|
return nullptr;
|
|
|
|
// For an inheriting constructor declaration, the name of the using
|
|
// declaration is the name of a constructor in this class, not in the
|
|
// base class.
|
|
DeclarationNameInfo NameInfo = D->getNameInfo();
|
|
if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
|
|
NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
|
|
SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
|
|
|
|
// We only need to do redeclaration lookups if we're in a class
|
|
// scope (in fact, it's not really even possible in non-class
|
|
// scopes).
|
|
bool CheckRedeclaration = Owner->isRecord();
|
|
|
|
LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
|
|
Sema::ForVisibleRedeclaration);
|
|
|
|
UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
|
|
D->getUsingLoc(),
|
|
QualifierLoc,
|
|
NameInfo,
|
|
D->hasTypename());
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
if (CheckRedeclaration) {
|
|
Prev.setHideTags(false);
|
|
SemaRef.LookupQualifiedName(Prev, Owner);
|
|
|
|
// Check for invalid redeclarations.
|
|
if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
|
|
D->hasTypename(), SS,
|
|
D->getLocation(), Prev))
|
|
NewUD->setInvalidDecl();
|
|
|
|
}
|
|
|
|
if (!NewUD->isInvalidDecl() &&
|
|
SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(),
|
|
SS, NameInfo, D->getLocation()))
|
|
NewUD->setInvalidDecl();
|
|
|
|
SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
|
|
NewUD->setAccess(D->getAccess());
|
|
Owner->addDecl(NewUD);
|
|
|
|
// Don't process the shadow decls for an invalid decl.
|
|
if (NewUD->isInvalidDecl())
|
|
return NewUD;
|
|
|
|
if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
|
|
SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
|
|
|
|
bool isFunctionScope = Owner->isFunctionOrMethod();
|
|
|
|
// Process the shadow decls.
|
|
for (auto *Shadow : D->shadows()) {
|
|
// FIXME: UsingShadowDecl doesn't preserve its immediate target, so
|
|
// reconstruct it in the case where it matters.
|
|
NamedDecl *OldTarget = Shadow->getTargetDecl();
|
|
if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
|
|
if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
|
|
OldTarget = BaseShadow;
|
|
|
|
NamedDecl *InstTarget =
|
|
cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
|
|
Shadow->getLocation(), OldTarget, TemplateArgs));
|
|
if (!InstTarget)
|
|
return nullptr;
|
|
|
|
UsingShadowDecl *PrevDecl = nullptr;
|
|
if (CheckRedeclaration) {
|
|
if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl))
|
|
continue;
|
|
} else if (UsingShadowDecl *OldPrev =
|
|
getPreviousDeclForInstantiation(Shadow)) {
|
|
PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
|
|
Shadow->getLocation(), OldPrev, TemplateArgs));
|
|
}
|
|
|
|
UsingShadowDecl *InstShadow =
|
|
SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget,
|
|
PrevDecl);
|
|
SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
|
|
|
|
if (isFunctionScope)
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
|
|
}
|
|
|
|
return NewUD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
|
|
// Ignore these; we handle them in bulk when processing the UsingDecl.
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
|
|
ConstructorUsingShadowDecl *D) {
|
|
// Ignore these; we handle them in bulk when processing the UsingDecl.
|
|
return nullptr;
|
|
}
|
|
|
|
template <typename T>
|
|
Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
|
|
T *D, bool InstantiatingPackElement) {
|
|
// If this is a pack expansion, expand it now.
|
|
if (D->isPackExpansion() && !InstantiatingPackElement) {
|
|
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
|
|
SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
|
|
SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
|
|
|
|
// Determine whether the set of unexpanded parameter packs can and should
|
|
// be expanded.
|
|
bool Expand = true;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
if (SemaRef.CheckParameterPacksForExpansion(
|
|
D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
|
|
Expand, RetainExpansion, NumExpansions))
|
|
return nullptr;
|
|
|
|
// This declaration cannot appear within a function template signature,
|
|
// so we can't have a partial argument list for a parameter pack.
|
|
assert(!RetainExpansion &&
|
|
"should never need to retain an expansion for UsingPackDecl");
|
|
|
|
if (!Expand) {
|
|
// We cannot fully expand the pack expansion now, so substitute into the
|
|
// pattern and create a new pack expansion.
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
|
|
return instantiateUnresolvedUsingDecl(D, true);
|
|
}
|
|
|
|
// Within a function, we don't have any normal way to check for conflicts
|
|
// between shadow declarations from different using declarations in the
|
|
// same pack expansion, but this is always ill-formed because all expansions
|
|
// must produce (conflicting) enumerators.
|
|
//
|
|
// Sadly we can't just reject this in the template definition because it
|
|
// could be valid if the pack is empty or has exactly one expansion.
|
|
if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
|
|
SemaRef.Diag(D->getEllipsisLoc(),
|
|
diag::err_using_decl_redeclaration_expansion);
|
|
return nullptr;
|
|
}
|
|
|
|
// Instantiate the slices of this pack and build a UsingPackDecl.
|
|
SmallVector<NamedDecl*, 8> Expansions;
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
|
|
Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
|
|
if (!Slice)
|
|
return nullptr;
|
|
// Note that we can still get unresolved using declarations here, if we
|
|
// had arguments for all packs but the pattern also contained other
|
|
// template arguments (this only happens during partial substitution, eg
|
|
// into the body of a generic lambda in a function template).
|
|
Expansions.push_back(cast<NamedDecl>(Slice));
|
|
}
|
|
|
|
auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
|
|
if (isDeclWithinFunction(D))
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
|
|
return NewD;
|
|
}
|
|
|
|
UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
|
|
SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
|
|
|
|
NestedNameSpecifierLoc QualifierLoc
|
|
= SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
|
|
TemplateArgs);
|
|
if (!QualifierLoc)
|
|
return nullptr;
|
|
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(QualifierLoc);
|
|
|
|
DeclarationNameInfo NameInfo
|
|
= SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
|
|
|
|
// Produce a pack expansion only if we're not instantiating a particular
|
|
// slice of a pack expansion.
|
|
bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
|
|
SemaRef.ArgumentPackSubstitutionIndex != -1;
|
|
SourceLocation EllipsisLoc =
|
|
InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
|
|
|
|
NamedDecl *UD = SemaRef.BuildUsingDeclaration(
|
|
/*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
|
|
/*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
|
|
ParsedAttributesView(),
|
|
/*IsInstantiation*/ true);
|
|
if (UD)
|
|
SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
|
|
|
|
return UD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
|
|
UnresolvedUsingTypenameDecl *D) {
|
|
return instantiateUnresolvedUsingDecl(D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
|
|
UnresolvedUsingValueDecl *D) {
|
|
return instantiateUnresolvedUsingDecl(D);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
|
|
SmallVector<NamedDecl*, 8> Expansions;
|
|
for (auto *UD : D->expansions()) {
|
|
if (NamedDecl *NewUD =
|
|
SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
|
|
Expansions.push_back(NewUD);
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
|
|
if (isDeclWithinFunction(D))
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
|
|
return NewD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
|
|
ClassScopeFunctionSpecializationDecl *Decl) {
|
|
CXXMethodDecl *OldFD = Decl->getSpecialization();
|
|
return cast_or_null<CXXMethodDecl>(
|
|
VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten()));
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
|
|
OMPThreadPrivateDecl *D) {
|
|
SmallVector<Expr *, 5> Vars;
|
|
for (auto *I : D->varlists()) {
|
|
Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
|
|
assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
|
|
Vars.push_back(Var);
|
|
}
|
|
|
|
OMPThreadPrivateDecl *TD =
|
|
SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
|
|
|
|
TD->setAccess(AS_public);
|
|
Owner->addDecl(TD);
|
|
|
|
return TD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
|
|
SmallVector<Expr *, 5> Vars;
|
|
for (auto *I : D->varlists()) {
|
|
Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
|
|
assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
|
|
Vars.push_back(Var);
|
|
}
|
|
SmallVector<OMPClause *, 4> Clauses;
|
|
// Copy map clauses from the original mapper.
|
|
for (OMPClause *C : D->clauselists()) {
|
|
auto *AC = cast<OMPAllocatorClause>(C);
|
|
ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
|
|
if (!NewE.isUsable())
|
|
continue;
|
|
OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause(
|
|
NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
|
|
Clauses.push_back(IC);
|
|
}
|
|
|
|
Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
|
|
D->getLocation(), Vars, Clauses, Owner);
|
|
if (Res.get().isNull())
|
|
return nullptr;
|
|
return Res.get().getSingleDecl();
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
|
|
llvm_unreachable(
|
|
"Requires directive cannot be instantiated within a dependent context");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
|
|
OMPDeclareReductionDecl *D) {
|
|
// Instantiate type and check if it is allowed.
|
|
const bool RequiresInstantiation =
|
|
D->getType()->isDependentType() ||
|
|
D->getType()->isInstantiationDependentType() ||
|
|
D->getType()->containsUnexpandedParameterPack();
|
|
QualType SubstReductionType;
|
|
if (RequiresInstantiation) {
|
|
SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
|
|
D->getLocation(),
|
|
ParsedType::make(SemaRef.SubstType(
|
|
D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
|
|
} else {
|
|
SubstReductionType = D->getType();
|
|
}
|
|
if (SubstReductionType.isNull())
|
|
return nullptr;
|
|
Expr *Combiner = D->getCombiner();
|
|
Expr *Init = D->getInitializer();
|
|
bool IsCorrect = true;
|
|
// Create instantiated copy.
|
|
std::pair<QualType, SourceLocation> ReductionTypes[] = {
|
|
std::make_pair(SubstReductionType, D->getLocation())};
|
|
auto *PrevDeclInScope = D->getPrevDeclInScope();
|
|
if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
|
|
PrevDeclInScope = cast<OMPDeclareReductionDecl>(
|
|
SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
|
|
->get<Decl *>());
|
|
}
|
|
auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
|
|
/*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
|
|
PrevDeclInScope);
|
|
auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
|
|
Expr *SubstCombiner = nullptr;
|
|
Expr *SubstInitializer = nullptr;
|
|
// Combiners instantiation sequence.
|
|
if (Combiner) {
|
|
SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
|
|
/*S=*/nullptr, NewDRD);
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(
|
|
cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
|
|
cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(
|
|
cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
|
|
cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
|
|
Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
|
|
ThisContext);
|
|
SubstCombiner = SemaRef.SubstExpr(Combiner, TemplateArgs).get();
|
|
SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
|
|
}
|
|
// Initializers instantiation sequence.
|
|
if (Init) {
|
|
VarDecl *OmpPrivParm = SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
|
|
/*S=*/nullptr, NewDRD);
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(
|
|
cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
|
|
cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(
|
|
cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
|
|
cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
|
|
if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) {
|
|
SubstInitializer = SemaRef.SubstExpr(Init, TemplateArgs).get();
|
|
} else {
|
|
auto *OldPrivParm =
|
|
cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl());
|
|
IsCorrect = IsCorrect && OldPrivParm->hasInit();
|
|
if (IsCorrect)
|
|
SemaRef.InstantiateVariableInitializer(OmpPrivParm, OldPrivParm,
|
|
TemplateArgs);
|
|
}
|
|
SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(NewDRD, SubstInitializer,
|
|
OmpPrivParm);
|
|
}
|
|
IsCorrect = IsCorrect && SubstCombiner &&
|
|
(!Init ||
|
|
(D->getInitializerKind() == OMPDeclareReductionDecl::CallInit &&
|
|
SubstInitializer) ||
|
|
(D->getInitializerKind() != OMPDeclareReductionDecl::CallInit &&
|
|
!SubstInitializer));
|
|
|
|
(void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
|
|
/*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
|
|
|
|
return NewDRD;
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
|
|
// Instantiate type and check if it is allowed.
|
|
const bool RequiresInstantiation =
|
|
D->getType()->isDependentType() ||
|
|
D->getType()->isInstantiationDependentType() ||
|
|
D->getType()->containsUnexpandedParameterPack();
|
|
QualType SubstMapperTy;
|
|
DeclarationName VN = D->getVarName();
|
|
if (RequiresInstantiation) {
|
|
SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
|
|
D->getLocation(),
|
|
ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
|
|
D->getLocation(), VN)));
|
|
} else {
|
|
SubstMapperTy = D->getType();
|
|
}
|
|
if (SubstMapperTy.isNull())
|
|
return nullptr;
|
|
// Create an instantiated copy of mapper.
|
|
auto *PrevDeclInScope = D->getPrevDeclInScope();
|
|
if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
|
|
PrevDeclInScope = cast<OMPDeclareMapperDecl>(
|
|
SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
|
|
->get<Decl *>());
|
|
}
|
|
bool IsCorrect = true;
|
|
SmallVector<OMPClause *, 6> Clauses;
|
|
// Instantiate the mapper variable.
|
|
DeclarationNameInfo DirName;
|
|
SemaRef.StartOpenMPDSABlock(llvm::omp::OMPD_declare_mapper, DirName,
|
|
/*S=*/nullptr,
|
|
(*D->clauselist_begin())->getBeginLoc());
|
|
ExprResult MapperVarRef = SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
|
|
/*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(
|
|
cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
|
|
cast<DeclRefExpr>(MapperVarRef.get())->getDecl());
|
|
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
|
|
Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
|
|
ThisContext);
|
|
// Instantiate map clauses.
|
|
for (OMPClause *C : D->clauselists()) {
|
|
auto *OldC = cast<OMPMapClause>(C);
|
|
SmallVector<Expr *, 4> NewVars;
|
|
for (Expr *OE : OldC->varlists()) {
|
|
Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
|
|
if (!NE) {
|
|
IsCorrect = false;
|
|
break;
|
|
}
|
|
NewVars.push_back(NE);
|
|
}
|
|
if (!IsCorrect)
|
|
break;
|
|
NestedNameSpecifierLoc NewQualifierLoc =
|
|
SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
|
|
TemplateArgs);
|
|
CXXScopeSpec SS;
|
|
SS.Adopt(NewQualifierLoc);
|
|
DeclarationNameInfo NewNameInfo =
|
|
SemaRef.SubstDeclarationNameInfo(OldC->getMapperIdInfo(), TemplateArgs);
|
|
OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
|
|
OldC->getEndLoc());
|
|
OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
|
|
OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS,
|
|
NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(),
|
|
OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs);
|
|
Clauses.push_back(NewC);
|
|
}
|
|
SemaRef.EndOpenMPDSABlock(nullptr);
|
|
if (!IsCorrect)
|
|
return nullptr;
|
|
Sema::DeclGroupPtrTy DG = SemaRef.ActOnOpenMPDeclareMapperDirective(
|
|
/*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
|
|
VN, D->getAccess(), MapperVarRef.get(), Clauses, PrevDeclInScope);
|
|
Decl *NewDMD = DG.get().getSingleDecl();
|
|
SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
|
|
return NewDMD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
|
|
OMPCapturedExprDecl * /*D*/) {
|
|
llvm_unreachable("Should not be met in templates");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
|
|
return VisitFunctionDecl(D, nullptr);
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
|
|
Decl *Inst = VisitFunctionDecl(D, nullptr);
|
|
if (Inst && !D->getDescribedFunctionTemplate())
|
|
Owner->addDecl(Inst);
|
|
return Inst;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
|
|
return VisitCXXMethodDecl(D, nullptr);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
|
|
llvm_unreachable("There are only CXXRecordDecls in C++");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
|
|
ClassTemplateSpecializationDecl *D) {
|
|
// As a MS extension, we permit class-scope explicit specialization
|
|
// of member class templates.
|
|
ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
|
|
assert(ClassTemplate->getDeclContext()->isRecord() &&
|
|
D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
|
|
"can only instantiate an explicit specialization "
|
|
"for a member class template");
|
|
|
|
// Lookup the already-instantiated declaration in the instantiation
|
|
// of the class template.
|
|
ClassTemplateDecl *InstClassTemplate =
|
|
cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
|
|
D->getLocation(), ClassTemplate, TemplateArgs));
|
|
if (!InstClassTemplate)
|
|
return nullptr;
|
|
|
|
// Substitute into the template arguments of the class template explicit
|
|
// specialization.
|
|
TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
|
|
castAs<TemplateSpecializationTypeLoc>();
|
|
TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
|
|
Loc.getRAngleLoc());
|
|
SmallVector<TemplateArgumentLoc, 4> ArgLocs;
|
|
for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
|
|
ArgLocs.push_back(Loc.getArgLoc(I));
|
|
if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(),
|
|
InstTemplateArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// class template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (SemaRef.CheckTemplateArgumentList(InstClassTemplate,
|
|
D->getLocation(),
|
|
InstTemplateArgs,
|
|
false,
|
|
Converted,
|
|
/*UpdateArgsWithConversion=*/true))
|
|
return nullptr;
|
|
|
|
// Figure out where to insert this class template explicit specialization
|
|
// in the member template's set of class template explicit specializations.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl =
|
|
InstClassTemplate->findSpecialization(Converted, InsertPos);
|
|
|
|
// Check whether we've already seen a conflicting instantiation of this
|
|
// declaration (for instance, if there was a prior implicit instantiation).
|
|
bool Ignored;
|
|
if (PrevDecl &&
|
|
SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
|
|
D->getSpecializationKind(),
|
|
PrevDecl,
|
|
PrevDecl->getSpecializationKind(),
|
|
PrevDecl->getPointOfInstantiation(),
|
|
Ignored))
|
|
return nullptr;
|
|
|
|
// If PrevDecl was a definition and D is also a definition, diagnose.
|
|
// This happens in cases like:
|
|
//
|
|
// template<typename T, typename U>
|
|
// struct Outer {
|
|
// template<typename X> struct Inner;
|
|
// template<> struct Inner<T> {};
|
|
// template<> struct Inner<U> {};
|
|
// };
|
|
//
|
|
// Outer<int, int> outer; // error: the explicit specializations of Inner
|
|
// // have the same signature.
|
|
if (PrevDecl && PrevDecl->getDefinition() &&
|
|
D->isThisDeclarationADefinition()) {
|
|
SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
|
|
SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
|
|
diag::note_previous_definition);
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the class template partial specialization declaration.
|
|
ClassTemplateSpecializationDecl *InstD =
|
|
ClassTemplateSpecializationDecl::Create(
|
|
SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
|
|
D->getLocation(), InstClassTemplate, Converted, PrevDecl);
|
|
|
|
// Add this partial specialization to the set of class template partial
|
|
// specializations.
|
|
if (!PrevDecl)
|
|
InstClassTemplate->AddSpecialization(InstD, InsertPos);
|
|
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(D, InstD))
|
|
return nullptr;
|
|
|
|
// Build the canonical type that describes the converted template
|
|
// arguments of the class template explicit specialization.
|
|
QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
|
|
TemplateName(InstClassTemplate), Converted,
|
|
SemaRef.Context.getRecordType(InstD));
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
|
|
TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
|
|
CanonType);
|
|
|
|
InstD->setAccess(D->getAccess());
|
|
InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
|
|
InstD->setSpecializationKind(D->getSpecializationKind());
|
|
InstD->setTypeAsWritten(WrittenTy);
|
|
InstD->setExternLoc(D->getExternLoc());
|
|
InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
|
|
|
|
Owner->addDecl(InstD);
|
|
|
|
// Instantiate the members of the class-scope explicit specialization eagerly.
|
|
// We don't have support for lazy instantiation of an explicit specialization
|
|
// yet, and MSVC eagerly instantiates in this case.
|
|
// FIXME: This is wrong in standard C++.
|
|
if (D->isThisDeclarationADefinition() &&
|
|
SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
|
|
TSK_ImplicitInstantiation,
|
|
/*Complain=*/true))
|
|
return nullptr;
|
|
|
|
return InstD;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
|
|
VarTemplateSpecializationDecl *D) {
|
|
|
|
TemplateArgumentListInfo VarTemplateArgsInfo;
|
|
VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
|
|
assert(VarTemplate &&
|
|
"A template specialization without specialized template?");
|
|
|
|
VarTemplateDecl *InstVarTemplate =
|
|
cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
|
|
D->getLocation(), VarTemplate, TemplateArgs));
|
|
if (!InstVarTemplate)
|
|
return nullptr;
|
|
|
|
// Substitute the current template arguments.
|
|
const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo();
|
|
VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc());
|
|
VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc());
|
|
|
|
if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(),
|
|
TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Check that the template argument list is well-formed for this template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
|
|
VarTemplateArgsInfo, false, Converted,
|
|
/*UpdateArgsWithConversion=*/true))
|
|
return nullptr;
|
|
|
|
// Check whether we've already seen a declaration of this specialization.
|
|
void *InsertPos = nullptr;
|
|
VarTemplateSpecializationDecl *PrevDecl =
|
|
InstVarTemplate->findSpecialization(Converted, InsertPos);
|
|
|
|
// Check whether we've already seen a conflicting instantiation of this
|
|
// declaration (for instance, if there was a prior implicit instantiation).
|
|
bool Ignored;
|
|
if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
|
|
D->getLocation(), D->getSpecializationKind(), PrevDecl,
|
|
PrevDecl->getSpecializationKind(),
|
|
PrevDecl->getPointOfInstantiation(), Ignored))
|
|
return nullptr;
|
|
|
|
return VisitVarTemplateSpecializationDecl(
|
|
InstVarTemplate, D, VarTemplateArgsInfo, Converted, PrevDecl);
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
|
|
VarTemplateDecl *VarTemplate, VarDecl *D,
|
|
const TemplateArgumentListInfo &TemplateArgsInfo,
|
|
ArrayRef<TemplateArgument> Converted,
|
|
VarTemplateSpecializationDecl *PrevDecl) {
|
|
|
|
// Do substitution on the type of the declaration
|
|
TypeSourceInfo *DI =
|
|
SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
|
|
D->getTypeSpecStartLoc(), D->getDeclName());
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
if (DI->getType()->isFunctionType()) {
|
|
SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
|
|
<< D->isStaticDataMember() << DI->getType();
|
|
return nullptr;
|
|
}
|
|
|
|
// Build the instantiated declaration
|
|
VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
|
|
SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
|
|
VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
|
|
Var->setTemplateArgsInfo(TemplateArgsInfo);
|
|
if (!PrevDecl) {
|
|
void *InsertPos = nullptr;
|
|
VarTemplate->findSpecialization(Converted, InsertPos);
|
|
VarTemplate->AddSpecialization(Var, InsertPos);
|
|
}
|
|
|
|
if (SemaRef.getLangOpts().OpenCL)
|
|
SemaRef.deduceOpenCLAddressSpace(Var);
|
|
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(D, Var))
|
|
return nullptr;
|
|
|
|
SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
|
|
StartingScope, false, PrevDecl);
|
|
|
|
return Var;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
|
|
llvm_unreachable("@defs is not supported in Objective-C++");
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
|
|
// FIXME: We need to be able to instantiate FriendTemplateDecls.
|
|
unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
|
|
DiagnosticsEngine::Error,
|
|
"cannot instantiate %0 yet");
|
|
SemaRef.Diag(D->getLocation(), DiagID)
|
|
<< D->getDeclKindName();
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
|
|
llvm_unreachable("Concept definitions cannot reside inside a template");
|
|
}
|
|
|
|
Decl *
|
|
TemplateDeclInstantiator::VisitRequiresExprBodyDecl(RequiresExprBodyDecl *D) {
|
|
return RequiresExprBodyDecl::Create(SemaRef.Context, D->getDeclContext(),
|
|
D->getBeginLoc());
|
|
}
|
|
|
|
Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
|
|
llvm_unreachable("Unexpected decl");
|
|
}
|
|
|
|
Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
|
|
if (D->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
Decl *SubstD;
|
|
runWithSufficientStackSpace(D->getLocation(), [&] {
|
|
SubstD = Instantiator.Visit(D);
|
|
});
|
|
return SubstD;
|
|
}
|
|
|
|
void TemplateDeclInstantiator::adjustForRewrite(RewriteKind RK,
|
|
FunctionDecl *Orig, QualType &T,
|
|
TypeSourceInfo *&TInfo,
|
|
DeclarationNameInfo &NameInfo) {
|
|
assert(RK == RewriteKind::RewriteSpaceshipAsEqualEqual);
|
|
|
|
// C++2a [class.compare.default]p3:
|
|
// the return type is replaced with bool
|
|
auto *FPT = T->castAs<FunctionProtoType>();
|
|
T = SemaRef.Context.getFunctionType(
|
|
SemaRef.Context.BoolTy, FPT->getParamTypes(), FPT->getExtProtoInfo());
|
|
|
|
// Update the return type in the source info too. The most straightforward
|
|
// way is to create new TypeSourceInfo for the new type. Use the location of
|
|
// the '= default' as the location of the new type.
|
|
//
|
|
// FIXME: Set the correct return type when we initially transform the type,
|
|
// rather than delaying it to now.
|
|
TypeSourceInfo *NewTInfo =
|
|
SemaRef.Context.getTrivialTypeSourceInfo(T, Orig->getEndLoc());
|
|
auto OldLoc = TInfo->getTypeLoc().getAsAdjusted<FunctionProtoTypeLoc>();
|
|
assert(OldLoc && "type of function is not a function type?");
|
|
auto NewLoc = NewTInfo->getTypeLoc().castAs<FunctionProtoTypeLoc>();
|
|
for (unsigned I = 0, N = OldLoc.getNumParams(); I != N; ++I)
|
|
NewLoc.setParam(I, OldLoc.getParam(I));
|
|
TInfo = NewTInfo;
|
|
|
|
// and the declarator-id is replaced with operator==
|
|
NameInfo.setName(
|
|
SemaRef.Context.DeclarationNames.getCXXOperatorName(OO_EqualEqual));
|
|
}
|
|
|
|
FunctionDecl *Sema::SubstSpaceshipAsEqualEqual(CXXRecordDecl *RD,
|
|
FunctionDecl *Spaceship) {
|
|
if (Spaceship->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
// C++2a [class.compare.default]p3:
|
|
// an == operator function is declared implicitly [...] with the same
|
|
// access and function-definition and in the same class scope as the
|
|
// three-way comparison operator function
|
|
MultiLevelTemplateArgumentList NoTemplateArgs;
|
|
NoTemplateArgs.setKind(TemplateSubstitutionKind::Rewrite);
|
|
NoTemplateArgs.addOuterRetainedLevels(RD->getTemplateDepth());
|
|
TemplateDeclInstantiator Instantiator(*this, RD, NoTemplateArgs);
|
|
Decl *R;
|
|
if (auto *MD = dyn_cast<CXXMethodDecl>(Spaceship)) {
|
|
R = Instantiator.VisitCXXMethodDecl(
|
|
MD, nullptr, None,
|
|
TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
|
|
} else {
|
|
assert(Spaceship->getFriendObjectKind() &&
|
|
"defaulted spaceship is neither a member nor a friend");
|
|
|
|
R = Instantiator.VisitFunctionDecl(
|
|
Spaceship, nullptr,
|
|
TemplateDeclInstantiator::RewriteKind::RewriteSpaceshipAsEqualEqual);
|
|
if (!R)
|
|
return nullptr;
|
|
|
|
FriendDecl *FD =
|
|
FriendDecl::Create(Context, RD, Spaceship->getLocation(),
|
|
cast<NamedDecl>(R), Spaceship->getBeginLoc());
|
|
FD->setAccess(AS_public);
|
|
RD->addDecl(FD);
|
|
}
|
|
return cast_or_null<FunctionDecl>(R);
|
|
}
|
|
|
|
/// Instantiates a nested template parameter list in the current
|
|
/// instantiation context.
|
|
///
|
|
/// \param L The parameter list to instantiate
|
|
///
|
|
/// \returns NULL if there was an error
|
|
TemplateParameterList *
|
|
TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
|
|
// Get errors for all the parameters before bailing out.
|
|
bool Invalid = false;
|
|
|
|
unsigned N = L->size();
|
|
typedef SmallVector<NamedDecl *, 8> ParamVector;
|
|
ParamVector Params;
|
|
Params.reserve(N);
|
|
for (auto &P : *L) {
|
|
NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
|
|
Params.push_back(D);
|
|
Invalid = Invalid || !D || D->isInvalidDecl();
|
|
}
|
|
|
|
// Clean up if we had an error.
|
|
if (Invalid)
|
|
return nullptr;
|
|
|
|
// FIXME: Concepts: Substitution into requires clause should only happen when
|
|
// checking satisfaction.
|
|
Expr *InstRequiresClause = nullptr;
|
|
if (Expr *E = L->getRequiresClause()) {
|
|
EnterExpressionEvaluationContext ConstantEvaluated(
|
|
SemaRef, Sema::ExpressionEvaluationContext::Unevaluated);
|
|
ExprResult Res = SemaRef.SubstExpr(E, TemplateArgs);
|
|
if (Res.isInvalid() || !Res.isUsable()) {
|
|
return nullptr;
|
|
}
|
|
InstRequiresClause = Res.get();
|
|
}
|
|
|
|
TemplateParameterList *InstL
|
|
= TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
|
|
L->getLAngleLoc(), Params,
|
|
L->getRAngleLoc(), InstRequiresClause);
|
|
return InstL;
|
|
}
|
|
|
|
TemplateParameterList *
|
|
Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
|
|
return Instantiator.SubstTemplateParams(Params);
|
|
}
|
|
|
|
/// Instantiate the declaration of a class template partial
|
|
/// specialization.
|
|
///
|
|
/// \param ClassTemplate the (instantiated) class template that is partially
|
|
// specialized by the instantiation of \p PartialSpec.
|
|
///
|
|
/// \param PartialSpec the (uninstantiated) class template partial
|
|
/// specialization that we are instantiating.
|
|
///
|
|
/// \returns The instantiated partial specialization, if successful; otherwise,
|
|
/// NULL to indicate an error.
|
|
ClassTemplatePartialSpecializationDecl *
|
|
TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
|
|
ClassTemplateDecl *ClassTemplate,
|
|
ClassTemplatePartialSpecializationDecl *PartialSpec) {
|
|
// Create a local instantiation scope for this class template partial
|
|
// specialization, which will contain the instantiations of the template
|
|
// parameters.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
|
|
// Substitute into the template parameters of the class template partial
|
|
// specialization.
|
|
TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
// Substitute into the template arguments of the class template partial
|
|
// specialization.
|
|
const ASTTemplateArgumentListInfo *TemplArgInfo
|
|
= PartialSpec->getTemplateArgsAsWritten();
|
|
TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
|
|
TemplArgInfo->RAngleLoc);
|
|
if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
|
|
TemplArgInfo->NumTemplateArgs,
|
|
InstTemplateArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// class template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
|
|
PartialSpec->getLocation(),
|
|
InstTemplateArgs,
|
|
false,
|
|
Converted))
|
|
return nullptr;
|
|
|
|
// Check these arguments are valid for a template partial specialization.
|
|
if (SemaRef.CheckTemplatePartialSpecializationArgs(
|
|
PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
|
|
Converted))
|
|
return nullptr;
|
|
|
|
// Figure out where to insert this class template partial specialization
|
|
// in the member template's set of class template partial specializations.
|
|
void *InsertPos = nullptr;
|
|
ClassTemplateSpecializationDecl *PrevDecl
|
|
= ClassTemplate->findPartialSpecialization(Converted, InstParams,
|
|
InsertPos);
|
|
|
|
// Build the canonical type that describes the converted template
|
|
// arguments of the class template partial specialization.
|
|
QualType CanonType
|
|
= SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
|
|
Converted);
|
|
|
|
// Build the fully-sugared type for this class template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
TypeSourceInfo *WrittenTy
|
|
= SemaRef.Context.getTemplateSpecializationTypeInfo(
|
|
TemplateName(ClassTemplate),
|
|
PartialSpec->getLocation(),
|
|
InstTemplateArgs,
|
|
CanonType);
|
|
|
|
if (PrevDecl) {
|
|
// We've already seen a partial specialization with the same template
|
|
// parameters and template arguments. This can happen, for example, when
|
|
// substituting the outer template arguments ends up causing two
|
|
// class template partial specializations of a member class template
|
|
// to have identical forms, e.g.,
|
|
//
|
|
// template<typename T, typename U>
|
|
// struct Outer {
|
|
// template<typename X, typename Y> struct Inner;
|
|
// template<typename Y> struct Inner<T, Y>;
|
|
// template<typename Y> struct Inner<U, Y>;
|
|
// };
|
|
//
|
|
// Outer<int, int> outer; // error: the partial specializations of Inner
|
|
// // have the same signature.
|
|
SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
|
|
<< WrittenTy->getType();
|
|
SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
|
|
<< SemaRef.Context.getTypeDeclType(PrevDecl);
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
// Create the class template partial specialization declaration.
|
|
ClassTemplatePartialSpecializationDecl *InstPartialSpec =
|
|
ClassTemplatePartialSpecializationDecl::Create(
|
|
SemaRef.Context, PartialSpec->getTagKind(), Owner,
|
|
PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
|
|
ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr);
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(PartialSpec, InstPartialSpec))
|
|
return nullptr;
|
|
|
|
InstPartialSpec->setInstantiatedFromMember(PartialSpec);
|
|
InstPartialSpec->setTypeAsWritten(WrittenTy);
|
|
|
|
// Check the completed partial specialization.
|
|
SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
|
|
|
|
// Add this partial specialization to the set of class template partial
|
|
// specializations.
|
|
ClassTemplate->AddPartialSpecialization(InstPartialSpec,
|
|
/*InsertPos=*/nullptr);
|
|
return InstPartialSpec;
|
|
}
|
|
|
|
/// Instantiate the declaration of a variable template partial
|
|
/// specialization.
|
|
///
|
|
/// \param VarTemplate the (instantiated) variable template that is partially
|
|
/// specialized by the instantiation of \p PartialSpec.
|
|
///
|
|
/// \param PartialSpec the (uninstantiated) variable template partial
|
|
/// specialization that we are instantiating.
|
|
///
|
|
/// \returns The instantiated partial specialization, if successful; otherwise,
|
|
/// NULL to indicate an error.
|
|
VarTemplatePartialSpecializationDecl *
|
|
TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
|
|
VarTemplateDecl *VarTemplate,
|
|
VarTemplatePartialSpecializationDecl *PartialSpec) {
|
|
// Create a local instantiation scope for this variable template partial
|
|
// specialization, which will contain the instantiations of the template
|
|
// parameters.
|
|
LocalInstantiationScope Scope(SemaRef);
|
|
|
|
// Substitute into the template parameters of the variable template partial
|
|
// specialization.
|
|
TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
|
|
TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
|
|
if (!InstParams)
|
|
return nullptr;
|
|
|
|
// Substitute into the template arguments of the variable template partial
|
|
// specialization.
|
|
const ASTTemplateArgumentListInfo *TemplArgInfo
|
|
= PartialSpec->getTemplateArgsAsWritten();
|
|
TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
|
|
TemplArgInfo->RAngleLoc);
|
|
if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
|
|
TemplArgInfo->NumTemplateArgs,
|
|
InstTemplateArgs, TemplateArgs))
|
|
return nullptr;
|
|
|
|
// Check that the template argument list is well-formed for this
|
|
// class template.
|
|
SmallVector<TemplateArgument, 4> Converted;
|
|
if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(),
|
|
InstTemplateArgs, false, Converted))
|
|
return nullptr;
|
|
|
|
// Check these arguments are valid for a template partial specialization.
|
|
if (SemaRef.CheckTemplatePartialSpecializationArgs(
|
|
PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
|
|
Converted))
|
|
return nullptr;
|
|
|
|
// Figure out where to insert this variable template partial specialization
|
|
// in the member template's set of variable template partial specializations.
|
|
void *InsertPos = nullptr;
|
|
VarTemplateSpecializationDecl *PrevDecl =
|
|
VarTemplate->findPartialSpecialization(Converted, InstParams, InsertPos);
|
|
|
|
// Build the canonical type that describes the converted template
|
|
// arguments of the variable template partial specialization.
|
|
QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
|
|
TemplateName(VarTemplate), Converted);
|
|
|
|
// Build the fully-sugared type for this variable template
|
|
// specialization as the user wrote in the specialization
|
|
// itself. This means that we'll pretty-print the type retrieved
|
|
// from the specialization's declaration the way that the user
|
|
// actually wrote the specialization, rather than formatting the
|
|
// name based on the "canonical" representation used to store the
|
|
// template arguments in the specialization.
|
|
TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
|
|
TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
|
|
CanonType);
|
|
|
|
if (PrevDecl) {
|
|
// We've already seen a partial specialization with the same template
|
|
// parameters and template arguments. This can happen, for example, when
|
|
// substituting the outer template arguments ends up causing two
|
|
// variable template partial specializations of a member variable template
|
|
// to have identical forms, e.g.,
|
|
//
|
|
// template<typename T, typename U>
|
|
// struct Outer {
|
|
// template<typename X, typename Y> pair<X,Y> p;
|
|
// template<typename Y> pair<T, Y> p;
|
|
// template<typename Y> pair<U, Y> p;
|
|
// };
|
|
//
|
|
// Outer<int, int> outer; // error: the partial specializations of Inner
|
|
// // have the same signature.
|
|
SemaRef.Diag(PartialSpec->getLocation(),
|
|
diag::err_var_partial_spec_redeclared)
|
|
<< WrittenTy->getType();
|
|
SemaRef.Diag(PrevDecl->getLocation(),
|
|
diag::note_var_prev_partial_spec_here);
|
|
return nullptr;
|
|
}
|
|
|
|
// Do substitution on the type of the declaration
|
|
TypeSourceInfo *DI = SemaRef.SubstType(
|
|
PartialSpec->getTypeSourceInfo(), TemplateArgs,
|
|
PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
if (DI->getType()->isFunctionType()) {
|
|
SemaRef.Diag(PartialSpec->getLocation(),
|
|
diag::err_variable_instantiates_to_function)
|
|
<< PartialSpec->isStaticDataMember() << DI->getType();
|
|
return nullptr;
|
|
}
|
|
|
|
// Create the variable template partial specialization declaration.
|
|
VarTemplatePartialSpecializationDecl *InstPartialSpec =
|
|
VarTemplatePartialSpecializationDecl::Create(
|
|
SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
|
|
PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
|
|
DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs);
|
|
|
|
// Substitute the nested name specifier, if any.
|
|
if (SubstQualifier(PartialSpec, InstPartialSpec))
|
|
return nullptr;
|
|
|
|
InstPartialSpec->setInstantiatedFromMember(PartialSpec);
|
|
InstPartialSpec->setTypeAsWritten(WrittenTy);
|
|
|
|
// Check the completed partial specialization.
|
|
SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
|
|
|
|
// Add this partial specialization to the set of variable template partial
|
|
// specializations. The instantiation of the initializer is not necessary.
|
|
VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
|
|
|
|
SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
|
|
LateAttrs, Owner, StartingScope);
|
|
|
|
return InstPartialSpec;
|
|
}
|
|
|
|
TypeSourceInfo*
|
|
TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
|
|
SmallVectorImpl<ParmVarDecl *> &Params) {
|
|
TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
|
|
assert(OldTInfo && "substituting function without type source info");
|
|
assert(Params.empty() && "parameter vector is non-empty at start");
|
|
|
|
CXXRecordDecl *ThisContext = nullptr;
|
|
Qualifiers ThisTypeQuals;
|
|
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
ThisContext = cast<CXXRecordDecl>(Owner);
|
|
ThisTypeQuals = Method->getMethodQualifiers();
|
|
}
|
|
|
|
TypeSourceInfo *NewTInfo
|
|
= SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs,
|
|
D->getTypeSpecStartLoc(),
|
|
D->getDeclName(),
|
|
ThisContext, ThisTypeQuals);
|
|
if (!NewTInfo)
|
|
return nullptr;
|
|
|
|
TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
|
|
if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
|
|
if (NewTInfo != OldTInfo) {
|
|
// Get parameters from the new type info.
|
|
TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
|
|
FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
|
|
unsigned NewIdx = 0;
|
|
for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
|
|
OldIdx != NumOldParams; ++OldIdx) {
|
|
ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
|
|
LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
|
|
|
|
Optional<unsigned> NumArgumentsInExpansion;
|
|
if (OldParam->isParameterPack())
|
|
NumArgumentsInExpansion =
|
|
SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
|
|
TemplateArgs);
|
|
if (!NumArgumentsInExpansion) {
|
|
// Simple case: normal parameter, or a parameter pack that's
|
|
// instantiated to a (still-dependent) parameter pack.
|
|
ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
|
|
Params.push_back(NewParam);
|
|
Scope->InstantiatedLocal(OldParam, NewParam);
|
|
} else {
|
|
// Parameter pack expansion: make the instantiation an argument pack.
|
|
Scope->MakeInstantiatedLocalArgPack(OldParam);
|
|
for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
|
|
ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
|
|
Params.push_back(NewParam);
|
|
Scope->InstantiatedLocalPackArg(OldParam, NewParam);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// The function type itself was not dependent and therefore no
|
|
// substitution occurred. However, we still need to instantiate
|
|
// the function parameters themselves.
|
|
const FunctionProtoType *OldProto =
|
|
cast<FunctionProtoType>(OldProtoLoc.getType());
|
|
for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
|
|
++i) {
|
|
ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
|
|
if (!OldParam) {
|
|
Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
|
|
D, D->getLocation(), OldProto->getParamType(i)));
|
|
continue;
|
|
}
|
|
|
|
ParmVarDecl *Parm =
|
|
cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
|
|
if (!Parm)
|
|
return nullptr;
|
|
Params.push_back(Parm);
|
|
}
|
|
}
|
|
} else {
|
|
// If the type of this function, after ignoring parentheses, is not
|
|
// *directly* a function type, then we're instantiating a function that
|
|
// was declared via a typedef or with attributes, e.g.,
|
|
//
|
|
// typedef int functype(int, int);
|
|
// functype func;
|
|
// int __cdecl meth(int, int);
|
|
//
|
|
// In this case, we'll just go instantiate the ParmVarDecls that we
|
|
// synthesized in the method declaration.
|
|
SmallVector<QualType, 4> ParamTypes;
|
|
Sema::ExtParameterInfoBuilder ExtParamInfos;
|
|
if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
|
|
TemplateArgs, ParamTypes, &Params,
|
|
ExtParamInfos))
|
|
return nullptr;
|
|
}
|
|
|
|
return NewTInfo;
|
|
}
|
|
|
|
/// Introduce the instantiated function parameters into the local
|
|
/// instantiation scope, and set the parameter names to those used
|
|
/// in the template.
|
|
static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function,
|
|
const FunctionDecl *PatternDecl,
|
|
LocalInstantiationScope &Scope,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
unsigned FParamIdx = 0;
|
|
for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
|
|
const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
|
|
if (!PatternParam->isParameterPack()) {
|
|
// Simple case: not a parameter pack.
|
|
assert(FParamIdx < Function->getNumParams());
|
|
ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
|
|
FunctionParam->setDeclName(PatternParam->getDeclName());
|
|
// If the parameter's type is not dependent, update it to match the type
|
|
// in the pattern. They can differ in top-level cv-qualifiers, and we want
|
|
// the pattern's type here. If the type is dependent, they can't differ,
|
|
// per core issue 1668. Substitute into the type from the pattern, in case
|
|
// it's instantiation-dependent.
|
|
// FIXME: Updating the type to work around this is at best fragile.
|
|
if (!PatternDecl->getType()->isDependentType()) {
|
|
QualType T = S.SubstType(PatternParam->getType(), TemplateArgs,
|
|
FunctionParam->getLocation(),
|
|
FunctionParam->getDeclName());
|
|
if (T.isNull())
|
|
return true;
|
|
FunctionParam->setType(T);
|
|
}
|
|
|
|
Scope.InstantiatedLocal(PatternParam, FunctionParam);
|
|
++FParamIdx;
|
|
continue;
|
|
}
|
|
|
|
// Expand the parameter pack.
|
|
Scope.MakeInstantiatedLocalArgPack(PatternParam);
|
|
Optional<unsigned> NumArgumentsInExpansion
|
|
= S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
|
|
if (NumArgumentsInExpansion) {
|
|
QualType PatternType =
|
|
PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
|
|
for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
|
|
ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
|
|
FunctionParam->setDeclName(PatternParam->getDeclName());
|
|
if (!PatternDecl->getType()->isDependentType()) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg);
|
|
QualType T = S.SubstType(PatternType, TemplateArgs,
|
|
FunctionParam->getLocation(),
|
|
FunctionParam->getDeclName());
|
|
if (T.isNull())
|
|
return true;
|
|
FunctionParam->setType(T);
|
|
}
|
|
|
|
Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
|
|
++FParamIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::InstantiateDefaultArgument(SourceLocation CallLoc, FunctionDecl *FD,
|
|
ParmVarDecl *Param) {
|
|
assert(Param->hasUninstantiatedDefaultArg());
|
|
Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
|
|
|
|
EnterExpressionEvaluationContext EvalContext(
|
|
*this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
|
|
|
|
// Instantiate the expression.
|
|
//
|
|
// FIXME: Pass in a correct Pattern argument, otherwise
|
|
// getTemplateInstantiationArgs uses the lexical context of FD, e.g.
|
|
//
|
|
// template<typename T>
|
|
// struct A {
|
|
// static int FooImpl();
|
|
//
|
|
// template<typename Tp>
|
|
// // bug: default argument A<T>::FooImpl() is evaluated with 2-level
|
|
// // template argument list [[T], [Tp]], should be [[Tp]].
|
|
// friend A<Tp> Foo(int a);
|
|
// };
|
|
//
|
|
// template<typename T>
|
|
// A<T> Foo(int a = A<T>::FooImpl());
|
|
MultiLevelTemplateArgumentList TemplateArgs
|
|
= getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
|
|
|
|
InstantiatingTemplate Inst(*this, CallLoc, Param,
|
|
TemplateArgs.getInnermost());
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
if (Inst.isAlreadyInstantiating()) {
|
|
Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
|
|
Param->setInvalidDecl();
|
|
return true;
|
|
}
|
|
|
|
ExprResult Result;
|
|
{
|
|
// C++ [dcl.fct.default]p5:
|
|
// The names in the [default argument] expression are bound, and
|
|
// the semantic constraints are checked, at the point where the
|
|
// default argument expression appears.
|
|
ContextRAII SavedContext(*this, FD);
|
|
LocalInstantiationScope Local(*this);
|
|
|
|
FunctionDecl *Pattern = FD->getTemplateInstantiationPattern(
|
|
/*ForDefinition*/ false);
|
|
if (addInstantiatedParametersToScope(*this, FD, Pattern, Local,
|
|
TemplateArgs))
|
|
return true;
|
|
|
|
runWithSufficientStackSpace(CallLoc, [&] {
|
|
Result = SubstInitializer(UninstExpr, TemplateArgs,
|
|
/*DirectInit*/false);
|
|
});
|
|
}
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
// Check the expression as an initializer for the parameter.
|
|
InitializedEntity Entity
|
|
= InitializedEntity::InitializeParameter(Context, Param);
|
|
InitializationKind Kind = InitializationKind::CreateCopy(
|
|
Param->getLocation(),
|
|
/*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
|
|
Expr *ResultE = Result.getAs<Expr>();
|
|
|
|
InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
|
|
Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
Result =
|
|
ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
|
|
/*DiscardedValue*/ false);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
|
|
// Remember the instantiated default argument.
|
|
Param->setDefaultArg(Result.getAs<Expr>());
|
|
if (ASTMutationListener *L = getASTMutationListener())
|
|
L->DefaultArgumentInstantiated(Param);
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Decl) {
|
|
const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
|
|
if (Proto->getExceptionSpecType() != EST_Uninstantiated)
|
|
return;
|
|
|
|
InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
|
|
InstantiatingTemplate::ExceptionSpecification());
|
|
if (Inst.isInvalid()) {
|
|
// We hit the instantiation depth limit. Clear the exception specification
|
|
// so that our callers don't have to cope with EST_Uninstantiated.
|
|
UpdateExceptionSpec(Decl, EST_None);
|
|
return;
|
|
}
|
|
if (Inst.isAlreadyInstantiating()) {
|
|
// This exception specification indirectly depends on itself. Reject.
|
|
// FIXME: Corresponding rule in the standard?
|
|
Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
|
|
UpdateExceptionSpec(Decl, EST_None);
|
|
return;
|
|
}
|
|
|
|
// Enter the scope of this instantiation. We don't use
|
|
// PushDeclContext because we don't have a scope.
|
|
Sema::ContextRAII savedContext(*this, Decl);
|
|
LocalInstantiationScope Scope(*this);
|
|
|
|
MultiLevelTemplateArgumentList TemplateArgs =
|
|
getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true);
|
|
|
|
// FIXME: We can't use getTemplateInstantiationPattern(false) in general
|
|
// here, because for a non-defining friend declaration in a class template,
|
|
// we don't store enough information to map back to the friend declaration in
|
|
// the template.
|
|
FunctionDecl *Template = Proto->getExceptionSpecTemplate();
|
|
if (addInstantiatedParametersToScope(*this, Decl, Template, Scope,
|
|
TemplateArgs)) {
|
|
UpdateExceptionSpec(Decl, EST_None);
|
|
return;
|
|
}
|
|
|
|
SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
|
|
TemplateArgs);
|
|
}
|
|
|
|
bool Sema::CheckInstantiatedFunctionTemplateConstraints(
|
|
SourceLocation PointOfInstantiation, FunctionDecl *Decl,
|
|
ArrayRef<TemplateArgument> TemplateArgs,
|
|
ConstraintSatisfaction &Satisfaction) {
|
|
// In most cases we're not going to have constraints, so check for that first.
|
|
FunctionTemplateDecl *Template = Decl->getPrimaryTemplate();
|
|
// Note - code synthesis context for the constraints check is created
|
|
// inside CheckConstraintsSatisfaction.
|
|
SmallVector<const Expr *, 3> TemplateAC;
|
|
Template->getAssociatedConstraints(TemplateAC);
|
|
if (TemplateAC.empty()) {
|
|
Satisfaction.IsSatisfied = true;
|
|
return false;
|
|
}
|
|
|
|
// Enter the scope of this instantiation. We don't use
|
|
// PushDeclContext because we don't have a scope.
|
|
Sema::ContextRAII savedContext(*this, Decl);
|
|
LocalInstantiationScope Scope(*this);
|
|
|
|
// If this is not an explicit specialization - we need to get the instantiated
|
|
// version of the template arguments and add them to scope for the
|
|
// substitution.
|
|
if (Decl->isTemplateInstantiation()) {
|
|
InstantiatingTemplate Inst(*this, Decl->getPointOfInstantiation(),
|
|
InstantiatingTemplate::ConstraintsCheck{}, Decl->getPrimaryTemplate(),
|
|
TemplateArgs, SourceRange());
|
|
if (Inst.isInvalid())
|
|
return true;
|
|
MultiLevelTemplateArgumentList MLTAL(
|
|
*Decl->getTemplateSpecializationArgs());
|
|
if (addInstantiatedParametersToScope(
|
|
*this, Decl, Decl->getPrimaryTemplate()->getTemplatedDecl(),
|
|
Scope, MLTAL))
|
|
return true;
|
|
}
|
|
Qualifiers ThisQuals;
|
|
CXXRecordDecl *Record = nullptr;
|
|
if (auto *Method = dyn_cast<CXXMethodDecl>(Decl)) {
|
|
ThisQuals = Method->getMethodQualifiers();
|
|
Record = Method->getParent();
|
|
}
|
|
CXXThisScopeRAII ThisScope(*this, Record, ThisQuals, Record != nullptr);
|
|
return CheckConstraintSatisfaction(Template, TemplateAC, TemplateArgs,
|
|
PointOfInstantiation, Satisfaction);
|
|
}
|
|
|
|
/// Initializes the common fields of an instantiation function
|
|
/// declaration (New) from the corresponding fields of its template (Tmpl).
|
|
///
|
|
/// \returns true if there was an error
|
|
bool
|
|
TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
|
|
FunctionDecl *Tmpl) {
|
|
New->setImplicit(Tmpl->isImplicit());
|
|
|
|
// Forward the mangling number from the template to the instantiated decl.
|
|
SemaRef.Context.setManglingNumber(New,
|
|
SemaRef.Context.getManglingNumber(Tmpl));
|
|
|
|
// If we are performing substituting explicitly-specified template arguments
|
|
// or deduced template arguments into a function template and we reach this
|
|
// point, we are now past the point where SFINAE applies and have committed
|
|
// to keeping the new function template specialization. We therefore
|
|
// convert the active template instantiation for the function template
|
|
// into a template instantiation for this specific function template
|
|
// specialization, which is not a SFINAE context, so that we diagnose any
|
|
// further errors in the declaration itself.
|
|
typedef Sema::CodeSynthesisContext ActiveInstType;
|
|
ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
|
|
if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
|
|
ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
|
|
if (FunctionTemplateDecl *FunTmpl
|
|
= dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
|
|
assert(FunTmpl->getTemplatedDecl() == Tmpl &&
|
|
"Deduction from the wrong function template?");
|
|
(void) FunTmpl;
|
|
atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
|
|
ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
|
|
ActiveInst.Entity = New;
|
|
atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
|
|
}
|
|
}
|
|
|
|
const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
|
|
assert(Proto && "Function template without prototype?");
|
|
|
|
if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
|
|
FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
|
|
|
|
// DR1330: In C++11, defer instantiation of a non-trivial
|
|
// exception specification.
|
|
// DR1484: Local classes and their members are instantiated along with the
|
|
// containing function.
|
|
if (SemaRef.getLangOpts().CPlusPlus11 &&
|
|
EPI.ExceptionSpec.Type != EST_None &&
|
|
EPI.ExceptionSpec.Type != EST_DynamicNone &&
|
|
EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
|
|
!Tmpl->isInLocalScopeForInstantiation()) {
|
|
FunctionDecl *ExceptionSpecTemplate = Tmpl;
|
|
if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
|
|
ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
|
|
ExceptionSpecificationType NewEST = EST_Uninstantiated;
|
|
if (EPI.ExceptionSpec.Type == EST_Unevaluated)
|
|
NewEST = EST_Unevaluated;
|
|
|
|
// Mark the function has having an uninstantiated exception specification.
|
|
const FunctionProtoType *NewProto
|
|
= New->getType()->getAs<FunctionProtoType>();
|
|
assert(NewProto && "Template instantiation without function prototype?");
|
|
EPI = NewProto->getExtProtoInfo();
|
|
EPI.ExceptionSpec.Type = NewEST;
|
|
EPI.ExceptionSpec.SourceDecl = New;
|
|
EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
|
|
New->setType(SemaRef.Context.getFunctionType(
|
|
NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
|
|
} else {
|
|
Sema::ContextRAII SwitchContext(SemaRef, New);
|
|
SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
|
|
}
|
|
}
|
|
|
|
// Get the definition. Leaves the variable unchanged if undefined.
|
|
const FunctionDecl *Definition = Tmpl;
|
|
Tmpl->isDefined(Definition);
|
|
|
|
SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
|
|
LateAttrs, StartingScope);
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Initializes common fields of an instantiated method
|
|
/// declaration (New) from the corresponding fields of its template
|
|
/// (Tmpl).
|
|
///
|
|
/// \returns true if there was an error
|
|
bool
|
|
TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
|
|
CXXMethodDecl *Tmpl) {
|
|
if (InitFunctionInstantiation(New, Tmpl))
|
|
return true;
|
|
|
|
if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
|
|
SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
|
|
|
|
New->setAccess(Tmpl->getAccess());
|
|
if (Tmpl->isVirtualAsWritten())
|
|
New->setVirtualAsWritten(true);
|
|
|
|
// FIXME: New needs a pointer to Tmpl
|
|
return false;
|
|
}
|
|
|
|
bool TemplateDeclInstantiator::SubstDefaultedFunction(FunctionDecl *New,
|
|
FunctionDecl *Tmpl) {
|
|
// Transfer across any unqualified lookups.
|
|
if (auto *DFI = Tmpl->getDefaultedFunctionInfo()) {
|
|
SmallVector<DeclAccessPair, 32> Lookups;
|
|
Lookups.reserve(DFI->getUnqualifiedLookups().size());
|
|
bool AnyChanged = false;
|
|
for (DeclAccessPair DA : DFI->getUnqualifiedLookups()) {
|
|
NamedDecl *D = SemaRef.FindInstantiatedDecl(New->getLocation(),
|
|
DA.getDecl(), TemplateArgs);
|
|
if (!D)
|
|
return true;
|
|
AnyChanged |= (D != DA.getDecl());
|
|
Lookups.push_back(DeclAccessPair::make(D, DA.getAccess()));
|
|
}
|
|
|
|
// It's unlikely that substitution will change any declarations. Don't
|
|
// store an unnecessary copy in that case.
|
|
New->setDefaultedFunctionInfo(
|
|
AnyChanged ? FunctionDecl::DefaultedFunctionInfo::Create(
|
|
SemaRef.Context, Lookups)
|
|
: DFI);
|
|
}
|
|
|
|
SemaRef.SetDeclDefaulted(New, Tmpl->getLocation());
|
|
return false;
|
|
}
|
|
|
|
/// Instantiate (or find existing instantiation of) a function template with a
|
|
/// given set of template arguments.
|
|
///
|
|
/// Usually this should not be used, and template argument deduction should be
|
|
/// used in its place.
|
|
FunctionDecl *
|
|
Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
|
|
const TemplateArgumentList *Args,
|
|
SourceLocation Loc) {
|
|
FunctionDecl *FD = FTD->getTemplatedDecl();
|
|
|
|
sema::TemplateDeductionInfo Info(Loc);
|
|
InstantiatingTemplate Inst(
|
|
*this, Loc, FTD, Args->asArray(),
|
|
CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
|
|
if (Inst.isInvalid())
|
|
return nullptr;
|
|
|
|
ContextRAII SavedContext(*this, FD);
|
|
MultiLevelTemplateArgumentList MArgs(*Args);
|
|
|
|
return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
|
|
}
|
|
|
|
/// In the MS ABI, we need to instantiate default arguments of dllexported
|
|
/// default constructors along with the constructor definition. This allows IR
|
|
/// gen to emit a constructor closure which calls the default constructor with
|
|
/// its default arguments.
|
|
static void InstantiateDefaultCtorDefaultArgs(Sema &S,
|
|
CXXConstructorDecl *Ctor) {
|
|
assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
Ctor->isDefaultConstructor());
|
|
unsigned NumParams = Ctor->getNumParams();
|
|
if (NumParams == 0)
|
|
return;
|
|
DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
|
|
if (!Attr)
|
|
return;
|
|
for (unsigned I = 0; I != NumParams; ++I) {
|
|
(void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
|
|
Ctor->getParamDecl(I));
|
|
S.DiscardCleanupsInEvaluationContext();
|
|
}
|
|
}
|
|
|
|
/// Instantiate the definition of the given function from its
|
|
/// template.
|
|
///
|
|
/// \param PointOfInstantiation the point at which the instantiation was
|
|
/// required. Note that this is not precisely a "point of instantiation"
|
|
/// for the function, but it's close.
|
|
///
|
|
/// \param Function the already-instantiated declaration of a
|
|
/// function template specialization or member function of a class template
|
|
/// specialization.
|
|
///
|
|
/// \param Recursive if true, recursively instantiates any functions that
|
|
/// are required by this instantiation.
|
|
///
|
|
/// \param DefinitionRequired if true, then we are performing an explicit
|
|
/// instantiation where the body of the function is required. Complain if
|
|
/// there is no such body.
|
|
void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
|
|
FunctionDecl *Function,
|
|
bool Recursive,
|
|
bool DefinitionRequired,
|
|
bool AtEndOfTU) {
|
|
if (Function->isInvalidDecl() || Function->isDefined() ||
|
|
isa<CXXDeductionGuideDecl>(Function))
|
|
return;
|
|
|
|
// Never instantiate an explicit specialization except if it is a class scope
|
|
// explicit specialization.
|
|
TemplateSpecializationKind TSK =
|
|
Function->getTemplateSpecializationKindForInstantiation();
|
|
if (TSK == TSK_ExplicitSpecialization)
|
|
return;
|
|
|
|
// Find the function body that we'll be substituting.
|
|
const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
|
|
assert(PatternDecl && "instantiating a non-template");
|
|
|
|
const FunctionDecl *PatternDef = PatternDecl->getDefinition();
|
|
Stmt *Pattern = nullptr;
|
|
if (PatternDef) {
|
|
Pattern = PatternDef->getBody(PatternDef);
|
|
PatternDecl = PatternDef;
|
|
if (PatternDef->willHaveBody())
|
|
PatternDef = nullptr;
|
|
}
|
|
|
|
// FIXME: We need to track the instantiation stack in order to know which
|
|
// definitions should be visible within this instantiation.
|
|
if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
|
|
Function->getInstantiatedFromMemberFunction(),
|
|
PatternDecl, PatternDef, TSK,
|
|
/*Complain*/DefinitionRequired)) {
|
|
if (DefinitionRequired)
|
|
Function->setInvalidDecl();
|
|
else if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
// Try again at the end of the translation unit (at which point a
|
|
// definition will be required).
|
|
assert(!Recursive);
|
|
Function->setInstantiationIsPending(true);
|
|
PendingInstantiations.push_back(
|
|
std::make_pair(Function, PointOfInstantiation));
|
|
} else if (TSK == TSK_ImplicitInstantiation) {
|
|
if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
|
|
!getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
|
|
Diag(PointOfInstantiation, diag::warn_func_template_missing)
|
|
<< Function;
|
|
Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
|
|
<< Function;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Postpone late parsed template instantiations.
|
|
if (PatternDecl->isLateTemplateParsed() &&
|
|
!LateTemplateParser) {
|
|
Function->setInstantiationIsPending(true);
|
|
LateParsedInstantiations.push_back(
|
|
std::make_pair(Function, PointOfInstantiation));
|
|
return;
|
|
}
|
|
|
|
llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
|
|
std::string Name;
|
|
llvm::raw_string_ostream OS(Name);
|
|
Function->getNameForDiagnostic(OS, getPrintingPolicy(),
|
|
/*Qualified=*/true);
|
|
return Name;
|
|
});
|
|
|
|
// If we're performing recursive template instantiation, create our own
|
|
// queue of pending implicit instantiations that we will instantiate later,
|
|
// while we're still within our own instantiation context.
|
|
// This has to happen before LateTemplateParser below is called, so that
|
|
// it marks vtables used in late parsed templates as used.
|
|
GlobalEagerInstantiationScope GlobalInstantiations(*this,
|
|
/*Enabled=*/Recursive);
|
|
LocalEagerInstantiationScope LocalInstantiations(*this);
|
|
|
|
// Call the LateTemplateParser callback if there is a need to late parse
|
|
// a templated function definition.
|
|
if (!Pattern && PatternDecl->isLateTemplateParsed() &&
|
|
LateTemplateParser) {
|
|
// FIXME: Optimize to allow individual templates to be deserialized.
|
|
if (PatternDecl->isFromASTFile())
|
|
ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
|
|
|
|
auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
|
|
assert(LPTIter != LateParsedTemplateMap.end() &&
|
|
"missing LateParsedTemplate");
|
|
LateTemplateParser(OpaqueParser, *LPTIter->second);
|
|
Pattern = PatternDecl->getBody(PatternDecl);
|
|
}
|
|
|
|
// Note, we should never try to instantiate a deleted function template.
|
|
assert((Pattern || PatternDecl->isDefaulted() ||
|
|
PatternDecl->hasSkippedBody()) &&
|
|
"unexpected kind of function template definition");
|
|
|
|
// C++1y [temp.explicit]p10:
|
|
// Except for inline functions, declarations with types deduced from their
|
|
// initializer or return value, and class template specializations, other
|
|
// explicit instantiation declarations have the effect of suppressing the
|
|
// implicit instantiation of the entity to which they refer.
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
!PatternDecl->isInlined() &&
|
|
!PatternDecl->getReturnType()->getContainedAutoType())
|
|
return;
|
|
|
|
if (PatternDecl->isInlined()) {
|
|
// Function, and all later redeclarations of it (from imported modules,
|
|
// for instance), are now implicitly inline.
|
|
for (auto *D = Function->getMostRecentDecl(); /**/;
|
|
D = D->getPreviousDecl()) {
|
|
D->setImplicitlyInline();
|
|
if (D == Function)
|
|
break;
|
|
}
|
|
}
|
|
|
|
InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
|
|
if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
|
|
return;
|
|
PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
|
|
"instantiating function definition");
|
|
|
|
// The instantiation is visible here, even if it was first declared in an
|
|
// unimported module.
|
|
Function->setVisibleDespiteOwningModule();
|
|
|
|
// Copy the inner loc start from the pattern.
|
|
Function->setInnerLocStart(PatternDecl->getInnerLocStart());
|
|
|
|
EnterExpressionEvaluationContext EvalContext(
|
|
*this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
|
|
|
|
// Introduce a new scope where local variable instantiations will be
|
|
// recorded, unless we're actually a member function within a local
|
|
// class, in which case we need to merge our results with the parent
|
|
// scope (of the enclosing function).
|
|
bool MergeWithParentScope = false;
|
|
if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
|
|
MergeWithParentScope = Rec->isLocalClass();
|
|
|
|
LocalInstantiationScope Scope(*this, MergeWithParentScope);
|
|
|
|
if (PatternDecl->isDefaulted())
|
|
SetDeclDefaulted(Function, PatternDecl->getLocation());
|
|
else {
|
|
MultiLevelTemplateArgumentList TemplateArgs =
|
|
getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl);
|
|
|
|
// Substitute into the qualifier; we can get a substitution failure here
|
|
// through evil use of alias templates.
|
|
// FIXME: Is CurContext correct for this? Should we go to the (instantiation
|
|
// of the) lexical context of the pattern?
|
|
SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
|
|
|
|
ActOnStartOfFunctionDef(nullptr, Function);
|
|
|
|
// Enter the scope of this instantiation. We don't use
|
|
// PushDeclContext because we don't have a scope.
|
|
Sema::ContextRAII savedContext(*this, Function);
|
|
|
|
if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope,
|
|
TemplateArgs))
|
|
return;
|
|
|
|
StmtResult Body;
|
|
if (PatternDecl->hasSkippedBody()) {
|
|
ActOnSkippedFunctionBody(Function);
|
|
Body = nullptr;
|
|
} else {
|
|
if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
|
|
// If this is a constructor, instantiate the member initializers.
|
|
InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
|
|
TemplateArgs);
|
|
|
|
// If this is an MS ABI dllexport default constructor, instantiate any
|
|
// default arguments.
|
|
if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
|
|
Ctor->isDefaultConstructor()) {
|
|
InstantiateDefaultCtorDefaultArgs(*this, Ctor);
|
|
}
|
|
}
|
|
|
|
// Instantiate the function body.
|
|
Body = SubstStmt(Pattern, TemplateArgs);
|
|
|
|
if (Body.isInvalid())
|
|
Function->setInvalidDecl();
|
|
}
|
|
// FIXME: finishing the function body while in an expression evaluation
|
|
// context seems wrong. Investigate more.
|
|
ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
|
|
|
|
PerformDependentDiagnostics(PatternDecl, TemplateArgs);
|
|
|
|
if (auto *Listener = getASTMutationListener())
|
|
Listener->FunctionDefinitionInstantiated(Function);
|
|
|
|
savedContext.pop();
|
|
}
|
|
|
|
DeclGroupRef DG(Function);
|
|
Consumer.HandleTopLevelDecl(DG);
|
|
|
|
// This class may have local implicit instantiations that need to be
|
|
// instantiation within this scope.
|
|
LocalInstantiations.perform();
|
|
Scope.Exit();
|
|
GlobalInstantiations.perform();
|
|
}
|
|
|
|
VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
|
|
VarTemplateDecl *VarTemplate, VarDecl *FromVar,
|
|
const TemplateArgumentList &TemplateArgList,
|
|
const TemplateArgumentListInfo &TemplateArgsInfo,
|
|
SmallVectorImpl<TemplateArgument> &Converted,
|
|
SourceLocation PointOfInstantiation,
|
|
LateInstantiatedAttrVec *LateAttrs,
|
|
LocalInstantiationScope *StartingScope) {
|
|
if (FromVar->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
|
|
if (Inst.isInvalid())
|
|
return nullptr;
|
|
|
|
MultiLevelTemplateArgumentList TemplateArgLists;
|
|
TemplateArgLists.addOuterTemplateArguments(&TemplateArgList);
|
|
|
|
// Instantiate the first declaration of the variable template: for a partial
|
|
// specialization of a static data member template, the first declaration may
|
|
// or may not be the declaration in the class; if it's in the class, we want
|
|
// to instantiate a member in the class (a declaration), and if it's outside,
|
|
// we want to instantiate a definition.
|
|
//
|
|
// If we're instantiating an explicitly-specialized member template or member
|
|
// partial specialization, don't do this. The member specialization completely
|
|
// replaces the original declaration in this case.
|
|
bool IsMemberSpec = false;
|
|
if (VarTemplatePartialSpecializationDecl *PartialSpec =
|
|
dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar))
|
|
IsMemberSpec = PartialSpec->isMemberSpecialization();
|
|
else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate())
|
|
IsMemberSpec = FromTemplate->isMemberSpecialization();
|
|
if (!IsMemberSpec)
|
|
FromVar = FromVar->getFirstDecl();
|
|
|
|
MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList);
|
|
TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
|
|
MultiLevelList);
|
|
|
|
// TODO: Set LateAttrs and StartingScope ...
|
|
|
|
return cast_or_null<VarTemplateSpecializationDecl>(
|
|
Instantiator.VisitVarTemplateSpecializationDecl(
|
|
VarTemplate, FromVar, TemplateArgsInfo, Converted));
|
|
}
|
|
|
|
/// Instantiates a variable template specialization by completing it
|
|
/// with appropriate type information and initializer.
|
|
VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
|
|
VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
assert(PatternDecl->isThisDeclarationADefinition() &&
|
|
"don't have a definition to instantiate from");
|
|
|
|
// Do substitution on the type of the declaration
|
|
TypeSourceInfo *DI =
|
|
SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
|
|
PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
|
|
if (!DI)
|
|
return nullptr;
|
|
|
|
// Update the type of this variable template specialization.
|
|
VarSpec->setType(DI->getType());
|
|
|
|
// Convert the declaration into a definition now.
|
|
VarSpec->setCompleteDefinition();
|
|
|
|
// Instantiate the initializer.
|
|
InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
|
|
|
|
if (getLangOpts().OpenCL)
|
|
deduceOpenCLAddressSpace(VarSpec);
|
|
|
|
return VarSpec;
|
|
}
|
|
|
|
/// BuildVariableInstantiation - Used after a new variable has been created.
|
|
/// Sets basic variable data and decides whether to postpone the
|
|
/// variable instantiation.
|
|
void Sema::BuildVariableInstantiation(
|
|
VarDecl *NewVar, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
|
|
LocalInstantiationScope *StartingScope,
|
|
bool InstantiatingVarTemplate,
|
|
VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
|
|
// Instantiating a partial specialization to produce a partial
|
|
// specialization.
|
|
bool InstantiatingVarTemplatePartialSpec =
|
|
isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
|
|
isa<VarTemplatePartialSpecializationDecl>(NewVar);
|
|
// Instantiating from a variable template (or partial specialization) to
|
|
// produce a variable template specialization.
|
|
bool InstantiatingSpecFromTemplate =
|
|
isa<VarTemplateSpecializationDecl>(NewVar) &&
|
|
(OldVar->getDescribedVarTemplate() ||
|
|
isa<VarTemplatePartialSpecializationDecl>(OldVar));
|
|
|
|
// If we are instantiating a local extern declaration, the
|
|
// instantiation belongs lexically to the containing function.
|
|
// If we are instantiating a static data member defined
|
|
// out-of-line, the instantiation will have the same lexical
|
|
// context (which will be a namespace scope) as the template.
|
|
if (OldVar->isLocalExternDecl()) {
|
|
NewVar->setLocalExternDecl();
|
|
NewVar->setLexicalDeclContext(Owner);
|
|
} else if (OldVar->isOutOfLine())
|
|
NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
|
|
NewVar->setTSCSpec(OldVar->getTSCSpec());
|
|
NewVar->setInitStyle(OldVar->getInitStyle());
|
|
NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
|
|
NewVar->setObjCForDecl(OldVar->isObjCForDecl());
|
|
NewVar->setConstexpr(OldVar->isConstexpr());
|
|
MaybeAddCUDAConstantAttr(NewVar);
|
|
NewVar->setInitCapture(OldVar->isInitCapture());
|
|
NewVar->setPreviousDeclInSameBlockScope(
|
|
OldVar->isPreviousDeclInSameBlockScope());
|
|
NewVar->setAccess(OldVar->getAccess());
|
|
|
|
if (!OldVar->isStaticDataMember()) {
|
|
if (OldVar->isUsed(false))
|
|
NewVar->setIsUsed();
|
|
NewVar->setReferenced(OldVar->isReferenced());
|
|
}
|
|
|
|
InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
|
|
|
|
LookupResult Previous(
|
|
*this, NewVar->getDeclName(), NewVar->getLocation(),
|
|
NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
|
|
: Sema::LookupOrdinaryName,
|
|
NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
|
|
: forRedeclarationInCurContext());
|
|
|
|
if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
|
|
(!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
|
|
OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
|
|
// We have a previous declaration. Use that one, so we merge with the
|
|
// right type.
|
|
if (NamedDecl *NewPrev = FindInstantiatedDecl(
|
|
NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
|
|
Previous.addDecl(NewPrev);
|
|
} else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
|
|
OldVar->hasLinkage()) {
|
|
LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
|
|
} else if (PrevDeclForVarTemplateSpecialization) {
|
|
Previous.addDecl(PrevDeclForVarTemplateSpecialization);
|
|
}
|
|
CheckVariableDeclaration(NewVar, Previous);
|
|
|
|
if (!InstantiatingVarTemplate) {
|
|
NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
|
|
if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
|
|
NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
|
|
}
|
|
|
|
if (!OldVar->isOutOfLine()) {
|
|
if (NewVar->getDeclContext()->isFunctionOrMethod())
|
|
CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
|
|
}
|
|
|
|
// Link instantiations of static data members back to the template from
|
|
// which they were instantiated.
|
|
//
|
|
// Don't do this when instantiating a template (we link the template itself
|
|
// back in that case) nor when instantiating a static data member template
|
|
// (that's not a member specialization).
|
|
if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
|
|
!InstantiatingSpecFromTemplate)
|
|
NewVar->setInstantiationOfStaticDataMember(OldVar,
|
|
TSK_ImplicitInstantiation);
|
|
|
|
// If the pattern is an (in-class) explicit specialization, then the result
|
|
// is also an explicit specialization.
|
|
if (VarTemplateSpecializationDecl *OldVTSD =
|
|
dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
|
|
if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
|
|
!isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
|
|
cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
|
|
TSK_ExplicitSpecialization);
|
|
}
|
|
|
|
// Forward the mangling number from the template to the instantiated decl.
|
|
Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
|
|
Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
|
|
|
|
// Figure out whether to eagerly instantiate the initializer.
|
|
if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
|
|
// We're producing a template. Don't instantiate the initializer yet.
|
|
} else if (NewVar->getType()->isUndeducedType()) {
|
|
// We need the type to complete the declaration of the variable.
|
|
InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
|
|
} else if (InstantiatingSpecFromTemplate ||
|
|
(OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
|
|
!NewVar->isThisDeclarationADefinition())) {
|
|
// Delay instantiation of the initializer for variable template
|
|
// specializations or inline static data members until a definition of the
|
|
// variable is needed.
|
|
} else {
|
|
InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
|
|
}
|
|
|
|
// Diagnose unused local variables with dependent types, where the diagnostic
|
|
// will have been deferred.
|
|
if (!NewVar->isInvalidDecl() &&
|
|
NewVar->getDeclContext()->isFunctionOrMethod() &&
|
|
OldVar->getType()->isDependentType())
|
|
DiagnoseUnusedDecl(NewVar);
|
|
}
|
|
|
|
/// Instantiate the initializer of a variable.
|
|
void Sema::InstantiateVariableInitializer(
|
|
VarDecl *Var, VarDecl *OldVar,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
if (ASTMutationListener *L = getASTContext().getASTMutationListener())
|
|
L->VariableDefinitionInstantiated(Var);
|
|
|
|
// We propagate the 'inline' flag with the initializer, because it
|
|
// would otherwise imply that the variable is a definition for a
|
|
// non-static data member.
|
|
if (OldVar->isInlineSpecified())
|
|
Var->setInlineSpecified();
|
|
else if (OldVar->isInline())
|
|
Var->setImplicitlyInline();
|
|
|
|
if (OldVar->getInit()) {
|
|
EnterExpressionEvaluationContext Evaluated(
|
|
*this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
|
|
|
|
// Instantiate the initializer.
|
|
ExprResult Init;
|
|
|
|
{
|
|
ContextRAII SwitchContext(*this, Var->getDeclContext());
|
|
Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
|
|
OldVar->getInitStyle() == VarDecl::CallInit);
|
|
}
|
|
|
|
if (!Init.isInvalid()) {
|
|
Expr *InitExpr = Init.get();
|
|
|
|
if (Var->hasAttr<DLLImportAttr>() &&
|
|
(!InitExpr ||
|
|
!InitExpr->isConstantInitializer(getASTContext(), false))) {
|
|
// Do not dynamically initialize dllimport variables.
|
|
} else if (InitExpr) {
|
|
bool DirectInit = OldVar->isDirectInit();
|
|
AddInitializerToDecl(Var, InitExpr, DirectInit);
|
|
} else
|
|
ActOnUninitializedDecl(Var);
|
|
} else {
|
|
// FIXME: Not too happy about invalidating the declaration
|
|
// because of a bogus initializer.
|
|
Var->setInvalidDecl();
|
|
}
|
|
} else {
|
|
// `inline` variables are a definition and declaration all in one; we won't
|
|
// pick up an initializer from anywhere else.
|
|
if (Var->isStaticDataMember() && !Var->isInline()) {
|
|
if (!Var->isOutOfLine())
|
|
return;
|
|
|
|
// If the declaration inside the class had an initializer, don't add
|
|
// another one to the out-of-line definition.
|
|
if (OldVar->getFirstDecl()->hasInit())
|
|
return;
|
|
}
|
|
|
|
// We'll add an initializer to a for-range declaration later.
|
|
if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
|
|
return;
|
|
|
|
ActOnUninitializedDecl(Var);
|
|
}
|
|
|
|
if (getLangOpts().CUDA)
|
|
checkAllowedCUDAInitializer(Var);
|
|
}
|
|
|
|
/// Instantiate the definition of the given variable from its
|
|
/// template.
|
|
///
|
|
/// \param PointOfInstantiation the point at which the instantiation was
|
|
/// required. Note that this is not precisely a "point of instantiation"
|
|
/// for the variable, but it's close.
|
|
///
|
|
/// \param Var the already-instantiated declaration of a templated variable.
|
|
///
|
|
/// \param Recursive if true, recursively instantiates any functions that
|
|
/// are required by this instantiation.
|
|
///
|
|
/// \param DefinitionRequired if true, then we are performing an explicit
|
|
/// instantiation where a definition of the variable is required. Complain
|
|
/// if there is no such definition.
|
|
void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
|
|
VarDecl *Var, bool Recursive,
|
|
bool DefinitionRequired, bool AtEndOfTU) {
|
|
if (Var->isInvalidDecl())
|
|
return;
|
|
|
|
// Never instantiate an explicitly-specialized entity.
|
|
TemplateSpecializationKind TSK =
|
|
Var->getTemplateSpecializationKindForInstantiation();
|
|
if (TSK == TSK_ExplicitSpecialization)
|
|
return;
|
|
|
|
// Find the pattern and the arguments to substitute into it.
|
|
VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
|
|
assert(PatternDecl && "no pattern for templated variable");
|
|
MultiLevelTemplateArgumentList TemplateArgs =
|
|
getTemplateInstantiationArgs(Var);
|
|
|
|
VarTemplateSpecializationDecl *VarSpec =
|
|
dyn_cast<VarTemplateSpecializationDecl>(Var);
|
|
if (VarSpec) {
|
|
// If this is a static data member template, there might be an
|
|
// uninstantiated initializer on the declaration. If so, instantiate
|
|
// it now.
|
|
//
|
|
// FIXME: This largely duplicates what we would do below. The difference
|
|
// is that along this path we may instantiate an initializer from an
|
|
// in-class declaration of the template and instantiate the definition
|
|
// from a separate out-of-class definition.
|
|
if (PatternDecl->isStaticDataMember() &&
|
|
(PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
|
|
!Var->hasInit()) {
|
|
// FIXME: Factor out the duplicated instantiation context setup/tear down
|
|
// code here.
|
|
InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
|
|
if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
|
|
return;
|
|
PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
|
|
"instantiating variable initializer");
|
|
|
|
// The instantiation is visible here, even if it was first declared in an
|
|
// unimported module.
|
|
Var->setVisibleDespiteOwningModule();
|
|
|
|
// If we're performing recursive template instantiation, create our own
|
|
// queue of pending implicit instantiations that we will instantiate
|
|
// later, while we're still within our own instantiation context.
|
|
GlobalEagerInstantiationScope GlobalInstantiations(*this,
|
|
/*Enabled=*/Recursive);
|
|
LocalInstantiationScope Local(*this);
|
|
LocalEagerInstantiationScope LocalInstantiations(*this);
|
|
|
|
// Enter the scope of this instantiation. We don't use
|
|
// PushDeclContext because we don't have a scope.
|
|
ContextRAII PreviousContext(*this, Var->getDeclContext());
|
|
InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
|
|
PreviousContext.pop();
|
|
|
|
// This variable may have local implicit instantiations that need to be
|
|
// instantiated within this scope.
|
|
LocalInstantiations.perform();
|
|
Local.Exit();
|
|
GlobalInstantiations.perform();
|
|
}
|
|
} else {
|
|
assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
|
|
"not a static data member?");
|
|
}
|
|
|
|
VarDecl *Def = PatternDecl->getDefinition(getASTContext());
|
|
|
|
// If we don't have a definition of the variable template, we won't perform
|
|
// any instantiation. Rather, we rely on the user to instantiate this
|
|
// definition (or provide a specialization for it) in another translation
|
|
// unit.
|
|
if (!Def && !DefinitionRequired) {
|
|
if (TSK == TSK_ExplicitInstantiationDefinition) {
|
|
PendingInstantiations.push_back(
|
|
std::make_pair(Var, PointOfInstantiation));
|
|
} else if (TSK == TSK_ImplicitInstantiation) {
|
|
// Warn about missing definition at the end of translation unit.
|
|
if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
|
|
!getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
|
|
Diag(PointOfInstantiation, diag::warn_var_template_missing)
|
|
<< Var;
|
|
Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
|
|
if (getLangOpts().CPlusPlus11)
|
|
Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// FIXME: We need to track the instantiation stack in order to know which
|
|
// definitions should be visible within this instantiation.
|
|
// FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
|
|
if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
|
|
/*InstantiatedFromMember*/false,
|
|
PatternDecl, Def, TSK,
|
|
/*Complain*/DefinitionRequired))
|
|
return;
|
|
|
|
// C++11 [temp.explicit]p10:
|
|
// Except for inline functions, const variables of literal types, variables
|
|
// of reference types, [...] explicit instantiation declarations
|
|
// have the effect of suppressing the implicit instantiation of the entity
|
|
// to which they refer.
|
|
//
|
|
// FIXME: That's not exactly the same as "might be usable in constant
|
|
// expressions", which only allows constexpr variables and const integral
|
|
// types, not arbitrary const literal types.
|
|
if (TSK == TSK_ExplicitInstantiationDeclaration &&
|
|
!Var->mightBeUsableInConstantExpressions(getASTContext()))
|
|
return;
|
|
|
|
// Make sure to pass the instantiated variable to the consumer at the end.
|
|
struct PassToConsumerRAII {
|
|
ASTConsumer &Consumer;
|
|
VarDecl *Var;
|
|
|
|
PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
|
|
: Consumer(Consumer), Var(Var) { }
|
|
|
|
~PassToConsumerRAII() {
|
|
Consumer.HandleCXXStaticMemberVarInstantiation(Var);
|
|
}
|
|
} PassToConsumerRAII(Consumer, Var);
|
|
|
|
// If we already have a definition, we're done.
|
|
if (VarDecl *Def = Var->getDefinition()) {
|
|
// We may be explicitly instantiating something we've already implicitly
|
|
// instantiated.
|
|
Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
|
|
PointOfInstantiation);
|
|
return;
|
|
}
|
|
|
|
InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
|
|
if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
|
|
return;
|
|
PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
|
|
"instantiating variable definition");
|
|
|
|
// If we're performing recursive template instantiation, create our own
|
|
// queue of pending implicit instantiations that we will instantiate later,
|
|
// while we're still within our own instantiation context.
|
|
GlobalEagerInstantiationScope GlobalInstantiations(*this,
|
|
/*Enabled=*/Recursive);
|
|
|
|
// Enter the scope of this instantiation. We don't use
|
|
// PushDeclContext because we don't have a scope.
|
|
ContextRAII PreviousContext(*this, Var->getDeclContext());
|
|
LocalInstantiationScope Local(*this);
|
|
|
|
LocalEagerInstantiationScope LocalInstantiations(*this);
|
|
|
|
VarDecl *OldVar = Var;
|
|
if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
|
|
// We're instantiating an inline static data member whose definition was
|
|
// provided inside the class.
|
|
InstantiateVariableInitializer(Var, Def, TemplateArgs);
|
|
} else if (!VarSpec) {
|
|
Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
|
|
TemplateArgs));
|
|
} else if (Var->isStaticDataMember() &&
|
|
Var->getLexicalDeclContext()->isRecord()) {
|
|
// We need to instantiate the definition of a static data member template,
|
|
// and all we have is the in-class declaration of it. Instantiate a separate
|
|
// declaration of the definition.
|
|
TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
|
|
TemplateArgs);
|
|
Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
|
|
VarSpec->getSpecializedTemplate(), Def, VarSpec->getTemplateArgsInfo(),
|
|
VarSpec->getTemplateArgs().asArray(), VarSpec));
|
|
if (Var) {
|
|
llvm::PointerUnion<VarTemplateDecl *,
|
|
VarTemplatePartialSpecializationDecl *> PatternPtr =
|
|
VarSpec->getSpecializedTemplateOrPartial();
|
|
if (VarTemplatePartialSpecializationDecl *Partial =
|
|
PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
|
|
cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
|
|
Partial, &VarSpec->getTemplateInstantiationArgs());
|
|
|
|
// Attach the initializer.
|
|
InstantiateVariableInitializer(Var, Def, TemplateArgs);
|
|
}
|
|
} else
|
|
// Complete the existing variable's definition with an appropriately
|
|
// substituted type and initializer.
|
|
Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
|
|
|
|
PreviousContext.pop();
|
|
|
|
if (Var) {
|
|
PassToConsumerRAII.Var = Var;
|
|
Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
|
|
OldVar->getPointOfInstantiation());
|
|
}
|
|
|
|
// This variable may have local implicit instantiations that need to be
|
|
// instantiated within this scope.
|
|
LocalInstantiations.perform();
|
|
Local.Exit();
|
|
GlobalInstantiations.perform();
|
|
}
|
|
|
|
void
|
|
Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
|
|
const CXXConstructorDecl *Tmpl,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
|
|
SmallVector<CXXCtorInitializer*, 4> NewInits;
|
|
bool AnyErrors = Tmpl->isInvalidDecl();
|
|
|
|
// Instantiate all the initializers.
|
|
for (const auto *Init : Tmpl->inits()) {
|
|
// Only instantiate written initializers, let Sema re-construct implicit
|
|
// ones.
|
|
if (!Init->isWritten())
|
|
continue;
|
|
|
|
SourceLocation EllipsisLoc;
|
|
|
|
if (Init->isPackExpansion()) {
|
|
// This is a pack expansion. We should expand it now.
|
|
TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
|
|
SmallVector<UnexpandedParameterPack, 4> Unexpanded;
|
|
collectUnexpandedParameterPacks(BaseTL, Unexpanded);
|
|
collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
|
|
bool ShouldExpand = false;
|
|
bool RetainExpansion = false;
|
|
Optional<unsigned> NumExpansions;
|
|
if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
|
|
BaseTL.getSourceRange(),
|
|
Unexpanded,
|
|
TemplateArgs, ShouldExpand,
|
|
RetainExpansion,
|
|
NumExpansions)) {
|
|
AnyErrors = true;
|
|
New->setInvalidDecl();
|
|
continue;
|
|
}
|
|
assert(ShouldExpand && "Partial instantiation of base initializer?");
|
|
|
|
// Loop over all of the arguments in the argument pack(s),
|
|
for (unsigned I = 0; I != *NumExpansions; ++I) {
|
|
Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
|
|
|
|
// Instantiate the initializer.
|
|
ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
|
|
/*CXXDirectInit=*/true);
|
|
if (TempInit.isInvalid()) {
|
|
AnyErrors = true;
|
|
break;
|
|
}
|
|
|
|
// Instantiate the base type.
|
|
TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
|
|
TemplateArgs,
|
|
Init->getSourceLocation(),
|
|
New->getDeclName());
|
|
if (!BaseTInfo) {
|
|
AnyErrors = true;
|
|
break;
|
|
}
|
|
|
|
// Build the initializer.
|
|
MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
|
|
BaseTInfo, TempInit.get(),
|
|
New->getParent(),
|
|
SourceLocation());
|
|
if (NewInit.isInvalid()) {
|
|
AnyErrors = true;
|
|
break;
|
|
}
|
|
|
|
NewInits.push_back(NewInit.get());
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
// Instantiate the initializer.
|
|
ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
|
|
/*CXXDirectInit=*/true);
|
|
if (TempInit.isInvalid()) {
|
|
AnyErrors = true;
|
|
continue;
|
|
}
|
|
|
|
MemInitResult NewInit;
|
|
if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
|
|
TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
|
|
TemplateArgs,
|
|
Init->getSourceLocation(),
|
|
New->getDeclName());
|
|
if (!TInfo) {
|
|
AnyErrors = true;
|
|
New->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
if (Init->isBaseInitializer())
|
|
NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
|
|
New->getParent(), EllipsisLoc);
|
|
else
|
|
NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
|
|
cast<CXXRecordDecl>(CurContext->getParent()));
|
|
} else if (Init->isMemberInitializer()) {
|
|
FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
|
|
Init->getMemberLocation(),
|
|
Init->getMember(),
|
|
TemplateArgs));
|
|
if (!Member) {
|
|
AnyErrors = true;
|
|
New->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
NewInit = BuildMemberInitializer(Member, TempInit.get(),
|
|
Init->getSourceLocation());
|
|
} else if (Init->isIndirectMemberInitializer()) {
|
|
IndirectFieldDecl *IndirectMember =
|
|
cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
|
|
Init->getMemberLocation(),
|
|
Init->getIndirectMember(), TemplateArgs));
|
|
|
|
if (!IndirectMember) {
|
|
AnyErrors = true;
|
|
New->setInvalidDecl();
|
|
continue;
|
|
}
|
|
|
|
NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
|
|
Init->getSourceLocation());
|
|
}
|
|
|
|
if (NewInit.isInvalid()) {
|
|
AnyErrors = true;
|
|
New->setInvalidDecl();
|
|
} else {
|
|
NewInits.push_back(NewInit.get());
|
|
}
|
|
}
|
|
|
|
// Assign all the initializers to the new constructor.
|
|
ActOnMemInitializers(New,
|
|
/*FIXME: ColonLoc */
|
|
SourceLocation(),
|
|
NewInits,
|
|
AnyErrors);
|
|
}
|
|
|
|
// TODO: this could be templated if the various decl types used the
|
|
// same method name.
|
|
static bool isInstantiationOf(ClassTemplateDecl *Pattern,
|
|
ClassTemplateDecl *Instance) {
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromMemberTemplate();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
|
|
FunctionTemplateDecl *Instance) {
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromMemberTemplate();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
|
|
ClassTemplatePartialSpecializationDecl *Instance) {
|
|
Pattern
|
|
= cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
|
|
do {
|
|
Instance = cast<ClassTemplatePartialSpecializationDecl>(
|
|
Instance->getCanonicalDecl());
|
|
if (Pattern == Instance)
|
|
return true;
|
|
Instance = Instance->getInstantiatedFromMember();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isInstantiationOf(CXXRecordDecl *Pattern,
|
|
CXXRecordDecl *Instance) {
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromMemberClass();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isInstantiationOf(FunctionDecl *Pattern,
|
|
FunctionDecl *Instance) {
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromMemberFunction();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isInstantiationOf(EnumDecl *Pattern,
|
|
EnumDecl *Instance) {
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromMemberEnum();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isInstantiationOf(UsingShadowDecl *Pattern,
|
|
UsingShadowDecl *Instance,
|
|
ASTContext &C) {
|
|
return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
|
|
Pattern);
|
|
}
|
|
|
|
static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
|
|
ASTContext &C) {
|
|
return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
|
|
}
|
|
|
|
template<typename T>
|
|
static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
|
|
ASTContext &Ctx) {
|
|
// An unresolved using declaration can instantiate to an unresolved using
|
|
// declaration, or to a using declaration or a using declaration pack.
|
|
//
|
|
// Multiple declarations can claim to be instantiated from an unresolved
|
|
// using declaration if it's a pack expansion. We want the UsingPackDecl
|
|
// in that case, not the individual UsingDecls within the pack.
|
|
bool OtherIsPackExpansion;
|
|
NamedDecl *OtherFrom;
|
|
if (auto *OtherUUD = dyn_cast<T>(Other)) {
|
|
OtherIsPackExpansion = OtherUUD->isPackExpansion();
|
|
OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
|
|
} else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
|
|
OtherIsPackExpansion = true;
|
|
OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
|
|
} else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
|
|
OtherIsPackExpansion = false;
|
|
OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
|
|
} else {
|
|
return false;
|
|
}
|
|
return Pattern->isPackExpansion() == OtherIsPackExpansion &&
|
|
declaresSameEntity(OtherFrom, Pattern);
|
|
}
|
|
|
|
static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
|
|
VarDecl *Instance) {
|
|
assert(Instance->isStaticDataMember());
|
|
|
|
Pattern = Pattern->getCanonicalDecl();
|
|
|
|
do {
|
|
Instance = Instance->getCanonicalDecl();
|
|
if (Pattern == Instance) return true;
|
|
Instance = Instance->getInstantiatedFromStaticDataMember();
|
|
} while (Instance);
|
|
|
|
return false;
|
|
}
|
|
|
|
// Other is the prospective instantiation
|
|
// D is the prospective pattern
|
|
static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
|
|
if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
|
|
return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
|
|
|
|
if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
|
|
return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
|
|
|
|
if (D->getKind() != Other->getKind())
|
|
return false;
|
|
|
|
if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
|
|
return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
|
|
|
|
if (auto *Function = dyn_cast<FunctionDecl>(Other))
|
|
return isInstantiationOf(cast<FunctionDecl>(D), Function);
|
|
|
|
if (auto *Enum = dyn_cast<EnumDecl>(Other))
|
|
return isInstantiationOf(cast<EnumDecl>(D), Enum);
|
|
|
|
if (auto *Var = dyn_cast<VarDecl>(Other))
|
|
if (Var->isStaticDataMember())
|
|
return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
|
|
|
|
if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
|
|
return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
|
|
|
|
if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
|
|
return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
|
|
|
|
if (auto *PartialSpec =
|
|
dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
|
|
return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
|
|
PartialSpec);
|
|
|
|
if (auto *Field = dyn_cast<FieldDecl>(Other)) {
|
|
if (!Field->getDeclName()) {
|
|
// This is an unnamed field.
|
|
return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
|
|
cast<FieldDecl>(D));
|
|
}
|
|
}
|
|
|
|
if (auto *Using = dyn_cast<UsingDecl>(Other))
|
|
return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
|
|
|
|
if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
|
|
return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
|
|
|
|
return D->getDeclName() &&
|
|
D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
|
|
}
|
|
|
|
template<typename ForwardIterator>
|
|
static NamedDecl *findInstantiationOf(ASTContext &Ctx,
|
|
NamedDecl *D,
|
|
ForwardIterator first,
|
|
ForwardIterator last) {
|
|
for (; first != last; ++first)
|
|
if (isInstantiationOf(Ctx, D, *first))
|
|
return cast<NamedDecl>(*first);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Finds the instantiation of the given declaration context
|
|
/// within the current instantiation.
|
|
///
|
|
/// \returns NULL if there was an error
|
|
DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
|
|
Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
|
|
return cast_or_null<DeclContext>(ID);
|
|
} else return DC;
|
|
}
|
|
|
|
/// Determine whether the given context is dependent on template parameters at
|
|
/// level \p Level or below.
|
|
///
|
|
/// Sometimes we only substitute an inner set of template arguments and leave
|
|
/// the outer templates alone. In such cases, contexts dependent only on the
|
|
/// outer levels are not effectively dependent.
|
|
static bool isDependentContextAtLevel(DeclContext *DC, unsigned Level) {
|
|
if (!DC->isDependentContext())
|
|
return false;
|
|
if (!Level)
|
|
return true;
|
|
return cast<Decl>(DC)->getTemplateDepth() > Level;
|
|
}
|
|
|
|
/// Find the instantiation of the given declaration within the
|
|
/// current instantiation.
|
|
///
|
|
/// This routine is intended to be used when \p D is a declaration
|
|
/// referenced from within a template, that needs to mapped into the
|
|
/// corresponding declaration within an instantiation. For example,
|
|
/// given:
|
|
///
|
|
/// \code
|
|
/// template<typename T>
|
|
/// struct X {
|
|
/// enum Kind {
|
|
/// KnownValue = sizeof(T)
|
|
/// };
|
|
///
|
|
/// bool getKind() const { return KnownValue; }
|
|
/// };
|
|
///
|
|
/// template struct X<int>;
|
|
/// \endcode
|
|
///
|
|
/// In the instantiation of X<int>::getKind(), we need to map the \p
|
|
/// EnumConstantDecl for \p KnownValue (which refers to
|
|
/// X<T>::<Kind>::KnownValue) to its instantiation (X<int>::<Kind>::KnownValue).
|
|
/// \p FindInstantiatedDecl performs this mapping from within the instantiation
|
|
/// of X<int>.
|
|
NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs,
|
|
bool FindingInstantiatedContext) {
|
|
DeclContext *ParentDC = D->getDeclContext();
|
|
// Determine whether our parent context depends on any of the tempalte
|
|
// arguments we're currently substituting.
|
|
bool ParentDependsOnArgs = isDependentContextAtLevel(
|
|
ParentDC, TemplateArgs.getNumRetainedOuterLevels());
|
|
// FIXME: Parmeters of pointer to functions (y below) that are themselves
|
|
// parameters (p below) can have their ParentDC set to the translation-unit
|
|
// - thus we can not consistently check if the ParentDC of such a parameter
|
|
// is Dependent or/and a FunctionOrMethod.
|
|
// For e.g. this code, during Template argument deduction tries to
|
|
// find an instantiated decl for (T y) when the ParentDC for y is
|
|
// the translation unit.
|
|
// e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
|
|
// float baz(float(*)()) { return 0.0; }
|
|
// Foo(baz);
|
|
// The better fix here is perhaps to ensure that a ParmVarDecl, by the time
|
|
// it gets here, always has a FunctionOrMethod as its ParentDC??
|
|
// For now:
|
|
// - as long as we have a ParmVarDecl whose parent is non-dependent and
|
|
// whose type is not instantiation dependent, do nothing to the decl
|
|
// - otherwise find its instantiated decl.
|
|
if (isa<ParmVarDecl>(D) && !ParentDependsOnArgs &&
|
|
!cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
|
|
return D;
|
|
if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
|
|
isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
|
|
(ParentDependsOnArgs && (ParentDC->isFunctionOrMethod() ||
|
|
isa<OMPDeclareReductionDecl>(ParentDC) ||
|
|
isa<OMPDeclareMapperDecl>(ParentDC))) ||
|
|
(isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) {
|
|
// D is a local of some kind. Look into the map of local
|
|
// declarations to their instantiations.
|
|
if (CurrentInstantiationScope) {
|
|
if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
|
|
if (Decl *FD = Found->dyn_cast<Decl *>())
|
|
return cast<NamedDecl>(FD);
|
|
|
|
int PackIdx = ArgumentPackSubstitutionIndex;
|
|
assert(PackIdx != -1 &&
|
|
"found declaration pack but not pack expanding");
|
|
typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
|
|
return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
|
|
}
|
|
}
|
|
|
|
// If we're performing a partial substitution during template argument
|
|
// deduction, we may not have values for template parameters yet. They
|
|
// just map to themselves.
|
|
if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
|
|
isa<TemplateTemplateParmDecl>(D))
|
|
return D;
|
|
|
|
if (D->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
// Normally this function only searches for already instantiated declaration
|
|
// however we have to make an exclusion for local types used before
|
|
// definition as in the code:
|
|
//
|
|
// template<typename T> void f1() {
|
|
// void g1(struct x1);
|
|
// struct x1 {};
|
|
// }
|
|
//
|
|
// In this case instantiation of the type of 'g1' requires definition of
|
|
// 'x1', which is defined later. Error recovery may produce an enum used
|
|
// before definition. In these cases we need to instantiate relevant
|
|
// declarations here.
|
|
bool NeedInstantiate = false;
|
|
if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
|
|
NeedInstantiate = RD->isLocalClass();
|
|
else if (isa<TypedefNameDecl>(D) &&
|
|
isa<CXXDeductionGuideDecl>(D->getDeclContext()))
|
|
NeedInstantiate = true;
|
|
else
|
|
NeedInstantiate = isa<EnumDecl>(D);
|
|
if (NeedInstantiate) {
|
|
Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
|
|
CurrentInstantiationScope->InstantiatedLocal(D, Inst);
|
|
return cast<TypeDecl>(Inst);
|
|
}
|
|
|
|
// If we didn't find the decl, then we must have a label decl that hasn't
|
|
// been found yet. Lazily instantiate it and return it now.
|
|
assert(isa<LabelDecl>(D));
|
|
|
|
Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
|
|
assert(Inst && "Failed to instantiate label??");
|
|
|
|
CurrentInstantiationScope->InstantiatedLocal(D, Inst);
|
|
return cast<LabelDecl>(Inst);
|
|
}
|
|
|
|
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
|
|
if (!Record->isDependentContext())
|
|
return D;
|
|
|
|
// Determine whether this record is the "templated" declaration describing
|
|
// a class template or class template partial specialization.
|
|
ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
|
|
if (ClassTemplate)
|
|
ClassTemplate = ClassTemplate->getCanonicalDecl();
|
|
else if (ClassTemplatePartialSpecializationDecl *PartialSpec
|
|
= dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
|
|
ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
|
|
|
|
// Walk the current context to find either the record or an instantiation of
|
|
// it.
|
|
DeclContext *DC = CurContext;
|
|
while (!DC->isFileContext()) {
|
|
// If we're performing substitution while we're inside the template
|
|
// definition, we'll find our own context. We're done.
|
|
if (DC->Equals(Record))
|
|
return Record;
|
|
|
|
if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
|
|
// Check whether we're in the process of instantiating a class template
|
|
// specialization of the template we're mapping.
|
|
if (ClassTemplateSpecializationDecl *InstSpec
|
|
= dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
|
|
ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
|
|
if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
|
|
return InstRecord;
|
|
}
|
|
|
|
// Check whether we're in the process of instantiating a member class.
|
|
if (isInstantiationOf(Record, InstRecord))
|
|
return InstRecord;
|
|
}
|
|
|
|
// Move to the outer template scope.
|
|
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
|
|
if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){
|
|
DC = FD->getLexicalDeclContext();
|
|
continue;
|
|
}
|
|
// An implicit deduction guide acts as if it's within the class template
|
|
// specialization described by its name and first N template params.
|
|
auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
|
|
if (Guide && Guide->isImplicit()) {
|
|
TemplateDecl *TD = Guide->getDeducedTemplate();
|
|
// Convert the arguments to an "as-written" list.
|
|
TemplateArgumentListInfo Args(Loc, Loc);
|
|
for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
|
|
TD->getTemplateParameters()->size())) {
|
|
ArrayRef<TemplateArgument> Unpacked(Arg);
|
|
if (Arg.getKind() == TemplateArgument::Pack)
|
|
Unpacked = Arg.pack_elements();
|
|
for (TemplateArgument UnpackedArg : Unpacked)
|
|
Args.addArgument(
|
|
getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
|
|
}
|
|
QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
|
|
if (T.isNull())
|
|
return nullptr;
|
|
auto *SubstRecord = T->getAsCXXRecordDecl();
|
|
assert(SubstRecord && "class template id not a class type?");
|
|
// Check that this template-id names the primary template and not a
|
|
// partial or explicit specialization. (In the latter cases, it's
|
|
// meaningless to attempt to find an instantiation of D within the
|
|
// specialization.)
|
|
// FIXME: The standard doesn't say what should happen here.
|
|
if (FindingInstantiatedContext &&
|
|
usesPartialOrExplicitSpecialization(
|
|
Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
|
|
Diag(Loc, diag::err_specialization_not_primary_template)
|
|
<< T << (SubstRecord->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitSpecialization);
|
|
return nullptr;
|
|
}
|
|
DC = SubstRecord;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
DC = DC->getParent();
|
|
}
|
|
|
|
// Fall through to deal with other dependent record types (e.g.,
|
|
// anonymous unions in class templates).
|
|
}
|
|
|
|
if (!ParentDependsOnArgs)
|
|
return D;
|
|
|
|
ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
|
|
if (!ParentDC)
|
|
return nullptr;
|
|
|
|
if (ParentDC != D->getDeclContext()) {
|
|
// We performed some kind of instantiation in the parent context,
|
|
// so now we need to look into the instantiated parent context to
|
|
// find the instantiation of the declaration D.
|
|
|
|
// If our context used to be dependent, we may need to instantiate
|
|
// it before performing lookup into that context.
|
|
bool IsBeingInstantiated = false;
|
|
if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
|
|
if (!Spec->isDependentContext()) {
|
|
QualType T = Context.getTypeDeclType(Spec);
|
|
const RecordType *Tag = T->getAs<RecordType>();
|
|
assert(Tag && "type of non-dependent record is not a RecordType");
|
|
if (Tag->isBeingDefined())
|
|
IsBeingInstantiated = true;
|
|
if (!Tag->isBeingDefined() &&
|
|
RequireCompleteType(Loc, T, diag::err_incomplete_type))
|
|
return nullptr;
|
|
|
|
ParentDC = Tag->getDecl();
|
|
}
|
|
}
|
|
|
|
NamedDecl *Result = nullptr;
|
|
// FIXME: If the name is a dependent name, this lookup won't necessarily
|
|
// find it. Does that ever matter?
|
|
if (auto Name = D->getDeclName()) {
|
|
DeclarationNameInfo NameInfo(Name, D->getLocation());
|
|
DeclarationNameInfo NewNameInfo =
|
|
SubstDeclarationNameInfo(NameInfo, TemplateArgs);
|
|
Name = NewNameInfo.getName();
|
|
if (!Name)
|
|
return nullptr;
|
|
DeclContext::lookup_result Found = ParentDC->lookup(Name);
|
|
|
|
Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
|
|
} else {
|
|
// Since we don't have a name for the entity we're looking for,
|
|
// our only option is to walk through all of the declarations to
|
|
// find that name. This will occur in a few cases:
|
|
//
|
|
// - anonymous struct/union within a template
|
|
// - unnamed class/struct/union/enum within a template
|
|
//
|
|
// FIXME: Find a better way to find these instantiations!
|
|
Result = findInstantiationOf(Context, D,
|
|
ParentDC->decls_begin(),
|
|
ParentDC->decls_end());
|
|
}
|
|
|
|
if (!Result) {
|
|
if (isa<UsingShadowDecl>(D)) {
|
|
// UsingShadowDecls can instantiate to nothing because of using hiding.
|
|
} else if (hasUncompilableErrorOccurred()) {
|
|
// We've already complained about some ill-formed code, so most likely
|
|
// this declaration failed to instantiate. There's no point in
|
|
// complaining further, since this is normal in invalid code.
|
|
// FIXME: Use more fine-grained 'invalid' tracking for this.
|
|
} else if (IsBeingInstantiated) {
|
|
// The class in which this member exists is currently being
|
|
// instantiated, and we haven't gotten around to instantiating this
|
|
// member yet. This can happen when the code uses forward declarations
|
|
// of member classes, and introduces ordering dependencies via
|
|
// template instantiation.
|
|
Diag(Loc, diag::err_member_not_yet_instantiated)
|
|
<< D->getDeclName()
|
|
<< Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
|
|
Diag(D->getLocation(), diag::note_non_instantiated_member_here);
|
|
} else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
|
|
// This enumeration constant was found when the template was defined,
|
|
// but can't be found in the instantiation. This can happen if an
|
|
// unscoped enumeration member is explicitly specialized.
|
|
EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
|
|
EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
|
|
TemplateArgs));
|
|
assert(Spec->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitSpecialization);
|
|
Diag(Loc, diag::err_enumerator_does_not_exist)
|
|
<< D->getDeclName()
|
|
<< Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
|
|
Diag(Spec->getLocation(), diag::note_enum_specialized_here)
|
|
<< Context.getTypeDeclType(Spec);
|
|
} else {
|
|
// We should have found something, but didn't.
|
|
llvm_unreachable("Unable to find instantiation of declaration!");
|
|
}
|
|
}
|
|
|
|
D = Result;
|
|
}
|
|
|
|
return D;
|
|
}
|
|
|
|
/// Performs template instantiation for all implicit template
|
|
/// instantiations we have seen until this point.
|
|
void Sema::PerformPendingInstantiations(bool LocalOnly) {
|
|
std::deque<PendingImplicitInstantiation> delayedPCHInstantiations;
|
|
while (!PendingLocalImplicitInstantiations.empty() ||
|
|
(!LocalOnly && !PendingInstantiations.empty())) {
|
|
PendingImplicitInstantiation Inst;
|
|
|
|
if (PendingLocalImplicitInstantiations.empty()) {
|
|
Inst = PendingInstantiations.front();
|
|
PendingInstantiations.pop_front();
|
|
} else {
|
|
Inst = PendingLocalImplicitInstantiations.front();
|
|
PendingLocalImplicitInstantiations.pop_front();
|
|
}
|
|
|
|
// Instantiate function definitions
|
|
if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
|
|
bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitInstantiationDefinition;
|
|
if (Function->isMultiVersion()) {
|
|
getASTContext().forEachMultiversionedFunctionVersion(
|
|
Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
|
|
InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
|
|
DefinitionRequired, true);
|
|
if (CurFD->isDefined())
|
|
CurFD->setInstantiationIsPending(false);
|
|
});
|
|
} else {
|
|
InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
|
|
DefinitionRequired, true);
|
|
if (Function->isDefined())
|
|
Function->setInstantiationIsPending(false);
|
|
}
|
|
// Definition of a PCH-ed template declaration may be available only in the TU.
|
|
if (!LocalOnly && LangOpts.PCHInstantiateTemplates &&
|
|
TUKind == TU_Prefix && Function->instantiationIsPending())
|
|
delayedPCHInstantiations.push_back(Inst);
|
|
continue;
|
|
}
|
|
|
|
// Instantiate variable definitions
|
|
VarDecl *Var = cast<VarDecl>(Inst.first);
|
|
|
|
assert((Var->isStaticDataMember() ||
|
|
isa<VarTemplateSpecializationDecl>(Var)) &&
|
|
"Not a static data member, nor a variable template"
|
|
" specialization?");
|
|
|
|
// Don't try to instantiate declarations if the most recent redeclaration
|
|
// is invalid.
|
|
if (Var->getMostRecentDecl()->isInvalidDecl())
|
|
continue;
|
|
|
|
// Check if the most recent declaration has changed the specialization kind
|
|
// and removed the need for implicit instantiation.
|
|
switch (Var->getMostRecentDecl()
|
|
->getTemplateSpecializationKindForInstantiation()) {
|
|
case TSK_Undeclared:
|
|
llvm_unreachable("Cannot instantitiate an undeclared specialization.");
|
|
case TSK_ExplicitInstantiationDeclaration:
|
|
case TSK_ExplicitSpecialization:
|
|
continue; // No longer need to instantiate this type.
|
|
case TSK_ExplicitInstantiationDefinition:
|
|
// We only need an instantiation if the pending instantiation *is* the
|
|
// explicit instantiation.
|
|
if (Var != Var->getMostRecentDecl())
|
|
continue;
|
|
break;
|
|
case TSK_ImplicitInstantiation:
|
|
break;
|
|
}
|
|
|
|
PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
|
|
"instantiating variable definition");
|
|
bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
|
|
TSK_ExplicitInstantiationDefinition;
|
|
|
|
// Instantiate static data member definitions or variable template
|
|
// specializations.
|
|
InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
|
|
DefinitionRequired, true);
|
|
}
|
|
|
|
if (!LocalOnly && LangOpts.PCHInstantiateTemplates)
|
|
PendingInstantiations.swap(delayedPCHInstantiations);
|
|
}
|
|
|
|
void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
|
|
const MultiLevelTemplateArgumentList &TemplateArgs) {
|
|
for (auto DD : Pattern->ddiags()) {
|
|
switch (DD->getKind()) {
|
|
case DependentDiagnostic::Access:
|
|
HandleDependentAccessCheck(*DD, TemplateArgs);
|
|
break;
|
|
}
|
|
}
|
|
}
|