llvm-project/clang/lib/Sema/SemaStmt.cpp

828 lines
31 KiB
C++

//===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis for statements.
//
//===----------------------------------------------------------------------===//
#include "Sema.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Stmt.h"
#include "clang/Parse/Scope.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "llvm/ADT/SmallString.h"
using namespace clang;
Sema::StmtResult Sema::ActOnExprStmt(ExprTy *expr) {
Expr *E = static_cast<Expr*>(expr);
assert(E && "ActOnExprStmt(): missing expression");
// C99 6.8.3p2: The expression in an expression statement is evaluated as a
// void expression for its side effects. Conversion to void allows any
// operand, even incomplete types.
// Same thing in for stmt first clause (when expr) and third clause.
return E;
}
Sema::StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc) {
return new NullStmt(SemiLoc);
}
Sema::StmtResult Sema::ActOnDeclStmt(DeclTy *decl, SourceLocation StartLoc,
SourceLocation EndLoc) {
if (decl == 0)
return true;
ScopedDecl *SD = cast<ScopedDecl>(static_cast<Decl *>(decl));
return new DeclStmt(SD, StartLoc, EndLoc);
}
Action::StmtResult
Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
StmtTy **elts, unsigned NumElts, bool isStmtExpr) {
Stmt **Elts = reinterpret_cast<Stmt**>(elts);
// If we're in C89 mode, check that we don't have any decls after stmts. If
// so, emit an extension diagnostic.
if (!getLangOptions().C99 && !getLangOptions().CPlusPlus) {
// Note that __extension__ can be around a decl.
unsigned i = 0;
// Skip over all declarations.
for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
// We found the end of the list or a statement. Scan for another declstmt.
for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
/*empty*/;
if (i != NumElts) {
ScopedDecl *D = cast<DeclStmt>(Elts[i])->getDecl();
Diag(D->getLocation(), diag::ext_mixed_decls_code);
}
}
// Warn about unused expressions in statements.
for (unsigned i = 0; i != NumElts; ++i) {
Expr *E = dyn_cast<Expr>(Elts[i]);
if (!E) continue;
// Warn about expressions with unused results.
if (E->hasLocalSideEffect() || E->getType()->isVoidType())
continue;
// The last expr in a stmt expr really is used.
if (isStmtExpr && i == NumElts-1)
continue;
/// DiagnoseDeadExpr - This expression is side-effect free and evaluated in
/// a context where the result is unused. Emit a diagnostic to warn about
/// this.
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
Diag(BO->getOperatorLoc(), diag::warn_unused_expr,
BO->getLHS()->getSourceRange(), BO->getRHS()->getSourceRange());
else if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
Diag(UO->getOperatorLoc(), diag::warn_unused_expr,
UO->getSubExpr()->getSourceRange());
else
Diag(E->getExprLoc(), diag::warn_unused_expr, E->getSourceRange());
}
return new CompoundStmt(Elts, NumElts, L, R);
}
Action::StmtResult
Sema::ActOnCaseStmt(SourceLocation CaseLoc, ExprTy *lhsval,
SourceLocation DotDotDotLoc, ExprTy *rhsval,
SourceLocation ColonLoc, StmtTy *subStmt) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
Expr *LHSVal = ((Expr *)lhsval), *RHSVal = ((Expr *)rhsval);
assert((LHSVal != 0) && "missing expression in case statement");
SourceLocation ExpLoc;
// C99 6.8.4.2p3: The expression shall be an integer constant.
if (!LHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
LHSVal->getSourceRange());
return SubStmt;
}
// GCC extension: The expression shall be an integer constant.
if (RHSVal && !RHSVal->isIntegerConstantExpr(Context, &ExpLoc)) {
Diag(ExpLoc, diag::err_case_label_not_integer_constant_expr,
RHSVal->getSourceRange());
RHSVal = 0; // Recover by just forgetting about it.
}
if (SwitchStack.empty()) {
Diag(CaseLoc, diag::err_case_not_in_switch);
return SubStmt;
}
CaseStmt *CS = new CaseStmt(LHSVal, RHSVal, SubStmt, CaseLoc);
SwitchStack.back()->addSwitchCase(CS);
return CS;
}
Action::StmtResult
Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
StmtTy *subStmt, Scope *CurScope) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
if (SwitchStack.empty()) {
Diag(DefaultLoc, diag::err_default_not_in_switch);
return SubStmt;
}
DefaultStmt *DS = new DefaultStmt(DefaultLoc, SubStmt);
SwitchStack.back()->addSwitchCase(DS);
return DS;
}
Action::StmtResult
Sema::ActOnLabelStmt(SourceLocation IdentLoc, IdentifierInfo *II,
SourceLocation ColonLoc, StmtTy *subStmt) {
Stmt *SubStmt = static_cast<Stmt*>(subStmt);
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[II];
// If not forward referenced or defined already, just create a new LabelStmt.
if (LabelDecl == 0)
return LabelDecl = new LabelStmt(IdentLoc, II, SubStmt);
assert(LabelDecl->getID() == II && "Label mismatch!");
// Otherwise, this label was either forward reference or multiply defined. If
// multiply defined, reject it now.
if (LabelDecl->getSubStmt()) {
Diag(IdentLoc, diag::err_redefinition_of_label, LabelDecl->getName());
Diag(LabelDecl->getIdentLoc(), diag::err_previous_definition);
return SubStmt;
}
// Otherwise, this label was forward declared, and we just found its real
// definition. Fill in the forward definition and return it.
LabelDecl->setIdentLoc(IdentLoc);
LabelDecl->setSubStmt(SubStmt);
return LabelDecl;
}
Action::StmtResult
Sema::ActOnIfStmt(SourceLocation IfLoc, ExprTy *CondVal,
StmtTy *ThenVal, SourceLocation ElseLoc,
StmtTy *ElseVal) {
Expr *condExpr = (Expr *)CondVal;
Stmt *thenStmt = (Stmt *)ThenVal;
assert(condExpr && "ActOnIfStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.4.1p1
return Diag(IfLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
// Warn if the if block has a null body without an else value.
// this helps prevent bugs due to typos, such as
// if (condition);
// do_stuff();
if (!ElseVal) {
if (NullStmt* stmt = dyn_cast<NullStmt>(thenStmt))
Diag(stmt->getSemiLoc(), diag::warn_empty_if_body);
}
return new IfStmt(IfLoc, condExpr, thenStmt, (Stmt*)ElseVal);
}
Action::StmtResult
Sema::ActOnStartOfSwitchStmt(ExprTy *cond) {
Expr *Cond = static_cast<Expr*>(cond);
// C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
UsualUnaryConversions(Cond);
SwitchStmt *SS = new SwitchStmt(Cond);
SwitchStack.push_back(SS);
return SS;
}
/// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
/// the specified width and sign. If an overflow occurs, detect it and emit
/// the specified diagnostic.
void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
unsigned NewWidth, bool NewSign,
SourceLocation Loc,
unsigned DiagID) {
// Perform a conversion to the promoted condition type if needed.
if (NewWidth > Val.getBitWidth()) {
// If this is an extension, just do it.
llvm::APSInt OldVal(Val);
Val.extend(NewWidth);
// If the input was signed and negative and the output is unsigned,
// warn.
if (!NewSign && OldVal.isSigned() && OldVal.isNegative())
Diag(Loc, DiagID, OldVal.toString(), Val.toString());
Val.setIsSigned(NewSign);
} else if (NewWidth < Val.getBitWidth()) {
// If this is a truncation, check for overflow.
llvm::APSInt ConvVal(Val);
ConvVal.trunc(NewWidth);
ConvVal.setIsSigned(NewSign);
ConvVal.extend(Val.getBitWidth());
ConvVal.setIsSigned(Val.isSigned());
if (ConvVal != Val)
Diag(Loc, DiagID, Val.toString(), ConvVal.toString());
// Regardless of whether a diagnostic was emitted, really do the
// truncation.
Val.trunc(NewWidth);
Val.setIsSigned(NewSign);
} else if (NewSign != Val.isSigned()) {
// Convert the sign to match the sign of the condition. This can cause
// overflow as well: unsigned(INTMIN)
llvm::APSInt OldVal(Val);
Val.setIsSigned(NewSign);
if (Val.isNegative()) // Sign bit changes meaning.
Diag(Loc, DiagID, OldVal.toString(), Val.toString());
}
}
namespace {
struct CaseCompareFunctor {
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const llvm::APSInt &RHS) {
return LHS.first < RHS;
}
bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS.first < RHS.first;
}
bool operator()(const llvm::APSInt &LHS,
const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
return LHS < RHS.first;
}
};
}
/// CmpCaseVals - Comparison predicate for sorting case values.
///
static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
if (lhs.first < rhs.first)
return true;
if (lhs.first == rhs.first &&
lhs.second->getCaseLoc().getRawEncoding()
< rhs.second->getCaseLoc().getRawEncoding())
return true;
return false;
}
Action::StmtResult
Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, StmtTy *Switch,
ExprTy *Body) {
Stmt *BodyStmt = (Stmt*)Body;
SwitchStmt *SS = SwitchStack.back();
assert(SS == (SwitchStmt*)Switch && "switch stack missing push/pop!");
SS->setBody(BodyStmt, SwitchLoc);
SwitchStack.pop_back();
Expr *CondExpr = SS->getCond();
QualType CondType = CondExpr->getType();
if (!CondType->isIntegerType()) { // C99 6.8.4.2p1
Diag(SwitchLoc, diag::err_typecheck_statement_requires_integer,
CondType.getAsString(), CondExpr->getSourceRange());
return true;
}
// Get the bitwidth of the switched-on value before promotions. We must
// convert the integer case values to this width before comparison.
unsigned CondWidth = static_cast<unsigned>(Context.getTypeSize(CondType));
bool CondIsSigned = CondType->isSignedIntegerType();
// Accumulate all of the case values in a vector so that we can sort them
// and detect duplicates. This vector contains the APInt for the case after
// it has been converted to the condition type.
typedef llvm::SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
CaseValsTy CaseVals;
// Keep track of any GNU case ranges we see. The APSInt is the low value.
std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRanges;
DefaultStmt *TheDefaultStmt = 0;
bool CaseListIsErroneous = false;
for (SwitchCase *SC = SS->getSwitchCaseList(); SC;
SC = SC->getNextSwitchCase()) {
if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
if (TheDefaultStmt) {
Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
Diag(TheDefaultStmt->getDefaultLoc(), diag::err_first_label);
// FIXME: Remove the default statement from the switch block so that
// we'll return a valid AST. This requires recursing down the
// AST and finding it, not something we are set up to do right now. For
// now, just lop the entire switch stmt out of the AST.
CaseListIsErroneous = true;
}
TheDefaultStmt = DS;
} else {
CaseStmt *CS = cast<CaseStmt>(SC);
// We already verified that the expression has a i-c-e value (C99
// 6.8.4.2p3) - get that value now.
llvm::APSInt LoVal(32);
Expr *Lo = CS->getLHS();
Lo->isIntegerConstantExpr(LoVal, Context);
// Convert the value to the same width/sign as the condition.
ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
CS->getLHS()->getLocStart(),
diag::warn_case_value_overflow);
// If the LHS is not the same type as the condition, insert an implicit
// cast.
ImpCastExprToType(Lo, CondType);
CS->setLHS(Lo);
// If this is a case range, remember it in CaseRanges, otherwise CaseVals.
if (CS->getRHS())
CaseRanges.push_back(std::make_pair(LoVal, CS));
else
CaseVals.push_back(std::make_pair(LoVal, CS));
}
}
// Sort all the scalar case values so we can easily detect duplicates.
std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
if (!CaseVals.empty()) {
for (unsigned i = 0, e = CaseVals.size()-1; i != e; ++i) {
if (CaseVals[i].first == CaseVals[i+1].first) {
// If we have a duplicate, report it.
Diag(CaseVals[i+1].second->getLHS()->getLocStart(),
diag::err_duplicate_case, CaseVals[i].first.toString());
Diag(CaseVals[i].second->getLHS()->getLocStart(),
diag::err_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the substmt,
// but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// Detect duplicate case ranges, which usually don't exist at all in the first
// place.
if (!CaseRanges.empty()) {
// Sort all the case ranges by their low value so we can easily detect
// overlaps between ranges.
std::stable_sort(CaseRanges.begin(), CaseRanges.end());
// Scan the ranges, computing the high values and removing empty ranges.
std::vector<llvm::APSInt> HiVals;
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
CaseStmt *CR = CaseRanges[i].second;
llvm::APSInt HiVal(32);
Expr *Hi = CR->getRHS();
Hi->isIntegerConstantExpr(HiVal, Context);
// Convert the value to the same width/sign as the condition.
ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
CR->getRHS()->getLocStart(),
diag::warn_case_value_overflow);
// If the LHS is not the same type as the condition, insert an implicit
// cast.
ImpCastExprToType(Hi, CondType);
CR->setRHS(Hi);
// If the low value is bigger than the high value, the case is empty.
if (CaseRanges[i].first > HiVal) {
Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range,
SourceRange(CR->getLHS()->getLocStart(),
CR->getRHS()->getLocEnd()));
CaseRanges.erase(CaseRanges.begin()+i);
--i, --e;
continue;
}
HiVals.push_back(HiVal);
}
// Rescan the ranges, looking for overlap with singleton values and other
// ranges. Since the range list is sorted, we only need to compare case
// ranges with their neighbors.
for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
llvm::APSInt &CRLo = CaseRanges[i].first;
llvm::APSInt &CRHi = HiVals[i];
CaseStmt *CR = CaseRanges[i].second;
// Check to see whether the case range overlaps with any singleton cases.
CaseStmt *OverlapStmt = 0;
llvm::APSInt OverlapVal(32);
// Find the smallest value >= the lower bound. If I is in the case range,
// then we have overlap.
CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
CaseVals.end(), CRLo,
CaseCompareFunctor());
if (I != CaseVals.end() && I->first < CRHi) {
OverlapVal = I->first; // Found overlap with scalar.
OverlapStmt = I->second;
}
// Find the smallest value bigger than the upper bound.
I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
OverlapVal = (I-1)->first; // Found overlap with scalar.
OverlapStmt = (I-1)->second;
}
// Check to see if this case stmt overlaps with the subsequent case range.
if (i && CRLo <= HiVals[i-1]) {
OverlapVal = HiVals[i-1]; // Found overlap with range.
OverlapStmt = CaseRanges[i-1].second;
}
if (OverlapStmt) {
// If we have a duplicate, report it.
Diag(CR->getLHS()->getLocStart(),
diag::err_duplicate_case, OverlapVal.toString());
Diag(OverlapStmt->getLHS()->getLocStart(),
diag::err_duplicate_case_prev);
// FIXME: We really want to remove the bogus case stmt from the substmt,
// but we have no way to do this right now.
CaseListIsErroneous = true;
}
}
}
// FIXME: If the case list was broken is some way, we don't have a good system
// to patch it up. Instead, just return the whole substmt as broken.
if (CaseListIsErroneous)
return true;
return SS;
}
Action::StmtResult
Sema::ActOnWhileStmt(SourceLocation WhileLoc, ExprTy *Cond, StmtTy *Body) {
Expr *condExpr = (Expr *)Cond;
assert(condExpr && "ActOnWhileStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.5p2
return Diag(WhileLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
return new WhileStmt(condExpr, (Stmt*)Body, WhileLoc);
}
Action::StmtResult
Sema::ActOnDoStmt(SourceLocation DoLoc, StmtTy *Body,
SourceLocation WhileLoc, ExprTy *Cond) {
Expr *condExpr = (Expr *)Cond;
assert(condExpr && "ActOnDoStmt(): missing expression");
DefaultFunctionArrayConversion(condExpr);
QualType condType = condExpr->getType();
if (!condType->isScalarType()) // C99 6.8.5p2
return Diag(DoLoc, diag::err_typecheck_statement_requires_scalar,
condType.getAsString(), condExpr->getSourceRange());
return new DoStmt((Stmt*)Body, condExpr, DoLoc);
}
Action::StmtResult
Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
StmtTy *first, ExprTy *second, ExprTy *third,
SourceLocation RParenLoc, StmtTy *body) {
Stmt *First = static_cast<Stmt*>(first);
Expr *Second = static_cast<Expr*>(second);
Expr *Third = static_cast<Expr*>(third);
Stmt *Body = static_cast<Stmt*>(body);
if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
// C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
// identifiers for objects having storage class 'auto' or 'register'.
for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE=DS->decl_end();
DI!=DE; ++DI) {
VarDecl *VD = dyn_cast<VarDecl>(*DI);
if (VD && VD->isBlockVarDecl() && !VD->hasLocalStorage())
VD = 0;
if (VD == 0)
Diag((*DI)->getLocation(), diag::err_non_variable_decl_in_for);
// FIXME: mark decl erroneous!
}
}
if (Second) {
DefaultFunctionArrayConversion(Second);
QualType SecondType = Second->getType();
if (!SecondType->isScalarType()) // C99 6.8.5p2
return Diag(ForLoc, diag::err_typecheck_statement_requires_scalar,
SecondType.getAsString(), Second->getSourceRange());
}
return new ForStmt(First, Second, Third, Body, ForLoc);
}
Action::StmtResult
Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtTy *first, ExprTy *second,
SourceLocation RParenLoc, StmtTy *body) {
Stmt *First = static_cast<Stmt*>(first);
Expr *Second = static_cast<Expr*>(second);
Stmt *Body = static_cast<Stmt*>(body);
if (First) {
QualType FirstType;
if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
FirstType = cast<ValueDecl>(DS->getDecl())->getType();
// C99 6.8.5p3: The declaration part of a 'for' statement shall only declare
// identifiers for objects having storage class 'auto' or 'register'.
ScopedDecl *D = DS->getDecl();
VarDecl *VD = cast<VarDecl>(D);
if (VD->isBlockVarDecl() && !VD->hasLocalStorage())
return Diag(VD->getLocation(), diag::err_non_variable_decl_in_for);
if (D->getNextDeclarator())
return Diag(D->getLocation(), diag::err_toomany_element_decls);
} else
FirstType = static_cast<Expr*>(first)->getType();
if (!Context.isObjCObjectPointerType(FirstType))
Diag(ForLoc, diag::err_selector_element_type,
FirstType.getAsString(), First->getSourceRange());
}
if (Second) {
DefaultFunctionArrayConversion(Second);
QualType SecondType = Second->getType();
if (!Context.isObjCObjectPointerType(SecondType))
Diag(ForLoc, diag::err_collection_expr_type,
SecondType.getAsString(), Second->getSourceRange());
}
return new ObjCForCollectionStmt(First, Second, Body, ForLoc, RParenLoc);
}
Action::StmtResult
Sema::ActOnGotoStmt(SourceLocation GotoLoc, SourceLocation LabelLoc,
IdentifierInfo *LabelII) {
// Look up the record for this label identifier.
LabelStmt *&LabelDecl = LabelMap[LabelII];
// If we haven't seen this label yet, create a forward reference.
if (LabelDecl == 0)
LabelDecl = new LabelStmt(LabelLoc, LabelII, 0);
return new GotoStmt(LabelDecl, GotoLoc, LabelLoc);
}
Action::StmtResult
Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,
ExprTy *DestExp) {
// FIXME: Verify that the operand is convertible to void*.
return new IndirectGotoStmt((Expr*)DestExp);
}
Action::StmtResult
Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
Scope *S = CurScope->getContinueParent();
if (!S) {
// C99 6.8.6.2p1: A break shall appear only in or as a loop body.
Diag(ContinueLoc, diag::err_continue_not_in_loop);
return true;
}
return new ContinueStmt(ContinueLoc);
}
Action::StmtResult
Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
Scope *S = CurScope->getBreakParent();
if (!S) {
// C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
Diag(BreakLoc, diag::err_break_not_in_loop_or_switch);
return true;
}
return new BreakStmt(BreakLoc);
}
Action::StmtResult
Sema::ActOnReturnStmt(SourceLocation ReturnLoc, ExprTy *rex) {
Expr *RetValExp = static_cast<Expr *>(rex);
QualType FnRetType =
getCurFunctionDecl() ? getCurFunctionDecl()->getResultType() :
getCurMethodDecl()->getResultType();
if (FnRetType->isVoidType()) {
if (RetValExp) // C99 6.8.6.4p1 (ext_ since GCC warns)
Diag(ReturnLoc, diag::ext_return_has_expr,
( getCurFunctionDecl() ?
getCurFunctionDecl()->getIdentifier()->getName() :
getCurMethodDecl()->getSelector().getName() ),
RetValExp->getSourceRange());
return new ReturnStmt(ReturnLoc, RetValExp);
} else {
if (!RetValExp) {
const char *funcName =
getCurFunctionDecl() ?
getCurFunctionDecl()->getIdentifier()->getName() :
getCurMethodDecl()->getSelector().getName().c_str();
if (getLangOptions().C99) // C99 6.8.6.4p1 (ext_ since GCC warns)
Diag(ReturnLoc, diag::ext_return_missing_expr, funcName);
else // C90 6.6.6.4p4
Diag(ReturnLoc, diag::warn_return_missing_expr, funcName);
return new ReturnStmt(ReturnLoc, (Expr*)0);
}
}
// we have a non-void function with an expression, continue checking
QualType RetValType = RetValExp->getType();
// C99 6.8.6.4p3(136): The return statement is not an assignment. The
// overlap restriction of subclause 6.5.16.1 does not apply to the case of
// function return.
AssignConvertType ConvTy = CheckSingleAssignmentConstraints(FnRetType,
RetValExp);
if (DiagnoseAssignmentResult(ConvTy, ReturnLoc, FnRetType,
RetValType, RetValExp, "returning"))
return true;
if (RetValExp) CheckReturnStackAddr(RetValExp, FnRetType, ReturnLoc);
return new ReturnStmt(ReturnLoc, (Expr*)RetValExp);
}
Sema::StmtResult Sema::ActOnAsmStmt(SourceLocation AsmLoc,
bool IsSimple,
bool IsVolatile,
unsigned NumOutputs,
unsigned NumInputs,
std::string *Names,
ExprTy **Constraints,
ExprTy **Exprs,
ExprTy *asmString,
unsigned NumClobbers,
ExprTy **Clobbers,
SourceLocation RParenLoc) {
// The parser verifies that there is a string literal here.
StringLiteral *AsmString = cast<StringLiteral>((Expr *)asmString);
if (AsmString->isWide())
// FIXME: We currently leak memory here.
return Diag(AsmString->getLocStart(), diag::err_asm_wide_character,
AsmString->getSourceRange());
for (unsigned i = 0; i < NumOutputs; i++) {
StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
if (Literal->isWide())
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(), diag::err_asm_wide_character,
Literal->getSourceRange());
std::string OutputConstraint(Literal->getStrData(),
Literal->getByteLength());
TargetInfo::ConstraintInfo info;
if (!Context.Target.validateOutputConstraint(OutputConstraint.c_str(),info))
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(),
diag::err_invalid_output_constraint_in_asm);
// Check that the output exprs are valid lvalues.
Expr *OutputExpr = (Expr *)Exprs[i];
Expr::isLvalueResult Result = OutputExpr->isLvalue(Context);
if (Result != Expr::LV_Valid) {
ParenExpr *PE = cast<ParenExpr>(OutputExpr);
// FIXME: We currently leak memory here.
return Diag(PE->getSubExpr()->getLocStart(),
diag::err_invalid_lvalue_in_asm_output,
PE->getSubExpr()->getSourceRange());
}
}
for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
StringLiteral *Literal = cast<StringLiteral>((Expr *)Constraints[i]);
if (Literal->isWide())
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(), diag::err_asm_wide_character,
Literal->getSourceRange());
std::string InputConstraint(Literal->getStrData(),
Literal->getByteLength());
TargetInfo::ConstraintInfo info;
if (!Context.Target.validateInputConstraint(InputConstraint.c_str(),
NumOutputs,
info)) {
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(),
diag::err_invalid_input_constraint_in_asm);
}
// Check that the input exprs aren't of type void.
Expr *InputExpr = (Expr *)Exprs[i];
if (InputExpr->getType()->isVoidType()) {
ParenExpr *PE = cast<ParenExpr>(InputExpr);
// FIXME: We currently leak memory here.
return Diag(PE->getSubExpr()->getLocStart(),
diag::err_invalid_type_in_asm_input,
PE->getType().getAsString(),
PE->getSubExpr()->getSourceRange());
}
}
// Check that the clobbers are valid.
for (unsigned i = 0; i < NumClobbers; i++) {
StringLiteral *Literal = cast<StringLiteral>((Expr *)Clobbers[i]);
if (Literal->isWide())
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(), diag::err_asm_wide_character,
Literal->getSourceRange());
llvm::SmallString<16> Clobber(Literal->getStrData(),
Literal->getStrData() +
Literal->getByteLength());
if (!Context.Target.isValidGCCRegisterName(Clobber.c_str()))
// FIXME: We currently leak memory here.
return Diag(Literal->getLocStart(),
diag::err_unknown_register_name_in_asm, Clobber.c_str());
}
return new AsmStmt(AsmLoc,
IsSimple,
IsVolatile,
NumOutputs,
NumInputs,
Names,
reinterpret_cast<StringLiteral**>(Constraints),
reinterpret_cast<Expr**>(Exprs),
AsmString, NumClobbers,
reinterpret_cast<StringLiteral**>(Clobbers),
RParenLoc);
}
Action::StmtResult
Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParen, StmtTy *Parm,
StmtTy *Body, StmtTy *CatchList) {
ObjCAtCatchStmt *CS = new ObjCAtCatchStmt(AtLoc, RParen,
static_cast<Stmt*>(Parm), static_cast<Stmt*>(Body),
static_cast<Stmt*>(CatchList));
return CatchList ? CatchList : CS;
}
Action::StmtResult
Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, StmtTy *Body) {
ObjCAtFinallyStmt *FS = new ObjCAtFinallyStmt(AtLoc,
static_cast<Stmt*>(Body));
return FS;
}
Action::StmtResult
Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc,
StmtTy *Try, StmtTy *Catch, StmtTy *Finally) {
ObjCAtTryStmt *TS = new ObjCAtTryStmt(AtLoc, static_cast<Stmt*>(Try),
static_cast<Stmt*>(Catch),
static_cast<Stmt*>(Finally));
return TS;
}
Action::StmtResult
Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, StmtTy *Throw) {
ObjCAtThrowStmt *TS = new ObjCAtThrowStmt(AtLoc, static_cast<Stmt*>(Throw));
return TS;
}
Action::StmtResult
Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, ExprTy *SynchExpr,
StmtTy *SynchBody) {
ObjCAtSynchronizedStmt *SS = new ObjCAtSynchronizedStmt(AtLoc,
static_cast<Stmt*>(SynchExpr), static_cast<Stmt*>(SynchBody));
return SS;
}