llvm-project/lld/lib/ReaderWriter/YAML/ReaderWriterYAML.cpp

1382 lines
50 KiB
C++

//===- lib/ReaderWriter/YAML/ReaderWriterYAML.cpp -------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lld/ReaderWriter/Reader.h"
#include "lld/ReaderWriter/Writer.h"
#include "lld/Core/ArchiveLibraryFile.h"
#include "lld/Core/DefinedAtom.h"
#include "lld/Core/Error.h"
#include "lld/Core/File.h"
#include "lld/Core/LLVM.h"
#include "lld/Core/Reference.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/OwningPtr.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "llvm/Support/YAMLTraits.h"
#include <string>
using llvm::yaml::MappingTraits;
using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::ScalarTraits;
using llvm::yaml::IO;
using llvm::yaml::SequenceTraits;
using llvm::yaml::DocumentListTraits;
using namespace lld;
/// The conversion of Atoms to and from YAML uses LLVM's YAML I/O. This
/// file just defines template specializations on the lld types which control
/// how the mapping is done to and from YAML.
namespace {
/// Most of the traits are context-free and always do the same transformation.
/// But, there are some traits that need some contextual information to properly
/// do their transform. This struct is available via io.getContext() and
/// supplies contextual information.
class ContextInfo {
public:
ContextInfo(const LinkingContext &context)
: _currentFile(nullptr), _context(context) {}
lld::File *_currentFile;
const LinkingContext &_context;
};
/// Used when writing yaml files.
/// In most cases, atoms names are unambiguous, so references can just
/// use the atom name as the target (e.g. target: foo). But in a few
/// cases that does not work, so ref-names are added. These are labels
/// used only in yaml. The labels do not exist in the Atom model.
///
/// One need for ref-names are when atoms have no user supplied name
/// (e.g. c-string literal). Another case is when two object files with
/// identically named static functions are merged (ld -r) into one object file.
/// In that case referencing the function by name is ambiguous, so a unique
/// ref-name is added.
class RefNameBuilder {
public:
RefNameBuilder(const lld::File &file)
: _collisionCount(0), _unnamedCounter(0) {
if (&file == nullptr)
return;
// visit all atoms
for (const lld::DefinedAtom *atom : file.defined()) {
// Build map of atoms names to detect duplicates
if (!atom->name().empty())
buildDuplicateNameMap(*atom);
// Find references to unnamed atoms and create ref-names for them.
for (const lld::Reference *ref : *atom) {
// create refname for any unnamed reference target
const lld::Atom *target = ref->target();
if ((target != nullptr) && target->name().empty()) {
std::string storage;
llvm::raw_string_ostream buffer(storage);
buffer << llvm::format("L%03d", _unnamedCounter++);
llvm::StringRef newName = copyString(buffer.str());
_refNames[target] = newName;
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "unnamed atom: creating ref-name: '" << newName
<< "' (" << (void*)newName.data() << ", "
<< newName.size() << ")\n");
}
}
}
for (const lld::UndefinedAtom *undefAtom : file.undefined()) {
buildDuplicateNameMap(*undefAtom);
}
for (const lld::SharedLibraryAtom *shlibAtom : file.sharedLibrary()) {
buildDuplicateNameMap(*shlibAtom);
}
for (const lld::AbsoluteAtom *absAtom : file.absolute()) {
buildDuplicateNameMap(*absAtom);
}
}
void buildDuplicateNameMap(const lld::Atom &atom) {
assert(!atom.name().empty());
NameToAtom::iterator pos = _nameMap.find(atom.name());
if ( pos != _nameMap.end() ) {
// Found name collision, give each a unique ref-name.
std::string Storage;
llvm::raw_string_ostream buffer(Storage);
buffer << atom.name() << llvm::format(".%03d", ++_collisionCount);
llvm::StringRef newName = copyString(buffer.str());
_refNames[&atom] = newName;
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "name collsion: creating ref-name: '" << newName
<< "' (" << (void*)newName.data() << ", "
<< newName.size() << ")\n");
const lld::Atom *prevAtom = pos->second;
AtomToRefName::iterator pos2 = _refNames.find(prevAtom);
if ( pos2 == _refNames.end() ) {
// Only create ref-name for previous if none already created.
std::string Storage2;
llvm::raw_string_ostream buffer2(Storage2);
buffer2 << prevAtom->name() << llvm::format(".%03d", ++_collisionCount);
llvm::StringRef newName2 = copyString(buffer2.str());
_refNames[prevAtom] = newName2;
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "name collsion: creating ref-name: '" << newName2
<< "' (" << (void*)newName2.data() << ", "
<< newName2.size() << ")\n");
}
}
else {
// First time we've seen this name, just add it to map.
_nameMap[atom.name()] = &atom;
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "atom name seen for first time: '" << atom.name()
<< "' (" << (void*)atom.name().data() << ", "
<< atom.name().size() << ")\n");
}
}
bool hasRefName(const lld::Atom *atom) {
return _refNames.count(atom);
}
llvm::StringRef refName(const lld::Atom *atom) {
return _refNames.find(atom)->second;
}
private:
typedef llvm::StringMap<const lld::Atom*> NameToAtom;
typedef llvm::DenseMap<const lld::Atom*, std::string> AtomToRefName;
// Allocate a new copy of this string and keep track of allocations
// in _stringCopies, so they can be freed when RefNameBuilder is destroyed.
llvm::StringRef copyString(llvm::StringRef str) {
// We want _stringCopies to own the string memory so it is deallocated
// when the File object is destroyed. But we need a StringRef that
// points into that memory.
std::unique_ptr<char[]> s(new char[str.size()]);
memcpy(s.get(), str.data(), str.size());
llvm::StringRef r = llvm::StringRef(s.get(), str.size());
_stringCopies.push_back(std::move(s));
return r;
}
unsigned int _collisionCount;
unsigned int _unnamedCounter;
NameToAtom _nameMap;
AtomToRefName _refNames;
std::vector<std::unique_ptr<char[]>> _stringCopies;
};
/// Used when reading yaml files to find the target of a reference
/// that could be a name or ref-name.
class RefNameResolver {
public:
RefNameResolver(const lld::File *file, IO &io);
const lld::Atom *lookup(llvm::StringRef name) const {
NameToAtom::const_iterator pos = _nameMap.find(name);
if (pos != _nameMap.end()) {
return pos->second;
}
else {
_io.setError(llvm::Twine("no such atom name: ") + name);
return nullptr;
}
}
private:
typedef llvm::StringMap<const lld::Atom*> NameToAtom;
void add(llvm::StringRef name, const lld::Atom *atom) {
if (_nameMap.count(name)) {
_io.setError(llvm::Twine("duplicate atom name: ") + name);
}
else {
_nameMap[name] = atom;
}
}
IO &_io;
NameToAtom _nameMap;
};
// Used in NormalizedFile to hold the atoms lists.
template <typename T>
class AtomList : public lld::File::atom_collection<T> {
public:
virtual lld::File::atom_iterator<T> begin() const {
return lld::File::atom_iterator<
T>(*this,
_atoms.empty() ? 0 : reinterpret_cast<const void *>(_atoms.data()));
}
virtual lld::File::atom_iterator<T> end() const{
return lld::File::atom_iterator<
T>(*this, _atoms.empty() ? 0 :
reinterpret_cast<const void *>(_atoms.data() + _atoms.size()));
}
virtual const T *deref(const void *it) const {
return *reinterpret_cast<const T *const*>(it);
}
virtual void next(const void *&it) const {
const T *const *p = reinterpret_cast<const T *const *>(it);
++p;
it = reinterpret_cast<const void*>(p);
}
virtual void push_back(const T *element) {
_atoms.push_back(element);
}
virtual uint64_t size() const { return _atoms.size(); }
std::vector<const T *> _atoms;
};
/// Mapping of kind: field in yaml files.
enum FileKinds {
fileKindObjectAtoms, // atom based object file encoded in yaml
fileKindArchive, // static archive library encoded in yaml
fileKindObjectELF, // ELF object files encoded in yaml
fileKindObjectMachO // mach-o object files encoded in yaml
};
struct ArchMember {
FileKinds _kind;
llvm::StringRef _name;
const lld::File *_content;
};
// The content bytes in a DefinedAtom are just uint8_t but we want
// special formatting, so define a strong type.
LLVM_YAML_STRONG_TYPEDEF(uint8_t, ImplicitHex8)
// SharedLibraryAtoms have a bool canBeNull() method which we'd like to be
// more readable than just true/false.
LLVM_YAML_STRONG_TYPEDEF(bool, ShlibCanBeNull)
// lld::Reference::Kind is a typedef of int32. We need a stronger
// type to make template matching work, so invent RefKind.
LLVM_YAML_STRONG_TYPEDEF(lld::Reference::Kind, RefKind)
} // namespace anon
LLVM_YAML_IS_SEQUENCE_VECTOR(ArchMember)
LLVM_YAML_IS_SEQUENCE_VECTOR(const lld::Reference *)
// Always write DefinedAtoms content bytes as a flow sequence.
LLVM_YAML_IS_FLOW_SEQUENCE_VECTOR(ImplicitHex8)
// for compatibility with gcc-4.7 in C++11 mode, add extra namespace
namespace llvm {
namespace yaml {
// This is a custom formatter for RefKind
template<>
struct ScalarTraits<RefKind> {
static void output(const RefKind &value, void *ctxt,
llvm::raw_ostream &out) {
assert(ctxt != nullptr);
ContextInfo *info = reinterpret_cast<ContextInfo*>(ctxt);
switch (value) {
case lld::Reference::kindLayoutAfter:
out << "layout-after";
break;
case lld::Reference::kindLayoutBefore:
out << "layout-before";
break;
case lld::Reference::kindInGroup:
out << "in-group";
break;
default:
if (auto relocStr = info->_context.stringFromRelocKind(value))
out << *relocStr;
else
out << "<unknown>";
break;
}
}
static StringRef input(StringRef scalar, void *ctxt, RefKind &value) {
assert(ctxt != nullptr);
ContextInfo *info = reinterpret_cast<ContextInfo*>(ctxt);
auto relocKind = info->_context.relocKindFromString(scalar);
if (!relocKind) {
if (scalar.equals("layout-after")) {
value = lld::Reference::kindLayoutAfter;
return StringRef();
}
if (scalar.equals("layout-before")) {
value = lld::Reference::kindLayoutBefore;
return StringRef();
}
if (scalar.equals("in-group")) {
value = lld::Reference::kindInGroup;
return StringRef();
}
return "Invalid relocation kind";
}
value = *relocKind;
return StringRef();
}
};
template <>
struct ScalarEnumerationTraits<lld::File::Kind> {
static void enumeration(IO &io, lld::File::Kind &value) {
io.enumCase(value, "object", lld::File::kindObject);
io.enumCase(value, "shared-library", lld::File::kindSharedLibrary);
io.enumCase(value, "static-library", lld::File::kindArchiveLibrary);
}
};
template <>
struct ScalarEnumerationTraits<lld::Atom::Scope> {
static void enumeration(IO &io, lld::Atom::Scope &value) {
io.enumCase(value, "global", lld::Atom::scopeGlobal);
io.enumCase(value, "hidden", lld::Atom::scopeLinkageUnit);
io.enumCase(value, "static", lld::Atom::scopeTranslationUnit);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::SectionChoice> {
static void enumeration(IO &io, lld::DefinedAtom::SectionChoice &value) {
io.enumCase(value, "content", lld::DefinedAtom::sectionBasedOnContent);
io.enumCase(value, "custom", lld::DefinedAtom::sectionCustomPreferred);
io.enumCase(value, "custom-required",
lld::DefinedAtom::sectionCustomRequired);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::SectionPosition> {
static void enumeration(IO &io, lld::DefinedAtom::SectionPosition &value) {
io.enumCase(value, "start", lld::DefinedAtom::sectionPositionStart);
io.enumCase(value, "early", lld::DefinedAtom::sectionPositionEarly);
io.enumCase(value, "any", lld::DefinedAtom::sectionPositionAny);
io.enumCase(value, "end", lld::DefinedAtom::sectionPositionEnd);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::Interposable> {
static void enumeration(IO &io, lld::DefinedAtom::Interposable &value) {
io.enumCase(value, "no", lld::DefinedAtom::interposeNo);
io.enumCase(value, "yes", lld::DefinedAtom::interposeYes);
io.enumCase(value, "yes-and-weak",
lld::DefinedAtom::interposeYesAndRuntimeWeak);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::Merge> {
static void enumeration(IO &io, lld::DefinedAtom::Merge &value) {
io.enumCase(value, "no", lld::DefinedAtom::mergeNo);
io.enumCase(value, "as-tentative", lld::DefinedAtom::mergeAsTentative);
io.enumCase(value, "as-weak", lld::DefinedAtom::mergeAsWeak);
io.enumCase(value, "as-addressed-weak",
lld::DefinedAtom::mergeAsWeakAndAddressUsed);
io.enumCase(value, "by-content", lld::DefinedAtom::mergeByContent);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::DeadStripKind> {
static void enumeration(IO &io, lld::DefinedAtom::DeadStripKind &value) {
io.enumCase(value, "normal", lld::DefinedAtom::deadStripNormal);
io.enumCase(value, "never", lld::DefinedAtom::deadStripNever);
io.enumCase(value, "always", lld::DefinedAtom::deadStripAlways);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::ContentPermissions> {
static void enumeration(IO &io, lld::DefinedAtom::ContentPermissions &value) {
io.enumCase(value, "---", lld::DefinedAtom::perm___);
io.enumCase(value, "r--", lld::DefinedAtom::permR__);
io.enumCase(value, "r-x", lld::DefinedAtom::permR_X);
io.enumCase(value, "rw-", lld::DefinedAtom::permRW_);
io.enumCase(value, "rwx", lld::DefinedAtom::permRWX);
io.enumCase(value, "rw-l", lld::DefinedAtom::permRW_L);
io.enumCase(value, "unknown", lld::DefinedAtom::permUnknown);
}
};
template <>
struct ScalarEnumerationTraits<lld::DefinedAtom::ContentType> {
static void enumeration(IO &io, lld::DefinedAtom::ContentType &value) {
io.enumCase(value, "unknown",
lld::DefinedAtom::typeUnknown);
io.enumCase(value, "code",
lld::DefinedAtom::typeCode);
io.enumCase(value, "stub",
lld::DefinedAtom::typeStub);
io.enumCase(value, "constant", lld::DefinedAtom::typeConstant);
io.enumCase(value, "data", lld::DefinedAtom::typeData);
io.enumCase(value, "quick-data", lld::DefinedAtom::typeDataFast);
io.enumCase(value, "zero-fill", lld::DefinedAtom::typeZeroFill);
io.enumCase(value, "zero-fill-quick", lld::DefinedAtom::typeZeroFillFast);
io.enumCase(value, "const-data", lld::DefinedAtom::typeConstData);
io.enumCase(value, "got",
lld::DefinedAtom::typeGOT);
io.enumCase(value, "resolver",
lld::DefinedAtom::typeResolver);
io.enumCase(value, "branch-island",
lld::DefinedAtom::typeBranchIsland);
io.enumCase(value, "branch-shim",
lld::DefinedAtom::typeBranchShim);
io.enumCase(value, "stub-helper",
lld::DefinedAtom::typeStubHelper);
io.enumCase(value, "c-string",
lld::DefinedAtom::typeCString);
io.enumCase(value, "utf16-string",
lld::DefinedAtom::typeUTF16String);
io.enumCase(value, "unwind-cfi",
lld::DefinedAtom::typeCFI);
io.enumCase(value, "unwind-lsda",
lld::DefinedAtom::typeLSDA);
io.enumCase(value, "const-4-byte",
lld::DefinedAtom::typeLiteral4);
io.enumCase(value, "const-8-byte",
lld::DefinedAtom::typeLiteral8);
io.enumCase(value, "const-16-byte",
lld::DefinedAtom::typeLiteral16);
io.enumCase(value, "lazy-pointer",
lld::DefinedAtom::typeLazyPointer);
io.enumCase(value, "lazy-dylib-pointer",
lld::DefinedAtom::typeLazyDylibPointer);
io.enumCase(value, "cfstring",
lld::DefinedAtom::typeCFString);
io.enumCase(value, "initializer-pointer",
lld::DefinedAtom::typeInitializerPtr);
io.enumCase(value, "terminator-pointer",
lld::DefinedAtom::typeTerminatorPtr);
io.enumCase(value, "c-string-pointer",
lld::DefinedAtom::typeCStringPtr);
io.enumCase(value, "objc-class-pointer",
lld::DefinedAtom::typeObjCClassPtr);
io.enumCase(value, "objc-category-list",
lld::DefinedAtom::typeObjC2CategoryList);
io.enumCase(value, "objc-class1",
lld::DefinedAtom::typeObjC1Class);
io.enumCase(value, "dtraceDOF",
lld::DefinedAtom::typeDTraceDOF);
io.enumCase(value, "lto-temp",
lld::DefinedAtom::typeTempLTO);
io.enumCase(value, "compact-unwind",
lld::DefinedAtom::typeCompactUnwindInfo);
io.enumCase(value, "tlv-thunk",
lld::DefinedAtom::typeThunkTLV);
io.enumCase(value, "tlv-data",
lld::DefinedAtom::typeTLVInitialData);
io.enumCase(value, "tlv-zero-fill",
lld::DefinedAtom::typeTLVInitialZeroFill);
io.enumCase(value, "tlv-initializer-ptr",
lld::DefinedAtom::typeTLVInitializerPtr);
}
};
template <>
struct ScalarEnumerationTraits<lld::UndefinedAtom::CanBeNull> {
static void enumeration(IO &io, lld::UndefinedAtom::CanBeNull &value) {
io.enumCase(value, "never", lld::UndefinedAtom::canBeNullNever);
io.enumCase(value, "at-runtime", lld::UndefinedAtom::canBeNullAtRuntime);
io.enumCase(value, "at-buildtime", lld::UndefinedAtom::canBeNullAtBuildtime);
}
};
template <>
struct ScalarEnumerationTraits<ShlibCanBeNull> {
static void enumeration(IO &io, ShlibCanBeNull &value) {
io.enumCase(value, "never", false);
io.enumCase(value, "at-runtime", true);
}
};
/// This is a custom formatter for lld::DefinedAtom::Alignment. Values look
/// like:
/// 2^3 # 8-byte aligned
/// 7 mod 2^4 # 16-byte aligned plus 7 bytes
template<>
struct ScalarTraits<lld::DefinedAtom::Alignment> {
static void output(const lld::DefinedAtom::Alignment &value, void *ctxt,
llvm::raw_ostream &out) {
if (value.modulus == 0) {
out << llvm::format("2^%d", value.powerOf2);
}
else {
out << llvm::format("%d mod 2^%d", value.modulus, value.powerOf2);
}
}
static StringRef input(StringRef scalar, void *ctxt,
lld::DefinedAtom::Alignment &value) {
value.modulus = 0;
size_t modStart = scalar.find("mod");
if (modStart != StringRef::npos) {
StringRef modStr = scalar.slice(0, modStart);
modStr = modStr.rtrim();
unsigned int modulus;
if (modStr.getAsInteger(0, modulus)) {
return "malformed alignment modulus";
}
value.modulus = modulus;
scalar = scalar.drop_front(modStart+3);
scalar = scalar.ltrim();
}
if (!scalar.startswith("2^")) {
return "malformed alignment";
}
StringRef powerStr = scalar.drop_front(2);
unsigned int power;
if (powerStr.getAsInteger(0, power)) {
return "malformed alignment power";
}
value.powerOf2 = power;
if (value.modulus > (1<<value.powerOf2)) {
return "malformed alignment, modulus too large for power";
}
return StringRef(); // returning empty string means success
}
};
template <>
struct ScalarEnumerationTraits<FileKinds> {
static void enumeration(IO &io, FileKinds &value) {
io.enumCase(value, "object", fileKindObjectAtoms);
io.enumCase(value, "archive", fileKindArchive);
io.enumCase(value, "object-elf", fileKindObjectELF);
io.enumCase(value, "object-mach-o", fileKindObjectMachO);
}
};
template <>
struct MappingTraits<ArchMember> {
static void mapping(IO &io, ArchMember &member) {
io.mapOptional("kind", member._kind, fileKindObjectAtoms);
io.mapOptional("name", member._name);
io.mapRequired("content", member._content);
}
};
// Declare that an AtomList is a yaml sequence.
template<typename T>
struct SequenceTraits<AtomList<T>> {
static size_t size(IO &io, AtomList<T> &seq) {
return seq._atoms.size();
}
static const T *&element(IO &io, AtomList<T> &seq, size_t index) {
if (index >= seq._atoms.size())
seq._atoms.resize(index+1);
return seq._atoms[index];
}
};
// Used to allow DefinedAtom content bytes to be a flow sequence of
// two-digit hex numbers without the leading 0x (e.g. FF, 04, 0A)
template<>
struct ScalarTraits<ImplicitHex8> {
static void output(const ImplicitHex8 &val, void*, llvm::raw_ostream &out) {
uint8_t num = val;
out << llvm::format("%02X", num);
}
static llvm::StringRef input(llvm::StringRef str, void*, ImplicitHex8 &val) {
unsigned long long n;
if (getAsUnsignedInteger(str, 16, n))
return "invalid two-digit-hex number";
if (n > 0xFF)
return "out of range two-digit-hex number";
val = n;
return StringRef(); // returning empty string means success
}
};
// YAML conversion for std::vector<const lld::File*>
template <> struct DocumentListTraits<std::vector<const lld::File *>> {
static size_t size(IO &io, std::vector<const lld::File *> &seq) {
return seq.size();
}
static const lld::File *&element(IO &io, std::vector<const lld::File*> &seq,
size_t index) {
if (index >= seq.size())
seq.resize(index+1);
return seq[index];
}
};
// YAML conversion for const lld::File*
template <>
struct MappingTraits<const lld::File*> {
class NormArchiveFile : public lld::ArchiveLibraryFile {
public:
NormArchiveFile(IO &io)
: ArchiveLibraryFile(((ContextInfo *)io.getContext())->_context, ""),
_path() {}
NormArchiveFile(IO &io, const lld::File *file)
: ArchiveLibraryFile(((ContextInfo *)io.getContext())->_context,
file->path()),
_path(file->path()) {
// If we want to support writing archives, this constructor would
// need to populate _members.
}
const lld::File *denormalize(IO &io) {
return this;
}
virtual void setOrdinalAndIncrement(uint64_t &ordinal) const {
_ordinal = ordinal++;
// Assign sequential ordinals to member files
for (const ArchMember &member : _members) {
member._content->setOrdinalAndIncrement(ordinal);
}
}
virtual const atom_collection<lld::DefinedAtom> &defined() const {
return _noDefinedAtoms;
}
virtual const atom_collection<lld::UndefinedAtom> &undefined() const {
return _noUndefinedAtoms;
}
virtual const atom_collection<lld::SharedLibraryAtom> &sharedLibrary()const{
return _noSharedLibraryAtoms;
}
virtual const atom_collection<lld::AbsoluteAtom> &absolute() const {
return _noAbsoluteAtoms;
}
virtual const File *find(StringRef name, bool dataSymbolOnly) const {
for (const ArchMember &member : _members) {
for (const lld::DefinedAtom *atom : member._content->defined() ) {
if (name == atom->name()) {
if (!dataSymbolOnly)
return member._content;
switch (atom->contentType()) {
case lld::DefinedAtom::typeData:
case lld::DefinedAtom::typeZeroFill:
return member._content;
default:
break;
}
}
}
}
return nullptr;
}
StringRef _path;
std::vector<ArchMember> _members;
};
class NormalizedFile : public lld::File {
public:
NormalizedFile(IO &io) : File("", kindObject), _IO(io), _rnb(nullptr) {}
NormalizedFile(IO &io, const lld::File *file)
: File(file->path(), kindObject), _IO(io), _rnb(new RefNameBuilder(*file)),
_path(file->path()) {
for (const lld::DefinedAtom *a : file->defined())
_definedAtoms.push_back(a);
for (const lld::UndefinedAtom *a : file->undefined())
_undefinedAtoms.push_back(a);
for (const lld::SharedLibraryAtom *a : file->sharedLibrary())
_sharedLibraryAtoms.push_back(a);
for (const lld::AbsoluteAtom *a : file->absolute())
_absoluteAtoms.push_back(a);
}
const lld::File *denormalize(IO &io);
virtual const atom_collection<lld::DefinedAtom> &defined() const {
return _definedAtoms;
}
virtual const atom_collection<lld::UndefinedAtom> &undefined() const {
return _undefinedAtoms;
}
virtual const atom_collection<lld::SharedLibraryAtom> &sharedLibrary()const{
return _sharedLibraryAtoms;
}
virtual const atom_collection<lld::AbsoluteAtom> &absolute() const {
return _absoluteAtoms;
}
virtual const LinkingContext &getLinkingContext() const {
return ((ContextInfo *)_IO.getContext())->_context;
}
// Allocate a new copy of this string and keep track of allocations
// in _stringCopies, so they can be freed when File is destroyed.
StringRef copyString(StringRef str) {
// We want _stringCopies to own the string memory so it is deallocated
// when the File object is destroyed. But we need a StringRef that
// points into that memory.
std::unique_ptr<char[]> s(new char[str.size()]);
memcpy(s.get(), str.data(), str.size());
llvm::StringRef r = llvm::StringRef(s.get(), str.size());
_stringCopies.push_back(std::move(s));
return r;
}
IO &_IO;
RefNameBuilder *_rnb;
StringRef _path;
AtomList<lld::DefinedAtom> _definedAtoms;
AtomList<lld::UndefinedAtom> _undefinedAtoms;
AtomList<lld::SharedLibraryAtom> _sharedLibraryAtoms;
AtomList<lld::AbsoluteAtom> _absoluteAtoms;
std::vector<std::unique_ptr<char[]>> _stringCopies;
};
static void mapping(IO &io, const lld::File *&file) {
// We only support writing atom based YAML
FileKinds kind = fileKindObjectAtoms;
// If reading, peek ahead to see what kind of file this is.
io.mapOptional("kind", kind, fileKindObjectAtoms);
//
switch (kind) {
case fileKindObjectAtoms:
mappingAtoms(io, file);
break;
case fileKindArchive:
mappingArchive(io, file);
break;
case fileKindObjectELF:
case fileKindObjectMachO:
// Eventually we will have an external function to call, similar
// to mappingAtoms() and mappingArchive() but implememented
// with coresponding file format code.
llvm_unreachable("section based YAML not supported yet");
}
}
static void mappingAtoms(IO &io, const lld::File *&file) {
MappingNormalizationHeap<NormalizedFile, const lld::File*> keys(io, file);
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
info->_currentFile = keys.operator->();
io.mapOptional("path", keys->_path);
io.mapOptional("defined-atoms", keys->_definedAtoms);
io.mapOptional("undefined-atoms", keys->_undefinedAtoms);
io.mapOptional("shared-library-atoms", keys->_sharedLibraryAtoms);
io.mapOptional("absolute-atoms", keys->_absoluteAtoms);
}
static void mappingArchive(IO &io, const lld::File *&file) {
MappingNormalizationHeap<NormArchiveFile, const lld::File*> keys(io, file);
io.mapOptional("path", keys->_path);
io.mapOptional("members", keys->_members);
}
};
// YAML conversion for const lld::Reference*
template <>
struct MappingTraits<const lld::Reference*> {
class NormalizedReference : public lld::Reference {
public:
NormalizedReference(IO &io)
: _target(nullptr), _targetName(), _offset(0), _addend(0) {}
NormalizedReference(IO &io, const lld::Reference *ref)
: _target(nullptr),
_targetName(targetName(io, ref)),
_offset(ref->offsetInAtom()),
_addend(ref->addend()),
_mappedKind(ref->kind()) {
}
const lld::Reference *denormalize(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
if (!_targetName.empty())
_targetName = f->copyString(_targetName);
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "created Reference to name: '" << _targetName
<< "' (" << (void*)_targetName.data() << ", "
<< _targetName.size() << ")\n");
setKind(_mappedKind);
return this;
}
void bind(const RefNameResolver&);
static StringRef targetName(IO &io, const lld::Reference *ref);
virtual uint64_t offsetInAtom() const { return _offset; }
virtual const lld::Atom *target() const { return _target; }
virtual Addend addend() const { return _addend; }
virtual void setAddend(Addend a) { _addend = a; }
virtual void setTarget(const lld::Atom *a) { _target = a; }
const lld::Atom *_target;
StringRef _targetName;
uint32_t _offset;
Addend _addend;
RefKind _mappedKind;
};
static void mapping(IO &io, const lld::Reference *&ref) {
MappingNormalizationHeap<NormalizedReference,
const lld::Reference*> keys(io, ref);
io.mapRequired("kind", keys->_mappedKind);
io.mapOptional("offset", keys->_offset);
io.mapOptional("target", keys->_targetName);
io.mapOptional("addend", keys->_addend, (lld::Reference::Addend)0);
}
};
// YAML conversion for const lld::DefinedAtom*
template <>
struct MappingTraits<const lld::DefinedAtom*> {
class NormalizedAtom : public lld::DefinedAtom {
public:
NormalizedAtom(IO &io)
: _file(fileFromContext(io)), _name(), _refName(), _contentType(),
_alignment(0), _content(), _references() {
static uint32_t ordinalCounter = 1;
_ordinal = ordinalCounter++;
}
NormalizedAtom(IO &io, const lld::DefinedAtom *atom)
: _file(fileFromContext(io)),
_name(atom->name()),
_refName(),
_scope(atom->scope()),
_interpose(atom->interposable()),
_merge(atom->merge()),
_contentType(atom->contentType()),
_alignment(atom->alignment()),
_sectionChoice(atom->sectionChoice()),
_sectionPosition(atom->sectionPosition()),
_deadStrip(atom->deadStrip()),
_permissions(atom->permissions()),
_size(atom->size()),
_sectionName(atom->customSectionName()) {
for ( const lld::Reference *r : *atom )
_references.push_back(r);
ArrayRef<uint8_t> cont = atom->rawContent();
_content.reserve(cont.size());
for (uint8_t x : cont)
_content.push_back(x);
}
const lld::DefinedAtom *denormalize(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
if ( !_name.empty() )
_name = f->copyString(_name);
if ( !_refName.empty() )
_refName = f->copyString(_refName);
if ( !_sectionName.empty() )
_sectionName = f->copyString(_sectionName);
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "created DefinedAtom named: '" << _name
<< "' (" << (void*)_name.data() << ", "
<< _name.size() << ")\n");
return this;
}
void bind(const RefNameResolver&);
// Extract current File object from YAML I/O parsing context
const lld::File &fileFromContext(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
assert(info->_currentFile != nullptr);
return *info->_currentFile;
}
virtual const lld::File &file() const { return _file; }
virtual StringRef name() const { return _name; }
virtual uint64_t size() const { return _size; }
virtual Scope scope() const { return _scope; }
virtual Interposable interposable() const { return _interpose; }
virtual Merge merge() const { return _merge; }
virtual ContentType contentType() const { return _contentType; }
virtual Alignment alignment() const { return _alignment; }
virtual SectionChoice sectionChoice() const { return _sectionChoice; }
virtual StringRef customSectionName() const { return _sectionName;}
virtual SectionPosition sectionPosition() const{return _sectionPosition;}
virtual DeadStripKind deadStrip() const { return _deadStrip; }
virtual ContentPermissions permissions() const { return _permissions; }
virtual bool isAlias() const { return false; }
ArrayRef<uint8_t> rawContent() const {
return ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(_content.data()), _content.size());
}
virtual uint64_t ordinal() const { return _ordinal; }
reference_iterator begin() const {
uintptr_t index = 0;
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
reference_iterator end() const {
uintptr_t index = _references.size();
const void *it = reinterpret_cast<const void*>(index);
return reference_iterator(*this, it);
}
const lld::Reference *derefIterator(const void *it) const {
uintptr_t index = reinterpret_cast<uintptr_t>(it);
assert(index < _references.size());
return _references[index];
}
void incrementIterator(const void *&it) const {
uintptr_t index = reinterpret_cast<uintptr_t>(it);
++index;
it = reinterpret_cast<const void*>(index);
}
const lld::File &_file;
StringRef _name;
StringRef _refName;
Scope _scope;
Interposable _interpose;
Merge _merge;
ContentType _contentType;
Alignment _alignment;
SectionChoice _sectionChoice;
SectionPosition _sectionPosition;
DeadStripKind _deadStrip;
ContentPermissions _permissions;
uint32_t _ordinal;
std::vector<ImplicitHex8> _content;
uint64_t _size;
StringRef _sectionName;
std::vector<const lld::Reference*> _references;
};
static void mapping(IO &io, const lld::DefinedAtom *&atom) {
MappingNormalizationHeap<NormalizedAtom,
const lld::DefinedAtom*> keys(io, atom);
if ( io.outputting() ) {
// If writing YAML, check if atom needs a ref-name.
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
assert(f);
assert(f->_rnb);
if ( f->_rnb->hasRefName(atom) ) {
keys->_refName = f->_rnb->refName(atom);
}
}
io.mapOptional("name", keys->_name,
StringRef());
io.mapOptional("ref-name", keys->_refName,
StringRef());
io.mapOptional("scope", keys->_scope,
lld::DefinedAtom::scopeTranslationUnit);
io.mapOptional("type", keys->_contentType,
lld::DefinedAtom::typeCode);
io.mapOptional("content", keys->_content);
io.mapOptional("size", keys->_size,
(uint64_t)keys->_content.size());
io.mapOptional("interposable", keys->_interpose,
lld::DefinedAtom::interposeNo);
io.mapOptional("merge", keys->_merge,
lld::DefinedAtom::mergeNo);
io.mapOptional("alignment", keys->_alignment,
lld::DefinedAtom::Alignment(0));
io.mapOptional("section-choice", keys->_sectionChoice,
lld::DefinedAtom::sectionBasedOnContent);
io.mapOptional("section-name", keys->_sectionName,
StringRef());
io.mapOptional("section-position",keys->_sectionPosition,
lld::DefinedAtom::sectionPositionAny);
io.mapOptional("dead-strip", keys->_deadStrip,
lld::DefinedAtom::deadStripNormal);
// default permissions based on content type
io.mapOptional("permissions", keys->_permissions,
lld::DefinedAtom::permissions(
keys->_contentType));
io.mapOptional("references", keys->_references);
}
};
// YAML conversion for const lld::UndefinedAtom*
template <>
struct MappingTraits<const lld::UndefinedAtom*> {
class NormalizedAtom : public lld::UndefinedAtom {
public:
NormalizedAtom(IO &io)
: _file(fileFromContext(io)), _name(), _canBeNull(canBeNullNever) {
}
NormalizedAtom(IO &io, const lld::UndefinedAtom *atom)
: _file(fileFromContext(io)),
_name(atom->name()),
_canBeNull(atom->canBeNull()) {
}
const lld::UndefinedAtom *denormalize(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
if ( !_name.empty() )
_name = f->copyString(_name);
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "created UndefinedAtom named: '" << _name
<< "' (" << (void*)_name.data() << ", "
<< _name.size() << ")\n");
return this;
}
// Extract current File object from YAML I/O parsing context
const lld::File &fileFromContext(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
assert(info->_currentFile != nullptr);
return *info->_currentFile;
}
virtual const lld::File &file() const { return _file; }
virtual StringRef name() const { return _name; }
virtual CanBeNull canBeNull() const { return _canBeNull; }
const lld::File &_file;
StringRef _name;
CanBeNull _canBeNull;
};
static void mapping(IO &io, const lld::UndefinedAtom* &atom) {
MappingNormalizationHeap<NormalizedAtom,
const lld::UndefinedAtom*> keys(io, atom);
io.mapRequired("name", keys->_name);
io.mapOptional("can-be-null", keys->_canBeNull,
lld::UndefinedAtom::canBeNullNever);
}
};
// YAML conversion for const lld::SharedLibraryAtom*
template <>
struct MappingTraits<const lld::SharedLibraryAtom*> {
class NormalizedAtom : public lld::SharedLibraryAtom {
public:
NormalizedAtom(IO &io)
: _file(fileFromContext(io)), _name(), _loadName(), _canBeNull(false) {
}
NormalizedAtom(IO &io, const lld::SharedLibraryAtom *atom)
: _file(fileFromContext(io)),
_name(atom->name()),
_loadName(atom->loadName()),
_canBeNull(atom->canBeNullAtRuntime()) {
}
const lld::SharedLibraryAtom *denormalize(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
if ( !_name.empty() )
_name = f->copyString(_name);
if ( !_loadName.empty() )
_loadName = f->copyString(_loadName);
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "created SharedLibraryAtom named: '" << _name
<< "' (" << (void*)_name.data() << ", "
<< _name.size() << ")\n");
return this;
}
// Extract current File object from YAML I/O parsing context
const lld::File &fileFromContext(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
assert(info->_currentFile != nullptr);
return *info->_currentFile;
}
virtual const lld::File &file() const { return _file; }
virtual StringRef name() const { return _name; }
virtual StringRef loadName() const { return _loadName;}
virtual bool canBeNullAtRuntime() const { return _canBeNull; }
const lld::File &_file;
StringRef _name;
StringRef _loadName;
ShlibCanBeNull _canBeNull;
};
static void mapping(IO &io, const lld::SharedLibraryAtom *&atom) {
MappingNormalizationHeap<NormalizedAtom,
const lld::SharedLibraryAtom*> keys(io, atom);
io.mapRequired("name", keys->_name);
io.mapOptional("load-name", keys->_loadName);
io.mapOptional("can-be-null", keys->_canBeNull,
(ShlibCanBeNull)false);
}
};
// YAML conversion for const lld::AbsoluteAtom*
template <>
struct MappingTraits<const lld::AbsoluteAtom*> {
class NormalizedAtom : public lld::AbsoluteAtom {
public:
NormalizedAtom(IO &io)
: _file(fileFromContext(io)), _name(), _scope(), _value(0) {
}
NormalizedAtom(IO &io, const lld::AbsoluteAtom *atom)
: _file(fileFromContext(io)),
_name(atom->name()),
_scope(atom->scope()),
_value(atom->value()) {
}
const lld::AbsoluteAtom *denormalize(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
if ( !_name.empty() )
_name = f->copyString(_name);
DEBUG_WITH_TYPE("WriterYAML", llvm::dbgs()
<< "created AbsoluteAtom named: '" << _name
<< "' (" << (void*)_name.data() << ", "
<< _name.size() << ")\n");
return this;
}
// Extract current File object from YAML I/O parsing context
const lld::File &fileFromContext(IO &io) {
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
assert(info->_currentFile != nullptr);
return *info->_currentFile;
}
virtual const lld::File &file() const { return _file; }
virtual StringRef name() const { return _name; }
virtual uint64_t value() const { return _value; }
virtual Scope scope() const { return _scope; }
const lld::File &_file;
StringRef _name;
StringRef _refName;
Scope _scope;
Hex64 _value;
};
static void mapping(IO &io, const lld::AbsoluteAtom *&atom) {
MappingNormalizationHeap<NormalizedAtom,
const lld::AbsoluteAtom*> keys(io, atom);
if ( io.outputting() ) {
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
assert(f);
assert(f->_rnb);
if ( f->_rnb->hasRefName(atom) ) {
keys->_refName = f->_rnb->refName(atom);
}
}
io.mapRequired("name", keys->_name);
io.mapOptional("ref-name", keys->_refName, StringRef());
io.mapOptional("scope", keys->_scope);
io.mapRequired("value", keys->_value);
}
};
} // namespace llvm
} // namespace yaml
RefNameResolver::RefNameResolver(const lld::File *file, IO &io) : _io(io) {
typedef MappingTraits<const lld::DefinedAtom*>::NormalizedAtom NormalizedAtom;
for (const lld::DefinedAtom *a : file->defined() ) {
NormalizedAtom *na = (NormalizedAtom*)a;
if ( na->_refName.empty() )
add(na->_name, a);
else
add(na->_refName, a);
}
for (const lld::UndefinedAtom *a : file->undefined() )
add(a->name(), a);
for (const lld::SharedLibraryAtom *a : file->sharedLibrary() )
add(a->name(), a);
typedef MappingTraits<const lld::AbsoluteAtom*>::NormalizedAtom NormAbsAtom;
for (const lld::AbsoluteAtom *a : file->absolute() ) {
NormAbsAtom *na = (NormAbsAtom*)a;
if ( na->_refName.empty() )
add(na->_name, a);
else
add(na->_refName, a);
}
}
inline
const lld::File*
MappingTraits<const lld::File*>::NormalizedFile::denormalize(IO &io) {
typedef MappingTraits<const lld::DefinedAtom*>::NormalizedAtom NormalizedAtom;
RefNameResolver nameResolver(this, io);
// Now that all atoms are parsed, references can be bound.
for (const lld::DefinedAtom *a : this->defined() ) {
NormalizedAtom *normAtom = (NormalizedAtom*)a;
normAtom->bind(nameResolver);
}
return this;
}
inline
void MappingTraits<const lld::DefinedAtom*>::
NormalizedAtom::bind(const RefNameResolver &resolver) {
typedef MappingTraits<const lld::Reference*>::NormalizedReference
NormalizedReference;
for (const lld::Reference *ref : _references) {
NormalizedReference *normRef = (NormalizedReference*)ref;
normRef->bind(resolver);
}
}
inline
void MappingTraits<const lld::Reference*>::
NormalizedReference::bind(const RefNameResolver &resolver) {
_target = resolver.lookup(_targetName);
}
inline
llvm::StringRef MappingTraits<const lld::Reference*>::NormalizedReference::
targetName(IO &io, const lld::Reference *ref) {
if ( ref->target() == nullptr )
return llvm::StringRef();
ContextInfo *info = reinterpret_cast<ContextInfo*>(io.getContext());
assert(info != nullptr);
typedef MappingTraits<const lld::File*>::NormalizedFile NormalizedFile;
NormalizedFile *f = reinterpret_cast<NormalizedFile*>(info->_currentFile);
RefNameBuilder *rnb = f->_rnb;
if ( rnb->hasRefName(ref->target()) )
return rnb->refName(ref->target());
return ref->target()->name();
}
namespace lld {
namespace yaml {
class Writer : public lld::Writer {
public:
Writer(const LinkingContext &context) : _context(context) {}
virtual error_code writeFile(const lld::File &file, StringRef outPath) {
// Create stream to path.
std::string errorInfo;
llvm::raw_fd_ostream out(outPath.data(), errorInfo);
if (!errorInfo.empty())
return llvm::make_error_code(llvm::errc::no_such_file_or_directory);
// Create yaml Output writer, using yaml options for context.
ContextInfo context(_context);
llvm::yaml::Output yout(out, &context);
// Write yaml output.
const lld::File *fileRef = &file;
yout << fileRef;
return error_code::success();
}
private:
const LinkingContext &_context;
};
class ReaderYAML : public Reader {
public:
ReaderYAML(const LinkingContext &context) : Reader(context) {}
error_code parseFile(std::unique_ptr<MemoryBuffer> &mb,
std::vector<std::unique_ptr<File>> &result) const {
// Note: we do not take ownership of the MemoryBuffer. That is
// because yaml may produce multiple File objects, so there is no
// *one* File to take ownership. Therefore, the yaml File objects
// produced must make copies of all strings that come from YAML I/O.
// Otherwise the strings will become invalid when this MemoryBuffer
// is deallocated.
// Create YAML Input parser.
ContextInfo context(_context);
llvm::yaml::Input yin(mb->getBuffer(), &context);
// Fill vector with File objects created by parsing yaml.
std::vector<const lld::File*> createdFiles;
yin >> createdFiles;
// Quit now if there were parsing errors.
if ( yin.error() )
return make_error_code(lld::yaml_reader_error::illegal_value);
for (const File *file : createdFiles) {
// Note: parseFile() should return vector of *const* File
File *f = const_cast<File*>(file);
result.emplace_back(f);
}
return make_error_code(lld::yaml_reader_error::success);
}
};
} // end namespace yaml
std::unique_ptr<Writer> createWriterYAML(const LinkingContext &context) {
return std::unique_ptr<Writer>(new lld::yaml::Writer(context));
}
std::unique_ptr<Reader> createReaderYAML(const LinkingContext &context) {
return std::unique_ptr<Reader>(new lld::yaml::ReaderYAML(context));
}
} // end namespace lld