llvm-project/mlir/examples/toy/Ch6/toyc.cpp

292 lines
9.4 KiB
C++

//===- toyc.cpp - The Toy Compiler ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the entry point for the Toy compiler.
//
//===----------------------------------------------------------------------===//
#include "toy/Dialect.h"
#include "toy/MLIRGen.h"
#include "toy/Parser.h"
#include "toy/Passes.h"
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/ExecutionEngine/OptUtils.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Verifier.h"
#include "mlir/InitAllDialects.h"
#include "mlir/Parser.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Target/LLVMIR/Dialect/LLVMIR/LLVMToLLVMIRTranslation.h"
#include "mlir/Target/LLVMIR/Export.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
using namespace toy;
namespace cl = llvm::cl;
static cl::opt<std::string> inputFilename(cl::Positional,
cl::desc("<input toy file>"),
cl::init("-"),
cl::value_desc("filename"));
namespace {
enum InputType { Toy, MLIR };
}
static cl::opt<enum InputType> inputType(
"x", cl::init(Toy), cl::desc("Decided the kind of output desired"),
cl::values(clEnumValN(Toy, "toy", "load the input file as a Toy source.")),
cl::values(clEnumValN(MLIR, "mlir",
"load the input file as an MLIR file")));
namespace {
enum Action {
None,
DumpAST,
DumpMLIR,
DumpMLIRAffine,
DumpMLIRLLVM,
DumpLLVMIR,
RunJIT
};
}
static cl::opt<enum Action> emitAction(
"emit", cl::desc("Select the kind of output desired"),
cl::values(clEnumValN(DumpAST, "ast", "output the AST dump")),
cl::values(clEnumValN(DumpMLIR, "mlir", "output the MLIR dump")),
cl::values(clEnumValN(DumpMLIRAffine, "mlir-affine",
"output the MLIR dump after affine lowering")),
cl::values(clEnumValN(DumpMLIRLLVM, "mlir-llvm",
"output the MLIR dump after llvm lowering")),
cl::values(clEnumValN(DumpLLVMIR, "llvm", "output the LLVM IR dump")),
cl::values(
clEnumValN(RunJIT, "jit",
"JIT the code and run it by invoking the main function")));
static cl::opt<bool> enableOpt("opt", cl::desc("Enable optimizations"));
/// Returns a Toy AST resulting from parsing the file or a nullptr on error.
std::unique_ptr<toy::ModuleAST> parseInputFile(llvm::StringRef filename) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(filename);
if (std::error_code ec = fileOrErr.getError()) {
llvm::errs() << "Could not open input file: " << ec.message() << "\n";
return nullptr;
}
auto buffer = fileOrErr.get()->getBuffer();
LexerBuffer lexer(buffer.begin(), buffer.end(), std::string(filename));
Parser parser(lexer);
return parser.parseModule();
}
int loadMLIR(mlir::MLIRContext &context, mlir::OwningModuleRef &module) {
// Handle '.toy' input to the compiler.
if (inputType != InputType::MLIR &&
!llvm::StringRef(inputFilename).endswith(".mlir")) {
auto moduleAST = parseInputFile(inputFilename);
if (!moduleAST)
return 6;
module = mlirGen(context, *moduleAST);
return !module ? 1 : 0;
}
// Otherwise, the input is '.mlir'.
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> fileOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(inputFilename);
if (std::error_code EC = fileOrErr.getError()) {
llvm::errs() << "Could not open input file: " << EC.message() << "\n";
return -1;
}
// Parse the input mlir.
llvm::SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(*fileOrErr), llvm::SMLoc());
module = mlir::parseSourceFile(sourceMgr, &context);
if (!module) {
llvm::errs() << "Error can't load file " << inputFilename << "\n";
return 3;
}
return 0;
}
int loadAndProcessMLIR(mlir::MLIRContext &context,
mlir::OwningModuleRef &module) {
if (int error = loadMLIR(context, module))
return error;
mlir::PassManager pm(&context);
// Apply any generic pass manager command line options and run the pipeline.
applyPassManagerCLOptions(pm);
// Check to see what granularity of MLIR we are compiling to.
bool isLoweringToAffine = emitAction >= Action::DumpMLIRAffine;
bool isLoweringToLLVM = emitAction >= Action::DumpMLIRLLVM;
if (enableOpt || isLoweringToAffine) {
// Inline all functions into main and then delete them.
pm.addPass(mlir::createInlinerPass());
// Now that there is only one function, we can infer the shapes of each of
// the operations.
mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
optPM.addPass(mlir::toy::createShapeInferencePass());
optPM.addPass(mlir::createCanonicalizerPass());
optPM.addPass(mlir::createCSEPass());
}
if (isLoweringToAffine) {
mlir::OpPassManager &optPM = pm.nest<mlir::FuncOp>();
// Partially lower the toy dialect with a few cleanups afterwards.
optPM.addPass(mlir::toy::createLowerToAffinePass());
optPM.addPass(mlir::createCanonicalizerPass());
optPM.addPass(mlir::createCSEPass());
// Add optimizations if enabled.
if (enableOpt) {
optPM.addPass(mlir::createLoopFusionPass());
optPM.addPass(mlir::createAffineScalarReplacementPass());
}
}
if (isLoweringToLLVM) {
// Finish lowering the toy IR to the LLVM dialect.
pm.addPass(mlir::toy::createLowerToLLVMPass());
}
if (mlir::failed(pm.run(*module)))
return 4;
return 0;
}
int dumpAST() {
if (inputType == InputType::MLIR) {
llvm::errs() << "Can't dump a Toy AST when the input is MLIR\n";
return 5;
}
auto moduleAST = parseInputFile(inputFilename);
if (!moduleAST)
return 1;
dump(*moduleAST);
return 0;
}
int dumpLLVMIR(mlir::ModuleOp module) {
// Register the translation to LLVM IR with the MLIR context.
mlir::registerLLVMDialectTranslation(*module->getContext());
// Convert the module to LLVM IR in a new LLVM IR context.
llvm::LLVMContext llvmContext;
auto llvmModule = mlir::translateModuleToLLVMIR(module, llvmContext);
if (!llvmModule) {
llvm::errs() << "Failed to emit LLVM IR\n";
return -1;
}
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
mlir::ExecutionEngine::setupTargetTriple(llvmModule.get());
/// Optionally run an optimization pipeline over the llvm module.
auto optPipeline = mlir::makeOptimizingTransformer(
/*optLevel=*/enableOpt ? 3 : 0, /*sizeLevel=*/0,
/*targetMachine=*/nullptr);
if (auto err = optPipeline(llvmModule.get())) {
llvm::errs() << "Failed to optimize LLVM IR " << err << "\n";
return -1;
}
llvm::errs() << *llvmModule << "\n";
return 0;
}
int runJit(mlir::ModuleOp module) {
// Initialize LLVM targets.
llvm::InitializeNativeTarget();
llvm::InitializeNativeTargetAsmPrinter();
// Register the translation from MLIR to LLVM IR, which must happen before we
// can JIT-compile.
mlir::registerLLVMDialectTranslation(*module->getContext());
// An optimization pipeline to use within the execution engine.
auto optPipeline = mlir::makeOptimizingTransformer(
/*optLevel=*/enableOpt ? 3 : 0, /*sizeLevel=*/0,
/*targetMachine=*/nullptr);
// Create an MLIR execution engine. The execution engine eagerly JIT-compiles
// the module.
auto maybeEngine = mlir::ExecutionEngine::create(
module, /*llvmModuleBuilder=*/nullptr, optPipeline);
assert(maybeEngine && "failed to construct an execution engine");
auto &engine = maybeEngine.get();
// Invoke the JIT-compiled function.
auto invocationResult = engine->invokePacked("main");
if (invocationResult) {
llvm::errs() << "JIT invocation failed\n";
return -1;
}
return 0;
}
int main(int argc, char **argv) {
// Register any command line options.
mlir::registerAsmPrinterCLOptions();
mlir::registerMLIRContextCLOptions();
mlir::registerPassManagerCLOptions();
cl::ParseCommandLineOptions(argc, argv, "toy compiler\n");
if (emitAction == Action::DumpAST)
return dumpAST();
// If we aren't dumping the AST, then we are compiling with/to MLIR.
mlir::MLIRContext context;
// Load our Dialect in this MLIR Context.
context.getOrLoadDialect<mlir::toy::ToyDialect>();
mlir::OwningModuleRef module;
if (int error = loadAndProcessMLIR(context, module))
return error;
// If we aren't exporting to non-mlir, then we are done.
bool isOutputingMLIR = emitAction <= Action::DumpMLIRLLVM;
if (isOutputingMLIR) {
module->dump();
return 0;
}
// Check to see if we are compiling to LLVM IR.
if (emitAction == Action::DumpLLVMIR)
return dumpLLVMIR(*module);
// Otherwise, we must be running the jit.
if (emitAction == Action::RunJIT)
return runJit(*module);
llvm::errs() << "No action specified (parsing only?), use -emit=<action>\n";
return -1;
}