Go to file
Eli Friedman 2f497ec3a0 [ARM] Fix ARM backend to correctly use atomic expansion routines.
Without this patch, clang would generate calls to __sync_* routines on
targets where it does not make sense; we can't assume the routines exist
on unknown targets. Linux has special implementations of the routines
that work on old ARM targets; other targets have no such routines. In
general, atomics operations which aren't natively supported should go
through libatomic (__atomic_*) APIs, which can support arbitrary atomics
through locks.

ARM targets older than v6, where this patch makes a difference, are rare
in practice, but not completely extinct. See, for example, discussion on
D116088.

This also affects Cortex-M0, but I don't think __sync_* routines
actually exist in any Cortex-M0 libraries. So in practice this just
leads to a slightly different linker error for those cases, I think.

Mechanically, this patch does the following:

- Ensures we run atomic expansion unconditionally; it never makes sense to
completely skip it.
- Fixes getMaxAtomicSizeInBitsSupported() so it returns an appropriate
number on all ARM subtargets.
- Fixes shouldExpandAtomicRMWInIR() and shouldExpandAtomicCmpXchgInIR() to
correctly handle subtargets that don't have atomic instructions.

Differential Revision: https://reviews.llvm.org/D120026
2022-03-18 12:43:57 -07:00
.github Disable Mailgun click tracking 2022-02-24 19:03:43 +03:00
bolt [BOLT] LongJmp speedup refactoring 2022-03-18 16:16:47 +03:00
clang Implement __cpuid and __cpuidex as Clang builtins 2022-03-18 18:13:52 +01:00
clang-tools-extra Revert "[pseudo] Split greatergreater token." 2022-03-18 10:15:48 -07:00
cmake Correctly find builtins library with clang-cl 2022-03-14 07:49:29 +01:00
compiler-rt tsan: print signal num in errno spoiling reports 2022-03-18 16:12:11 +01:00
cross-project-tests [WebAssembly] Add end-to-end codegen tests for wasm_simd128.h 2022-03-17 15:22:17 -07:00
flang [flang][Parser] Add a node for individual sections in sections construct 2022-03-18 21:55:35 +05:30
libc [libc][NFC] Add the platform independent file target only if mutex is available. 2022-03-18 03:34:38 +00:00
libclc libclc: Add clspv64 target 2022-01-13 09:28:19 +00:00
libcxx [libc++] Enable modernize-loop-convert 2022-03-18 20:34:19 +01:00
libcxxabi [libc++][tests] Use CMake provided paths for includes and libdir instead of hardcoding them 2022-03-16 12:35:06 -04:00
libunwind [runtimes] Remove FOO_TARGET_TRIPLE, FOO_SYSROOT and FOO_GCC_TOOLCHAIN 2022-03-01 08:39:42 -05:00
lld [lld][WebAssembly] Fix crash accessing non-live __tls_base symbol 2022-03-17 13:59:45 -07:00
lldb [trace][intelpt] fix some test failures 2022-03-18 10:35:34 -07:00
llvm [ARM] Fix ARM backend to correctly use atomic expansion routines. 2022-03-18 12:43:57 -07:00
llvm-libgcc [llvm-libgcc] initial commit 2022-02-16 17:06:45 +00:00
mlir Use llvm::append_range where applicable 2022-03-18 20:05:48 +01:00
openmp [AMDGPU] Add gfx90a and gfx940 to get_elf_mach_gfx_name.cpp 2022-03-17 13:05:07 -07:00
polly [polly] Fix NPM unittests after D121566. 2022-03-18 14:25:44 -05:00
pstl Bump the trunk major version to 15 2022-02-01 23:54:52 -08:00
runtimes [runtimes] Detect changes to Tests.cmake 2022-03-18 10:01:52 -07:00
test fix check-clang-tools tests that fail due to Windows CRLF line endings 2022-02-11 15:23:51 -07:00
third-party Ensure newlines at the end of files (NFC) 2021-12-26 08:51:06 -08:00
utils [bazel] Port a954ade8ed 2022-03-18 10:50:55 +01:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy [clangd] Cleanup of readability-identifier-naming 2022-02-01 13:31:52 +00:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
.mailmap .mailmap: remove stray space in comment 2022-02-24 18:50:08 -05:00
CONTRIBUTING.md docs: update some bug tracker references (NFC) 2022-01-10 15:59:08 -08:00
README.md [README] Add hint, how to use automatically the optimal number of CPU cores 2022-03-07 12:07:11 +01:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some common options:

      • -DLLVM_ENABLE_PROJECTS='...' and -DLLVM_ENABLE_RUNTIMES='...' --- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build. LLVM_ENABLE_PROJECTS can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl. LLVM_ENABLE_RUNTIMES can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either in LLVM_ENABLE_PROJECTS or in LLVM_ENABLE_RUNTIMES.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like /usr is not advised, but /usr/local is fine.

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with -j$(nproc).

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.

Getting in touch

Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.