llvm-project/lld/wasm/InputChunks.h

382 lines
13 KiB
C++

//===- InputChunks.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An InputChunks represents an indivisible opaque region of a input wasm file.
// i.e. a single wasm data segment or a single wasm function.
//
// They are written directly to the mmap'd output file after which relocations
// are applied. Because each Chunk is independent they can be written in
// parallel.
//
// Chunks are also unit on which garbage collection (--gc-sections) operates.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_WASM_INPUT_CHUNKS_H
#define LLD_WASM_INPUT_CHUNKS_H
#include "Config.h"
#include "InputFiles.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/LLVM.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/Wasm.h"
namespace lld {
namespace wasm {
class ObjFile;
class OutputSegment;
class OutputSection;
class InputChunk {
public:
enum Kind {
DataSegment,
Merge,
MergedSegment,
Function,
SyntheticFunction,
Section
};
Kind kind() const { return sectionKind; }
virtual uint32_t getSize() const { return data().size(); }
virtual uint32_t getInputSize() const { return getSize(); };
virtual void writeTo(uint8_t *buf) const;
void relocate(uint8_t *buf) const;
ArrayRef<WasmRelocation> getRelocations() const { return relocations; }
void setRelocations(ArrayRef<WasmRelocation> rs) { relocations = rs; }
uint64_t getOffset(uint64_t offset) const { return outSecOff + offset; }
virtual StringRef getName() const = 0;
virtual StringRef getDebugName() const = 0;
virtual uint32_t getComdat() const = 0;
StringRef getComdatName() const;
virtual uint32_t getInputSectionOffset() const = 0;
size_t getNumRelocations() const { return relocations.size(); }
void writeRelocations(llvm::raw_ostream &os) const;
ObjFile *file;
OutputSection *outputSec = nullptr;
// After assignAddresses is called, this represents the offset from
// the beginning of the output section this chunk was assigned to.
int32_t outSecOff = 0;
// Signals that the section is part of the output. The garbage collector,
// and COMDAT handling can set a sections' Live bit.
// If GC is disabled, all sections start out as live by default.
unsigned live : 1;
// Signals the chunk was discarded by COMDAT handling.
unsigned discarded : 1;
protected:
InputChunk(ObjFile *f, Kind k)
: file(f), live(!config->gcSections), discarded(false), sectionKind(k) {}
virtual ~InputChunk() = default;
virtual ArrayRef<uint8_t> data() const = 0;
virtual uint64_t getTombstone() const { return 0; }
// Verifies the existing data at relocation targets matches our expectations.
// This is performed only debug builds as an extra sanity check.
void verifyRelocTargets() const;
ArrayRef<WasmRelocation> relocations;
Kind sectionKind;
};
// Represents a WebAssembly data segment which can be included as part of
// an output data segments. Note that in WebAssembly, unlike ELF and other
// formats, used the term "data segment" to refer to the continuous regions of
// memory that make on the data section. See:
// https://webassembly.github.io/spec/syntax/modules.html#syntax-data
//
// For example, by default, clang will produce a separate data section for
// each global variable.
class InputSegment : public InputChunk {
public:
InputSegment(const WasmSegment *seg, ObjFile *f)
: InputChunk(f, InputChunk::DataSegment), segment(seg) {
alignment = segment->Data.Alignment;
flags = segment->Data.LinkingFlags;
}
InputSegment(uint32_t alignment, uint32_t flags)
: InputChunk(nullptr, InputChunk::DataSegment), alignment(alignment),
flags(flags) {}
static bool classof(const InputChunk *c) {
return c->kind() == DataSegment || c->kind() == Merge ||
c->kind() == MergedSegment;
}
void generateRelocationCode(raw_ostream &os) const;
StringRef getName() const override { return segment->Data.Name; }
StringRef getDebugName() const override { return StringRef(); }
uint32_t getComdat() const override { return segment->Data.Comdat; }
uint32_t getInputSectionOffset() const override {
return segment->SectionOffset;
}
// Translate an offset in the input section to an offset in the output
// section.
uint64_t getOffset(uint64_t offset) const;
uint64_t getVA(uint64_t offset = 0) const;
bool isTLS() const {
// Older object files don't include WASM_SEG_FLAG_TLS and instead
// relied on the naming convention.
return flags & llvm::wasm::WASM_SEG_FLAG_TLS ||
getName().startswith(".tdata") || getName().startswith(".tbss");
}
const OutputSegment *outputSeg = nullptr;
uint32_t outputSegmentOffset = 0;
uint32_t alignment = 0;
uint32_t flags = 0;
protected:
ArrayRef<uint8_t> data() const override { return segment->Data.Content; }
const WasmSegment *segment = nullptr;
};
class SyntheticMergedDataSegment;
// Merge segment handling copied from lld/ELF/InputSection.h. Keep in sync
// where possible.
// SegmentPiece represents a piece of splittable segment contents.
// We allocate a lot of these and binary search on them. This means that they
// have to be as compact as possible, which is why we don't store the size (can
// be found by looking at the next one).
struct SegmentPiece {
SegmentPiece(size_t off, uint32_t hash, bool live)
: inputOff(off), live(live || !config->gcSections), hash(hash >> 1) {}
uint32_t inputOff;
uint32_t live : 1;
uint32_t hash : 31;
uint64_t outputOff = 0;
};
static_assert(sizeof(SegmentPiece) == 16, "SectionPiece is too big");
// This corresponds segments marked as WASM_SEG_FLAG_STRINGS.
class MergeInputSegment : public InputSegment {
public:
MergeInputSegment(const WasmSegment *seg, ObjFile *f) : InputSegment(seg, f) {
sectionKind = Merge;
}
static bool classof(const InputChunk *s) { return s->kind() == Merge; }
void splitIntoPieces();
// Translate an offset in the input section to an offset in the parent
// MergeSyntheticSection.
uint64_t getParentOffset(uint64_t offset) const;
// Splittable sections are handled as a sequence of data
// rather than a single large blob of data.
std::vector<SegmentPiece> pieces;
// Returns I'th piece's data. This function is very hot when
// string merging is enabled, so we want to inline.
LLVM_ATTRIBUTE_ALWAYS_INLINE
llvm::CachedHashStringRef getData(size_t i) const {
size_t begin = pieces[i].inputOff;
size_t end =
(pieces.size() - 1 == i) ? data().size() : pieces[i + 1].inputOff;
return {toStringRef(data().slice(begin, end - begin)), pieces[i].hash};
}
// Returns the SectionPiece at a given input section offset.
SegmentPiece *getSegmentPiece(uint64_t offset);
const SegmentPiece *getSegmentPiece(uint64_t offset) const {
return const_cast<MergeInputSegment *>(this)->getSegmentPiece(offset);
}
SyntheticMergedDataSegment *parent = nullptr;
private:
void splitStrings(ArrayRef<uint8_t> a);
};
// SyntheticMergedDataSegment is a class that allows us to put mergeable
// sections with different attributes in a single output sections. To do that we
// put them into SyntheticMergedDataSegment synthetic input sections which are
// attached to regular output sections.
class SyntheticMergedDataSegment : public InputSegment {
public:
SyntheticMergedDataSegment(StringRef name, uint32_t alignment, uint32_t flags)
: InputSegment(alignment, flags), name(name),
builder(llvm::StringTableBuilder::RAW, 1ULL << alignment) {
sectionKind = InputChunk::MergedSegment;
}
static bool classof(const InputChunk *c) {
return c->kind() == InputChunk::MergedSegment;
}
uint32_t getSize() const override;
StringRef getName() const override { return name; }
uint32_t getComdat() const override { return segments[0]->getComdat(); }
void writeTo(uint8_t *buf) const override;
void addMergeSegment(MergeInputSegment *ms) {
ms->parent = this;
segments.push_back(ms);
}
void finalizeContents();
protected:
std::vector<MergeInputSegment *> segments;
StringRef name;
llvm::StringTableBuilder builder;
};
// Represents a single wasm function within and input file. These are
// combined to create the final output CODE section.
class InputFunction : public InputChunk {
public:
InputFunction(const WasmSignature &s, const WasmFunction *func, ObjFile *f)
: InputChunk(f, InputChunk::Function), signature(s), function(func),
exportName(func && func->ExportName.hasValue()
? (*func->ExportName).str()
: llvm::Optional<std::string>()) {}
static bool classof(const InputChunk *c) {
return c->kind() == InputChunk::Function ||
c->kind() == InputChunk::SyntheticFunction;
}
void writeTo(uint8_t *buf) const override;
StringRef getName() const override { return function->SymbolName; }
StringRef getDebugName() const override { return function->DebugName; }
llvm::Optional<StringRef> getExportName() const {
return exportName.hasValue() ? llvm::Optional<StringRef>(*exportName)
: llvm::Optional<StringRef>();
}
void setExportName(std::string exportName) { this->exportName = exportName; }
uint32_t getComdat() const override { return function->Comdat; }
uint32_t getFunctionInputOffset() const { return getInputSectionOffset(); }
uint32_t getFunctionCodeOffset() const { return function->CodeOffset; }
uint32_t getSize() const override {
if (config->compressRelocations && file) {
assert(compressedSize);
return compressedSize;
}
return data().size();
}
uint32_t getInputSize() const override { return function->Size; }
uint32_t getFunctionIndex() const { return functionIndex.getValue(); }
bool hasFunctionIndex() const { return functionIndex.hasValue(); }
void setFunctionIndex(uint32_t index);
uint32_t getInputSectionOffset() const override {
return function->CodeSectionOffset;
}
uint32_t getTableIndex() const { return tableIndex.getValue(); }
bool hasTableIndex() const { return tableIndex.hasValue(); }
void setTableIndex(uint32_t index);
// The size of a given input function can depend on the values of the
// LEB relocations within it. This finalizeContents method is called after
// all the symbol values have be calculated but before getSize() is ever
// called.
void calculateSize();
const WasmSignature &signature;
protected:
ArrayRef<uint8_t> data() const override {
assert(!config->compressRelocations);
return file->codeSection->Content.slice(getInputSectionOffset(),
function->Size);
}
const WasmFunction *function;
llvm::Optional<std::string> exportName;
llvm::Optional<uint32_t> functionIndex;
llvm::Optional<uint32_t> tableIndex;
uint32_t compressedFuncSize = 0;
uint32_t compressedSize = 0;
};
class SyntheticFunction : public InputFunction {
public:
SyntheticFunction(const WasmSignature &s, StringRef name,
StringRef debugName = {})
: InputFunction(s, nullptr, nullptr), name(name), debugName(debugName) {
sectionKind = InputChunk::SyntheticFunction;
}
static bool classof(const InputChunk *c) {
return c->kind() == InputChunk::SyntheticFunction;
}
StringRef getName() const override { return name; }
StringRef getDebugName() const override { return debugName; }
uint32_t getComdat() const override { return UINT32_MAX; }
void setBody(ArrayRef<uint8_t> body_) { body = body_; }
protected:
ArrayRef<uint8_t> data() const override { return body; }
StringRef name;
StringRef debugName;
ArrayRef<uint8_t> body;
};
// Represents a single Wasm Section within an input file.
class InputSection : public InputChunk {
public:
InputSection(const WasmSection &s, ObjFile *f)
: InputChunk(f, InputChunk::Section), section(s), tombstoneValue(getTombstoneForSection(s.Name)) {
assert(section.Type == llvm::wasm::WASM_SEC_CUSTOM);
}
StringRef getName() const override { return section.Name; }
StringRef getDebugName() const override { return StringRef(); }
uint32_t getComdat() const override { return section.Comdat; }
protected:
ArrayRef<uint8_t> data() const override { return section.Content; }
// Offset within the input section. This is only zero since this chunk
// type represents an entire input section, not part of one.
uint32_t getInputSectionOffset() const override { return 0; }
uint64_t getTombstone() const override { return tombstoneValue; }
static uint64_t getTombstoneForSection(StringRef name);
const WasmSection &section;
const uint64_t tombstoneValue;
};
} // namespace wasm
std::string toString(const wasm::InputChunk *);
StringRef relocTypeToString(uint8_t relocType);
} // namespace lld
#endif // LLD_WASM_INPUT_CHUNKS_H