llvm-project/compiler-rt/lib/lsan/lsan_allocator.cc

354 lines
10 KiB
C++

//=-- lsan_allocator.cc ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of LeakSanitizer.
// See lsan_allocator.h for details.
//
//===----------------------------------------------------------------------===//
#include "lsan_allocator.h"
#include "sanitizer_common/sanitizer_allocator.h"
#include "sanitizer_common/sanitizer_allocator_checks.h"
#include "sanitizer_common/sanitizer_allocator_interface.h"
#include "sanitizer_common/sanitizer_allocator_report.h"
#include "sanitizer_common/sanitizer_errno.h"
#include "sanitizer_common/sanitizer_internal_defs.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "lsan_common.h"
extern "C" void *memset(void *ptr, int value, uptr num);
namespace __lsan {
#if defined(__i386__) || defined(__arm__)
static const uptr kMaxAllowedMallocSize = 1UL << 30;
#elif defined(__mips64) || defined(__aarch64__)
static const uptr kMaxAllowedMallocSize = 4UL << 30;
#else
static const uptr kMaxAllowedMallocSize = 8UL << 30;
#endif
static Allocator allocator;
void InitializeAllocator() {
SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null);
allocator.InitLinkerInitialized(
common_flags()->allocator_release_to_os_interval_ms);
}
void AllocatorThreadFinish() {
allocator.SwallowCache(GetAllocatorCache());
}
static ChunkMetadata *Metadata(const void *p) {
return reinterpret_cast<ChunkMetadata *>(allocator.GetMetaData(p));
}
static void RegisterAllocation(const StackTrace &stack, void *p, uptr size) {
if (!p) return;
ChunkMetadata *m = Metadata(p);
CHECK(m);
m->tag = DisabledInThisThread() ? kIgnored : kDirectlyLeaked;
m->stack_trace_id = StackDepotPut(stack);
m->requested_size = size;
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 1, memory_order_relaxed);
}
static void RegisterDeallocation(void *p) {
if (!p) return;
ChunkMetadata *m = Metadata(p);
CHECK(m);
atomic_store(reinterpret_cast<atomic_uint8_t *>(m), 0, memory_order_relaxed);
}
static void *ReportAllocationSizeTooBig(uptr size, const StackTrace &stack) {
if (AllocatorMayReturnNull()) {
Report("WARNING: LeakSanitizer failed to allocate 0x%zx bytes\n", size);
return nullptr;
}
ReportAllocationSizeTooBig(size, kMaxAllowedMallocSize, &stack);
}
void *Allocate(const StackTrace &stack, uptr size, uptr alignment,
bool cleared) {
if (size == 0)
size = 1;
if (size > kMaxAllowedMallocSize)
return ReportAllocationSizeTooBig(size, stack);
void *p = allocator.Allocate(GetAllocatorCache(), size, alignment);
if (UNLIKELY(!p)) {
SetAllocatorOutOfMemory();
if (AllocatorMayReturnNull())
return nullptr;
ReportOutOfMemory(size, &stack);
}
// Do not rely on the allocator to clear the memory (it's slow).
if (cleared && allocator.FromPrimary(p))
memset(p, 0, size);
RegisterAllocation(stack, p, size);
if (&__sanitizer_malloc_hook) __sanitizer_malloc_hook(p, size);
RunMallocHooks(p, size);
return p;
}
static void *Calloc(uptr nmemb, uptr size, const StackTrace &stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
if (AllocatorMayReturnNull())
return nullptr;
ReportCallocOverflow(nmemb, size, &stack);
}
size *= nmemb;
return Allocate(stack, size, 1, true);
}
void Deallocate(void *p) {
if (&__sanitizer_free_hook) __sanitizer_free_hook(p);
RunFreeHooks(p);
RegisterDeallocation(p);
allocator.Deallocate(GetAllocatorCache(), p);
}
void *Reallocate(const StackTrace &stack, void *p, uptr new_size,
uptr alignment) {
RegisterDeallocation(p);
if (new_size > kMaxAllowedMallocSize) {
allocator.Deallocate(GetAllocatorCache(), p);
return ReportAllocationSizeTooBig(new_size, stack);
}
p = allocator.Reallocate(GetAllocatorCache(), p, new_size, alignment);
RegisterAllocation(stack, p, new_size);
return p;
}
void GetAllocatorCacheRange(uptr *begin, uptr *end) {
*begin = (uptr)GetAllocatorCache();
*end = *begin + sizeof(AllocatorCache);
}
uptr GetMallocUsableSize(const void *p) {
ChunkMetadata *m = Metadata(p);
if (!m) return 0;
return m->requested_size;
}
int lsan_posix_memalign(void **memptr, uptr alignment, uptr size,
const StackTrace &stack) {
if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) {
if (AllocatorMayReturnNull())
return errno_EINVAL;
ReportInvalidPosixMemalignAlignment(alignment, &stack);
}
void *ptr = Allocate(stack, size, alignment, kAlwaysClearMemory);
if (UNLIKELY(!ptr))
// OOM error is already taken care of by Allocate.
return errno_ENOMEM;
CHECK(IsAligned((uptr)ptr, alignment));
*memptr = ptr;
return 0;
}
void *lsan_aligned_alloc(uptr alignment, uptr size, const StackTrace &stack) {
if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAlignedAllocAlignment(size, alignment, &stack);
}
return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
}
void *lsan_memalign(uptr alignment, uptr size, const StackTrace &stack) {
if (UNLIKELY(!IsPowerOfTwo(alignment))) {
errno = errno_EINVAL;
if (AllocatorMayReturnNull())
return nullptr;
ReportInvalidAllocationAlignment(alignment, &stack);
}
return SetErrnoOnNull(Allocate(stack, size, alignment, kAlwaysClearMemory));
}
void *lsan_malloc(uptr size, const StackTrace &stack) {
return SetErrnoOnNull(Allocate(stack, size, 1, kAlwaysClearMemory));
}
void lsan_free(void *p) {
Deallocate(p);
}
void *lsan_realloc(void *p, uptr size, const StackTrace &stack) {
return SetErrnoOnNull(Reallocate(stack, p, size, 1));
}
void *lsan_reallocarray(void *ptr, uptr nmemb, uptr size,
const StackTrace &stack) {
if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportReallocArrayOverflow(nmemb, size, &stack);
}
return lsan_realloc(ptr, nmemb * size, stack);
}
void *lsan_calloc(uptr nmemb, uptr size, const StackTrace &stack) {
return SetErrnoOnNull(Calloc(nmemb, size, stack));
}
void *lsan_valloc(uptr size, const StackTrace &stack) {
return SetErrnoOnNull(
Allocate(stack, size, GetPageSizeCached(), kAlwaysClearMemory));
}
void *lsan_pvalloc(uptr size, const StackTrace &stack) {
uptr PageSize = GetPageSizeCached();
if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) {
errno = errno_ENOMEM;
if (AllocatorMayReturnNull())
return nullptr;
ReportPvallocOverflow(size, &stack);
}
// pvalloc(0) should allocate one page.
size = size ? RoundUpTo(size, PageSize) : PageSize;
return SetErrnoOnNull(Allocate(stack, size, PageSize, kAlwaysClearMemory));
}
uptr lsan_mz_size(const void *p) {
return GetMallocUsableSize(p);
}
///// Interface to the common LSan module. /////
void LockAllocator() {
allocator.ForceLock();
}
void UnlockAllocator() {
allocator.ForceUnlock();
}
void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
*begin = (uptr)&allocator;
*end = *begin + sizeof(allocator);
}
uptr PointsIntoChunk(void* p) {
uptr addr = reinterpret_cast<uptr>(p);
uptr chunk = reinterpret_cast<uptr>(allocator.GetBlockBeginFastLocked(p));
if (!chunk) return 0;
// LargeMmapAllocator considers pointers to the meta-region of a chunk to be
// valid, but we don't want that.
if (addr < chunk) return 0;
ChunkMetadata *m = Metadata(reinterpret_cast<void *>(chunk));
CHECK(m);
if (!m->allocated)
return 0;
if (addr < chunk + m->requested_size)
return chunk;
if (IsSpecialCaseOfOperatorNew0(chunk, m->requested_size, addr))
return chunk;
return 0;
}
uptr GetUserBegin(uptr chunk) {
return chunk;
}
LsanMetadata::LsanMetadata(uptr chunk) {
metadata_ = Metadata(reinterpret_cast<void *>(chunk));
CHECK(metadata_);
}
bool LsanMetadata::allocated() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->allocated;
}
ChunkTag LsanMetadata::tag() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->tag;
}
void LsanMetadata::set_tag(ChunkTag value) {
reinterpret_cast<ChunkMetadata *>(metadata_)->tag = value;
}
uptr LsanMetadata::requested_size() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->requested_size;
}
u32 LsanMetadata::stack_trace_id() const {
return reinterpret_cast<ChunkMetadata *>(metadata_)->stack_trace_id;
}
void ForEachChunk(ForEachChunkCallback callback, void *arg) {
allocator.ForEachChunk(callback, arg);
}
IgnoreObjectResult IgnoreObjectLocked(const void *p) {
void *chunk = allocator.GetBlockBegin(p);
if (!chunk || p < chunk) return kIgnoreObjectInvalid;
ChunkMetadata *m = Metadata(chunk);
CHECK(m);
if (m->allocated && (uptr)p < (uptr)chunk + m->requested_size) {
if (m->tag == kIgnored)
return kIgnoreObjectAlreadyIgnored;
m->tag = kIgnored;
return kIgnoreObjectSuccess;
} else {
return kIgnoreObjectInvalid;
}
}
} // namespace __lsan
using namespace __lsan;
extern "C" {
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_current_allocated_bytes() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatAllocated];
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_heap_size() {
uptr stats[AllocatorStatCount];
allocator.GetStats(stats);
return stats[AllocatorStatMapped];
}
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_free_bytes() { return 0; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_unmapped_bytes() { return 0; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; }
SANITIZER_INTERFACE_ATTRIBUTE
int __sanitizer_get_ownership(const void *p) { return Metadata(p) != nullptr; }
SANITIZER_INTERFACE_ATTRIBUTE
uptr __sanitizer_get_allocated_size(const void *p) {
return GetMallocUsableSize(p);
}
#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_malloc_hook(void *ptr, uptr size) {
(void)ptr;
(void)size;
}
SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
void __sanitizer_free_hook(void *ptr) {
(void)ptr;
}
#endif
} // extern "C"