forked from OSchip/llvm-project
75 lines
1.9 KiB
C
75 lines
1.9 KiB
C
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
// long double __gcc_qadd(long double x, long double y);
|
|
// This file implements the PowerPC 128-bit double-double add operation.
|
|
// This implementation is shamelessly cribbed from Apple's DDRT, circa 1993(!)
|
|
|
|
#include "DD.h"
|
|
|
|
long double __gcc_qadd(long double x, long double y) {
|
|
static const uint32_t infinityHi = UINT32_C(0x7ff00000);
|
|
|
|
DD dst = {.ld = x}, src = {.ld = y};
|
|
|
|
register double A = dst.s.hi, a = dst.s.lo, B = src.s.hi, b = src.s.lo;
|
|
|
|
// If both operands are zero:
|
|
if ((A == 0.0) && (B == 0.0)) {
|
|
dst.s.hi = A + B;
|
|
dst.s.lo = 0.0;
|
|
return dst.ld;
|
|
}
|
|
|
|
// If either operand is NaN or infinity:
|
|
const doublebits abits = {.d = A};
|
|
const doublebits bbits = {.d = B};
|
|
if ((((uint32_t)(abits.x >> 32) & infinityHi) == infinityHi) ||
|
|
(((uint32_t)(bbits.x >> 32) & infinityHi) == infinityHi)) {
|
|
dst.s.hi = A + B;
|
|
dst.s.lo = 0.0;
|
|
return dst.ld;
|
|
}
|
|
|
|
// If the computation overflows:
|
|
// This may be playing things a little bit fast and loose, but it will do for
|
|
// a start.
|
|
const double testForOverflow = A + (B + (a + b));
|
|
const doublebits testbits = {.d = testForOverflow};
|
|
if (((uint32_t)(testbits.x >> 32) & infinityHi) == infinityHi) {
|
|
dst.s.hi = testForOverflow;
|
|
dst.s.lo = 0.0;
|
|
return dst.ld;
|
|
}
|
|
|
|
double H, h;
|
|
double T, t;
|
|
double W, w;
|
|
double Y;
|
|
|
|
H = B + (A - (A + B));
|
|
T = b + (a - (a + b));
|
|
h = A + (B - (A + B));
|
|
t = a + (b - (a + b));
|
|
|
|
if (local_fabs(A) <= local_fabs(B))
|
|
w = (a + b) + h;
|
|
else
|
|
w = (a + b) + H;
|
|
|
|
W = (A + B) + w;
|
|
Y = (A + B) - W;
|
|
Y += w;
|
|
|
|
if (local_fabs(a) <= local_fabs(b))
|
|
w = t + Y;
|
|
else
|
|
w = T + Y;
|
|
|
|
dst.s.hi = Y = W + w;
|
|
dst.s.lo = (W - Y) + w;
|
|
|
|
return dst.ld;
|
|
}
|