llvm-project/llvm/lib/MC/XCOFFObjectWriter.cpp

1205 lines
44 KiB
C++

//===-- lib/MC/XCOFFObjectWriter.cpp - XCOFF file writer ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements XCOFF object file writer information.
//
//===----------------------------------------------------------------------===//
#include "llvm/BinaryFormat/XCOFF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCFixup.h"
#include "llvm/MC/MCFixupKindInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/MCXCOFFObjectWriter.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/MathExtras.h"
#include <deque>
using namespace llvm;
// An XCOFF object file has a limited set of predefined sections. The most
// important ones for us (right now) are:
// .text --> contains program code and read-only data.
// .data --> contains initialized data, function descriptors, and the TOC.
// .bss --> contains uninitialized data.
// Each of these sections is composed of 'Control Sections'. A Control Section
// is more commonly referred to as a csect. A csect is an indivisible unit of
// code or data, and acts as a container for symbols. A csect is mapped
// into a section based on its storage-mapping class, with the exception of
// XMC_RW which gets mapped to either .data or .bss based on whether it's
// explicitly initialized or not.
//
// We don't represent the sections in the MC layer as there is nothing
// interesting about them at at that level: they carry information that is
// only relevant to the ObjectWriter, so we materialize them in this class.
namespace {
constexpr unsigned DefaultSectionAlign = 4;
constexpr int16_t MaxSectionIndex = INT16_MAX;
// Packs the csect's alignment and type into a byte.
uint8_t getEncodedType(const MCSectionXCOFF *);
struct XCOFFRelocation {
uint32_t SymbolTableIndex;
uint32_t FixupOffsetInCsect;
uint8_t SignAndSize;
uint8_t Type;
};
// Wrapper around an MCSymbolXCOFF.
struct Symbol {
const MCSymbolXCOFF *const MCSym;
uint32_t SymbolTableIndex;
XCOFF::StorageClass getStorageClass() const {
return MCSym->getStorageClass();
}
StringRef getSymbolTableName() const { return MCSym->getSymbolTableName(); }
Symbol(const MCSymbolXCOFF *MCSym) : MCSym(MCSym), SymbolTableIndex(-1) {}
};
// Wrapper for an MCSectionXCOFF.
// It can be a Csect or debug section or DWARF section and so on.
struct XCOFFSection {
const MCSectionXCOFF *const MCSec;
uint32_t SymbolTableIndex;
uint32_t Address;
uint32_t Size;
SmallVector<Symbol, 1> Syms;
SmallVector<XCOFFRelocation, 1> Relocations;
StringRef getSymbolTableName() const { return MCSec->getSymbolTableName(); }
XCOFFSection(const MCSectionXCOFF *MCSec)
: MCSec(MCSec), SymbolTableIndex(-1), Address(-1), Size(0) {}
};
// Type to be used for a container representing a set of csects with
// (approximately) the same storage mapping class. For example all the csects
// with a storage mapping class of `xmc_pr` will get placed into the same
// container.
using CsectGroup = std::deque<XCOFFSection>;
using CsectGroups = std::deque<CsectGroup *>;
// The basic section entry defination. This Section represents a section entry
// in XCOFF section header table.
struct SectionEntry {
char Name[XCOFF::NameSize];
// The physical/virtual address of the section. For an object file
// these values are equivalent.
uint32_t Address;
uint32_t Size;
uint32_t FileOffsetToData;
uint32_t FileOffsetToRelocations;
uint32_t RelocationCount;
int32_t Flags;
int16_t Index;
// XCOFF has special section numbers for symbols:
// -2 Specifies N_DEBUG, a special symbolic debugging symbol.
// -1 Specifies N_ABS, an absolute symbol. The symbol has a value but is not
// relocatable.
// 0 Specifies N_UNDEF, an undefined external symbol.
// Therefore, we choose -3 (N_DEBUG - 1) to represent a section index that
// hasn't been initialized.
static constexpr int16_t UninitializedIndex =
XCOFF::ReservedSectionNum::N_DEBUG - 1;
SectionEntry(StringRef N, int32_t Flags)
: Name(), Address(0), Size(0), FileOffsetToData(0),
FileOffsetToRelocations(0), RelocationCount(0), Flags(Flags),
Index(UninitializedIndex) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
virtual void reset() {
Address = 0;
Size = 0;
FileOffsetToData = 0;
FileOffsetToRelocations = 0;
RelocationCount = 0;
Index = UninitializedIndex;
}
virtual ~SectionEntry() {}
};
// Represents the data related to a section excluding the csects that make up
// the raw data of the section. The csects are stored separately as not all
// sections contain csects, and some sections contain csects which are better
// stored separately, e.g. the .data section containing read-write, descriptor,
// TOCBase and TOC-entry csects.
struct CsectSectionEntry : public SectionEntry {
// Virtual sections do not need storage allocated in the object file.
const bool IsVirtual;
// This is a section containing csect groups.
CsectGroups Groups;
CsectSectionEntry(StringRef N, XCOFF::SectionTypeFlags Flags, bool IsVirtual,
CsectGroups Groups)
: SectionEntry(N, Flags), IsVirtual(IsVirtual), Groups(Groups) {
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
void reset() override {
SectionEntry::reset();
// Clear any csects we have stored.
for (auto *Group : Groups)
Group->clear();
}
virtual ~CsectSectionEntry() {}
};
struct DwarfSectionEntry : public SectionEntry {
// For DWARF section entry.
std::unique_ptr<XCOFFSection> DwarfSect;
DwarfSectionEntry(StringRef N, int32_t Flags,
std::unique_ptr<XCOFFSection> Sect)
: SectionEntry(N, Flags | XCOFF::STYP_DWARF), DwarfSect(std::move(Sect)) {
assert(DwarfSect->MCSec->isDwarfSect() &&
"This should be a DWARF section!");
assert(N.size() <= XCOFF::NameSize && "section name too long");
memcpy(Name, N.data(), N.size());
}
DwarfSectionEntry(DwarfSectionEntry &&s) = default;
virtual ~DwarfSectionEntry() {}
};
class XCOFFObjectWriter : public MCObjectWriter {
uint32_t SymbolTableEntryCount = 0;
uint32_t SymbolTableOffset = 0;
uint16_t SectionCount = 0;
uint32_t RelocationEntryOffset = 0;
support::endian::Writer W;
std::unique_ptr<MCXCOFFObjectTargetWriter> TargetObjectWriter;
StringTableBuilder Strings;
// Maps the MCSection representation to its corresponding XCOFFSection
// wrapper. Needed for finding the XCOFFSection to insert an MCSymbol into
// from its containing MCSectionXCOFF.
DenseMap<const MCSectionXCOFF *, XCOFFSection *> SectionMap;
// Maps the MCSymbol representation to its corrresponding symbol table index.
// Needed for relocation.
DenseMap<const MCSymbol *, uint32_t> SymbolIndexMap;
// CsectGroups. These store the csects which make up different parts of
// the sections. Should have one for each set of csects that get mapped into
// the same section and get handled in a 'similar' way.
CsectGroup UndefinedCsects;
CsectGroup ProgramCodeCsects;
CsectGroup ReadOnlyCsects;
CsectGroup DataCsects;
CsectGroup FuncDSCsects;
CsectGroup TOCCsects;
CsectGroup BSSCsects;
CsectGroup TDataCsects;
CsectGroup TBSSCsects;
// The Predefined sections.
CsectSectionEntry Text;
CsectSectionEntry Data;
CsectSectionEntry BSS;
CsectSectionEntry TData;
CsectSectionEntry TBSS;
// All the XCOFF sections, in the order they will appear in the section header
// table.
std::array<CsectSectionEntry *const, 5> Sections{
{&Text, &Data, &BSS, &TData, &TBSS}};
std::vector<DwarfSectionEntry> DwarfSections;
CsectGroup &getCsectGroup(const MCSectionXCOFF *MCSec);
virtual void reset() override;
void executePostLayoutBinding(MCAssembler &, const MCAsmLayout &) override;
void recordRelocation(MCAssembler &, const MCAsmLayout &, const MCFragment *,
const MCFixup &, MCValue, uint64_t &) override;
uint64_t writeObject(MCAssembler &, const MCAsmLayout &) override;
static bool nameShouldBeInStringTable(const StringRef &);
void writeSymbolName(const StringRef &);
void writeSymbolTableEntryForCsectMemberLabel(const Symbol &,
const XCOFFSection &, int16_t,
uint64_t);
void writeSymbolTableEntryForControlSection(const XCOFFSection &, int16_t,
XCOFF::StorageClass);
void writeSymbolTableEntryForDwarfSection(const XCOFFSection &, int16_t);
void writeFileHeader();
void writeSectionHeaderTable();
void writeSections(const MCAssembler &Asm, const MCAsmLayout &Layout);
void writeSectionForControlSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry,
uint32_t &CurrentAddressLocation);
void writeSectionForDwarfSectionEntry(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry,
uint32_t &CurrentAddressLocation);
void writeSymbolTable(const MCAsmLayout &Layout);
void writeRelocations();
void writeRelocation(XCOFFRelocation Reloc, const XCOFFSection &Section);
// Called after all the csects and symbols have been processed by
// `executePostLayoutBinding`, this function handles building up the majority
// of the structures in the object file representation. Namely:
// *) Calculates physical/virtual addresses, raw-pointer offsets, and section
// sizes.
// *) Assigns symbol table indices.
// *) Builds up the section header table by adding any non-empty sections to
// `Sections`.
void assignAddressesAndIndices(const MCAsmLayout &);
void finalizeSectionInfo();
bool
needsAuxiliaryHeader() const { /* TODO aux header support not implemented. */
return false;
}
// Returns the size of the auxiliary header to be written to the object file.
size_t auxiliaryHeaderSize() const {
assert(!needsAuxiliaryHeader() &&
"Auxiliary header support not implemented.");
return 0;
}
public:
XCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS);
};
XCOFFObjectWriter::XCOFFObjectWriter(
std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW, raw_pwrite_stream &OS)
: W(OS, support::big), TargetObjectWriter(std::move(MOTW)),
Strings(StringTableBuilder::XCOFF),
Text(".text", XCOFF::STYP_TEXT, /* IsVirtual */ false,
CsectGroups{&ProgramCodeCsects, &ReadOnlyCsects}),
Data(".data", XCOFF::STYP_DATA, /* IsVirtual */ false,
CsectGroups{&DataCsects, &FuncDSCsects, &TOCCsects}),
BSS(".bss", XCOFF::STYP_BSS, /* IsVirtual */ true,
CsectGroups{&BSSCsects}),
TData(".tdata", XCOFF::STYP_TDATA, /* IsVirtual */ false,
CsectGroups{&TDataCsects}),
TBSS(".tbss", XCOFF::STYP_TBSS, /* IsVirtual */ true,
CsectGroups{&TBSSCsects}) {}
void XCOFFObjectWriter::reset() {
// Clear the mappings we created.
SymbolIndexMap.clear();
SectionMap.clear();
UndefinedCsects.clear();
// Reset any sections we have written to, and empty the section header table.
for (auto *Sec : Sections)
Sec->reset();
for (auto &DwarfSec : DwarfSections)
DwarfSec.reset();
// Reset states in XCOFFObjectWriter.
SymbolTableEntryCount = 0;
SymbolTableOffset = 0;
SectionCount = 0;
RelocationEntryOffset = 0;
Strings.clear();
MCObjectWriter::reset();
}
CsectGroup &XCOFFObjectWriter::getCsectGroup(const MCSectionXCOFF *MCSec) {
switch (MCSec->getMappingClass()) {
case XCOFF::XMC_PR:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain program code.");
return ProgramCodeCsects;
case XCOFF::XMC_RO:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain read only data.");
return ReadOnlyCsects;
case XCOFF::XMC_RW:
if (XCOFF::XTY_CM == MCSec->getCSectType())
return BSSCsects;
if (XCOFF::XTY_SD == MCSec->getCSectType())
return DataCsects;
report_fatal_error("Unhandled mapping of read-write csect to section.");
case XCOFF::XMC_DS:
return FuncDSCsects;
case XCOFF::XMC_BS:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with bss storage class must be "
"common type.");
return BSSCsects;
case XCOFF::XMC_TL:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tdata storage class must be "
"an initialized csect.");
return TDataCsects;
case XCOFF::XMC_UL:
assert(XCOFF::XTY_CM == MCSec->getCSectType() &&
"Mapping invalid csect. CSECT with tbss storage class must be "
"an uninitialized csect.");
return TBSSCsects;
case XCOFF::XMC_TC0:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TOC-base.");
assert(TOCCsects.empty() &&
"We should have only one TOC-base, and it should be the first csect "
"in this CsectGroup.");
return TOCCsects;
case XCOFF::XMC_TC:
case XCOFF::XMC_TE:
assert(XCOFF::XTY_SD == MCSec->getCSectType() &&
"Only an initialized csect can contain TC entry.");
assert(!TOCCsects.empty() &&
"We should at least have a TOC-base in this CsectGroup.");
return TOCCsects;
case XCOFF::XMC_TD:
report_fatal_error("toc-data not yet supported when writing object files.");
default:
report_fatal_error("Unhandled mapping of csect to section.");
}
}
static MCSectionXCOFF *getContainingCsect(const MCSymbolXCOFF *XSym) {
if (XSym->isDefined())
return cast<MCSectionXCOFF>(XSym->getFragment()->getParent());
return XSym->getRepresentedCsect();
}
void XCOFFObjectWriter::executePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
if (TargetObjectWriter->is64Bit())
report_fatal_error("64-bit XCOFF object files are not supported yet.");
for (const auto &S : Asm) {
const auto *MCSec = cast<const MCSectionXCOFF>(&S);
assert(SectionMap.find(MCSec) == SectionMap.end() &&
"Cannot add a section twice.");
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(MCSec->getSymbolTableName()))
Strings.add(MCSec->getSymbolTableName());
if (MCSec->isCsect()) {
// A new control section. Its CsectSectionEntry should already be staticly
// generated as Text/Data/BSS/TDATA/TBSS. Add this section to the group of
// the CsectSectionEntry.
assert(XCOFF::XTY_ER != MCSec->getCSectType() &&
"An undefined csect should not get registered.");
CsectGroup &Group = getCsectGroup(MCSec);
Group.emplace_back(MCSec);
SectionMap[MCSec] = &Group.back();
} else if (MCSec->isDwarfSect()) {
// A new DwarfSectionEntry.
std::unique_ptr<XCOFFSection> DwarfSec =
std::make_unique<XCOFFSection>(MCSec);
SectionMap[MCSec] = DwarfSec.get();
DwarfSectionEntry SecEntry(MCSec->getName(),
MCSec->getDwarfSubtypeFlags().getValue(),
std::move(DwarfSec));
DwarfSections.push_back(std::move(SecEntry));
} else
llvm_unreachable("unsupport section type!");
}
for (const MCSymbol &S : Asm.symbols()) {
// Nothing to do for temporary symbols.
if (S.isTemporary())
continue;
const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(&S);
const MCSectionXCOFF *ContainingCsect = getContainingCsect(XSym);
if (ContainingCsect->getCSectType() == XCOFF::XTY_ER) {
// Handle undefined symbol.
UndefinedCsects.emplace_back(ContainingCsect);
SectionMap[ContainingCsect] = &UndefinedCsects.back();
if (nameShouldBeInStringTable(ContainingCsect->getSymbolTableName()))
Strings.add(ContainingCsect->getSymbolTableName());
continue;
}
// If the symbol is the csect itself, we don't need to put the symbol
// into csect's Syms.
if (XSym == ContainingCsect->getQualNameSymbol())
continue;
// Only put a label into the symbol table when it is an external label.
if (!XSym->isExternal())
continue;
assert(SectionMap.find(ContainingCsect) != SectionMap.end() &&
"Expected containing csect to exist in map");
XCOFFSection *Csect = SectionMap[ContainingCsect];
// Lookup the containing csect and add the symbol to it.
assert(Csect->MCSec->isCsect() && "only csect is supported now!");
Csect->Syms.emplace_back(XSym);
// If the name does not fit in the storage provided in the symbol table
// entry, add it to the string table.
if (nameShouldBeInStringTable(XSym->getSymbolTableName()))
Strings.add(XSym->getSymbolTableName());
}
Strings.finalize();
assignAddressesAndIndices(Layout);
}
void XCOFFObjectWriter::recordRelocation(MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup, MCValue Target,
uint64_t &FixedValue) {
auto getIndex = [this](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingCsect) {
// If we could not find the symbol directly in SymbolIndexMap, this symbol
// could either be a temporary symbol or an undefined symbol. In this case,
// we would need to have the relocation reference its csect instead.
return SymbolIndexMap.find(Sym) != SymbolIndexMap.end()
? SymbolIndexMap[Sym]
: SymbolIndexMap[ContainingCsect->getQualNameSymbol()];
};
auto getVirtualAddress =
[this, &Layout](const MCSymbol *Sym,
const MCSectionXCOFF *ContainingSect) -> uint64_t {
// A DWARF section.
if (ContainingSect->isDwarfSect())
return Layout.getSymbolOffset(*Sym);
// A csect.
if (!Sym->isDefined())
return SectionMap[ContainingSect]->Address;
// A label.
assert(Sym->isDefined() && "not a valid object that has address!");
return SectionMap[ContainingSect]->Address + Layout.getSymbolOffset(*Sym);
};
const MCSymbol *const SymA = &Target.getSymA()->getSymbol();
MCAsmBackend &Backend = Asm.getBackend();
bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
MCFixupKindInfo::FKF_IsPCRel;
uint8_t Type;
uint8_t SignAndSize;
std::tie(Type, SignAndSize) =
TargetObjectWriter->getRelocTypeAndSignSize(Target, Fixup, IsPCRel);
const MCSectionXCOFF *SymASec = getContainingCsect(cast<MCSymbolXCOFF>(SymA));
if (SymASec->isCsect() && SymASec->getMappingClass() == XCOFF::XMC_TD)
report_fatal_error("toc-data not yet supported when writing object files.");
assert(SectionMap.find(SymASec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
const uint32_t Index = getIndex(SymA, SymASec);
if (Type == XCOFF::RelocationType::R_POS ||
Type == XCOFF::RelocationType::R_TLS)
// The FixedValue should be symbol's virtual address in this object file
// plus any constant value that we might get.
FixedValue = getVirtualAddress(SymA, SymASec) + Target.getConstant();
else if (Type == XCOFF::RelocationType::R_TLSM)
// The FixedValue should always be zero since the region handle is only
// known at load time.
FixedValue = 0;
else if (Type == XCOFF::RelocationType::R_TOC ||
Type == XCOFF::RelocationType::R_TOCL) {
// The FixedValue should be the TOC entry offset from the TOC-base plus any
// constant offset value.
const int64_t TOCEntryOffset = SectionMap[SymASec]->Address -
TOCCsects.front().Address +
Target.getConstant();
if (Type == XCOFF::RelocationType::R_TOC && !isInt<16>(TOCEntryOffset))
report_fatal_error("TOCEntryOffset overflows in small code model mode");
FixedValue = TOCEntryOffset;
}
assert(
(TargetObjectWriter->is64Bit() ||
Fixup.getOffset() <= UINT32_MAX - Layout.getFragmentOffset(Fragment)) &&
"Fragment offset + fixup offset is overflowed in 32-bit mode.");
uint32_t FixupOffsetInCsect =
Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
XCOFFRelocation Reloc = {Index, FixupOffsetInCsect, SignAndSize, Type};
MCSectionXCOFF *RelocationSec = cast<MCSectionXCOFF>(Fragment->getParent());
assert(SectionMap.find(RelocationSec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
SectionMap[RelocationSec]->Relocations.push_back(Reloc);
if (!Target.getSymB())
return;
const MCSymbol *const SymB = &Target.getSymB()->getSymbol();
if (SymA == SymB)
report_fatal_error("relocation for opposite term is not yet supported");
const MCSectionXCOFF *SymBSec = getContainingCsect(cast<MCSymbolXCOFF>(SymB));
assert(SectionMap.find(SymBSec) != SectionMap.end() &&
"Expected containing csect to exist in map.");
if (SymASec == SymBSec)
report_fatal_error(
"relocation for paired relocatable term is not yet supported");
assert(Type == XCOFF::RelocationType::R_POS &&
"SymA must be R_POS here if it's not opposite term or paired "
"relocatable term.");
const uint32_t IndexB = getIndex(SymB, SymBSec);
// SymB must be R_NEG here, given the general form of Target(MCValue) is
// "SymbolA - SymbolB + imm64".
const uint8_t TypeB = XCOFF::RelocationType::R_NEG;
XCOFFRelocation RelocB = {IndexB, FixupOffsetInCsect, SignAndSize, TypeB};
SectionMap[RelocationSec]->Relocations.push_back(RelocB);
// We already folded "SymbolA + imm64" above when Type is R_POS for SymbolA,
// now we just need to fold "- SymbolB" here.
FixedValue -= getVirtualAddress(SymB, SymBSec);
}
void XCOFFObjectWriter::writeSections(const MCAssembler &Asm,
const MCAsmLayout &Layout) {
uint32_t CurrentAddressLocation = 0;
for (const auto *Section : Sections)
writeSectionForControlSectionEntry(Asm, Layout, *Section,
CurrentAddressLocation);
for (const auto &DwarfSection : DwarfSections)
writeSectionForDwarfSectionEntry(Asm, Layout, DwarfSection,
CurrentAddressLocation);
}
uint64_t XCOFFObjectWriter::writeObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// We always emit a timestamp of 0 for reproducibility, so ensure incremental
// linking is not enabled, in case, like with Windows COFF, such a timestamp
// is incompatible with incremental linking of XCOFF.
if (Asm.isIncrementalLinkerCompatible())
report_fatal_error("Incremental linking not supported for XCOFF.");
if (TargetObjectWriter->is64Bit())
report_fatal_error("64-bit XCOFF object files are not supported yet.");
finalizeSectionInfo();
uint64_t StartOffset = W.OS.tell();
writeFileHeader();
writeSectionHeaderTable();
writeSections(Asm, Layout);
writeRelocations();
writeSymbolTable(Layout);
// Write the string table.
Strings.write(W.OS);
return W.OS.tell() - StartOffset;
}
bool XCOFFObjectWriter::nameShouldBeInStringTable(const StringRef &SymbolName) {
return SymbolName.size() > XCOFF::NameSize;
}
void XCOFFObjectWriter::writeSymbolName(const StringRef &SymbolName) {
if (nameShouldBeInStringTable(SymbolName)) {
W.write<int32_t>(0);
W.write<uint32_t>(Strings.getOffset(SymbolName));
} else {
char Name[XCOFF::NameSize+1];
std::strncpy(Name, SymbolName.data(), XCOFF::NameSize);
ArrayRef<char> NameRef(Name, XCOFF::NameSize);
W.write(NameRef);
}
}
void XCOFFObjectWriter::writeSymbolTableEntryForCsectMemberLabel(
const Symbol &SymbolRef, const XCOFFSection &CSectionRef,
int16_t SectionIndex, uint64_t SymbolOffset) {
// Name or Zeros and string table offset
writeSymbolName(SymbolRef.getSymbolTableName());
assert(SymbolOffset <= UINT32_MAX - CSectionRef.Address &&
"Symbol address overflows.");
W.write<uint32_t>(CSectionRef.Address + SymbolOffset);
W.write<int16_t>(SectionIndex);
// Basic/Derived type. See the description of the n_type field for symbol
// table entries for a detailed description. Since we don't yet support
// visibility, and all other bits are either optionally set or reserved, this
// is always zero.
// TODO FIXME How to assert a symbol's visibilty is default?
// TODO Set the function indicator (bit 10, 0x0020) for functions
// when debugging is enabled.
W.write<uint16_t>(0);
W.write<uint8_t>(SymbolRef.getStorageClass());
// Always 1 aux entry for now.
W.write<uint8_t>(1);
// Now output the auxiliary entry.
W.write<uint32_t>(CSectionRef.SymbolTableIndex);
// Parameter typecheck hash. Not supported.
W.write<uint32_t>(0);
// Typecheck section number. Not supported.
W.write<uint16_t>(0);
// Symbol type: Label
W.write<uint8_t>(XCOFF::XTY_LD);
// Storage mapping class.
W.write<uint8_t>(CSectionRef.MCSec->getMappingClass());
// Reserved (x_stab).
W.write<uint32_t>(0);
// Reserved (x_snstab).
W.write<uint16_t>(0);
}
void XCOFFObjectWriter::writeSymbolTableEntryForDwarfSection(
const XCOFFSection &DwarfSectionRef, int16_t SectionIndex) {
assert(DwarfSectionRef.MCSec->isDwarfSect() && "Not a DWARF section!");
// n_name, n_zeros, n_offset
writeSymbolName(DwarfSectionRef.getSymbolTableName());
// n_value
W.write<uint32_t>(0);
// n_scnum
W.write<int16_t>(SectionIndex);
// n_type
W.write<uint16_t>(0);
// n_sclass
W.write<uint8_t>(XCOFF::C_DWARF);
// Always 1 aux entry for now.
W.write<uint8_t>(1);
// Now output the auxiliary entry.
// x_scnlen
W.write<uint32_t>(DwarfSectionRef.Size);
// Reserved
W.write<uint32_t>(0);
// x_nreloc. Set to 0 for now.
W.write<uint32_t>(0);
// Reserved
W.write<uint32_t>(0);
// Reserved
W.write<uint16_t>(0);
}
void XCOFFObjectWriter::writeSymbolTableEntryForControlSection(
const XCOFFSection &CSectionRef, int16_t SectionIndex,
XCOFF::StorageClass StorageClass) {
// n_name, n_zeros, n_offset
writeSymbolName(CSectionRef.getSymbolTableName());
// n_value
W.write<uint32_t>(CSectionRef.Address);
// n_scnum
W.write<int16_t>(SectionIndex);
// Basic/Derived type. See the description of the n_type field for symbol
// table entries for a detailed description. Since we don't yet support
// visibility, and all other bits are either optionally set or reserved, this
// is always zero.
// TODO FIXME How to assert a symbol's visibilty is default?
// TODO Set the function indicator (bit 10, 0x0020) for functions
// when debugging is enabled.
W.write<uint16_t>(0);
// n_sclass
W.write<uint8_t>(StorageClass);
// Always 1 aux entry for now.
W.write<uint8_t>(1);
// Now output the auxiliary entry.
W.write<uint32_t>(CSectionRef.Size);
// Parameter typecheck hash. Not supported.
W.write<uint32_t>(0);
// Typecheck section number. Not supported.
W.write<uint16_t>(0);
// Symbol type.
W.write<uint8_t>(getEncodedType(CSectionRef.MCSec));
// Storage mapping class.
W.write<uint8_t>(CSectionRef.MCSec->getMappingClass());
// Reserved (x_stab).
W.write<uint32_t>(0);
// Reserved (x_snstab).
W.write<uint16_t>(0);
}
void XCOFFObjectWriter::writeFileHeader() {
// Magic.
W.write<uint16_t>(0x01df);
// Number of sections.
W.write<uint16_t>(SectionCount);
// Timestamp field. For reproducible output we write a 0, which represents no
// timestamp.
W.write<int32_t>(0);
// Byte Offset to the start of the symbol table.
W.write<uint32_t>(SymbolTableOffset);
// Number of entries in the symbol table.
W.write<int32_t>(SymbolTableEntryCount);
// Size of the optional header.
W.write<uint16_t>(0);
// Flags.
W.write<uint16_t>(0);
}
void XCOFFObjectWriter::writeSectionHeaderTable() {
auto writeSectionHeader = [&](const SectionEntry *Sec, bool IsDwarf) {
// Nothing to write for this Section.
if (Sec->Index == SectionEntry::UninitializedIndex)
return false;
// Write Name.
ArrayRef<char> NameRef(Sec->Name, XCOFF::NameSize);
W.write(NameRef);
// Write the Physical Address and Virtual Address. In an object file these
// are the same.
// We use 0 for DWARF sections' Physical and Virtual Addresses.
if (!IsDwarf) {
W.write<uint32_t>(Sec->Address);
W.write<uint32_t>(Sec->Address);
} else {
W.write<uint32_t>(0);
W.write<uint32_t>(0);
}
W.write<uint32_t>(Sec->Size);
W.write<uint32_t>(Sec->FileOffsetToData);
W.write<uint32_t>(Sec->FileOffsetToRelocations);
// Line number pointer. Not supported yet.
W.write<uint32_t>(0);
W.write<uint16_t>(Sec->RelocationCount);
// Line number counts. Not supported yet.
W.write<uint16_t>(0);
W.write<int32_t>(Sec->Flags);
return true;
};
for (const auto *CsectSec : Sections)
writeSectionHeader(CsectSec, /* IsDwarf */ false);
for (const auto &DwarfSec : DwarfSections)
writeSectionHeader(&DwarfSec, /* IsDwarf */ true);
}
void XCOFFObjectWriter::writeRelocation(XCOFFRelocation Reloc,
const XCOFFSection &Section) {
if (Section.MCSec->isCsect())
W.write<uint32_t>(Section.Address + Reloc.FixupOffsetInCsect);
else {
// DWARF sections' address is set to 0.
assert(Section.MCSec->isDwarfSect() && "unsupport section type!");
W.write<uint32_t>(Reloc.FixupOffsetInCsect);
}
W.write<uint32_t>(Reloc.SymbolTableIndex);
W.write<uint8_t>(Reloc.SignAndSize);
W.write<uint8_t>(Reloc.Type);
}
void XCOFFObjectWriter::writeRelocations() {
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (const auto &Csect : *Group) {
for (const auto Reloc : Csect.Relocations)
writeRelocation(Reloc, Csect);
}
}
}
for (const auto &DwarfSection : DwarfSections)
for (const auto &Reloc : DwarfSection.DwarfSect->Relocations)
writeRelocation(Reloc, *DwarfSection.DwarfSect);
}
void XCOFFObjectWriter::writeSymbolTable(const MCAsmLayout &Layout) {
// Write symbol 0 as C_FILE.
// FIXME: support 64-bit C_FILE symbol.
//
// n_name. The n_name of a C_FILE symbol is the source filename when no
// auxiliary entries are present. The source filename is alternatively
// provided by an auxiliary entry, in which case the n_name of the C_FILE
// symbol is `.file`.
// FIXME: add the real source filename.
writeSymbolName(".file");
// n_value. The n_value of a C_FILE symbol is its symbol table index.
W.write<uint32_t>(0);
// n_scnum. N_DEBUG is a reserved section number for indicating a special
// symbolic debugging symbol.
W.write<int16_t>(XCOFF::ReservedSectionNum::N_DEBUG);
// n_type. The n_type field of a C_FILE symbol encodes the source language and
// CPU version info; zero indicates no info.
W.write<uint16_t>(0);
// n_sclass. The C_FILE symbol provides source file-name information,
// source-language ID and CPU-version ID information and some other optional
// infos.
W.write<uint8_t>(XCOFF::C_FILE);
// n_numaux. No aux entry for now.
W.write<uint8_t>(0);
for (const auto &Csect : UndefinedCsects) {
writeSymbolTableEntryForControlSection(Csect,
XCOFF::ReservedSectionNum::N_UNDEF,
Csect.MCSec->getStorageClass());
}
for (const auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to write for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
const int16_t SectionIndex = Section->Index;
for (const auto &Csect : *Group) {
// Write out the control section first and then each symbol in it.
writeSymbolTableEntryForControlSection(Csect, SectionIndex,
Csect.MCSec->getStorageClass());
for (const auto &Sym : Csect.Syms)
writeSymbolTableEntryForCsectMemberLabel(
Sym, Csect, SectionIndex, Layout.getSymbolOffset(*(Sym.MCSym)));
}
}
}
for (const auto &DwarfSection : DwarfSections)
writeSymbolTableEntryForDwarfSection(*DwarfSection.DwarfSect,
DwarfSection.Index);
}
void XCOFFObjectWriter::finalizeSectionInfo() {
for (auto *Section : Sections) {
if (Section->Index == SectionEntry::UninitializedIndex)
// Nothing to record for this Section.
continue;
for (const auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group) {
const size_t CsectRelocCount = Csect.Relocations.size();
if (CsectRelocCount >= XCOFF::RelocOverflow ||
Section->RelocationCount >= XCOFF::RelocOverflow - CsectRelocCount)
report_fatal_error(
"relocation entries overflowed; overflow section is "
"not implemented yet");
Section->RelocationCount += CsectRelocCount;
}
}
}
for (auto &DwarfSection : DwarfSections)
DwarfSection.RelocationCount = DwarfSection.DwarfSect->Relocations.size();
// Calculate the file offset to the relocation entries.
uint64_t RawPointer = RelocationEntryOffset;
auto calcOffsetToRelocations = [&](SectionEntry *Sec, bool IsDwarf) {
if (!IsDwarf && Sec->Index == SectionEntry::UninitializedIndex)
return false;
if (!Sec->RelocationCount)
return false;
Sec->FileOffsetToRelocations = RawPointer;
const uint32_t RelocationSizeInSec =
Sec->RelocationCount * XCOFF::RelocationSerializationSize32;
RawPointer += RelocationSizeInSec;
if (RawPointer > UINT32_MAX)
report_fatal_error("Relocation data overflowed this object file.");
return true;
};
for (auto *Sec : Sections)
calcOffsetToRelocations(Sec, /* IsDwarf */ false);
for (auto &DwarfSec : DwarfSections)
calcOffsetToRelocations(&DwarfSec, /* IsDwarf */ true);
// TODO Error check that the number of symbol table entries fits in 32-bits
// signed ...
if (SymbolTableEntryCount)
SymbolTableOffset = RawPointer;
}
void XCOFFObjectWriter::assignAddressesAndIndices(const MCAsmLayout &Layout) {
// The first symbol table entry (at index 0) is for the file name.
uint32_t SymbolTableIndex = 1;
// Calculate indices for undefined symbols.
for (auto &Csect : UndefinedCsects) {
Csect.Size = 0;
Csect.Address = 0;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Csect.MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained symbol.
SymbolTableIndex += 2;
}
// The address corrresponds to the address of sections and symbols in the
// object file. We place the shared address 0 immediately after the
// section header table.
uint32_t Address = 0;
// Section indices are 1-based in XCOFF.
int32_t SectionIndex = 1;
bool HasTDataSection = false;
for (auto *Section : Sections) {
const bool IsEmpty =
llvm::all_of(Section->Groups,
[](const CsectGroup *Group) { return Group->empty(); });
if (IsEmpty)
continue;
if (SectionIndex > MaxSectionIndex)
report_fatal_error("Section index overflow!");
Section->Index = SectionIndex++;
SectionCount++;
bool SectionAddressSet = false;
// Reset the starting address to 0 for TData section.
if (Section->Flags == XCOFF::STYP_TDATA) {
Address = 0;
HasTDataSection = true;
}
// Reset the starting address to 0 for TBSS section if the object file does
// not contain TData Section.
if ((Section->Flags == XCOFF::STYP_TBSS) && !HasTDataSection)
Address = 0;
for (auto *Group : Section->Groups) {
if (Group->empty())
continue;
for (auto &Csect : *Group) {
const MCSectionXCOFF *MCSec = Csect.MCSec;
Csect.Address = alignTo(Address, MCSec->getAlignment());
Csect.Size = Layout.getSectionAddressSize(MCSec);
Address = Csect.Address + Csect.Size;
Csect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = Csect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
for (auto &Sym : Csect.Syms) {
Sym.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[Sym.MCSym] = Sym.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for each contained
// symbol.
SymbolTableIndex += 2;
}
}
if (!SectionAddressSet) {
Section->Address = Group->front().Address;
SectionAddressSet = true;
}
}
// Make sure the address of the next section aligned to
// DefaultSectionAlign.
Address = alignTo(Address, DefaultSectionAlign);
Section->Size = Address - Section->Address;
}
for (auto &DwarfSection : DwarfSections) {
assert((SectionIndex <= MaxSectionIndex) && "Section index overflow!");
XCOFFSection &DwarfSect = *DwarfSection.DwarfSect;
const MCSectionXCOFF *MCSec = DwarfSect.MCSec;
// Section index.
DwarfSection.Index = SectionIndex++;
SectionCount++;
// Symbol index.
DwarfSect.SymbolTableIndex = SymbolTableIndex;
SymbolIndexMap[MCSec->getQualNameSymbol()] = DwarfSect.SymbolTableIndex;
// 1 main and 1 auxiliary symbol table entry for the csect.
SymbolTableIndex += 2;
// Section address. Make it align to section alignment.
// We use address 0 for DWARF sections' Physical and Virtual Addresses.
// This address is used to tell where is the section in the final object.
// See writeSectionForDwarfSectionEntry().
DwarfSection.Address = DwarfSect.Address =
alignTo(Address, MCSec->getAlignment());
// Section size.
// For DWARF section, we must use the real size which may be not aligned.
DwarfSection.Size = DwarfSect.Size = Layout.getSectionAddressSize(MCSec);
// Make the Address align to default alignment for follow section.
Address = alignTo(DwarfSect.Address + DwarfSect.Size, DefaultSectionAlign);
}
SymbolTableEntryCount = SymbolTableIndex;
// Calculate the RawPointer value for each section.
uint64_t RawPointer = XCOFF::FileHeaderSize32 + auxiliaryHeaderSize() +
SectionCount * XCOFF::SectionHeaderSize32;
for (auto *Sec : Sections) {
if (Sec->Index == SectionEntry::UninitializedIndex || Sec->IsVirtual)
continue;
Sec->FileOffsetToData = RawPointer;
RawPointer += Sec->Size;
if (RawPointer > UINT32_MAX)
report_fatal_error("Section raw data overflowed this object file.");
}
for (auto &DwarfSection : DwarfSections) {
// Address of csect sections are always aligned to DefaultSectionAlign, but
// address of DWARF section are aligned to Section alignment which may be
// bigger than DefaultSectionAlign, need to execlude the padding bits.
RawPointer =
alignTo(RawPointer, DwarfSection.DwarfSect->MCSec->getAlignment());
DwarfSection.FileOffsetToData = RawPointer;
// Some section entries, like DWARF section size is not aligned, so
// RawPointer may be not aligned.
RawPointer += DwarfSection.Size;
// Make sure RawPointer is aligned.
RawPointer = alignTo(RawPointer, DefaultSectionAlign);
assert(RawPointer <= UINT32_MAX &&
"Section raw data overflowed this object file.");
}
RelocationEntryOffset = RawPointer;
}
void XCOFFObjectWriter::writeSectionForControlSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const CsectSectionEntry &CsectEntry, uint32_t &CurrentAddressLocation) {
// Nothing to write for this Section.
if (CsectEntry.Index == SectionEntry::UninitializedIndex)
return;
// There could be a gap (without corresponding zero padding) between
// sections.
// There could be a gap (without corresponding zero padding) between
// sections.
assert(((CurrentAddressLocation <= CsectEntry.Address) ||
(CsectEntry.Flags == XCOFF::STYP_TDATA) ||
(CsectEntry.Flags == XCOFF::STYP_TBSS)) &&
"CurrentAddressLocation should be less than or equal to section "
"address if the section is not TData or TBSS.");
CurrentAddressLocation = CsectEntry.Address;
// For virtual sections, nothing to write. But need to increase
// CurrentAddressLocation for later sections like DWARF section has a correct
// writing location.
if (CsectEntry.IsVirtual) {
CurrentAddressLocation += CsectEntry.Size;
return;
}
for (const auto &Group : CsectEntry.Groups) {
for (const auto &Csect : *Group) {
if (uint32_t PaddingSize = Csect.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (Csect.Size)
Asm.writeSectionData(W.OS, Csect.MCSec, Layout);
CurrentAddressLocation = Csect.Address + Csect.Size;
}
}
// The size of the tail padding in a section is the end virtual address of
// the current section minus the the end virtual address of the last csect
// in that section.
if (uint32_t PaddingSize =
CsectEntry.Address + CsectEntry.Size - CurrentAddressLocation) {
W.OS.write_zeros(PaddingSize);
CurrentAddressLocation += PaddingSize;
}
}
void XCOFFObjectWriter::writeSectionForDwarfSectionEntry(
const MCAssembler &Asm, const MCAsmLayout &Layout,
const DwarfSectionEntry &DwarfEntry, uint32_t &CurrentAddressLocation) {
// There could be a gap (without corresponding zero padding) between
// sections. For example DWARF section alignment is bigger than
// DefaultSectionAlign.
assert(CurrentAddressLocation <= DwarfEntry.Address &&
"CurrentAddressLocation should be less than or equal to section "
"address.");
if (uint32_t PaddingSize = DwarfEntry.Address - CurrentAddressLocation)
W.OS.write_zeros(PaddingSize);
if (DwarfEntry.Size)
Asm.writeSectionData(W.OS, DwarfEntry.DwarfSect->MCSec, Layout);
CurrentAddressLocation = DwarfEntry.Address + DwarfEntry.Size;
// DWARF section size is not aligned to DefaultSectionAlign.
// Make sure CurrentAddressLocation is aligned to DefaultSectionAlign.
uint32_t Mod = CurrentAddressLocation % DefaultSectionAlign;
uint32_t TailPaddingSize = Mod ? DefaultSectionAlign - Mod : 0;
if (TailPaddingSize)
W.OS.write_zeros(TailPaddingSize);
CurrentAddressLocation += TailPaddingSize;
}
// Takes the log base 2 of the alignment and shifts the result into the 5 most
// significant bits of a byte, then or's in the csect type into the least
// significant 3 bits.
uint8_t getEncodedType(const MCSectionXCOFF *Sec) {
unsigned Align = Sec->getAlignment();
assert(isPowerOf2_32(Align) && "Alignment must be a power of 2.");
unsigned Log2Align = Log2_32(Align);
// Result is a number in the range [0, 31] which fits in the 5 least
// significant bits. Shift this value into the 5 most significant bits, and
// bitwise-or in the csect type.
uint8_t EncodedAlign = Log2Align << 3;
return EncodedAlign | Sec->getCSectType();
}
} // end anonymous namespace
std::unique_ptr<MCObjectWriter>
llvm::createXCOFFObjectWriter(std::unique_ptr<MCXCOFFObjectTargetWriter> MOTW,
raw_pwrite_stream &OS) {
return std::make_unique<XCOFFObjectWriter>(std::move(MOTW), OS);
}