forked from OSchip/llvm-project
5537 lines
207 KiB
C++
5537 lines
207 KiB
C++
//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
|
||
//
|
||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
// See https://llvm.org/LICENSE.txt for license information.
|
||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
//
|
||
// This file implements name lookup for C, C++, Objective-C, and
|
||
// Objective-C++.
|
||
//
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
#include "clang/AST/ASTContext.h"
|
||
#include "clang/AST/CXXInheritance.h"
|
||
#include "clang/AST/Decl.h"
|
||
#include "clang/AST/DeclCXX.h"
|
||
#include "clang/AST/DeclLookups.h"
|
||
#include "clang/AST/DeclObjC.h"
|
||
#include "clang/AST/DeclTemplate.h"
|
||
#include "clang/AST/Expr.h"
|
||
#include "clang/AST/ExprCXX.h"
|
||
#include "clang/Basic/Builtins.h"
|
||
#include "clang/Basic/FileManager.h"
|
||
#include "clang/Basic/LangOptions.h"
|
||
#include "clang/Lex/HeaderSearch.h"
|
||
#include "clang/Lex/ModuleLoader.h"
|
||
#include "clang/Lex/Preprocessor.h"
|
||
#include "clang/Sema/DeclSpec.h"
|
||
#include "clang/Sema/Lookup.h"
|
||
#include "clang/Sema/Overload.h"
|
||
#include "clang/Sema/Scope.h"
|
||
#include "clang/Sema/ScopeInfo.h"
|
||
#include "clang/Sema/Sema.h"
|
||
#include "clang/Sema/SemaInternal.h"
|
||
#include "clang/Sema/TemplateDeduction.h"
|
||
#include "clang/Sema/TypoCorrection.h"
|
||
#include "llvm/ADT/STLExtras.h"
|
||
#include "llvm/ADT/SmallPtrSet.h"
|
||
#include "llvm/ADT/TinyPtrVector.h"
|
||
#include "llvm/ADT/edit_distance.h"
|
||
#include "llvm/Support/ErrorHandling.h"
|
||
#include <algorithm>
|
||
#include <iterator>
|
||
#include <list>
|
||
#include <set>
|
||
#include <utility>
|
||
#include <vector>
|
||
|
||
#include "OpenCLBuiltins.inc"
|
||
|
||
using namespace clang;
|
||
using namespace sema;
|
||
|
||
namespace {
|
||
class UnqualUsingEntry {
|
||
const DeclContext *Nominated;
|
||
const DeclContext *CommonAncestor;
|
||
|
||
public:
|
||
UnqualUsingEntry(const DeclContext *Nominated,
|
||
const DeclContext *CommonAncestor)
|
||
: Nominated(Nominated), CommonAncestor(CommonAncestor) {
|
||
}
|
||
|
||
const DeclContext *getCommonAncestor() const {
|
||
return CommonAncestor;
|
||
}
|
||
|
||
const DeclContext *getNominatedNamespace() const {
|
||
return Nominated;
|
||
}
|
||
|
||
// Sort by the pointer value of the common ancestor.
|
||
struct Comparator {
|
||
bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
|
||
return L.getCommonAncestor() < R.getCommonAncestor();
|
||
}
|
||
|
||
bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
|
||
return E.getCommonAncestor() < DC;
|
||
}
|
||
|
||
bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
|
||
return DC < E.getCommonAncestor();
|
||
}
|
||
};
|
||
};
|
||
|
||
/// A collection of using directives, as used by C++ unqualified
|
||
/// lookup.
|
||
class UnqualUsingDirectiveSet {
|
||
Sema &SemaRef;
|
||
|
||
typedef SmallVector<UnqualUsingEntry, 8> ListTy;
|
||
|
||
ListTy list;
|
||
llvm::SmallPtrSet<DeclContext*, 8> visited;
|
||
|
||
public:
|
||
UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {}
|
||
|
||
void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
|
||
// C++ [namespace.udir]p1:
|
||
// During unqualified name lookup, the names appear as if they
|
||
// were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
|
||
assert(InnermostFileDC && InnermostFileDC->isFileContext());
|
||
|
||
for (; S; S = S->getParent()) {
|
||
// C++ [namespace.udir]p1:
|
||
// A using-directive shall not appear in class scope, but may
|
||
// appear in namespace scope or in block scope.
|
||
DeclContext *Ctx = S->getEntity();
|
||
if (Ctx && Ctx->isFileContext()) {
|
||
visit(Ctx, Ctx);
|
||
} else if (!Ctx || Ctx->isFunctionOrMethod()) {
|
||
for (auto *I : S->using_directives())
|
||
if (SemaRef.isVisible(I))
|
||
visit(I, InnermostFileDC);
|
||
}
|
||
}
|
||
}
|
||
|
||
// Visits a context and collect all of its using directives
|
||
// recursively. Treats all using directives as if they were
|
||
// declared in the context.
|
||
//
|
||
// A given context is only every visited once, so it is important
|
||
// that contexts be visited from the inside out in order to get
|
||
// the effective DCs right.
|
||
void visit(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
if (!visited.insert(DC).second)
|
||
return;
|
||
|
||
addUsingDirectives(DC, EffectiveDC);
|
||
}
|
||
|
||
// Visits a using directive and collects all of its using
|
||
// directives recursively. Treats all using directives as if they
|
||
// were declared in the effective DC.
|
||
void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (!visited.insert(NS).second)
|
||
return;
|
||
|
||
addUsingDirective(UD, EffectiveDC);
|
||
addUsingDirectives(NS, EffectiveDC);
|
||
}
|
||
|
||
// Adds all the using directives in a context (and those nominated
|
||
// by its using directives, transitively) as if they appeared in
|
||
// the given effective context.
|
||
void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
|
||
SmallVector<DeclContext*, 4> queue;
|
||
while (true) {
|
||
for (auto UD : DC->using_directives()) {
|
||
DeclContext *NS = UD->getNominatedNamespace();
|
||
if (SemaRef.isVisible(UD) && visited.insert(NS).second) {
|
||
addUsingDirective(UD, EffectiveDC);
|
||
queue.push_back(NS);
|
||
}
|
||
}
|
||
|
||
if (queue.empty())
|
||
return;
|
||
|
||
DC = queue.pop_back_val();
|
||
}
|
||
}
|
||
|
||
// Add a using directive as if it had been declared in the given
|
||
// context. This helps implement C++ [namespace.udir]p3:
|
||
// The using-directive is transitive: if a scope contains a
|
||
// using-directive that nominates a second namespace that itself
|
||
// contains using-directives, the effect is as if the
|
||
// using-directives from the second namespace also appeared in
|
||
// the first.
|
||
void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
|
||
// Find the common ancestor between the effective context and
|
||
// the nominated namespace.
|
||
DeclContext *Common = UD->getNominatedNamespace();
|
||
while (!Common->Encloses(EffectiveDC))
|
||
Common = Common->getParent();
|
||
Common = Common->getPrimaryContext();
|
||
|
||
list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
|
||
}
|
||
|
||
void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); }
|
||
|
||
typedef ListTy::const_iterator const_iterator;
|
||
|
||
const_iterator begin() const { return list.begin(); }
|
||
const_iterator end() const { return list.end(); }
|
||
|
||
llvm::iterator_range<const_iterator>
|
||
getNamespacesFor(DeclContext *DC) const {
|
||
return llvm::make_range(std::equal_range(begin(), end(),
|
||
DC->getPrimaryContext(),
|
||
UnqualUsingEntry::Comparator()));
|
||
}
|
||
};
|
||
} // end anonymous namespace
|
||
|
||
// Retrieve the set of identifier namespaces that correspond to a
|
||
// specific kind of name lookup.
|
||
static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
|
||
bool CPlusPlus,
|
||
bool Redeclaration) {
|
||
unsigned IDNS = 0;
|
||
switch (NameKind) {
|
||
case Sema::LookupObjCImplicitSelfParam:
|
||
case Sema::LookupOrdinaryName:
|
||
case Sema::LookupRedeclarationWithLinkage:
|
||
case Sema::LookupLocalFriendName:
|
||
case Sema::LookupDestructorName:
|
||
IDNS = Decl::IDNS_Ordinary;
|
||
if (CPlusPlus) {
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
|
||
if (Redeclaration)
|
||
IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
|
||
}
|
||
if (Redeclaration)
|
||
IDNS |= Decl::IDNS_LocalExtern;
|
||
break;
|
||
|
||
case Sema::LookupOperatorName:
|
||
// Operator lookup is its own crazy thing; it is not the same
|
||
// as (e.g.) looking up an operator name for redeclaration.
|
||
assert(!Redeclaration && "cannot do redeclaration operator lookup");
|
||
IDNS = Decl::IDNS_NonMemberOperator;
|
||
break;
|
||
|
||
case Sema::LookupTagName:
|
||
if (CPlusPlus) {
|
||
IDNS = Decl::IDNS_Type;
|
||
|
||
// When looking for a redeclaration of a tag name, we add:
|
||
// 1) TagFriend to find undeclared friend decls
|
||
// 2) Namespace because they can't "overload" with tag decls.
|
||
// 3) Tag because it includes class templates, which can't
|
||
// "overload" with tag decls.
|
||
if (Redeclaration)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
|
||
} else {
|
||
IDNS = Decl::IDNS_Tag;
|
||
}
|
||
break;
|
||
|
||
case Sema::LookupLabel:
|
||
IDNS = Decl::IDNS_Label;
|
||
break;
|
||
|
||
case Sema::LookupMemberName:
|
||
IDNS = Decl::IDNS_Member;
|
||
if (CPlusPlus)
|
||
IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
|
||
break;
|
||
|
||
case Sema::LookupNestedNameSpecifierName:
|
||
IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
|
||
break;
|
||
|
||
case Sema::LookupNamespaceName:
|
||
IDNS = Decl::IDNS_Namespace;
|
||
break;
|
||
|
||
case Sema::LookupUsingDeclName:
|
||
assert(Redeclaration && "should only be used for redecl lookup");
|
||
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
|
||
Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
|
||
Decl::IDNS_LocalExtern;
|
||
break;
|
||
|
||
case Sema::LookupObjCProtocolName:
|
||
IDNS = Decl::IDNS_ObjCProtocol;
|
||
break;
|
||
|
||
case Sema::LookupOMPReductionName:
|
||
IDNS = Decl::IDNS_OMPReduction;
|
||
break;
|
||
|
||
case Sema::LookupOMPMapperName:
|
||
IDNS = Decl::IDNS_OMPMapper;
|
||
break;
|
||
|
||
case Sema::LookupAnyName:
|
||
IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
|
||
| Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
|
||
| Decl::IDNS_Type;
|
||
break;
|
||
}
|
||
return IDNS;
|
||
}
|
||
|
||
void LookupResult::configure() {
|
||
IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
|
||
isForRedeclaration());
|
||
|
||
// If we're looking for one of the allocation or deallocation
|
||
// operators, make sure that the implicitly-declared new and delete
|
||
// operators can be found.
|
||
switch (NameInfo.getName().getCXXOverloadedOperator()) {
|
||
case OO_New:
|
||
case OO_Delete:
|
||
case OO_Array_New:
|
||
case OO_Array_Delete:
|
||
getSema().DeclareGlobalNewDelete();
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
// Compiler builtins are always visible, regardless of where they end
|
||
// up being declared.
|
||
if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
|
||
if (unsigned BuiltinID = Id->getBuiltinID()) {
|
||
if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
||
AllowHidden = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
bool LookupResult::checkDebugAssumptions() const {
|
||
// This function is never called by NDEBUG builds.
|
||
assert(ResultKind != NotFound || Decls.size() == 0);
|
||
assert(ResultKind != Found || Decls.size() == 1);
|
||
assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
|
||
(Decls.size() == 1 &&
|
||
isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
|
||
assert(ResultKind != FoundUnresolvedValue || checkUnresolved());
|
||
assert(ResultKind != Ambiguous || Decls.size() > 1 ||
|
||
(Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
|
||
Ambiguity == AmbiguousBaseSubobjectTypes)));
|
||
assert((Paths != nullptr) == (ResultKind == Ambiguous &&
|
||
(Ambiguity == AmbiguousBaseSubobjectTypes ||
|
||
Ambiguity == AmbiguousBaseSubobjects)));
|
||
return true;
|
||
}
|
||
|
||
// Necessary because CXXBasePaths is not complete in Sema.h
|
||
void LookupResult::deletePaths(CXXBasePaths *Paths) {
|
||
delete Paths;
|
||
}
|
||
|
||
/// Get a representative context for a declaration such that two declarations
|
||
/// will have the same context if they were found within the same scope.
|
||
static DeclContext *getContextForScopeMatching(Decl *D) {
|
||
// For function-local declarations, use that function as the context. This
|
||
// doesn't account for scopes within the function; the caller must deal with
|
||
// those.
|
||
DeclContext *DC = D->getLexicalDeclContext();
|
||
if (DC->isFunctionOrMethod())
|
||
return DC;
|
||
|
||
// Otherwise, look at the semantic context of the declaration. The
|
||
// declaration must have been found there.
|
||
return D->getDeclContext()->getRedeclContext();
|
||
}
|
||
|
||
/// Determine whether \p D is a better lookup result than \p Existing,
|
||
/// given that they declare the same entity.
|
||
static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
|
||
NamedDecl *D, NamedDecl *Existing) {
|
||
// When looking up redeclarations of a using declaration, prefer a using
|
||
// shadow declaration over any other declaration of the same entity.
|
||
if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
|
||
!isa<UsingShadowDecl>(Existing))
|
||
return true;
|
||
|
||
auto *DUnderlying = D->getUnderlyingDecl();
|
||
auto *EUnderlying = Existing->getUnderlyingDecl();
|
||
|
||
// If they have different underlying declarations, prefer a typedef over the
|
||
// original type (this happens when two type declarations denote the same
|
||
// type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
|
||
// might carry additional semantic information, such as an alignment override.
|
||
// However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
|
||
// declaration over a typedef. Also prefer a tag over a typedef for
|
||
// destructor name lookup because in some contexts we only accept a
|
||
// class-name in a destructor declaration.
|
||
if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
|
||
assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying));
|
||
bool HaveTag = isa<TagDecl>(EUnderlying);
|
||
bool WantTag =
|
||
Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName;
|
||
return HaveTag != WantTag;
|
||
}
|
||
|
||
// Pick the function with more default arguments.
|
||
// FIXME: In the presence of ambiguous default arguments, we should keep both,
|
||
// so we can diagnose the ambiguity if the default argument is needed.
|
||
// See C++ [over.match.best]p3.
|
||
if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
|
||
auto *EFD = cast<FunctionDecl>(EUnderlying);
|
||
unsigned DMin = DFD->getMinRequiredArguments();
|
||
unsigned EMin = EFD->getMinRequiredArguments();
|
||
// If D has more default arguments, it is preferred.
|
||
if (DMin != EMin)
|
||
return DMin < EMin;
|
||
// FIXME: When we track visibility for default function arguments, check
|
||
// that we pick the declaration with more visible default arguments.
|
||
}
|
||
|
||
// Pick the template with more default template arguments.
|
||
if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
|
||
auto *ETD = cast<TemplateDecl>(EUnderlying);
|
||
unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
|
||
unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
|
||
// If D has more default arguments, it is preferred. Note that default
|
||
// arguments (and their visibility) is monotonically increasing across the
|
||
// redeclaration chain, so this is a quick proxy for "is more recent".
|
||
if (DMin != EMin)
|
||
return DMin < EMin;
|
||
// If D has more *visible* default arguments, it is preferred. Note, an
|
||
// earlier default argument being visible does not imply that a later
|
||
// default argument is visible, so we can't just check the first one.
|
||
for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
|
||
I != N; ++I) {
|
||
if (!S.hasVisibleDefaultArgument(
|
||
ETD->getTemplateParameters()->getParam(I)) &&
|
||
S.hasVisibleDefaultArgument(
|
||
DTD->getTemplateParameters()->getParam(I)))
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// VarDecl can have incomplete array types, prefer the one with more complete
|
||
// array type.
|
||
if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
|
||
VarDecl *EVD = cast<VarDecl>(EUnderlying);
|
||
if (EVD->getType()->isIncompleteType() &&
|
||
!DVD->getType()->isIncompleteType()) {
|
||
// Prefer the decl with a more complete type if visible.
|
||
return S.isVisible(DVD);
|
||
}
|
||
return false; // Avoid picking up a newer decl, just because it was newer.
|
||
}
|
||
|
||
// For most kinds of declaration, it doesn't really matter which one we pick.
|
||
if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
|
||
// If the existing declaration is hidden, prefer the new one. Otherwise,
|
||
// keep what we've got.
|
||
return !S.isVisible(Existing);
|
||
}
|
||
|
||
// Pick the newer declaration; it might have a more precise type.
|
||
for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
|
||
Prev = Prev->getPreviousDecl())
|
||
if (Prev == EUnderlying)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/// Determine whether \p D can hide a tag declaration.
|
||
static bool canHideTag(NamedDecl *D) {
|
||
// C++ [basic.scope.declarative]p4:
|
||
// Given a set of declarations in a single declarative region [...]
|
||
// exactly one declaration shall declare a class name or enumeration name
|
||
// that is not a typedef name and the other declarations shall all refer to
|
||
// the same variable, non-static data member, or enumerator, or all refer
|
||
// to functions and function templates; in this case the class name or
|
||
// enumeration name is hidden.
|
||
// C++ [basic.scope.hiding]p2:
|
||
// A class name or enumeration name can be hidden by the name of a
|
||
// variable, data member, function, or enumerator declared in the same
|
||
// scope.
|
||
// An UnresolvedUsingValueDecl always instantiates to one of these.
|
||
D = D->getUnderlyingDecl();
|
||
return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
|
||
isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
|
||
isa<UnresolvedUsingValueDecl>(D);
|
||
}
|
||
|
||
/// Resolves the result kind of this lookup.
|
||
void LookupResult::resolveKind() {
|
||
unsigned N = Decls.size();
|
||
|
||
// Fast case: no possible ambiguity.
|
||
if (N == 0) {
|
||
assert(ResultKind == NotFound ||
|
||
ResultKind == NotFoundInCurrentInstantiation);
|
||
return;
|
||
}
|
||
|
||
// If there's a single decl, we need to examine it to decide what
|
||
// kind of lookup this is.
|
||
if (N == 1) {
|
||
NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
|
||
if (isa<FunctionTemplateDecl>(D))
|
||
ResultKind = FoundOverloaded;
|
||
else if (isa<UnresolvedUsingValueDecl>(D))
|
||
ResultKind = FoundUnresolvedValue;
|
||
return;
|
||
}
|
||
|
||
// Don't do any extra resolution if we've already resolved as ambiguous.
|
||
if (ResultKind == Ambiguous) return;
|
||
|
||
llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
|
||
llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
|
||
|
||
bool Ambiguous = false;
|
||
bool HasTag = false, HasFunction = false;
|
||
bool HasFunctionTemplate = false, HasUnresolved = false;
|
||
NamedDecl *HasNonFunction = nullptr;
|
||
|
||
llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
|
||
|
||
unsigned UniqueTagIndex = 0;
|
||
|
||
unsigned I = 0;
|
||
while (I < N) {
|
||
NamedDecl *D = Decls[I]->getUnderlyingDecl();
|
||
D = cast<NamedDecl>(D->getCanonicalDecl());
|
||
|
||
// Ignore an invalid declaration unless it's the only one left.
|
||
if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
|
||
Decls[I] = Decls[--N];
|
||
continue;
|
||
}
|
||
|
||
llvm::Optional<unsigned> ExistingI;
|
||
|
||
// Redeclarations of types via typedef can occur both within a scope
|
||
// and, through using declarations and directives, across scopes. There is
|
||
// no ambiguity if they all refer to the same type, so unique based on the
|
||
// canonical type.
|
||
if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
|
||
QualType T = getSema().Context.getTypeDeclType(TD);
|
||
auto UniqueResult = UniqueTypes.insert(
|
||
std::make_pair(getSema().Context.getCanonicalType(T), I));
|
||
if (!UniqueResult.second) {
|
||
// The type is not unique.
|
||
ExistingI = UniqueResult.first->second;
|
||
}
|
||
}
|
||
|
||
// For non-type declarations, check for a prior lookup result naming this
|
||
// canonical declaration.
|
||
if (!ExistingI) {
|
||
auto UniqueResult = Unique.insert(std::make_pair(D, I));
|
||
if (!UniqueResult.second) {
|
||
// We've seen this entity before.
|
||
ExistingI = UniqueResult.first->second;
|
||
}
|
||
}
|
||
|
||
if (ExistingI) {
|
||
// This is not a unique lookup result. Pick one of the results and
|
||
// discard the other.
|
||
if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
|
||
Decls[*ExistingI]))
|
||
Decls[*ExistingI] = Decls[I];
|
||
Decls[I] = Decls[--N];
|
||
continue;
|
||
}
|
||
|
||
// Otherwise, do some decl type analysis and then continue.
|
||
|
||
if (isa<UnresolvedUsingValueDecl>(D)) {
|
||
HasUnresolved = true;
|
||
} else if (isa<TagDecl>(D)) {
|
||
if (HasTag)
|
||
Ambiguous = true;
|
||
UniqueTagIndex = I;
|
||
HasTag = true;
|
||
} else if (isa<FunctionTemplateDecl>(D)) {
|
||
HasFunction = true;
|
||
HasFunctionTemplate = true;
|
||
} else if (isa<FunctionDecl>(D)) {
|
||
HasFunction = true;
|
||
} else {
|
||
if (HasNonFunction) {
|
||
// If we're about to create an ambiguity between two declarations that
|
||
// are equivalent, but one is an internal linkage declaration from one
|
||
// module and the other is an internal linkage declaration from another
|
||
// module, just skip it.
|
||
if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
|
||
D)) {
|
||
EquivalentNonFunctions.push_back(D);
|
||
Decls[I] = Decls[--N];
|
||
continue;
|
||
}
|
||
|
||
Ambiguous = true;
|
||
}
|
||
HasNonFunction = D;
|
||
}
|
||
I++;
|
||
}
|
||
|
||
// C++ [basic.scope.hiding]p2:
|
||
// A class name or enumeration name can be hidden by the name of
|
||
// an object, function, or enumerator declared in the same
|
||
// scope. If a class or enumeration name and an object, function,
|
||
// or enumerator are declared in the same scope (in any order)
|
||
// with the same name, the class or enumeration name is hidden
|
||
// wherever the object, function, or enumerator name is visible.
|
||
// But it's still an error if there are distinct tag types found,
|
||
// even if they're not visible. (ref?)
|
||
if (N > 1 && HideTags && HasTag && !Ambiguous &&
|
||
(HasFunction || HasNonFunction || HasUnresolved)) {
|
||
NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
|
||
if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
|
||
getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
|
||
getContextForScopeMatching(OtherDecl)) &&
|
||
canHideTag(OtherDecl))
|
||
Decls[UniqueTagIndex] = Decls[--N];
|
||
else
|
||
Ambiguous = true;
|
||
}
|
||
|
||
// FIXME: This diagnostic should really be delayed until we're done with
|
||
// the lookup result, in case the ambiguity is resolved by the caller.
|
||
if (!EquivalentNonFunctions.empty() && !Ambiguous)
|
||
getSema().diagnoseEquivalentInternalLinkageDeclarations(
|
||
getNameLoc(), HasNonFunction, EquivalentNonFunctions);
|
||
|
||
Decls.truncate(N);
|
||
|
||
if (HasNonFunction && (HasFunction || HasUnresolved))
|
||
Ambiguous = true;
|
||
|
||
if (Ambiguous)
|
||
setAmbiguous(LookupResult::AmbiguousReference);
|
||
else if (HasUnresolved)
|
||
ResultKind = LookupResult::FoundUnresolvedValue;
|
||
else if (N > 1 || HasFunctionTemplate)
|
||
ResultKind = LookupResult::FoundOverloaded;
|
||
else
|
||
ResultKind = LookupResult::Found;
|
||
}
|
||
|
||
void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
|
||
CXXBasePaths::const_paths_iterator I, E;
|
||
for (I = P.begin(), E = P.end(); I != E; ++I)
|
||
for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE;
|
||
++DI)
|
||
addDecl(*DI);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjects);
|
||
}
|
||
|
||
void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
|
||
Paths = new CXXBasePaths;
|
||
Paths->swap(P);
|
||
addDeclsFromBasePaths(*Paths);
|
||
resolveKind();
|
||
setAmbiguous(AmbiguousBaseSubobjectTypes);
|
||
}
|
||
|
||
void LookupResult::print(raw_ostream &Out) {
|
||
Out << Decls.size() << " result(s)";
|
||
if (isAmbiguous()) Out << ", ambiguous";
|
||
if (Paths) Out << ", base paths present";
|
||
|
||
for (iterator I = begin(), E = end(); I != E; ++I) {
|
||
Out << "\n";
|
||
(*I)->print(Out, 2);
|
||
}
|
||
}
|
||
|
||
LLVM_DUMP_METHOD void LookupResult::dump() {
|
||
llvm::errs() << "lookup results for " << getLookupName().getAsString()
|
||
<< ":\n";
|
||
for (NamedDecl *D : *this)
|
||
D->dump();
|
||
}
|
||
|
||
/// Diagnose a missing builtin type.
|
||
static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass,
|
||
llvm::StringRef Name) {
|
||
S.Diag(SourceLocation(), diag::err_opencl_type_not_found)
|
||
<< TypeClass << Name;
|
||
return S.Context.VoidTy;
|
||
}
|
||
|
||
/// Lookup an OpenCL enum type.
|
||
static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) {
|
||
LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
|
||
Sema::LookupTagName);
|
||
S.LookupName(Result, S.TUScope);
|
||
if (Result.empty())
|
||
return diagOpenCLBuiltinTypeError(S, "enum", Name);
|
||
EnumDecl *Decl = Result.getAsSingle<EnumDecl>();
|
||
if (!Decl)
|
||
return diagOpenCLBuiltinTypeError(S, "enum", Name);
|
||
return S.Context.getEnumType(Decl);
|
||
}
|
||
|
||
/// Lookup an OpenCL typedef type.
|
||
static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) {
|
||
LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(),
|
||
Sema::LookupOrdinaryName);
|
||
S.LookupName(Result, S.TUScope);
|
||
if (Result.empty())
|
||
return diagOpenCLBuiltinTypeError(S, "typedef", Name);
|
||
TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>();
|
||
if (!Decl)
|
||
return diagOpenCLBuiltinTypeError(S, "typedef", Name);
|
||
return S.Context.getTypedefType(Decl);
|
||
}
|
||
|
||
/// Get the QualType instances of the return type and arguments for an OpenCL
|
||
/// builtin function signature.
|
||
/// \param S (in) The Sema instance.
|
||
/// \param OpenCLBuiltin (in) The signature currently handled.
|
||
/// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic
|
||
/// type used as return type or as argument.
|
||
/// Only meaningful for generic types, otherwise equals 1.
|
||
/// \param RetTypes (out) List of the possible return types.
|
||
/// \param ArgTypes (out) List of the possible argument types. For each
|
||
/// argument, ArgTypes contains QualTypes for the Cartesian product
|
||
/// of (vector sizes) x (types) .
|
||
static void GetQualTypesForOpenCLBuiltin(
|
||
Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt,
|
||
SmallVector<QualType, 1> &RetTypes,
|
||
SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
|
||
// Get the QualType instances of the return types.
|
||
unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex];
|
||
OCL2Qual(S, TypeTable[Sig], RetTypes);
|
||
GenTypeMaxCnt = RetTypes.size();
|
||
|
||
// Get the QualType instances of the arguments.
|
||
// First type is the return type, skip it.
|
||
for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) {
|
||
SmallVector<QualType, 1> Ty;
|
||
OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]],
|
||
Ty);
|
||
GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt;
|
||
ArgTypes.push_back(std::move(Ty));
|
||
}
|
||
}
|
||
|
||
/// Create a list of the candidate function overloads for an OpenCL builtin
|
||
/// function.
|
||
/// \param Context (in) The ASTContext instance.
|
||
/// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic
|
||
/// type used as return type or as argument.
|
||
/// Only meaningful for generic types, otherwise equals 1.
|
||
/// \param FunctionList (out) List of FunctionTypes.
|
||
/// \param RetTypes (in) List of the possible return types.
|
||
/// \param ArgTypes (in) List of the possible types for the arguments.
|
||
static void GetOpenCLBuiltinFctOverloads(
|
||
ASTContext &Context, unsigned GenTypeMaxCnt,
|
||
std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes,
|
||
SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) {
|
||
FunctionProtoType::ExtProtoInfo PI(
|
||
Context.getDefaultCallingConvention(false, false, true));
|
||
PI.Variadic = false;
|
||
|
||
// Do not attempt to create any FunctionTypes if there are no return types,
|
||
// which happens when a type belongs to a disabled extension.
|
||
if (RetTypes.size() == 0)
|
||
return;
|
||
|
||
// Create FunctionTypes for each (gen)type.
|
||
for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) {
|
||
SmallVector<QualType, 5> ArgList;
|
||
|
||
for (unsigned A = 0; A < ArgTypes.size(); A++) {
|
||
// Bail out if there is an argument that has no available types.
|
||
if (ArgTypes[A].size() == 0)
|
||
return;
|
||
|
||
// Builtins such as "max" have an "sgentype" argument that represents
|
||
// the corresponding scalar type of a gentype. The number of gentypes
|
||
// must be a multiple of the number of sgentypes.
|
||
assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 &&
|
||
"argument type count not compatible with gentype type count");
|
||
unsigned Idx = IGenType % ArgTypes[A].size();
|
||
ArgList.push_back(ArgTypes[A][Idx]);
|
||
}
|
||
|
||
FunctionList.push_back(Context.getFunctionType(
|
||
RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI));
|
||
}
|
||
}
|
||
|
||
/// When trying to resolve a function name, if isOpenCLBuiltin() returns a
|
||
/// non-null <Index, Len> pair, then the name is referencing an OpenCL
|
||
/// builtin function. Add all candidate signatures to the LookUpResult.
|
||
///
|
||
/// \param S (in) The Sema instance.
|
||
/// \param LR (inout) The LookupResult instance.
|
||
/// \param II (in) The identifier being resolved.
|
||
/// \param FctIndex (in) Starting index in the BuiltinTable.
|
||
/// \param Len (in) The signature list has Len elements.
|
||
static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR,
|
||
IdentifierInfo *II,
|
||
const unsigned FctIndex,
|
||
const unsigned Len) {
|
||
// The builtin function declaration uses generic types (gentype).
|
||
bool HasGenType = false;
|
||
|
||
// Maximum number of types contained in a generic type used as return type or
|
||
// as argument. Only meaningful for generic types, otherwise equals 1.
|
||
unsigned GenTypeMaxCnt;
|
||
|
||
ASTContext &Context = S.Context;
|
||
|
||
for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) {
|
||
const OpenCLBuiltinStruct &OpenCLBuiltin =
|
||
BuiltinTable[FctIndex + SignatureIndex];
|
||
|
||
// Ignore this builtin function if it is not available in the currently
|
||
// selected language version.
|
||
if (!isOpenCLVersionContainedInMask(Context.getLangOpts(),
|
||
OpenCLBuiltin.Versions))
|
||
continue;
|
||
|
||
// Ignore this builtin function if it carries an extension macro that is
|
||
// not defined. This indicates that the extension is not supported by the
|
||
// target, so the builtin function should not be available.
|
||
StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension];
|
||
if (!Extensions.empty()) {
|
||
SmallVector<StringRef, 2> ExtVec;
|
||
Extensions.split(ExtVec, " ");
|
||
bool AllExtensionsDefined = true;
|
||
for (StringRef Ext : ExtVec) {
|
||
if (!S.getPreprocessor().isMacroDefined(Ext)) {
|
||
AllExtensionsDefined = false;
|
||
break;
|
||
}
|
||
}
|
||
if (!AllExtensionsDefined)
|
||
continue;
|
||
}
|
||
|
||
SmallVector<QualType, 1> RetTypes;
|
||
SmallVector<SmallVector<QualType, 1>, 5> ArgTypes;
|
||
|
||
// Obtain QualType lists for the function signature.
|
||
GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes,
|
||
ArgTypes);
|
||
if (GenTypeMaxCnt > 1) {
|
||
HasGenType = true;
|
||
}
|
||
|
||
// Create function overload for each type combination.
|
||
std::vector<QualType> FunctionList;
|
||
GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes,
|
||
ArgTypes);
|
||
|
||
SourceLocation Loc = LR.getNameLoc();
|
||
DeclContext *Parent = Context.getTranslationUnitDecl();
|
||
FunctionDecl *NewOpenCLBuiltin;
|
||
|
||
for (const auto &FTy : FunctionList) {
|
||
NewOpenCLBuiltin = FunctionDecl::Create(
|
||
Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern,
|
||
S.getCurFPFeatures().isFPConstrained(), false,
|
||
FTy->isFunctionProtoType());
|
||
NewOpenCLBuiltin->setImplicit();
|
||
|
||
// Create Decl objects for each parameter, adding them to the
|
||
// FunctionDecl.
|
||
const auto *FP = cast<FunctionProtoType>(FTy);
|
||
SmallVector<ParmVarDecl *, 4> ParmList;
|
||
for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) {
|
||
ParmVarDecl *Parm = ParmVarDecl::Create(
|
||
Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(),
|
||
nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr);
|
||
Parm->setScopeInfo(0, IParm);
|
||
ParmList.push_back(Parm);
|
||
}
|
||
NewOpenCLBuiltin->setParams(ParmList);
|
||
|
||
// Add function attributes.
|
||
if (OpenCLBuiltin.IsPure)
|
||
NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context));
|
||
if (OpenCLBuiltin.IsConst)
|
||
NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context));
|
||
if (OpenCLBuiltin.IsConv)
|
||
NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context));
|
||
|
||
if (!S.getLangOpts().OpenCLCPlusPlus)
|
||
NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context));
|
||
|
||
LR.addDecl(NewOpenCLBuiltin);
|
||
}
|
||
}
|
||
|
||
// If we added overloads, need to resolve the lookup result.
|
||
if (Len > 1 || HasGenType)
|
||
LR.resolveKind();
|
||
}
|
||
|
||
/// Lookup a builtin function, when name lookup would otherwise
|
||
/// fail.
|
||
bool Sema::LookupBuiltin(LookupResult &R) {
|
||
Sema::LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (NameKind == Sema::LookupOrdinaryName ||
|
||
NameKind == Sema::LookupRedeclarationWithLinkage) {
|
||
IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
|
||
if (II) {
|
||
if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
|
||
if (II == getASTContext().getMakeIntegerSeqName()) {
|
||
R.addDecl(getASTContext().getMakeIntegerSeqDecl());
|
||
return true;
|
||
} else if (II == getASTContext().getTypePackElementName()) {
|
||
R.addDecl(getASTContext().getTypePackElementDecl());
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Check if this is an OpenCL Builtin, and if so, insert its overloads.
|
||
if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) {
|
||
auto Index = isOpenCLBuiltin(II->getName());
|
||
if (Index.first) {
|
||
InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1,
|
||
Index.second);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// If this is a builtin on this (or all) targets, create the decl.
|
||
if (unsigned BuiltinID = II->getBuiltinID()) {
|
||
// In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
|
||
// library functions like 'malloc'. Instead, we'll just error.
|
||
if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) &&
|
||
Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
|
||
return false;
|
||
|
||
if (NamedDecl *D =
|
||
LazilyCreateBuiltin(II, BuiltinID, TUScope,
|
||
R.isForRedeclaration(), R.getNameLoc())) {
|
||
R.addDecl(D);
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// Looks up the declaration of "struct objc_super" and
|
||
/// saves it for later use in building builtin declaration of
|
||
/// objc_msgSendSuper and objc_msgSendSuper_stret.
|
||
static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) {
|
||
ASTContext &Context = Sema.Context;
|
||
LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(),
|
||
Sema::LookupTagName);
|
||
Sema.LookupName(Result, S);
|
||
if (Result.getResultKind() == LookupResult::Found)
|
||
if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
|
||
Context.setObjCSuperType(Context.getTagDeclType(TD));
|
||
}
|
||
|
||
void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) {
|
||
if (ID == Builtin::BIobjc_msgSendSuper)
|
||
LookupPredefedObjCSuperType(*this, S);
|
||
}
|
||
|
||
/// Determine whether we can declare a special member function within
|
||
/// the class at this point.
|
||
static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
|
||
// We need to have a definition for the class.
|
||
if (!Class->getDefinition() || Class->isDependentContext())
|
||
return false;
|
||
|
||
// We can't be in the middle of defining the class.
|
||
return !Class->isBeingDefined();
|
||
}
|
||
|
||
void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
|
||
if (!CanDeclareSpecialMemberFunction(Class))
|
||
return;
|
||
|
||
// If the default constructor has not yet been declared, do so now.
|
||
if (Class->needsImplicitDefaultConstructor())
|
||
DeclareImplicitDefaultConstructor(Class);
|
||
|
||
// If the copy constructor has not yet been declared, do so now.
|
||
if (Class->needsImplicitCopyConstructor())
|
||
DeclareImplicitCopyConstructor(Class);
|
||
|
||
// If the copy assignment operator has not yet been declared, do so now.
|
||
if (Class->needsImplicitCopyAssignment())
|
||
DeclareImplicitCopyAssignment(Class);
|
||
|
||
if (getLangOpts().CPlusPlus11) {
|
||
// If the move constructor has not yet been declared, do so now.
|
||
if (Class->needsImplicitMoveConstructor())
|
||
DeclareImplicitMoveConstructor(Class);
|
||
|
||
// If the move assignment operator has not yet been declared, do so now.
|
||
if (Class->needsImplicitMoveAssignment())
|
||
DeclareImplicitMoveAssignment(Class);
|
||
}
|
||
|
||
// If the destructor has not yet been declared, do so now.
|
||
if (Class->needsImplicitDestructor())
|
||
DeclareImplicitDestructor(Class);
|
||
}
|
||
|
||
/// Determine whether this is the name of an implicitly-declared
|
||
/// special member function.
|
||
static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
|
||
switch (Name.getNameKind()) {
|
||
case DeclarationName::CXXConstructorName:
|
||
case DeclarationName::CXXDestructorName:
|
||
return true;
|
||
|
||
case DeclarationName::CXXOperatorName:
|
||
return Name.getCXXOverloadedOperator() == OO_Equal;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/// If there are any implicit member functions with the given name
|
||
/// that need to be declared in the given declaration context, do so.
|
||
static void DeclareImplicitMemberFunctionsWithName(Sema &S,
|
||
DeclarationName Name,
|
||
SourceLocation Loc,
|
||
const DeclContext *DC) {
|
||
if (!DC)
|
||
return;
|
||
|
||
switch (Name.getNameKind()) {
|
||
case DeclarationName::CXXConstructorName:
|
||
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
|
||
if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
|
||
CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
|
||
if (Record->needsImplicitDefaultConstructor())
|
||
S.DeclareImplicitDefaultConstructor(Class);
|
||
if (Record->needsImplicitCopyConstructor())
|
||
S.DeclareImplicitCopyConstructor(Class);
|
||
if (S.getLangOpts().CPlusPlus11 &&
|
||
Record->needsImplicitMoveConstructor())
|
||
S.DeclareImplicitMoveConstructor(Class);
|
||
}
|
||
break;
|
||
|
||
case DeclarationName::CXXDestructorName:
|
||
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
|
||
if (Record->getDefinition() && Record->needsImplicitDestructor() &&
|
||
CanDeclareSpecialMemberFunction(Record))
|
||
S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
|
||
break;
|
||
|
||
case DeclarationName::CXXOperatorName:
|
||
if (Name.getCXXOverloadedOperator() != OO_Equal)
|
||
break;
|
||
|
||
if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
|
||
if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
|
||
CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
|
||
if (Record->needsImplicitCopyAssignment())
|
||
S.DeclareImplicitCopyAssignment(Class);
|
||
if (S.getLangOpts().CPlusPlus11 &&
|
||
Record->needsImplicitMoveAssignment())
|
||
S.DeclareImplicitMoveAssignment(Class);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case DeclarationName::CXXDeductionGuideName:
|
||
S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Adds all qualifying matches for a name within a decl context to the
|
||
// given lookup result. Returns true if any matches were found.
|
||
static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
|
||
bool Found = false;
|
||
|
||
// Lazily declare C++ special member functions.
|
||
if (S.getLangOpts().CPlusPlus)
|
||
DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
|
||
DC);
|
||
|
||
// Perform lookup into this declaration context.
|
||
DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
|
||
for (NamedDecl *D : DR) {
|
||
if ((D = R.getAcceptableDecl(D))) {
|
||
R.addDecl(D);
|
||
Found = true;
|
||
}
|
||
}
|
||
|
||
if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R))
|
||
return true;
|
||
|
||
if (R.getLookupName().getNameKind()
|
||
!= DeclarationName::CXXConversionFunctionName ||
|
||
R.getLookupName().getCXXNameType()->isDependentType() ||
|
||
!isa<CXXRecordDecl>(DC))
|
||
return Found;
|
||
|
||
// C++ [temp.mem]p6:
|
||
// A specialization of a conversion function template is not found by
|
||
// name lookup. Instead, any conversion function templates visible in the
|
||
// context of the use are considered. [...]
|
||
const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
|
||
if (!Record->isCompleteDefinition())
|
||
return Found;
|
||
|
||
// For conversion operators, 'operator auto' should only match
|
||
// 'operator auto'. Since 'auto' is not a type, it shouldn't be considered
|
||
// as a candidate for template substitution.
|
||
auto *ContainedDeducedType =
|
||
R.getLookupName().getCXXNameType()->getContainedDeducedType();
|
||
if (R.getLookupName().getNameKind() ==
|
||
DeclarationName::CXXConversionFunctionName &&
|
||
ContainedDeducedType && ContainedDeducedType->isUndeducedType())
|
||
return Found;
|
||
|
||
for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
|
||
UEnd = Record->conversion_end(); U != UEnd; ++U) {
|
||
FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
|
||
if (!ConvTemplate)
|
||
continue;
|
||
|
||
// When we're performing lookup for the purposes of redeclaration, just
|
||
// add the conversion function template. When we deduce template
|
||
// arguments for specializations, we'll end up unifying the return
|
||
// type of the new declaration with the type of the function template.
|
||
if (R.isForRedeclaration()) {
|
||
R.addDecl(ConvTemplate);
|
||
Found = true;
|
||
continue;
|
||
}
|
||
|
||
// C++ [temp.mem]p6:
|
||
// [...] For each such operator, if argument deduction succeeds
|
||
// (14.9.2.3), the resulting specialization is used as if found by
|
||
// name lookup.
|
||
//
|
||
// When referencing a conversion function for any purpose other than
|
||
// a redeclaration (such that we'll be building an expression with the
|
||
// result), perform template argument deduction and place the
|
||
// specialization into the result set. We do this to avoid forcing all
|
||
// callers to perform special deduction for conversion functions.
|
||
TemplateDeductionInfo Info(R.getNameLoc());
|
||
FunctionDecl *Specialization = nullptr;
|
||
|
||
const FunctionProtoType *ConvProto
|
||
= ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
|
||
assert(ConvProto && "Nonsensical conversion function template type");
|
||
|
||
// Compute the type of the function that we would expect the conversion
|
||
// function to have, if it were to match the name given.
|
||
// FIXME: Calling convention!
|
||
FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
|
||
EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
|
||
EPI.ExceptionSpec = EST_None;
|
||
QualType ExpectedType
|
||
= R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
|
||
None, EPI);
|
||
|
||
// Perform template argument deduction against the type that we would
|
||
// expect the function to have.
|
||
if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
|
||
Specialization, Info)
|
||
== Sema::TDK_Success) {
|
||
R.addDecl(Specialization);
|
||
Found = true;
|
||
}
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
// Performs C++ unqualified lookup into the given file context.
|
||
static bool
|
||
CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
|
||
DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
|
||
|
||
assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
|
||
|
||
// Perform direct name lookup into the LookupCtx.
|
||
bool Found = LookupDirect(S, R, NS);
|
||
|
||
// Perform direct name lookup into the namespaces nominated by the
|
||
// using directives whose common ancestor is this namespace.
|
||
for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
|
||
if (LookupDirect(S, R, UUE.getNominatedNamespace()))
|
||
Found = true;
|
||
|
||
R.resolveKind();
|
||
|
||
return Found;
|
||
}
|
||
|
||
static bool isNamespaceOrTranslationUnitScope(Scope *S) {
|
||
if (DeclContext *Ctx = S->getEntity())
|
||
return Ctx->isFileContext();
|
||
return false;
|
||
}
|
||
|
||
/// Find the outer declaration context from this scope. This indicates the
|
||
/// context that we should search up to (exclusive) before considering the
|
||
/// parent of the specified scope.
|
||
static DeclContext *findOuterContext(Scope *S) {
|
||
for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent())
|
||
if (DeclContext *DC = OuterS->getLookupEntity())
|
||
return DC;
|
||
return nullptr;
|
||
}
|
||
|
||
namespace {
|
||
/// An RAII object to specify that we want to find block scope extern
|
||
/// declarations.
|
||
struct FindLocalExternScope {
|
||
FindLocalExternScope(LookupResult &R)
|
||
: R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
|
||
Decl::IDNS_LocalExtern) {
|
||
R.setFindLocalExtern(R.getIdentifierNamespace() &
|
||
(Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator));
|
||
}
|
||
void restore() {
|
||
R.setFindLocalExtern(OldFindLocalExtern);
|
||
}
|
||
~FindLocalExternScope() {
|
||
restore();
|
||
}
|
||
LookupResult &R;
|
||
bool OldFindLocalExtern;
|
||
};
|
||
} // end anonymous namespace
|
||
|
||
bool Sema::CppLookupName(LookupResult &R, Scope *S) {
|
||
assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup");
|
||
|
||
DeclarationName Name = R.getLookupName();
|
||
Sema::LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
// If this is the name of an implicitly-declared special member function,
|
||
// go through the scope stack to implicitly declare
|
||
if (isImplicitlyDeclaredMemberFunctionName(Name)) {
|
||
for (Scope *PreS = S; PreS; PreS = PreS->getParent())
|
||
if (DeclContext *DC = PreS->getEntity())
|
||
DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
|
||
}
|
||
|
||
// Implicitly declare member functions with the name we're looking for, if in
|
||
// fact we are in a scope where it matters.
|
||
|
||
Scope *Initial = S;
|
||
IdentifierResolver::iterator
|
||
I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
|
||
// First we lookup local scope.
|
||
// We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
|
||
// ...During unqualified name lookup (3.4.1), the names appear as if
|
||
// they were declared in the nearest enclosing namespace which contains
|
||
// both the using-directive and the nominated namespace.
|
||
// [Note: in this context, "contains" means "contains directly or
|
||
// indirectly".
|
||
//
|
||
// For example:
|
||
// namespace A { int i; }
|
||
// void foo() {
|
||
// int i;
|
||
// {
|
||
// using namespace A;
|
||
// ++i; // finds local 'i', A::i appears at global scope
|
||
// }
|
||
// }
|
||
//
|
||
UnqualUsingDirectiveSet UDirs(*this);
|
||
bool VisitedUsingDirectives = false;
|
||
bool LeftStartingScope = false;
|
||
|
||
// When performing a scope lookup, we want to find local extern decls.
|
||
FindLocalExternScope FindLocals(R);
|
||
|
||
for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
|
||
bool SearchNamespaceScope = true;
|
||
// Check whether the IdResolver has anything in this scope.
|
||
for (; I != IEnd && S->isDeclScope(*I); ++I) {
|
||
if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
|
||
if (NameKind == LookupRedeclarationWithLinkage &&
|
||
!(*I)->isTemplateParameter()) {
|
||
// If it's a template parameter, we still find it, so we can diagnose
|
||
// the invalid redeclaration.
|
||
|
||
// Determine whether this (or a previous) declaration is
|
||
// out-of-scope.
|
||
if (!LeftStartingScope && !Initial->isDeclScope(*I))
|
||
LeftStartingScope = true;
|
||
|
||
// If we found something outside of our starting scope that
|
||
// does not have linkage, skip it.
|
||
if (LeftStartingScope && !((*I)->hasLinkage())) {
|
||
R.setShadowed();
|
||
continue;
|
||
}
|
||
} else {
|
||
// We found something in this scope, we should not look at the
|
||
// namespace scope
|
||
SearchNamespaceScope = false;
|
||
}
|
||
R.addDecl(ND);
|
||
}
|
||
}
|
||
if (!SearchNamespaceScope) {
|
||
R.resolveKind();
|
||
if (S->isClassScope())
|
||
if (CXXRecordDecl *Record =
|
||
dyn_cast_or_null<CXXRecordDecl>(S->getEntity()))
|
||
R.setNamingClass(Record);
|
||
return true;
|
||
}
|
||
|
||
if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
|
||
// C++11 [class.friend]p11:
|
||
// If a friend declaration appears in a local class and the name
|
||
// specified is an unqualified name, a prior declaration is
|
||
// looked up without considering scopes that are outside the
|
||
// innermost enclosing non-class scope.
|
||
return false;
|
||
}
|
||
|
||
if (DeclContext *Ctx = S->getLookupEntity()) {
|
||
DeclContext *OuterCtx = findOuterContext(S);
|
||
for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
|
||
// We do not directly look into transparent contexts, since
|
||
// those entities will be found in the nearest enclosing
|
||
// non-transparent context.
|
||
if (Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
// We do not look directly into function or method contexts,
|
||
// since all of the local variables and parameters of the
|
||
// function/method are present within the Scope.
|
||
if (Ctx->isFunctionOrMethod()) {
|
||
// If we have an Objective-C instance method, look for ivars
|
||
// in the corresponding interface.
|
||
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
|
||
if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
|
||
if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
|
||
ObjCInterfaceDecl *ClassDeclared;
|
||
if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
|
||
Name.getAsIdentifierInfo(),
|
||
ClassDeclared)) {
|
||
if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
|
||
R.addDecl(ND);
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
// If this is a file context, we need to perform unqualified name
|
||
// lookup considering using directives.
|
||
if (Ctx->isFileContext()) {
|
||
// If we haven't handled using directives yet, do so now.
|
||
if (!VisitedUsingDirectives) {
|
||
// Add using directives from this context up to the top level.
|
||
for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
|
||
if (UCtx->isTransparentContext())
|
||
continue;
|
||
|
||
UDirs.visit(UCtx, UCtx);
|
||
}
|
||
|
||
// Find the innermost file scope, so we can add using directives
|
||
// from local scopes.
|
||
Scope *InnermostFileScope = S;
|
||
while (InnermostFileScope &&
|
||
!isNamespaceOrTranslationUnitScope(InnermostFileScope))
|
||
InnermostFileScope = InnermostFileScope->getParent();
|
||
UDirs.visitScopeChain(Initial, InnermostFileScope);
|
||
|
||
UDirs.done();
|
||
|
||
VisitedUsingDirectives = true;
|
||
}
|
||
|
||
if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
// Perform qualified name lookup into this context.
|
||
// FIXME: In some cases, we know that every name that could be found by
|
||
// this qualified name lookup will also be on the identifier chain. For
|
||
// example, inside a class without any base classes, we never need to
|
||
// perform qualified lookup because all of the members are on top of the
|
||
// identifier chain.
|
||
if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
|
||
// Stop if we ran out of scopes.
|
||
// FIXME: This really, really shouldn't be happening.
|
||
if (!S) return false;
|
||
|
||
// If we are looking for members, no need to look into global/namespace scope.
|
||
if (NameKind == LookupMemberName)
|
||
return false;
|
||
|
||
// Collect UsingDirectiveDecls in all scopes, and recursively all
|
||
// nominated namespaces by those using-directives.
|
||
//
|
||
// FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
|
||
// don't build it for each lookup!
|
||
if (!VisitedUsingDirectives) {
|
||
UDirs.visitScopeChain(Initial, S);
|
||
UDirs.done();
|
||
}
|
||
|
||
// If we're not performing redeclaration lookup, do not look for local
|
||
// extern declarations outside of a function scope.
|
||
if (!R.isForRedeclaration())
|
||
FindLocals.restore();
|
||
|
||
// Lookup namespace scope, and global scope.
|
||
// Unqualified name lookup in C++ requires looking into scopes
|
||
// that aren't strictly lexical, and therefore we walk through the
|
||
// context as well as walking through the scopes.
|
||
for (; S; S = S->getParent()) {
|
||
// Check whether the IdResolver has anything in this scope.
|
||
bool Found = false;
|
||
for (; I != IEnd && S->isDeclScope(*I); ++I) {
|
||
if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
|
||
// We found something. Look for anything else in our scope
|
||
// with this same name and in an acceptable identifier
|
||
// namespace, so that we can construct an overload set if we
|
||
// need to.
|
||
Found = true;
|
||
R.addDecl(ND);
|
||
}
|
||
}
|
||
|
||
if (Found && S->isTemplateParamScope()) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
DeclContext *Ctx = S->getLookupEntity();
|
||
if (Ctx) {
|
||
DeclContext *OuterCtx = findOuterContext(S);
|
||
for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
|
||
// We do not directly look into transparent contexts, since
|
||
// those entities will be found in the nearest enclosing
|
||
// non-transparent context.
|
||
if (Ctx->isTransparentContext())
|
||
continue;
|
||
|
||
// If we have a context, and it's not a context stashed in the
|
||
// template parameter scope for an out-of-line definition, also
|
||
// look into that context.
|
||
if (!(Found && S->isTemplateParamScope())) {
|
||
assert(Ctx->isFileContext() &&
|
||
"We should have been looking only at file context here already.");
|
||
|
||
// Look into context considering using-directives.
|
||
if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
|
||
Found = true;
|
||
}
|
||
|
||
if (Found) {
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
if (R.isForRedeclaration() && !Ctx->isTransparentContext())
|
||
return false;
|
||
}
|
||
}
|
||
|
||
if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
|
||
return false;
|
||
}
|
||
|
||
return !R.empty();
|
||
}
|
||
|
||
void Sema::makeMergedDefinitionVisible(NamedDecl *ND) {
|
||
if (auto *M = getCurrentModule())
|
||
Context.mergeDefinitionIntoModule(ND, M);
|
||
else
|
||
// We're not building a module; just make the definition visible.
|
||
ND->setVisibleDespiteOwningModule();
|
||
|
||
// If ND is a template declaration, make the template parameters
|
||
// visible too. They're not (necessarily) within a mergeable DeclContext.
|
||
if (auto *TD = dyn_cast<TemplateDecl>(ND))
|
||
for (auto *Param : *TD->getTemplateParameters())
|
||
makeMergedDefinitionVisible(Param);
|
||
}
|
||
|
||
/// Find the module in which the given declaration was defined.
|
||
static Module *getDefiningModule(Sema &S, Decl *Entity) {
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
|
||
// If this function was instantiated from a template, the defining module is
|
||
// the module containing the pattern.
|
||
if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
|
||
Entity = Pattern;
|
||
} else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
|
||
if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
|
||
Entity = Pattern;
|
||
} else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
|
||
if (auto *Pattern = ED->getTemplateInstantiationPattern())
|
||
Entity = Pattern;
|
||
} else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
|
||
if (VarDecl *Pattern = VD->getTemplateInstantiationPattern())
|
||
Entity = Pattern;
|
||
}
|
||
|
||
// Walk up to the containing context. That might also have been instantiated
|
||
// from a template.
|
||
DeclContext *Context = Entity->getLexicalDeclContext();
|
||
if (Context->isFileContext())
|
||
return S.getOwningModule(Entity);
|
||
return getDefiningModule(S, cast<Decl>(Context));
|
||
}
|
||
|
||
llvm::DenseSet<Module*> &Sema::getLookupModules() {
|
||
unsigned N = CodeSynthesisContexts.size();
|
||
for (unsigned I = CodeSynthesisContextLookupModules.size();
|
||
I != N; ++I) {
|
||
Module *M = CodeSynthesisContexts[I].Entity ?
|
||
getDefiningModule(*this, CodeSynthesisContexts[I].Entity) :
|
||
nullptr;
|
||
if (M && !LookupModulesCache.insert(M).second)
|
||
M = nullptr;
|
||
CodeSynthesisContextLookupModules.push_back(M);
|
||
}
|
||
return LookupModulesCache;
|
||
}
|
||
|
||
/// Determine whether the module M is part of the current module from the
|
||
/// perspective of a module-private visibility check.
|
||
static bool isInCurrentModule(const Module *M, const LangOptions &LangOpts) {
|
||
// If M is the global module fragment of a module that we've not yet finished
|
||
// parsing, then it must be part of the current module.
|
||
return M->getTopLevelModuleName() == LangOpts.CurrentModule ||
|
||
(M->Kind == Module::GlobalModuleFragment && !M->Parent);
|
||
}
|
||
|
||
bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
|
||
for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
|
||
if (isModuleVisible(Merged))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
bool Sema::hasMergedDefinitionInCurrentModule(NamedDecl *Def) {
|
||
for (const Module *Merged : Context.getModulesWithMergedDefinition(Def))
|
||
if (isInCurrentModule(Merged, getLangOpts()))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
template<typename ParmDecl>
|
||
static bool
|
||
hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
|
||
llvm::SmallVectorImpl<Module *> *Modules) {
|
||
if (!D->hasDefaultArgument())
|
||
return false;
|
||
|
||
while (D) {
|
||
auto &DefaultArg = D->getDefaultArgStorage();
|
||
if (!DefaultArg.isInherited() && S.isVisible(D))
|
||
return true;
|
||
|
||
if (!DefaultArg.isInherited() && Modules) {
|
||
auto *NonConstD = const_cast<ParmDecl*>(D);
|
||
Modules->push_back(S.getOwningModule(NonConstD));
|
||
}
|
||
|
||
// If there was a previous default argument, maybe its parameter is visible.
|
||
D = DefaultArg.getInheritedFrom();
|
||
}
|
||
return false;
|
||
}
|
||
|
||
bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
|
||
llvm::SmallVectorImpl<Module *> *Modules) {
|
||
if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
|
||
return ::hasVisibleDefaultArgument(*this, P, Modules);
|
||
if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
|
||
return ::hasVisibleDefaultArgument(*this, P, Modules);
|
||
return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
|
||
Modules);
|
||
}
|
||
|
||
template<typename Filter>
|
||
static bool hasVisibleDeclarationImpl(Sema &S, const NamedDecl *D,
|
||
llvm::SmallVectorImpl<Module *> *Modules,
|
||
Filter F) {
|
||
bool HasFilteredRedecls = false;
|
||
|
||
for (auto *Redecl : D->redecls()) {
|
||
auto *R = cast<NamedDecl>(Redecl);
|
||
if (!F(R))
|
||
continue;
|
||
|
||
if (S.isVisible(R))
|
||
return true;
|
||
|
||
HasFilteredRedecls = true;
|
||
|
||
if (Modules)
|
||
Modules->push_back(R->getOwningModule());
|
||
}
|
||
|
||
// Only return false if there is at least one redecl that is not filtered out.
|
||
if (HasFilteredRedecls)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
bool Sema::hasVisibleExplicitSpecialization(
|
||
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
|
||
return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
|
||
if (auto *RD = dyn_cast<CXXRecordDecl>(D))
|
||
return RD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
|
||
if (auto *FD = dyn_cast<FunctionDecl>(D))
|
||
return FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
|
||
if (auto *VD = dyn_cast<VarDecl>(D))
|
||
return VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization;
|
||
llvm_unreachable("unknown explicit specialization kind");
|
||
});
|
||
}
|
||
|
||
bool Sema::hasVisibleMemberSpecialization(
|
||
const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
|
||
assert(isa<CXXRecordDecl>(D->getDeclContext()) &&
|
||
"not a member specialization");
|
||
return hasVisibleDeclarationImpl(*this, D, Modules, [](const NamedDecl *D) {
|
||
// If the specialization is declared at namespace scope, then it's a member
|
||
// specialization declaration. If it's lexically inside the class
|
||
// definition then it was instantiated.
|
||
//
|
||
// FIXME: This is a hack. There should be a better way to determine this.
|
||
// FIXME: What about MS-style explicit specializations declared within a
|
||
// class definition?
|
||
return D->getLexicalDeclContext()->isFileContext();
|
||
});
|
||
}
|
||
|
||
/// Determine whether a declaration is visible to name lookup.
|
||
///
|
||
/// This routine determines whether the declaration D is visible in the current
|
||
/// lookup context, taking into account the current template instantiation
|
||
/// stack. During template instantiation, a declaration is visible if it is
|
||
/// visible from a module containing any entity on the template instantiation
|
||
/// path (by instantiating a template, you allow it to see the declarations that
|
||
/// your module can see, including those later on in your module).
|
||
bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
|
||
assert(!D->isUnconditionallyVisible() &&
|
||
"should not call this: not in slow case");
|
||
|
||
Module *DeclModule = SemaRef.getOwningModule(D);
|
||
assert(DeclModule && "hidden decl has no owning module");
|
||
|
||
// If the owning module is visible, the decl is visible.
|
||
if (SemaRef.isModuleVisible(DeclModule, D->isModulePrivate()))
|
||
return true;
|
||
|
||
// Determine whether a decl context is a file context for the purpose of
|
||
// visibility. This looks through some (export and linkage spec) transparent
|
||
// contexts, but not others (enums).
|
||
auto IsEffectivelyFileContext = [](const DeclContext *DC) {
|
||
return DC->isFileContext() || isa<LinkageSpecDecl>(DC) ||
|
||
isa<ExportDecl>(DC);
|
||
};
|
||
|
||
// If this declaration is not at namespace scope
|
||
// then it is visible if its lexical parent has a visible definition.
|
||
DeclContext *DC = D->getLexicalDeclContext();
|
||
if (DC && !IsEffectivelyFileContext(DC)) {
|
||
// For a parameter, check whether our current template declaration's
|
||
// lexical context is visible, not whether there's some other visible
|
||
// definition of it, because parameters aren't "within" the definition.
|
||
//
|
||
// In C++ we need to check for a visible definition due to ODR merging,
|
||
// and in C we must not because each declaration of a function gets its own
|
||
// set of declarations for tags in prototype scope.
|
||
bool VisibleWithinParent;
|
||
if (D->isTemplateParameter()) {
|
||
bool SearchDefinitions = true;
|
||
if (const auto *DCD = dyn_cast<Decl>(DC)) {
|
||
if (const auto *TD = DCD->getDescribedTemplate()) {
|
||
TemplateParameterList *TPL = TD->getTemplateParameters();
|
||
auto Index = getDepthAndIndex(D).second;
|
||
SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D;
|
||
}
|
||
}
|
||
if (SearchDefinitions)
|
||
VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
|
||
else
|
||
VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
|
||
} else if (isa<ParmVarDecl>(D) ||
|
||
(isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
|
||
VisibleWithinParent = isVisible(SemaRef, cast<NamedDecl>(DC));
|
||
else if (D->isModulePrivate()) {
|
||
// A module-private declaration is only visible if an enclosing lexical
|
||
// parent was merged with another definition in the current module.
|
||
VisibleWithinParent = false;
|
||
do {
|
||
if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) {
|
||
VisibleWithinParent = true;
|
||
break;
|
||
}
|
||
DC = DC->getLexicalParent();
|
||
} while (!IsEffectivelyFileContext(DC));
|
||
} else {
|
||
VisibleWithinParent = SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC));
|
||
}
|
||
|
||
if (VisibleWithinParent && SemaRef.CodeSynthesisContexts.empty() &&
|
||
// FIXME: Do something better in this case.
|
||
!SemaRef.getLangOpts().ModulesLocalVisibility) {
|
||
// Cache the fact that this declaration is implicitly visible because
|
||
// its parent has a visible definition.
|
||
D->setVisibleDespiteOwningModule();
|
||
}
|
||
return VisibleWithinParent;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) {
|
||
// The module might be ordinarily visible. For a module-private query, that
|
||
// means it is part of the current module. For any other query, that means it
|
||
// is in our visible module set.
|
||
if (ModulePrivate) {
|
||
if (isInCurrentModule(M, getLangOpts()))
|
||
return true;
|
||
} else {
|
||
if (VisibleModules.isVisible(M))
|
||
return true;
|
||
}
|
||
|
||
// Otherwise, it might be visible by virtue of the query being within a
|
||
// template instantiation or similar that is permitted to look inside M.
|
||
|
||
// Find the extra places where we need to look.
|
||
const auto &LookupModules = getLookupModules();
|
||
if (LookupModules.empty())
|
||
return false;
|
||
|
||
// If our lookup set contains the module, it's visible.
|
||
if (LookupModules.count(M))
|
||
return true;
|
||
|
||
// For a module-private query, that's everywhere we get to look.
|
||
if (ModulePrivate)
|
||
return false;
|
||
|
||
// Check whether M is transitively exported to an import of the lookup set.
|
||
return llvm::any_of(LookupModules, [&](const Module *LookupM) {
|
||
return LookupM->isModuleVisible(M);
|
||
});
|
||
}
|
||
|
||
bool Sema::isVisibleSlow(const NamedDecl *D) {
|
||
return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
|
||
}
|
||
|
||
bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
|
||
// FIXME: If there are both visible and hidden declarations, we need to take
|
||
// into account whether redeclaration is possible. Example:
|
||
//
|
||
// Non-imported module:
|
||
// int f(T); // #1
|
||
// Some TU:
|
||
// static int f(U); // #2, not a redeclaration of #1
|
||
// int f(T); // #3, finds both, should link with #1 if T != U, but
|
||
// // with #2 if T == U; neither should be ambiguous.
|
||
for (auto *D : R) {
|
||
if (isVisible(D))
|
||
return true;
|
||
assert(D->isExternallyDeclarable() &&
|
||
"should not have hidden, non-externally-declarable result here");
|
||
}
|
||
|
||
// This function is called once "New" is essentially complete, but before a
|
||
// previous declaration is attached. We can't query the linkage of "New" in
|
||
// general, because attaching the previous declaration can change the
|
||
// linkage of New to match the previous declaration.
|
||
//
|
||
// However, because we've just determined that there is no *visible* prior
|
||
// declaration, we can compute the linkage here. There are two possibilities:
|
||
//
|
||
// * This is not a redeclaration; it's safe to compute the linkage now.
|
||
//
|
||
// * This is a redeclaration of a prior declaration that is externally
|
||
// redeclarable. In that case, the linkage of the declaration is not
|
||
// changed by attaching the prior declaration, because both are externally
|
||
// declarable (and thus ExternalLinkage or VisibleNoLinkage).
|
||
//
|
||
// FIXME: This is subtle and fragile.
|
||
return New->isExternallyDeclarable();
|
||
}
|
||
|
||
/// Retrieve the visible declaration corresponding to D, if any.
|
||
///
|
||
/// This routine determines whether the declaration D is visible in the current
|
||
/// module, with the current imports. If not, it checks whether any
|
||
/// redeclaration of D is visible, and if so, returns that declaration.
|
||
///
|
||
/// \returns D, or a visible previous declaration of D, whichever is more recent
|
||
/// and visible. If no declaration of D is visible, returns null.
|
||
static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D,
|
||
unsigned IDNS) {
|
||
assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case");
|
||
|
||
for (auto RD : D->redecls()) {
|
||
// Don't bother with extra checks if we already know this one isn't visible.
|
||
if (RD == D)
|
||
continue;
|
||
|
||
auto ND = cast<NamedDecl>(RD);
|
||
// FIXME: This is wrong in the case where the previous declaration is not
|
||
// visible in the same scope as D. This needs to be done much more
|
||
// carefully.
|
||
if (ND->isInIdentifierNamespace(IDNS) &&
|
||
LookupResult::isVisible(SemaRef, ND))
|
||
return ND;
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
|
||
llvm::SmallVectorImpl<Module *> *Modules) {
|
||
assert(!isVisible(D) && "not in slow case");
|
||
return hasVisibleDeclarationImpl(*this, D, Modules,
|
||
[](const NamedDecl *) { return true; });
|
||
}
|
||
|
||
NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
|
||
if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
|
||
// Namespaces are a bit of a special case: we expect there to be a lot of
|
||
// redeclarations of some namespaces, all declarations of a namespace are
|
||
// essentially interchangeable, all declarations are found by name lookup
|
||
// if any is, and namespaces are never looked up during template
|
||
// instantiation. So we benefit from caching the check in this case, and
|
||
// it is correct to do so.
|
||
auto *Key = ND->getCanonicalDecl();
|
||
if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
|
||
return Acceptable;
|
||
auto *Acceptable = isVisible(getSema(), Key)
|
||
? Key
|
||
: findAcceptableDecl(getSema(), Key, IDNS);
|
||
if (Acceptable)
|
||
getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
|
||
return Acceptable;
|
||
}
|
||
|
||
return findAcceptableDecl(getSema(), D, IDNS);
|
||
}
|
||
|
||
/// Perform unqualified name lookup starting from a given
|
||
/// scope.
|
||
///
|
||
/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
|
||
/// used to find names within the current scope. For example, 'x' in
|
||
/// @code
|
||
/// int x;
|
||
/// int f() {
|
||
/// return x; // unqualified name look finds 'x' in the global scope
|
||
/// }
|
||
/// @endcode
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent scopes.
|
||
///
|
||
/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
|
||
/// look up and the lookup kind), and is updated with the results of lookup
|
||
/// including zero or more declarations and possibly additional information
|
||
/// used to diagnose ambiguities.
|
||
///
|
||
/// @returns \c true if lookup succeeded and false otherwise.
|
||
bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
|
||
DeclarationName Name = R.getLookupName();
|
||
if (!Name) return false;
|
||
|
||
LookupNameKind NameKind = R.getLookupKind();
|
||
|
||
if (!getLangOpts().CPlusPlus) {
|
||
// Unqualified name lookup in C/Objective-C is purely lexical, so
|
||
// search in the declarations attached to the name.
|
||
if (NameKind == Sema::LookupRedeclarationWithLinkage) {
|
||
// Find the nearest non-transparent declaration scope.
|
||
while (!(S->getFlags() & Scope::DeclScope) ||
|
||
(S->getEntity() && S->getEntity()->isTransparentContext()))
|
||
S = S->getParent();
|
||
}
|
||
|
||
// When performing a scope lookup, we want to find local extern decls.
|
||
FindLocalExternScope FindLocals(R);
|
||
|
||
// Scan up the scope chain looking for a decl that matches this
|
||
// identifier that is in the appropriate namespace. This search
|
||
// should not take long, as shadowing of names is uncommon, and
|
||
// deep shadowing is extremely uncommon.
|
||
bool LeftStartingScope = false;
|
||
|
||
for (IdentifierResolver::iterator I = IdResolver.begin(Name),
|
||
IEnd = IdResolver.end();
|
||
I != IEnd; ++I)
|
||
if (NamedDecl *D = R.getAcceptableDecl(*I)) {
|
||
if (NameKind == LookupRedeclarationWithLinkage) {
|
||
// Determine whether this (or a previous) declaration is
|
||
// out-of-scope.
|
||
if (!LeftStartingScope && !S->isDeclScope(*I))
|
||
LeftStartingScope = true;
|
||
|
||
// If we found something outside of our starting scope that
|
||
// does not have linkage, skip it.
|
||
if (LeftStartingScope && !((*I)->hasLinkage())) {
|
||
R.setShadowed();
|
||
continue;
|
||
}
|
||
}
|
||
else if (NameKind == LookupObjCImplicitSelfParam &&
|
||
!isa<ImplicitParamDecl>(*I))
|
||
continue;
|
||
|
||
R.addDecl(D);
|
||
|
||
// Check whether there are any other declarations with the same name
|
||
// and in the same scope.
|
||
if (I != IEnd) {
|
||
// Find the scope in which this declaration was declared (if it
|
||
// actually exists in a Scope).
|
||
while (S && !S->isDeclScope(D))
|
||
S = S->getParent();
|
||
|
||
// If the scope containing the declaration is the translation unit,
|
||
// then we'll need to perform our checks based on the matching
|
||
// DeclContexts rather than matching scopes.
|
||
if (S && isNamespaceOrTranslationUnitScope(S))
|
||
S = nullptr;
|
||
|
||
// Compute the DeclContext, if we need it.
|
||
DeclContext *DC = nullptr;
|
||
if (!S)
|
||
DC = (*I)->getDeclContext()->getRedeclContext();
|
||
|
||
IdentifierResolver::iterator LastI = I;
|
||
for (++LastI; LastI != IEnd; ++LastI) {
|
||
if (S) {
|
||
// Match based on scope.
|
||
if (!S->isDeclScope(*LastI))
|
||
break;
|
||
} else {
|
||
// Match based on DeclContext.
|
||
DeclContext *LastDC
|
||
= (*LastI)->getDeclContext()->getRedeclContext();
|
||
if (!LastDC->Equals(DC))
|
||
break;
|
||
}
|
||
|
||
// If the declaration is in the right namespace and visible, add it.
|
||
if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
|
||
R.addDecl(LastD);
|
||
}
|
||
|
||
R.resolveKind();
|
||
}
|
||
|
||
return true;
|
||
}
|
||
} else {
|
||
// Perform C++ unqualified name lookup.
|
||
if (CppLookupName(R, S))
|
||
return true;
|
||
}
|
||
|
||
// If we didn't find a use of this identifier, and if the identifier
|
||
// corresponds to a compiler builtin, create the decl object for the builtin
|
||
// now, injecting it into translation unit scope, and return it.
|
||
if (AllowBuiltinCreation && LookupBuiltin(R))
|
||
return true;
|
||
|
||
// If we didn't find a use of this identifier, the ExternalSource
|
||
// may be able to handle the situation.
|
||
// Note: some lookup failures are expected!
|
||
// See e.g. R.isForRedeclaration().
|
||
return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
|
||
}
|
||
|
||
/// Perform qualified name lookup in the namespaces nominated by
|
||
/// using directives by the given context.
|
||
///
|
||
/// C++98 [namespace.qual]p2:
|
||
/// Given X::m (where X is a user-declared namespace), or given \::m
|
||
/// (where X is the global namespace), let S be the set of all
|
||
/// declarations of m in X and in the transitive closure of all
|
||
/// namespaces nominated by using-directives in X and its used
|
||
/// namespaces, except that using-directives are ignored in any
|
||
/// namespace, including X, directly containing one or more
|
||
/// declarations of m. No namespace is searched more than once in
|
||
/// the lookup of a name. If S is the empty set, the program is
|
||
/// ill-formed. Otherwise, if S has exactly one member, or if the
|
||
/// context of the reference is a using-declaration
|
||
/// (namespace.udecl), S is the required set of declarations of
|
||
/// m. Otherwise if the use of m is not one that allows a unique
|
||
/// declaration to be chosen from S, the program is ill-formed.
|
||
///
|
||
/// C++98 [namespace.qual]p5:
|
||
/// During the lookup of a qualified namespace member name, if the
|
||
/// lookup finds more than one declaration of the member, and if one
|
||
/// declaration introduces a class name or enumeration name and the
|
||
/// other declarations either introduce the same object, the same
|
||
/// enumerator or a set of functions, the non-type name hides the
|
||
/// class or enumeration name if and only if the declarations are
|
||
/// from the same namespace; otherwise (the declarations are from
|
||
/// different namespaces), the program is ill-formed.
|
||
static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
|
||
DeclContext *StartDC) {
|
||
assert(StartDC->isFileContext() && "start context is not a file context");
|
||
|
||
// We have not yet looked into these namespaces, much less added
|
||
// their "using-children" to the queue.
|
||
SmallVector<NamespaceDecl*, 8> Queue;
|
||
|
||
// We have at least added all these contexts to the queue.
|
||
llvm::SmallPtrSet<DeclContext*, 8> Visited;
|
||
Visited.insert(StartDC);
|
||
|
||
// We have already looked into the initial namespace; seed the queue
|
||
// with its using-children.
|
||
for (auto *I : StartDC->using_directives()) {
|
||
NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
|
||
if (S.isVisible(I) && Visited.insert(ND).second)
|
||
Queue.push_back(ND);
|
||
}
|
||
|
||
// The easiest way to implement the restriction in [namespace.qual]p5
|
||
// is to check whether any of the individual results found a tag
|
||
// and, if so, to declare an ambiguity if the final result is not
|
||
// a tag.
|
||
bool FoundTag = false;
|
||
bool FoundNonTag = false;
|
||
|
||
LookupResult LocalR(LookupResult::Temporary, R);
|
||
|
||
bool Found = false;
|
||
while (!Queue.empty()) {
|
||
NamespaceDecl *ND = Queue.pop_back_val();
|
||
|
||
// We go through some convolutions here to avoid copying results
|
||
// between LookupResults.
|
||
bool UseLocal = !R.empty();
|
||
LookupResult &DirectR = UseLocal ? LocalR : R;
|
||
bool FoundDirect = LookupDirect(S, DirectR, ND);
|
||
|
||
if (FoundDirect) {
|
||
// First do any local hiding.
|
||
DirectR.resolveKind();
|
||
|
||
// If the local result is a tag, remember that.
|
||
if (DirectR.isSingleTagDecl())
|
||
FoundTag = true;
|
||
else
|
||
FoundNonTag = true;
|
||
|
||
// Append the local results to the total results if necessary.
|
||
if (UseLocal) {
|
||
R.addAllDecls(LocalR);
|
||
LocalR.clear();
|
||
}
|
||
}
|
||
|
||
// If we find names in this namespace, ignore its using directives.
|
||
if (FoundDirect) {
|
||
Found = true;
|
||
continue;
|
||
}
|
||
|
||
for (auto I : ND->using_directives()) {
|
||
NamespaceDecl *Nom = I->getNominatedNamespace();
|
||
if (S.isVisible(I) && Visited.insert(Nom).second)
|
||
Queue.push_back(Nom);
|
||
}
|
||
}
|
||
|
||
if (Found) {
|
||
if (FoundTag && FoundNonTag)
|
||
R.setAmbiguousQualifiedTagHiding();
|
||
else
|
||
R.resolveKind();
|
||
}
|
||
|
||
return Found;
|
||
}
|
||
|
||
/// Perform qualified name lookup into a given context.
|
||
///
|
||
/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
|
||
/// names when the context of those names is explicit specified, e.g.,
|
||
/// "std::vector" or "x->member", or as part of unqualified name lookup.
|
||
///
|
||
/// Different lookup criteria can find different names. For example, a
|
||
/// particular scope can have both a struct and a function of the same
|
||
/// name, and each can be found by certain lookup criteria. For more
|
||
/// information about lookup criteria, see the documentation for the
|
||
/// class LookupCriteria.
|
||
///
|
||
/// \param R captures both the lookup criteria and any lookup results found.
|
||
///
|
||
/// \param LookupCtx The context in which qualified name lookup will
|
||
/// search. If the lookup criteria permits, name lookup may also search
|
||
/// in the parent contexts or (for C++ classes) base classes.
|
||
///
|
||
/// \param InUnqualifiedLookup true if this is qualified name lookup that
|
||
/// occurs as part of unqualified name lookup.
|
||
///
|
||
/// \returns true if lookup succeeded, false if it failed.
|
||
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
||
bool InUnqualifiedLookup) {
|
||
assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
|
||
|
||
if (!R.getLookupName())
|
||
return false;
|
||
|
||
// Make sure that the declaration context is complete.
|
||
assert((!isa<TagDecl>(LookupCtx) ||
|
||
LookupCtx->isDependentContext() ||
|
||
cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||
|
||
cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
|
||
"Declaration context must already be complete!");
|
||
|
||
struct QualifiedLookupInScope {
|
||
bool oldVal;
|
||
DeclContext *Context;
|
||
// Set flag in DeclContext informing debugger that we're looking for qualified name
|
||
QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
|
||
oldVal = ctx->setUseQualifiedLookup();
|
||
}
|
||
~QualifiedLookupInScope() {
|
||
Context->setUseQualifiedLookup(oldVal);
|
||
}
|
||
} QL(LookupCtx);
|
||
|
||
if (LookupDirect(*this, R, LookupCtx)) {
|
||
R.resolveKind();
|
||
if (isa<CXXRecordDecl>(LookupCtx))
|
||
R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
|
||
return true;
|
||
}
|
||
|
||
// Don't descend into implied contexts for redeclarations.
|
||
// C++98 [namespace.qual]p6:
|
||
// In a declaration for a namespace member in which the
|
||
// declarator-id is a qualified-id, given that the qualified-id
|
||
// for the namespace member has the form
|
||
// nested-name-specifier unqualified-id
|
||
// the unqualified-id shall name a member of the namespace
|
||
// designated by the nested-name-specifier.
|
||
// See also [class.mfct]p5 and [class.static.data]p2.
|
||
if (R.isForRedeclaration())
|
||
return false;
|
||
|
||
// If this is a namespace, look it up in the implied namespaces.
|
||
if (LookupCtx->isFileContext())
|
||
return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
|
||
|
||
// If this isn't a C++ class, we aren't allowed to look into base
|
||
// classes, we're done.
|
||
CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
|
||
if (!LookupRec || !LookupRec->getDefinition())
|
||
return false;
|
||
|
||
// We're done for lookups that can never succeed for C++ classes.
|
||
if (R.getLookupKind() == LookupOperatorName ||
|
||
R.getLookupKind() == LookupNamespaceName ||
|
||
R.getLookupKind() == LookupObjCProtocolName ||
|
||
R.getLookupKind() == LookupLabel)
|
||
return false;
|
||
|
||
// If we're performing qualified name lookup into a dependent class,
|
||
// then we are actually looking into a current instantiation. If we have any
|
||
// dependent base classes, then we either have to delay lookup until
|
||
// template instantiation time (at which point all bases will be available)
|
||
// or we have to fail.
|
||
if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
|
||
LookupRec->hasAnyDependentBases()) {
|
||
R.setNotFoundInCurrentInstantiation();
|
||
return false;
|
||
}
|
||
|
||
// Perform lookup into our base classes.
|
||
|
||
DeclarationName Name = R.getLookupName();
|
||
unsigned IDNS = R.getIdentifierNamespace();
|
||
|
||
// Look for this member in our base classes.
|
||
auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier,
|
||
CXXBasePath &Path) -> bool {
|
||
CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
|
||
// Drop leading non-matching lookup results from the declaration list so
|
||
// we don't need to consider them again below.
|
||
for (Path.Decls = BaseRecord->lookup(Name).begin();
|
||
Path.Decls != Path.Decls.end(); ++Path.Decls) {
|
||
if ((*Path.Decls)->isInIdentifierNamespace(IDNS))
|
||
return true;
|
||
}
|
||
return false;
|
||
};
|
||
|
||
CXXBasePaths Paths;
|
||
Paths.setOrigin(LookupRec);
|
||
if (!LookupRec->lookupInBases(BaseCallback, Paths))
|
||
return false;
|
||
|
||
R.setNamingClass(LookupRec);
|
||
|
||
// C++ [class.member.lookup]p2:
|
||
// [...] If the resulting set of declarations are not all from
|
||
// sub-objects of the same type, or the set has a nonstatic member
|
||
// and includes members from distinct sub-objects, there is an
|
||
// ambiguity and the program is ill-formed. Otherwise that set is
|
||
// the result of the lookup.
|
||
QualType SubobjectType;
|
||
int SubobjectNumber = 0;
|
||
AccessSpecifier SubobjectAccess = AS_none;
|
||
|
||
// Check whether the given lookup result contains only static members.
|
||
auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) {
|
||
for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I)
|
||
if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember())
|
||
return false;
|
||
return true;
|
||
};
|
||
|
||
bool TemplateNameLookup = R.isTemplateNameLookup();
|
||
|
||
// Determine whether two sets of members contain the same members, as
|
||
// required by C++ [class.member.lookup]p6.
|
||
auto HasSameDeclarations = [&](DeclContext::lookup_iterator A,
|
||
DeclContext::lookup_iterator B) {
|
||
using Iterator = DeclContextLookupResult::iterator;
|
||
using Result = const void *;
|
||
|
||
auto Next = [&](Iterator &It, Iterator End) -> Result {
|
||
while (It != End) {
|
||
NamedDecl *ND = *It++;
|
||
if (!ND->isInIdentifierNamespace(IDNS))
|
||
continue;
|
||
|
||
// C++ [temp.local]p3:
|
||
// A lookup that finds an injected-class-name (10.2) can result in
|
||
// an ambiguity in certain cases (for example, if it is found in
|
||
// more than one base class). If all of the injected-class-names
|
||
// that are found refer to specializations of the same class
|
||
// template, and if the name is used as a template-name, the
|
||
// reference refers to the class template itself and not a
|
||
// specialization thereof, and is not ambiguous.
|
||
if (TemplateNameLookup)
|
||
if (auto *TD = getAsTemplateNameDecl(ND))
|
||
ND = TD;
|
||
|
||
// C++ [class.member.lookup]p3:
|
||
// type declarations (including injected-class-names) are replaced by
|
||
// the types they designate
|
||
if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) {
|
||
QualType T = Context.getTypeDeclType(TD);
|
||
return T.getCanonicalType().getAsOpaquePtr();
|
||
}
|
||
|
||
return ND->getUnderlyingDecl()->getCanonicalDecl();
|
||
}
|
||
return nullptr;
|
||
};
|
||
|
||
// We'll often find the declarations are in the same order. Handle this
|
||
// case (and the special case of only one declaration) efficiently.
|
||
Iterator AIt = A, BIt = B, AEnd, BEnd;
|
||
while (true) {
|
||
Result AResult = Next(AIt, AEnd);
|
||
Result BResult = Next(BIt, BEnd);
|
||
if (!AResult && !BResult)
|
||
return true;
|
||
if (!AResult || !BResult)
|
||
return false;
|
||
if (AResult != BResult) {
|
||
// Found a mismatch; carefully check both lists, accounting for the
|
||
// possibility of declarations appearing more than once.
|
||
llvm::SmallDenseMap<Result, bool, 32> AResults;
|
||
for (; AResult; AResult = Next(AIt, AEnd))
|
||
AResults.insert({AResult, /*FoundInB*/false});
|
||
unsigned Found = 0;
|
||
for (; BResult; BResult = Next(BIt, BEnd)) {
|
||
auto It = AResults.find(BResult);
|
||
if (It == AResults.end())
|
||
return false;
|
||
if (!It->second) {
|
||
It->second = true;
|
||
++Found;
|
||
}
|
||
}
|
||
return AResults.size() == Found;
|
||
}
|
||
}
|
||
};
|
||
|
||
for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
|
||
Path != PathEnd; ++Path) {
|
||
const CXXBasePathElement &PathElement = Path->back();
|
||
|
||
// Pick the best (i.e. most permissive i.e. numerically lowest) access
|
||
// across all paths.
|
||
SubobjectAccess = std::min(SubobjectAccess, Path->Access);
|
||
|
||
// Determine whether we're looking at a distinct sub-object or not.
|
||
if (SubobjectType.isNull()) {
|
||
// This is the first subobject we've looked at. Record its type.
|
||
SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
|
||
SubobjectNumber = PathElement.SubobjectNumber;
|
||
continue;
|
||
}
|
||
|
||
if (SubobjectType !=
|
||
Context.getCanonicalType(PathElement.Base->getType())) {
|
||
// We found members of the given name in two subobjects of
|
||
// different types. If the declaration sets aren't the same, this
|
||
// lookup is ambiguous.
|
||
//
|
||
// FIXME: The language rule says that this applies irrespective of
|
||
// whether the sets contain only static members.
|
||
if (HasOnlyStaticMembers(Path->Decls) &&
|
||
HasSameDeclarations(Paths.begin()->Decls, Path->Decls))
|
||
continue;
|
||
|
||
R.setAmbiguousBaseSubobjectTypes(Paths);
|
||
return true;
|
||
}
|
||
|
||
// FIXME: This language rule no longer exists. Checking for ambiguous base
|
||
// subobjects should be done as part of formation of a class member access
|
||
// expression (when converting the object parameter to the member's type).
|
||
if (SubobjectNumber != PathElement.SubobjectNumber) {
|
||
// We have a different subobject of the same type.
|
||
|
||
// C++ [class.member.lookup]p5:
|
||
// A static member, a nested type or an enumerator defined in
|
||
// a base class T can unambiguously be found even if an object
|
||
// has more than one base class subobject of type T.
|
||
if (HasOnlyStaticMembers(Path->Decls))
|
||
continue;
|
||
|
||
// We have found a nonstatic member name in multiple, distinct
|
||
// subobjects. Name lookup is ambiguous.
|
||
R.setAmbiguousBaseSubobjects(Paths);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// Lookup in a base class succeeded; return these results.
|
||
|
||
for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end();
|
||
I != E; ++I) {
|
||
AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
|
||
(*I)->getAccess());
|
||
if (NamedDecl *ND = R.getAcceptableDecl(*I))
|
||
R.addDecl(ND, AS);
|
||
}
|
||
R.resolveKind();
|
||
return true;
|
||
}
|
||
|
||
/// Performs qualified name lookup or special type of lookup for
|
||
/// "__super::" scope specifier.
|
||
///
|
||
/// This routine is a convenience overload meant to be called from contexts
|
||
/// that need to perform a qualified name lookup with an optional C++ scope
|
||
/// specifier that might require special kind of lookup.
|
||
///
|
||
/// \param R captures both the lookup criteria and any lookup results found.
|
||
///
|
||
/// \param LookupCtx The context in which qualified name lookup will
|
||
/// search.
|
||
///
|
||
/// \param SS An optional C++ scope-specifier.
|
||
///
|
||
/// \returns true if lookup succeeded, false if it failed.
|
||
bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
|
||
CXXScopeSpec &SS) {
|
||
auto *NNS = SS.getScopeRep();
|
||
if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
|
||
return LookupInSuper(R, NNS->getAsRecordDecl());
|
||
else
|
||
|
||
return LookupQualifiedName(R, LookupCtx);
|
||
}
|
||
|
||
/// Performs name lookup for a name that was parsed in the
|
||
/// source code, and may contain a C++ scope specifier.
|
||
///
|
||
/// This routine is a convenience routine meant to be called from
|
||
/// contexts that receive a name and an optional C++ scope specifier
|
||
/// (e.g., "N::M::x"). It will then perform either qualified or
|
||
/// unqualified name lookup (with LookupQualifiedName or LookupName,
|
||
/// respectively) on the given name and return those results. It will
|
||
/// perform a special type of lookup for "__super::" scope specifier.
|
||
///
|
||
/// @param S The scope from which unqualified name lookup will
|
||
/// begin.
|
||
///
|
||
/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
|
||
///
|
||
/// @param EnteringContext Indicates whether we are going to enter the
|
||
/// context of the scope-specifier SS (if present).
|
||
///
|
||
/// @returns True if any decls were found (but possibly ambiguous)
|
||
bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
|
||
bool AllowBuiltinCreation, bool EnteringContext) {
|
||
if (SS && SS->isInvalid()) {
|
||
// When the scope specifier is invalid, don't even look for
|
||
// anything.
|
||
return false;
|
||
}
|
||
|
||
if (SS && SS->isSet()) {
|
||
NestedNameSpecifier *NNS = SS->getScopeRep();
|
||
if (NNS->getKind() == NestedNameSpecifier::Super)
|
||
return LookupInSuper(R, NNS->getAsRecordDecl());
|
||
|
||
if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
|
||
// We have resolved the scope specifier to a particular declaration
|
||
// contex, and will perform name lookup in that context.
|
||
if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
|
||
return false;
|
||
|
||
R.setContextRange(SS->getRange());
|
||
return LookupQualifiedName(R, DC);
|
||
}
|
||
|
||
// We could not resolve the scope specified to a specific declaration
|
||
// context, which means that SS refers to an unknown specialization.
|
||
// Name lookup can't find anything in this case.
|
||
R.setNotFoundInCurrentInstantiation();
|
||
R.setContextRange(SS->getRange());
|
||
return false;
|
||
}
|
||
|
||
// Perform unqualified name lookup starting in the given scope.
|
||
return LookupName(R, S, AllowBuiltinCreation);
|
||
}
|
||
|
||
/// Perform qualified name lookup into all base classes of the given
|
||
/// class.
|
||
///
|
||
/// \param R captures both the lookup criteria and any lookup results found.
|
||
///
|
||
/// \param Class The context in which qualified name lookup will
|
||
/// search. Name lookup will search in all base classes merging the results.
|
||
///
|
||
/// @returns True if any decls were found (but possibly ambiguous)
|
||
bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
|
||
// The access-control rules we use here are essentially the rules for
|
||
// doing a lookup in Class that just magically skipped the direct
|
||
// members of Class itself. That is, the naming class is Class, and the
|
||
// access includes the access of the base.
|
||
for (const auto &BaseSpec : Class->bases()) {
|
||
CXXRecordDecl *RD = cast<CXXRecordDecl>(
|
||
BaseSpec.getType()->castAs<RecordType>()->getDecl());
|
||
LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
|
||
Result.setBaseObjectType(Context.getRecordType(Class));
|
||
LookupQualifiedName(Result, RD);
|
||
|
||
// Copy the lookup results into the target, merging the base's access into
|
||
// the path access.
|
||
for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
|
||
R.addDecl(I.getDecl(),
|
||
CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
|
||
I.getAccess()));
|
||
}
|
||
|
||
Result.suppressDiagnostics();
|
||
}
|
||
|
||
R.resolveKind();
|
||
R.setNamingClass(Class);
|
||
|
||
return !R.empty();
|
||
}
|
||
|
||
/// Produce a diagnostic describing the ambiguity that resulted
|
||
/// from name lookup.
|
||
///
|
||
/// \param Result The result of the ambiguous lookup to be diagnosed.
|
||
void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
|
||
assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
|
||
|
||
DeclarationName Name = Result.getLookupName();
|
||
SourceLocation NameLoc = Result.getNameLoc();
|
||
SourceRange LookupRange = Result.getContextRange();
|
||
|
||
switch (Result.getAmbiguityKind()) {
|
||
case LookupResult::AmbiguousBaseSubobjects: {
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
QualType SubobjectType = Paths->front().back().Base->getType();
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
|
||
<< Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
|
||
<< LookupRange;
|
||
|
||
DeclContext::lookup_iterator Found = Paths->front().Decls;
|
||
while (isa<CXXMethodDecl>(*Found) &&
|
||
cast<CXXMethodDecl>(*Found)->isStatic())
|
||
++Found;
|
||
|
||
Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
|
||
break;
|
||
}
|
||
|
||
case LookupResult::AmbiguousBaseSubobjectTypes: {
|
||
Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
|
||
<< Name << LookupRange;
|
||
|
||
CXXBasePaths *Paths = Result.getBasePaths();
|
||
std::set<const NamedDecl *> DeclsPrinted;
|
||
for (CXXBasePaths::paths_iterator Path = Paths->begin(),
|
||
PathEnd = Paths->end();
|
||
Path != PathEnd; ++Path) {
|
||
const NamedDecl *D = *Path->Decls;
|
||
if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace()))
|
||
continue;
|
||
if (DeclsPrinted.insert(D).second) {
|
||
if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl()))
|
||
Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
|
||
<< TD->getUnderlyingType();
|
||
else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl()))
|
||
Diag(D->getLocation(), diag::note_ambiguous_member_type_found)
|
||
<< Context.getTypeDeclType(TD);
|
||
else
|
||
Diag(D->getLocation(), diag::note_ambiguous_member_found);
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
case LookupResult::AmbiguousTagHiding: {
|
||
Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
|
||
|
||
llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
|
||
|
||
for (auto *D : Result)
|
||
if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
|
||
TagDecls.insert(TD);
|
||
Diag(TD->getLocation(), diag::note_hidden_tag);
|
||
}
|
||
|
||
for (auto *D : Result)
|
||
if (!isa<TagDecl>(D))
|
||
Diag(D->getLocation(), diag::note_hiding_object);
|
||
|
||
// For recovery purposes, go ahead and implement the hiding.
|
||
LookupResult::Filter F = Result.makeFilter();
|
||
while (F.hasNext()) {
|
||
if (TagDecls.count(F.next()))
|
||
F.erase();
|
||
}
|
||
F.done();
|
||
break;
|
||
}
|
||
|
||
case LookupResult::AmbiguousReference: {
|
||
Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
|
||
|
||
for (auto *D : Result)
|
||
Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
namespace {
|
||
struct AssociatedLookup {
|
||
AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
|
||
Sema::AssociatedNamespaceSet &Namespaces,
|
||
Sema::AssociatedClassSet &Classes)
|
||
: S(S), Namespaces(Namespaces), Classes(Classes),
|
||
InstantiationLoc(InstantiationLoc) {
|
||
}
|
||
|
||
bool addClassTransitive(CXXRecordDecl *RD) {
|
||
Classes.insert(RD);
|
||
return ClassesTransitive.insert(RD);
|
||
}
|
||
|
||
Sema &S;
|
||
Sema::AssociatedNamespaceSet &Namespaces;
|
||
Sema::AssociatedClassSet &Classes;
|
||
SourceLocation InstantiationLoc;
|
||
|
||
private:
|
||
Sema::AssociatedClassSet ClassesTransitive;
|
||
};
|
||
} // end anonymous namespace
|
||
|
||
static void
|
||
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
|
||
|
||
// Given the declaration context \param Ctx of a class, class template or
|
||
// enumeration, add the associated namespaces to \param Namespaces as described
|
||
// in [basic.lookup.argdep]p2.
|
||
static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
|
||
DeclContext *Ctx) {
|
||
// The exact wording has been changed in C++14 as a result of
|
||
// CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally
|
||
// to all language versions since it is possible to return a local type
|
||
// from a lambda in C++11.
|
||
//
|
||
// C++14 [basic.lookup.argdep]p2:
|
||
// If T is a class type [...]. Its associated namespaces are the innermost
|
||
// enclosing namespaces of its associated classes. [...]
|
||
//
|
||
// If T is an enumeration type, its associated namespace is the innermost
|
||
// enclosing namespace of its declaration. [...]
|
||
|
||
// We additionally skip inline namespaces. The innermost non-inline namespace
|
||
// contains all names of all its nested inline namespaces anyway, so we can
|
||
// replace the entire inline namespace tree with its root.
|
||
while (!Ctx->isFileContext() || Ctx->isInlineNamespace())
|
||
Ctx = Ctx->getParent();
|
||
|
||
Namespaces.insert(Ctx->getPrimaryContext());
|
||
}
|
||
|
||
// Add the associated classes and namespaces for argument-dependent
|
||
// lookup that involves a template argument (C++ [basic.lookup.argdep]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
|
||
const TemplateArgument &Arg) {
|
||
// C++ [basic.lookup.argdep]p2, last bullet:
|
||
// -- [...] ;
|
||
switch (Arg.getKind()) {
|
||
case TemplateArgument::Null:
|
||
break;
|
||
|
||
case TemplateArgument::Type:
|
||
// [...] the namespaces and classes associated with the types of the
|
||
// template arguments provided for template type parameters (excluding
|
||
// template template parameters)
|
||
addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
|
||
break;
|
||
|
||
case TemplateArgument::Template:
|
||
case TemplateArgument::TemplateExpansion: {
|
||
// [...] the namespaces in which any template template arguments are
|
||
// defined; and the classes in which any member templates used as
|
||
// template template arguments are defined.
|
||
TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
|
||
if (ClassTemplateDecl *ClassTemplate
|
||
= dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
|
||
DeclContext *Ctx = ClassTemplate->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
Result.Classes.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
CollectEnclosingNamespace(Result.Namespaces, Ctx);
|
||
}
|
||
break;
|
||
}
|
||
|
||
case TemplateArgument::Declaration:
|
||
case TemplateArgument::Integral:
|
||
case TemplateArgument::Expression:
|
||
case TemplateArgument::NullPtr:
|
||
// [Note: non-type template arguments do not contribute to the set of
|
||
// associated namespaces. ]
|
||
break;
|
||
|
||
case TemplateArgument::Pack:
|
||
for (const auto &P : Arg.pack_elements())
|
||
addAssociatedClassesAndNamespaces(Result, P);
|
||
break;
|
||
}
|
||
}
|
||
|
||
// Add the associated classes and namespaces for argument-dependent lookup
|
||
// with an argument of class type (C++ [basic.lookup.argdep]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
|
||
CXXRecordDecl *Class) {
|
||
|
||
// Just silently ignore anything whose name is __va_list_tag.
|
||
if (Class->getDeclName() == Result.S.VAListTagName)
|
||
return;
|
||
|
||
// C++ [basic.lookup.argdep]p2:
|
||
// [...]
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is a
|
||
// member, if any; and its direct and indirect base classes.
|
||
// Its associated namespaces are the innermost enclosing
|
||
// namespaces of its associated classes.
|
||
|
||
// Add the class of which it is a member, if any.
|
||
DeclContext *Ctx = Class->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
Result.Classes.insert(EnclosingClass);
|
||
|
||
// Add the associated namespace for this class.
|
||
CollectEnclosingNamespace(Result.Namespaces, Ctx);
|
||
|
||
// -- If T is a template-id, its associated namespaces and classes are
|
||
// the namespace in which the template is defined; for member
|
||
// templates, the member template's class; the namespaces and classes
|
||
// associated with the types of the template arguments provided for
|
||
// template type parameters (excluding template template parameters); the
|
||
// namespaces in which any template template arguments are defined; and
|
||
// the classes in which any member templates used as template template
|
||
// arguments are defined. [Note: non-type template arguments do not
|
||
// contribute to the set of associated namespaces. ]
|
||
if (ClassTemplateSpecializationDecl *Spec
|
||
= dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
|
||
DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
Result.Classes.insert(EnclosingClass);
|
||
// Add the associated namespace for this class.
|
||
CollectEnclosingNamespace(Result.Namespaces, Ctx);
|
||
|
||
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
|
||
for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
|
||
addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
|
||
}
|
||
|
||
// Add the class itself. If we've already transitively visited this class,
|
||
// we don't need to visit base classes.
|
||
if (!Result.addClassTransitive(Class))
|
||
return;
|
||
|
||
// Only recurse into base classes for complete types.
|
||
if (!Result.S.isCompleteType(Result.InstantiationLoc,
|
||
Result.S.Context.getRecordType(Class)))
|
||
return;
|
||
|
||
// Add direct and indirect base classes along with their associated
|
||
// namespaces.
|
||
SmallVector<CXXRecordDecl *, 32> Bases;
|
||
Bases.push_back(Class);
|
||
while (!Bases.empty()) {
|
||
// Pop this class off the stack.
|
||
Class = Bases.pop_back_val();
|
||
|
||
// Visit the base classes.
|
||
for (const auto &Base : Class->bases()) {
|
||
const RecordType *BaseType = Base.getType()->getAs<RecordType>();
|
||
// In dependent contexts, we do ADL twice, and the first time around,
|
||
// the base type might be a dependent TemplateSpecializationType, or a
|
||
// TemplateTypeParmType. If that happens, simply ignore it.
|
||
// FIXME: If we want to support export, we probably need to add the
|
||
// namespace of the template in a TemplateSpecializationType, or even
|
||
// the classes and namespaces of known non-dependent arguments.
|
||
if (!BaseType)
|
||
continue;
|
||
CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
|
||
if (Result.addClassTransitive(BaseDecl)) {
|
||
// Find the associated namespace for this base class.
|
||
DeclContext *BaseCtx = BaseDecl->getDeclContext();
|
||
CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
|
||
|
||
// Make sure we visit the bases of this base class.
|
||
if (BaseDecl->bases_begin() != BaseDecl->bases_end())
|
||
Bases.push_back(BaseDecl);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Add the associated classes and namespaces for
|
||
// argument-dependent lookup with an argument of type T
|
||
// (C++ [basic.lookup.koenig]p2).
|
||
static void
|
||
addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
|
||
// C++ [basic.lookup.koenig]p2:
|
||
//
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument). Typedef names and using-declarations used to specify
|
||
// the types do not contribute to this set. The sets of namespaces
|
||
// and classes are determined in the following way:
|
||
|
||
SmallVector<const Type *, 16> Queue;
|
||
const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
|
||
|
||
while (true) {
|
||
switch (T->getTypeClass()) {
|
||
|
||
#define TYPE(Class, Base)
|
||
#define DEPENDENT_TYPE(Class, Base) case Type::Class:
|
||
#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
|
||
#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
|
||
#define ABSTRACT_TYPE(Class, Base)
|
||
#include "clang/AST/TypeNodes.inc"
|
||
// T is canonical. We can also ignore dependent types because
|
||
// we don't need to do ADL at the definition point, but if we
|
||
// wanted to implement template export (or if we find some other
|
||
// use for associated classes and namespaces...) this would be
|
||
// wrong.
|
||
break;
|
||
|
||
// -- If T is a pointer to U or an array of U, its associated
|
||
// namespaces and classes are those associated with U.
|
||
case Type::Pointer:
|
||
T = cast<PointerType>(T)->getPointeeType().getTypePtr();
|
||
continue;
|
||
case Type::ConstantArray:
|
||
case Type::IncompleteArray:
|
||
case Type::VariableArray:
|
||
T = cast<ArrayType>(T)->getElementType().getTypePtr();
|
||
continue;
|
||
|
||
// -- If T is a fundamental type, its associated sets of
|
||
// namespaces and classes are both empty.
|
||
case Type::Builtin:
|
||
break;
|
||
|
||
// -- If T is a class type (including unions), its associated
|
||
// classes are: the class itself; the class of which it is
|
||
// a member, if any; and its direct and indirect base classes.
|
||
// Its associated namespaces are the innermost enclosing
|
||
// namespaces of its associated classes.
|
||
case Type::Record: {
|
||
CXXRecordDecl *Class =
|
||
cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
|
||
addAssociatedClassesAndNamespaces(Result, Class);
|
||
break;
|
||
}
|
||
|
||
// -- If T is an enumeration type, its associated namespace
|
||
// is the innermost enclosing namespace of its declaration.
|
||
// If it is a class member, its associated class is the
|
||
// member’s class; else it has no associated class.
|
||
case Type::Enum: {
|
||
EnumDecl *Enum = cast<EnumType>(T)->getDecl();
|
||
|
||
DeclContext *Ctx = Enum->getDeclContext();
|
||
if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
|
||
Result.Classes.insert(EnclosingClass);
|
||
|
||
// Add the associated namespace for this enumeration.
|
||
CollectEnclosingNamespace(Result.Namespaces, Ctx);
|
||
|
||
break;
|
||
}
|
||
|
||
// -- If T is a function type, its associated namespaces and
|
||
// classes are those associated with the function parameter
|
||
// types and those associated with the return type.
|
||
case Type::FunctionProto: {
|
||
const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
|
||
for (const auto &Arg : Proto->param_types())
|
||
Queue.push_back(Arg.getTypePtr());
|
||
// fallthrough
|
||
LLVM_FALLTHROUGH;
|
||
}
|
||
case Type::FunctionNoProto: {
|
||
const FunctionType *FnType = cast<FunctionType>(T);
|
||
T = FnType->getReturnType().getTypePtr();
|
||
continue;
|
||
}
|
||
|
||
// -- If T is a pointer to a member function of a class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the function parameter types and return type,
|
||
// together with those associated with X.
|
||
//
|
||
// -- If T is a pointer to a data member of class X, its
|
||
// associated namespaces and classes are those associated
|
||
// with the member type together with those associated with
|
||
// X.
|
||
case Type::MemberPointer: {
|
||
const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
|
||
|
||
// Queue up the class type into which this points.
|
||
Queue.push_back(MemberPtr->getClass());
|
||
|
||
// And directly continue with the pointee type.
|
||
T = MemberPtr->getPointeeType().getTypePtr();
|
||
continue;
|
||
}
|
||
|
||
// As an extension, treat this like a normal pointer.
|
||
case Type::BlockPointer:
|
||
T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
|
||
continue;
|
||
|
||
// References aren't covered by the standard, but that's such an
|
||
// obvious defect that we cover them anyway.
|
||
case Type::LValueReference:
|
||
case Type::RValueReference:
|
||
T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
|
||
continue;
|
||
|
||
// These are fundamental types.
|
||
case Type::Vector:
|
||
case Type::ExtVector:
|
||
case Type::ConstantMatrix:
|
||
case Type::Complex:
|
||
case Type::BitInt:
|
||
break;
|
||
|
||
// Non-deduced auto types only get here for error cases.
|
||
case Type::Auto:
|
||
case Type::DeducedTemplateSpecialization:
|
||
break;
|
||
|
||
// If T is an Objective-C object or interface type, or a pointer to an
|
||
// object or interface type, the associated namespace is the global
|
||
// namespace.
|
||
case Type::ObjCObject:
|
||
case Type::ObjCInterface:
|
||
case Type::ObjCObjectPointer:
|
||
Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
|
||
break;
|
||
|
||
// Atomic types are just wrappers; use the associations of the
|
||
// contained type.
|
||
case Type::Atomic:
|
||
T = cast<AtomicType>(T)->getValueType().getTypePtr();
|
||
continue;
|
||
case Type::Pipe:
|
||
T = cast<PipeType>(T)->getElementType().getTypePtr();
|
||
continue;
|
||
}
|
||
|
||
if (Queue.empty())
|
||
break;
|
||
T = Queue.pop_back_val();
|
||
}
|
||
}
|
||
|
||
/// Find the associated classes and namespaces for
|
||
/// argument-dependent lookup for a call with the given set of
|
||
/// arguments.
|
||
///
|
||
/// This routine computes the sets of associated classes and associated
|
||
/// namespaces searched by argument-dependent lookup
|
||
/// (C++ [basic.lookup.argdep]) for a given set of arguments.
|
||
void Sema::FindAssociatedClassesAndNamespaces(
|
||
SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
|
||
AssociatedNamespaceSet &AssociatedNamespaces,
|
||
AssociatedClassSet &AssociatedClasses) {
|
||
AssociatedNamespaces.clear();
|
||
AssociatedClasses.clear();
|
||
|
||
AssociatedLookup Result(*this, InstantiationLoc,
|
||
AssociatedNamespaces, AssociatedClasses);
|
||
|
||
// C++ [basic.lookup.koenig]p2:
|
||
// For each argument type T in the function call, there is a set
|
||
// of zero or more associated namespaces and a set of zero or more
|
||
// associated classes to be considered. The sets of namespaces and
|
||
// classes is determined entirely by the types of the function
|
||
// arguments (and the namespace of any template template
|
||
// argument).
|
||
for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
|
||
Expr *Arg = Args[ArgIdx];
|
||
|
||
if (Arg->getType() != Context.OverloadTy) {
|
||
addAssociatedClassesAndNamespaces(Result, Arg->getType());
|
||
continue;
|
||
}
|
||
|
||
// [...] In addition, if the argument is the name or address of a
|
||
// set of overloaded functions and/or function templates, its
|
||
// associated classes and namespaces are the union of those
|
||
// associated with each of the members of the set: the namespace
|
||
// in which the function or function template is defined and the
|
||
// classes and namespaces associated with its (non-dependent)
|
||
// parameter types and return type.
|
||
OverloadExpr *OE = OverloadExpr::find(Arg).Expression;
|
||
|
||
for (const NamedDecl *D : OE->decls()) {
|
||
// Look through any using declarations to find the underlying function.
|
||
const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
|
||
|
||
// Add the classes and namespaces associated with the parameter
|
||
// types and return type of this function.
|
||
addAssociatedClassesAndNamespaces(Result, FDecl->getType());
|
||
}
|
||
}
|
||
}
|
||
|
||
NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
|
||
SourceLocation Loc,
|
||
LookupNameKind NameKind,
|
||
RedeclarationKind Redecl) {
|
||
LookupResult R(*this, Name, Loc, NameKind, Redecl);
|
||
LookupName(R, S);
|
||
return R.getAsSingle<NamedDecl>();
|
||
}
|
||
|
||
/// Find the protocol with the given name, if any.
|
||
ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
|
||
SourceLocation IdLoc,
|
||
RedeclarationKind Redecl) {
|
||
Decl *D = LookupSingleName(TUScope, II, IdLoc,
|
||
LookupObjCProtocolName, Redecl);
|
||
return cast_or_null<ObjCProtocolDecl>(D);
|
||
}
|
||
|
||
void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
|
||
UnresolvedSetImpl &Functions) {
|
||
// C++ [over.match.oper]p3:
|
||
// -- The set of non-member candidates is the result of the
|
||
// unqualified lookup of operator@ in the context of the
|
||
// expression according to the usual rules for name lookup in
|
||
// unqualified function calls (3.4.2) except that all member
|
||
// functions are ignored.
|
||
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
|
||
LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
|
||
LookupName(Operators, S);
|
||
|
||
assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
|
||
Functions.append(Operators.begin(), Operators.end());
|
||
}
|
||
|
||
Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
|
||
CXXSpecialMember SM,
|
||
bool ConstArg,
|
||
bool VolatileArg,
|
||
bool RValueThis,
|
||
bool ConstThis,
|
||
bool VolatileThis) {
|
||
assert(CanDeclareSpecialMemberFunction(RD) &&
|
||
"doing special member lookup into record that isn't fully complete");
|
||
RD = RD->getDefinition();
|
||
if (RValueThis || ConstThis || VolatileThis)
|
||
assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
|
||
"constructors and destructors always have unqualified lvalue this");
|
||
if (ConstArg || VolatileArg)
|
||
assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&
|
||
"parameter-less special members can't have qualified arguments");
|
||
|
||
// FIXME: Get the caller to pass in a location for the lookup.
|
||
SourceLocation LookupLoc = RD->getLocation();
|
||
|
||
llvm::FoldingSetNodeID ID;
|
||
ID.AddPointer(RD);
|
||
ID.AddInteger(SM);
|
||
ID.AddInteger(ConstArg);
|
||
ID.AddInteger(VolatileArg);
|
||
ID.AddInteger(RValueThis);
|
||
ID.AddInteger(ConstThis);
|
||
ID.AddInteger(VolatileThis);
|
||
|
||
void *InsertPoint;
|
||
SpecialMemberOverloadResultEntry *Result =
|
||
SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
|
||
|
||
// This was already cached
|
||
if (Result)
|
||
return *Result;
|
||
|
||
Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
|
||
Result = new (Result) SpecialMemberOverloadResultEntry(ID);
|
||
SpecialMemberCache.InsertNode(Result, InsertPoint);
|
||
|
||
if (SM == CXXDestructor) {
|
||
if (RD->needsImplicitDestructor()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitDestructor(RD);
|
||
});
|
||
}
|
||
CXXDestructorDecl *DD = RD->getDestructor();
|
||
Result->setMethod(DD);
|
||
Result->setKind(DD && !DD->isDeleted()
|
||
? SpecialMemberOverloadResult::Success
|
||
: SpecialMemberOverloadResult::NoMemberOrDeleted);
|
||
return *Result;
|
||
}
|
||
|
||
// Prepare for overload resolution. Here we construct a synthetic argument
|
||
// if necessary and make sure that implicit functions are declared.
|
||
CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
|
||
DeclarationName Name;
|
||
Expr *Arg = nullptr;
|
||
unsigned NumArgs;
|
||
|
||
QualType ArgType = CanTy;
|
||
ExprValueKind VK = VK_LValue;
|
||
|
||
if (SM == CXXDefaultConstructor) {
|
||
Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
|
||
NumArgs = 0;
|
||
if (RD->needsImplicitDefaultConstructor()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitDefaultConstructor(RD);
|
||
});
|
||
}
|
||
} else {
|
||
if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
|
||
Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
|
||
if (RD->needsImplicitCopyConstructor()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitCopyConstructor(RD);
|
||
});
|
||
}
|
||
if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitMoveConstructor(RD);
|
||
});
|
||
}
|
||
} else {
|
||
Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
|
||
if (RD->needsImplicitCopyAssignment()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitCopyAssignment(RD);
|
||
});
|
||
}
|
||
if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) {
|
||
runWithSufficientStackSpace(RD->getLocation(), [&] {
|
||
DeclareImplicitMoveAssignment(RD);
|
||
});
|
||
}
|
||
}
|
||
|
||
if (ConstArg)
|
||
ArgType.addConst();
|
||
if (VolatileArg)
|
||
ArgType.addVolatile();
|
||
|
||
// This isn't /really/ specified by the standard, but it's implied
|
||
// we should be working from a PRValue in the case of move to ensure
|
||
// that we prefer to bind to rvalue references, and an LValue in the
|
||
// case of copy to ensure we don't bind to rvalue references.
|
||
// Possibly an XValue is actually correct in the case of move, but
|
||
// there is no semantic difference for class types in this restricted
|
||
// case.
|
||
if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
|
||
VK = VK_LValue;
|
||
else
|
||
VK = VK_PRValue;
|
||
}
|
||
|
||
OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
|
||
|
||
if (SM != CXXDefaultConstructor) {
|
||
NumArgs = 1;
|
||
Arg = &FakeArg;
|
||
}
|
||
|
||
// Create the object argument
|
||
QualType ThisTy = CanTy;
|
||
if (ConstThis)
|
||
ThisTy.addConst();
|
||
if (VolatileThis)
|
||
ThisTy.addVolatile();
|
||
Expr::Classification Classification =
|
||
OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue)
|
||
.Classify(Context);
|
||
|
||
// Now we perform lookup on the name we computed earlier and do overload
|
||
// resolution. Lookup is only performed directly into the class since there
|
||
// will always be a (possibly implicit) declaration to shadow any others.
|
||
OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
|
||
DeclContext::lookup_result R = RD->lookup(Name);
|
||
|
||
if (R.empty()) {
|
||
// We might have no default constructor because we have a lambda's closure
|
||
// type, rather than because there's some other declared constructor.
|
||
// Every class has a copy/move constructor, copy/move assignment, and
|
||
// destructor.
|
||
assert(SM == CXXDefaultConstructor &&
|
||
"lookup for a constructor or assignment operator was empty");
|
||
Result->setMethod(nullptr);
|
||
Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
|
||
return *Result;
|
||
}
|
||
|
||
// Copy the candidates as our processing of them may load new declarations
|
||
// from an external source and invalidate lookup_result.
|
||
SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
|
||
|
||
for (NamedDecl *CandDecl : Candidates) {
|
||
if (CandDecl->isInvalidDecl())
|
||
continue;
|
||
|
||
DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
|
||
auto CtorInfo = getConstructorInfo(Cand);
|
||
if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
|
||
if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
|
||
AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
|
||
llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
|
||
else if (CtorInfo)
|
||
AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
|
||
llvm::makeArrayRef(&Arg, NumArgs), OCS,
|
||
/*SuppressUserConversions*/ true);
|
||
else
|
||
AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
|
||
/*SuppressUserConversions*/ true);
|
||
} else if (FunctionTemplateDecl *Tmpl =
|
||
dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
|
||
if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
|
||
AddMethodTemplateCandidate(
|
||
Tmpl, Cand, RD, nullptr, ThisTy, Classification,
|
||
llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
|
||
else if (CtorInfo)
|
||
AddTemplateOverloadCandidate(
|
||
CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
|
||
llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
|
||
else
|
||
AddTemplateOverloadCandidate(
|
||
Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
|
||
} else {
|
||
assert(isa<UsingDecl>(Cand.getDecl()) &&
|
||
"illegal Kind of operator = Decl");
|
||
}
|
||
}
|
||
|
||
OverloadCandidateSet::iterator Best;
|
||
switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
|
||
case OR_Success:
|
||
Result->setMethod(cast<CXXMethodDecl>(Best->Function));
|
||
Result->setKind(SpecialMemberOverloadResult::Success);
|
||
break;
|
||
|
||
case OR_Deleted:
|
||
Result->setMethod(cast<CXXMethodDecl>(Best->Function));
|
||
Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
|
||
break;
|
||
|
||
case OR_Ambiguous:
|
||
Result->setMethod(nullptr);
|
||
Result->setKind(SpecialMemberOverloadResult::Ambiguous);
|
||
break;
|
||
|
||
case OR_No_Viable_Function:
|
||
Result->setMethod(nullptr);
|
||
Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
|
||
break;
|
||
}
|
||
|
||
return *Result;
|
||
}
|
||
|
||
/// Look up the default constructor for the given class.
|
||
CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
|
||
SpecialMemberOverloadResult Result =
|
||
LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
|
||
false, false);
|
||
|
||
return cast_or_null<CXXConstructorDecl>(Result.getMethod());
|
||
}
|
||
|
||
/// Look up the copying constructor for the given class.
|
||
CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
|
||
unsigned Quals) {
|
||
assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
|
||
"non-const, non-volatile qualifiers for copy ctor arg");
|
||
SpecialMemberOverloadResult Result =
|
||
LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
|
||
Quals & Qualifiers::Volatile, false, false, false);
|
||
|
||
return cast_or_null<CXXConstructorDecl>(Result.getMethod());
|
||
}
|
||
|
||
/// Look up the moving constructor for the given class.
|
||
CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
|
||
unsigned Quals) {
|
||
SpecialMemberOverloadResult Result =
|
||
LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
|
||
Quals & Qualifiers::Volatile, false, false, false);
|
||
|
||
return cast_or_null<CXXConstructorDecl>(Result.getMethod());
|
||
}
|
||
|
||
/// Look up the constructors for the given class.
|
||
DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
|
||
// If the implicit constructors have not yet been declared, do so now.
|
||
if (CanDeclareSpecialMemberFunction(Class)) {
|
||
runWithSufficientStackSpace(Class->getLocation(), [&] {
|
||
if (Class->needsImplicitDefaultConstructor())
|
||
DeclareImplicitDefaultConstructor(Class);
|
||
if (Class->needsImplicitCopyConstructor())
|
||
DeclareImplicitCopyConstructor(Class);
|
||
if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
|
||
DeclareImplicitMoveConstructor(Class);
|
||
});
|
||
}
|
||
|
||
CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
|
||
DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
|
||
return Class->lookup(Name);
|
||
}
|
||
|
||
/// Look up the copying assignment operator for the given class.
|
||
CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
|
||
unsigned Quals, bool RValueThis,
|
||
unsigned ThisQuals) {
|
||
assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
|
||
"non-const, non-volatile qualifiers for copy assignment arg");
|
||
assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
|
||
"non-const, non-volatile qualifiers for copy assignment this");
|
||
SpecialMemberOverloadResult Result =
|
||
LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
|
||
Quals & Qualifiers::Volatile, RValueThis,
|
||
ThisQuals & Qualifiers::Const,
|
||
ThisQuals & Qualifiers::Volatile);
|
||
|
||
return Result.getMethod();
|
||
}
|
||
|
||
/// Look up the moving assignment operator for the given class.
|
||
CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
|
||
unsigned Quals,
|
||
bool RValueThis,
|
||
unsigned ThisQuals) {
|
||
assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
|
||
"non-const, non-volatile qualifiers for copy assignment this");
|
||
SpecialMemberOverloadResult Result =
|
||
LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
|
||
Quals & Qualifiers::Volatile, RValueThis,
|
||
ThisQuals & Qualifiers::Const,
|
||
ThisQuals & Qualifiers::Volatile);
|
||
|
||
return Result.getMethod();
|
||
}
|
||
|
||
/// Look for the destructor of the given class.
|
||
///
|
||
/// During semantic analysis, this routine should be used in lieu of
|
||
/// CXXRecordDecl::getDestructor().
|
||
///
|
||
/// \returns The destructor for this class.
|
||
CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
|
||
return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
|
||
false, false, false,
|
||
false, false).getMethod());
|
||
}
|
||
|
||
/// LookupLiteralOperator - Determine which literal operator should be used for
|
||
/// a user-defined literal, per C++11 [lex.ext].
|
||
///
|
||
/// Normal overload resolution is not used to select which literal operator to
|
||
/// call for a user-defined literal. Look up the provided literal operator name,
|
||
/// and filter the results to the appropriate set for the given argument types.
|
||
Sema::LiteralOperatorLookupResult
|
||
Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
|
||
ArrayRef<QualType> ArgTys, bool AllowRaw,
|
||
bool AllowTemplate, bool AllowStringTemplatePack,
|
||
bool DiagnoseMissing, StringLiteral *StringLit) {
|
||
LookupName(R, S);
|
||
assert(R.getResultKind() != LookupResult::Ambiguous &&
|
||
"literal operator lookup can't be ambiguous");
|
||
|
||
// Filter the lookup results appropriately.
|
||
LookupResult::Filter F = R.makeFilter();
|
||
|
||
bool AllowCooked = true;
|
||
bool FoundRaw = false;
|
||
bool FoundTemplate = false;
|
||
bool FoundStringTemplatePack = false;
|
||
bool FoundCooked = false;
|
||
|
||
while (F.hasNext()) {
|
||
Decl *D = F.next();
|
||
if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
|
||
D = USD->getTargetDecl();
|
||
|
||
// If the declaration we found is invalid, skip it.
|
||
if (D->isInvalidDecl()) {
|
||
F.erase();
|
||
continue;
|
||
}
|
||
|
||
bool IsRaw = false;
|
||
bool IsTemplate = false;
|
||
bool IsStringTemplatePack = false;
|
||
bool IsCooked = false;
|
||
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
|
||
if (FD->getNumParams() == 1 &&
|
||
FD->getParamDecl(0)->getType()->getAs<PointerType>())
|
||
IsRaw = true;
|
||
else if (FD->getNumParams() == ArgTys.size()) {
|
||
IsCooked = true;
|
||
for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
|
||
QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
|
||
if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
|
||
IsCooked = false;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
|
||
TemplateParameterList *Params = FD->getTemplateParameters();
|
||
if (Params->size() == 1) {
|
||
IsTemplate = true;
|
||
if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) {
|
||
// Implied but not stated: user-defined integer and floating literals
|
||
// only ever use numeric literal operator templates, not templates
|
||
// taking a parameter of class type.
|
||
F.erase();
|
||
continue;
|
||
}
|
||
|
||
// A string literal template is only considered if the string literal
|
||
// is a well-formed template argument for the template parameter.
|
||
if (StringLit) {
|
||
SFINAETrap Trap(*this);
|
||
SmallVector<TemplateArgument, 1> Checked;
|
||
TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit);
|
||
if (CheckTemplateArgument(Params->getParam(0), Arg, FD,
|
||
R.getNameLoc(), R.getNameLoc(), 0,
|
||
Checked) ||
|
||
Trap.hasErrorOccurred())
|
||
IsTemplate = false;
|
||
}
|
||
} else {
|
||
IsStringTemplatePack = true;
|
||
}
|
||
}
|
||
|
||
if (AllowTemplate && StringLit && IsTemplate) {
|
||
FoundTemplate = true;
|
||
AllowRaw = false;
|
||
AllowCooked = false;
|
||
AllowStringTemplatePack = false;
|
||
if (FoundRaw || FoundCooked || FoundStringTemplatePack) {
|
||
F.restart();
|
||
FoundRaw = FoundCooked = FoundStringTemplatePack = false;
|
||
}
|
||
} else if (AllowCooked && IsCooked) {
|
||
FoundCooked = true;
|
||
AllowRaw = false;
|
||
AllowTemplate = StringLit;
|
||
AllowStringTemplatePack = false;
|
||
if (FoundRaw || FoundTemplate || FoundStringTemplatePack) {
|
||
// Go through again and remove the raw and template decls we've
|
||
// already found.
|
||
F.restart();
|
||
FoundRaw = FoundTemplate = FoundStringTemplatePack = false;
|
||
}
|
||
} else if (AllowRaw && IsRaw) {
|
||
FoundRaw = true;
|
||
} else if (AllowTemplate && IsTemplate) {
|
||
FoundTemplate = true;
|
||
} else if (AllowStringTemplatePack && IsStringTemplatePack) {
|
||
FoundStringTemplatePack = true;
|
||
} else {
|
||
F.erase();
|
||
}
|
||
}
|
||
|
||
F.done();
|
||
|
||
// Per C++20 [lex.ext]p5, we prefer the template form over the non-template
|
||
// form for string literal operator templates.
|
||
if (StringLit && FoundTemplate)
|
||
return LOLR_Template;
|
||
|
||
// C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
|
||
// parameter type, that is used in preference to a raw literal operator
|
||
// or literal operator template.
|
||
if (FoundCooked)
|
||
return LOLR_Cooked;
|
||
|
||
// C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
|
||
// operator template, but not both.
|
||
if (FoundRaw && FoundTemplate) {
|
||
Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
|
||
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
|
||
NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
|
||
return LOLR_Error;
|
||
}
|
||
|
||
if (FoundRaw)
|
||
return LOLR_Raw;
|
||
|
||
if (FoundTemplate)
|
||
return LOLR_Template;
|
||
|
||
if (FoundStringTemplatePack)
|
||
return LOLR_StringTemplatePack;
|
||
|
||
// Didn't find anything we could use.
|
||
if (DiagnoseMissing) {
|
||
Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
|
||
<< R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
|
||
<< (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
|
||
<< (AllowTemplate || AllowStringTemplatePack);
|
||
return LOLR_Error;
|
||
}
|
||
|
||
return LOLR_ErrorNoDiagnostic;
|
||
}
|
||
|
||
void ADLResult::insert(NamedDecl *New) {
|
||
NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
|
||
|
||
// If we haven't yet seen a decl for this key, or the last decl
|
||
// was exactly this one, we're done.
|
||
if (Old == nullptr || Old == New) {
|
||
Old = New;
|
||
return;
|
||
}
|
||
|
||
// Otherwise, decide which is a more recent redeclaration.
|
||
FunctionDecl *OldFD = Old->getAsFunction();
|
||
FunctionDecl *NewFD = New->getAsFunction();
|
||
|
||
FunctionDecl *Cursor = NewFD;
|
||
while (true) {
|
||
Cursor = Cursor->getPreviousDecl();
|
||
|
||
// If we got to the end without finding OldFD, OldFD is the newer
|
||
// declaration; leave things as they are.
|
||
if (!Cursor) return;
|
||
|
||
// If we do find OldFD, then NewFD is newer.
|
||
if (Cursor == OldFD) break;
|
||
|
||
// Otherwise, keep looking.
|
||
}
|
||
|
||
Old = New;
|
||
}
|
||
|
||
void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
|
||
ArrayRef<Expr *> Args, ADLResult &Result) {
|
||
// Find all of the associated namespaces and classes based on the
|
||
// arguments we have.
|
||
AssociatedNamespaceSet AssociatedNamespaces;
|
||
AssociatedClassSet AssociatedClasses;
|
||
FindAssociatedClassesAndNamespaces(Loc, Args,
|
||
AssociatedNamespaces,
|
||
AssociatedClasses);
|
||
|
||
// C++ [basic.lookup.argdep]p3:
|
||
// Let X be the lookup set produced by unqualified lookup (3.4.1)
|
||
// and let Y be the lookup set produced by argument dependent
|
||
// lookup (defined as follows). If X contains [...] then Y is
|
||
// empty. Otherwise Y is the set of declarations found in the
|
||
// namespaces associated with the argument types as described
|
||
// below. The set of declarations found by the lookup of the name
|
||
// is the union of X and Y.
|
||
//
|
||
// Here, we compute Y and add its members to the overloaded
|
||
// candidate set.
|
||
for (auto *NS : AssociatedNamespaces) {
|
||
// When considering an associated namespace, the lookup is the
|
||
// same as the lookup performed when the associated namespace is
|
||
// used as a qualifier (3.4.3.2) except that:
|
||
//
|
||
// -- Any using-directives in the associated namespace are
|
||
// ignored.
|
||
//
|
||
// -- Any namespace-scope friend functions declared in
|
||
// associated classes are visible within their respective
|
||
// namespaces even if they are not visible during an ordinary
|
||
// lookup (11.4).
|
||
DeclContext::lookup_result R = NS->lookup(Name);
|
||
for (auto *D : R) {
|
||
auto *Underlying = D;
|
||
if (auto *USD = dyn_cast<UsingShadowDecl>(D))
|
||
Underlying = USD->getTargetDecl();
|
||
|
||
if (!isa<FunctionDecl>(Underlying) &&
|
||
!isa<FunctionTemplateDecl>(Underlying))
|
||
continue;
|
||
|
||
// The declaration is visible to argument-dependent lookup if either
|
||
// it's ordinarily visible or declared as a friend in an associated
|
||
// class.
|
||
bool Visible = false;
|
||
for (D = D->getMostRecentDecl(); D;
|
||
D = cast_or_null<NamedDecl>(D->getPreviousDecl())) {
|
||
if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) {
|
||
if (isVisible(D)) {
|
||
Visible = true;
|
||
break;
|
||
}
|
||
} else if (D->getFriendObjectKind()) {
|
||
auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext());
|
||
if (AssociatedClasses.count(RD) && isVisible(D)) {
|
||
Visible = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
// FIXME: Preserve D as the FoundDecl.
|
||
if (Visible)
|
||
Result.insert(Underlying);
|
||
}
|
||
}
|
||
}
|
||
|
||
//----------------------------------------------------------------------------
|
||
// Search for all visible declarations.
|
||
//----------------------------------------------------------------------------
|
||
VisibleDeclConsumer::~VisibleDeclConsumer() { }
|
||
|
||
bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
|
||
|
||
namespace {
|
||
|
||
class ShadowContextRAII;
|
||
|
||
class VisibleDeclsRecord {
|
||
public:
|
||
/// An entry in the shadow map, which is optimized to store a
|
||
/// single declaration (the common case) but can also store a list
|
||
/// of declarations.
|
||
typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
|
||
|
||
private:
|
||
/// A mapping from declaration names to the declarations that have
|
||
/// this name within a particular scope.
|
||
typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
|
||
|
||
/// A list of shadow maps, which is used to model name hiding.
|
||
std::list<ShadowMap> ShadowMaps;
|
||
|
||
/// The declaration contexts we have already visited.
|
||
llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
|
||
|
||
friend class ShadowContextRAII;
|
||
|
||
public:
|
||
/// Determine whether we have already visited this context
|
||
/// (and, if not, note that we are going to visit that context now).
|
||
bool visitedContext(DeclContext *Ctx) {
|
||
return !VisitedContexts.insert(Ctx).second;
|
||
}
|
||
|
||
bool alreadyVisitedContext(DeclContext *Ctx) {
|
||
return VisitedContexts.count(Ctx);
|
||
}
|
||
|
||
/// Determine whether the given declaration is hidden in the
|
||
/// current scope.
|
||
///
|
||
/// \returns the declaration that hides the given declaration, or
|
||
/// NULL if no such declaration exists.
|
||
NamedDecl *checkHidden(NamedDecl *ND);
|
||
|
||
/// Add a declaration to the current shadow map.
|
||
void add(NamedDecl *ND) {
|
||
ShadowMaps.back()[ND->getDeclName()].push_back(ND);
|
||
}
|
||
};
|
||
|
||
/// RAII object that records when we've entered a shadow context.
|
||
class ShadowContextRAII {
|
||
VisibleDeclsRecord &Visible;
|
||
|
||
typedef VisibleDeclsRecord::ShadowMap ShadowMap;
|
||
|
||
public:
|
||
ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
|
||
Visible.ShadowMaps.emplace_back();
|
||
}
|
||
|
||
~ShadowContextRAII() {
|
||
Visible.ShadowMaps.pop_back();
|
||
}
|
||
};
|
||
|
||
} // end anonymous namespace
|
||
|
||
NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
|
||
unsigned IDNS = ND->getIdentifierNamespace();
|
||
std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
|
||
for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
|
||
SM != SMEnd; ++SM) {
|
||
ShadowMap::iterator Pos = SM->find(ND->getDeclName());
|
||
if (Pos == SM->end())
|
||
continue;
|
||
|
||
for (auto *D : Pos->second) {
|
||
// A tag declaration does not hide a non-tag declaration.
|
||
if (D->hasTagIdentifierNamespace() &&
|
||
(IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
|
||
Decl::IDNS_ObjCProtocol)))
|
||
continue;
|
||
|
||
// Protocols are in distinct namespaces from everything else.
|
||
if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
|
||
|| (IDNS & Decl::IDNS_ObjCProtocol)) &&
|
||
D->getIdentifierNamespace() != IDNS)
|
||
continue;
|
||
|
||
// Functions and function templates in the same scope overload
|
||
// rather than hide. FIXME: Look for hiding based on function
|
||
// signatures!
|
||
if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
|
||
ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
|
||
SM == ShadowMaps.rbegin())
|
||
continue;
|
||
|
||
// A shadow declaration that's created by a resolved using declaration
|
||
// is not hidden by the same using declaration.
|
||
if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
|
||
cast<UsingShadowDecl>(ND)->getIntroducer() == D)
|
||
continue;
|
||
|
||
// We've found a declaration that hides this one.
|
||
return D;
|
||
}
|
||
}
|
||
|
||
return nullptr;
|
||
}
|
||
|
||
namespace {
|
||
class LookupVisibleHelper {
|
||
public:
|
||
LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases,
|
||
bool LoadExternal)
|
||
: Consumer(Consumer), IncludeDependentBases(IncludeDependentBases),
|
||
LoadExternal(LoadExternal) {}
|
||
|
||
void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind,
|
||
bool IncludeGlobalScope) {
|
||
// Determine the set of using directives available during
|
||
// unqualified name lookup.
|
||
Scope *Initial = S;
|
||
UnqualUsingDirectiveSet UDirs(SemaRef);
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
// Find the first namespace or translation-unit scope.
|
||
while (S && !isNamespaceOrTranslationUnitScope(S))
|
||
S = S->getParent();
|
||
|
||
UDirs.visitScopeChain(Initial, S);
|
||
}
|
||
UDirs.done();
|
||
|
||
// Look for visible declarations.
|
||
LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
|
||
Result.setAllowHidden(Consumer.includeHiddenDecls());
|
||
if (!IncludeGlobalScope)
|
||
Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInScope(Initial, Result, UDirs);
|
||
}
|
||
|
||
void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx,
|
||
Sema::LookupNameKind Kind, bool IncludeGlobalScope) {
|
||
LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind);
|
||
Result.setAllowHidden(Consumer.includeHiddenDecls());
|
||
if (!IncludeGlobalScope)
|
||
Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl());
|
||
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
private:
|
||
void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result,
|
||
bool QualifiedNameLookup, bool InBaseClass) {
|
||
if (!Ctx)
|
||
return;
|
||
|
||
// Make sure we don't visit the same context twice.
|
||
if (Visited.visitedContext(Ctx->getPrimaryContext()))
|
||
return;
|
||
|
||
Consumer.EnteredContext(Ctx);
|
||
|
||
// Outside C++, lookup results for the TU live on identifiers.
|
||
if (isa<TranslationUnitDecl>(Ctx) &&
|
||
!Result.getSema().getLangOpts().CPlusPlus) {
|
||
auto &S = Result.getSema();
|
||
auto &Idents = S.Context.Idents;
|
||
|
||
// Ensure all external identifiers are in the identifier table.
|
||
if (LoadExternal)
|
||
if (IdentifierInfoLookup *External =
|
||
Idents.getExternalIdentifierLookup()) {
|
||
std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
|
||
for (StringRef Name = Iter->Next(); !Name.empty();
|
||
Name = Iter->Next())
|
||
Idents.get(Name);
|
||
}
|
||
|
||
// Walk all lookup results in the TU for each identifier.
|
||
for (const auto &Ident : Idents) {
|
||
for (auto I = S.IdResolver.begin(Ident.getValue()),
|
||
E = S.IdResolver.end();
|
||
I != E; ++I) {
|
||
if (S.IdResolver.isDeclInScope(*I, Ctx)) {
|
||
if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
|
||
Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
|
||
Visited.add(ND);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
|
||
Result.getSema().ForceDeclarationOfImplicitMembers(Class);
|
||
|
||
llvm::SmallVector<NamedDecl *, 4> DeclsToVisit;
|
||
// We sometimes skip loading namespace-level results (they tend to be huge).
|
||
bool Load = LoadExternal ||
|
||
!(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx));
|
||
// Enumerate all of the results in this context.
|
||
for (DeclContextLookupResult R :
|
||
Load ? Ctx->lookups()
|
||
: Ctx->noload_lookups(/*PreserveInternalState=*/false)) {
|
||
for (auto *D : R) {
|
||
if (auto *ND = Result.getAcceptableDecl(D)) {
|
||
// Rather than visit immediately, we put ND into a vector and visit
|
||
// all decls, in order, outside of this loop. The reason is that
|
||
// Consumer.FoundDecl() may invalidate the iterators used in the two
|
||
// loops above.
|
||
DeclsToVisit.push_back(ND);
|
||
}
|
||
}
|
||
}
|
||
|
||
for (auto *ND : DeclsToVisit) {
|
||
Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
|
||
Visited.add(ND);
|
||
}
|
||
DeclsToVisit.clear();
|
||
|
||
// Traverse using directives for qualified name lookup.
|
||
if (QualifiedNameLookup) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
for (auto I : Ctx->using_directives()) {
|
||
if (!Result.getSema().isVisible(I))
|
||
continue;
|
||
lookupInDeclContext(I->getNominatedNamespace(), Result,
|
||
QualifiedNameLookup, InBaseClass);
|
||
}
|
||
}
|
||
|
||
// Traverse the contexts of inherited C++ classes.
|
||
if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
|
||
if (!Record->hasDefinition())
|
||
return;
|
||
|
||
for (const auto &B : Record->bases()) {
|
||
QualType BaseType = B.getType();
|
||
|
||
RecordDecl *RD;
|
||
if (BaseType->isDependentType()) {
|
||
if (!IncludeDependentBases) {
|
||
// Don't look into dependent bases, because name lookup can't look
|
||
// there anyway.
|
||
continue;
|
||
}
|
||
const auto *TST = BaseType->getAs<TemplateSpecializationType>();
|
||
if (!TST)
|
||
continue;
|
||
TemplateName TN = TST->getTemplateName();
|
||
const auto *TD =
|
||
dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl());
|
||
if (!TD)
|
||
continue;
|
||
RD = TD->getTemplatedDecl();
|
||
} else {
|
||
const auto *Record = BaseType->getAs<RecordType>();
|
||
if (!Record)
|
||
continue;
|
||
RD = Record->getDecl();
|
||
}
|
||
|
||
// FIXME: It would be nice to be able to determine whether referencing
|
||
// a particular member would be ambiguous. For example, given
|
||
//
|
||
// struct A { int member; };
|
||
// struct B { int member; };
|
||
// struct C : A, B { };
|
||
//
|
||
// void f(C *c) { c->### }
|
||
//
|
||
// accessing 'member' would result in an ambiguity. However, we
|
||
// could be smart enough to qualify the member with the base
|
||
// class, e.g.,
|
||
//
|
||
// c->B::member
|
||
//
|
||
// or
|
||
//
|
||
// c->A::member
|
||
|
||
// Find results in this base class (and its bases).
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(RD, Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/true);
|
||
}
|
||
}
|
||
|
||
// Traverse the contexts of Objective-C classes.
|
||
if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
|
||
// Traverse categories.
|
||
for (auto *Cat : IFace->visible_categories()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(Cat, Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
// Traverse protocols.
|
||
for (auto *I : IFace->all_referenced_protocols()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(I, Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
// Traverse the superclass.
|
||
if (IFace->getSuperClass()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/true);
|
||
}
|
||
|
||
// If there is an implementation, traverse it. We do this to find
|
||
// synthesized ivars.
|
||
if (IFace->getImplementation()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(IFace->getImplementation(), Result,
|
||
QualifiedNameLookup, InBaseClass);
|
||
}
|
||
} else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
|
||
for (auto *I : Protocol->protocols()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(I, Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
} else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
|
||
for (auto *I : Category->protocols()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(I, Result, QualifiedNameLookup,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
// If there is an implementation, traverse it.
|
||
if (Category->getImplementation()) {
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInDeclContext(Category->getImplementation(), Result,
|
||
QualifiedNameLookup, /*InBaseClass=*/true);
|
||
}
|
||
}
|
||
}
|
||
|
||
void lookupInScope(Scope *S, LookupResult &Result,
|
||
UnqualUsingDirectiveSet &UDirs) {
|
||
// No clients run in this mode and it's not supported. Please add tests and
|
||
// remove the assertion if you start relying on it.
|
||
assert(!IncludeDependentBases && "Unsupported flag for lookupInScope");
|
||
|
||
if (!S)
|
||
return;
|
||
|
||
if (!S->getEntity() ||
|
||
(!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) ||
|
||
(S->getEntity())->isFunctionOrMethod()) {
|
||
FindLocalExternScope FindLocals(Result);
|
||
// Walk through the declarations in this Scope. The consumer might add new
|
||
// decls to the scope as part of deserialization, so make a copy first.
|
||
SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end());
|
||
for (Decl *D : ScopeDecls) {
|
||
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
|
||
if ((ND = Result.getAcceptableDecl(ND))) {
|
||
Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
|
||
Visited.add(ND);
|
||
}
|
||
}
|
||
}
|
||
|
||
DeclContext *Entity = S->getLookupEntity();
|
||
if (Entity) {
|
||
// Look into this scope's declaration context, along with any of its
|
||
// parent lookup contexts (e.g., enclosing classes), up to the point
|
||
// where we hit the context stored in the next outer scope.
|
||
DeclContext *OuterCtx = findOuterContext(S);
|
||
|
||
for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
|
||
Ctx = Ctx->getLookupParent()) {
|
||
if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
|
||
if (Method->isInstanceMethod()) {
|
||
// For instance methods, look for ivars in the method's interface.
|
||
LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
|
||
Result.getNameLoc(),
|
||
Sema::LookupMemberName);
|
||
if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
|
||
lookupInDeclContext(IFace, IvarResult,
|
||
/*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
}
|
||
|
||
// We've already performed all of the name lookup that we need
|
||
// to for Objective-C methods; the next context will be the
|
||
// outer scope.
|
||
break;
|
||
}
|
||
|
||
if (Ctx->isFunctionOrMethod())
|
||
continue;
|
||
|
||
lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
} else if (!S->getParent()) {
|
||
// Look into the translation unit scope. We walk through the translation
|
||
// unit's declaration context, because the Scope itself won't have all of
|
||
// the declarations if we loaded a precompiled header.
|
||
// FIXME: We would like the translation unit's Scope object to point to
|
||
// the translation unit, so we don't need this special "if" branch.
|
||
// However, doing so would force the normal C++ name-lookup code to look
|
||
// into the translation unit decl when the IdentifierInfo chains would
|
||
// suffice. Once we fix that problem (which is part of a more general
|
||
// "don't look in DeclContexts unless we have to" optimization), we can
|
||
// eliminate this.
|
||
Entity = Result.getSema().Context.getTranslationUnitDecl();
|
||
lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
if (Entity) {
|
||
// Lookup visible declarations in any namespaces found by using
|
||
// directives.
|
||
for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
|
||
lookupInDeclContext(
|
||
const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result,
|
||
/*QualifiedNameLookup=*/false,
|
||
/*InBaseClass=*/false);
|
||
}
|
||
|
||
// Lookup names in the parent scope.
|
||
ShadowContextRAII Shadow(Visited);
|
||
lookupInScope(S->getParent(), Result, UDirs);
|
||
}
|
||
|
||
private:
|
||
VisibleDeclsRecord Visited;
|
||
VisibleDeclConsumer &Consumer;
|
||
bool IncludeDependentBases;
|
||
bool LoadExternal;
|
||
};
|
||
} // namespace
|
||
|
||
void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
|
||
VisibleDeclConsumer &Consumer,
|
||
bool IncludeGlobalScope, bool LoadExternal) {
|
||
LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false,
|
||
LoadExternal);
|
||
H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope);
|
||
}
|
||
|
||
void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
|
||
VisibleDeclConsumer &Consumer,
|
||
bool IncludeGlobalScope,
|
||
bool IncludeDependentBases, bool LoadExternal) {
|
||
LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal);
|
||
H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope);
|
||
}
|
||
|
||
/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
|
||
/// If GnuLabelLoc is a valid source location, then this is a definition
|
||
/// of an __label__ label name, otherwise it is a normal label definition
|
||
/// or use.
|
||
LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
|
||
SourceLocation GnuLabelLoc) {
|
||
// Do a lookup to see if we have a label with this name already.
|
||
NamedDecl *Res = nullptr;
|
||
|
||
if (GnuLabelLoc.isValid()) {
|
||
// Local label definitions always shadow existing labels.
|
||
Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
|
||
Scope *S = CurScope;
|
||
PushOnScopeChains(Res, S, true);
|
||
return cast<LabelDecl>(Res);
|
||
}
|
||
|
||
// Not a GNU local label.
|
||
Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
|
||
// If we found a label, check to see if it is in the same context as us.
|
||
// When in a Block, we don't want to reuse a label in an enclosing function.
|
||
if (Res && Res->getDeclContext() != CurContext)
|
||
Res = nullptr;
|
||
if (!Res) {
|
||
// If not forward referenced or defined already, create the backing decl.
|
||
Res = LabelDecl::Create(Context, CurContext, Loc, II);
|
||
Scope *S = CurScope->getFnParent();
|
||
assert(S && "Not in a function?");
|
||
PushOnScopeChains(Res, S, true);
|
||
}
|
||
return cast<LabelDecl>(Res);
|
||
}
|
||
|
||
//===----------------------------------------------------------------------===//
|
||
// Typo correction
|
||
//===----------------------------------------------------------------------===//
|
||
|
||
static bool isCandidateViable(CorrectionCandidateCallback &CCC,
|
||
TypoCorrection &Candidate) {
|
||
Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
|
||
return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
|
||
}
|
||
|
||
static void LookupPotentialTypoResult(Sema &SemaRef,
|
||
LookupResult &Res,
|
||
IdentifierInfo *Name,
|
||
Scope *S, CXXScopeSpec *SS,
|
||
DeclContext *MemberContext,
|
||
bool EnteringContext,
|
||
bool isObjCIvarLookup,
|
||
bool FindHidden);
|
||
|
||
/// Check whether the declarations found for a typo correction are
|
||
/// visible. Set the correction's RequiresImport flag to true if none of the
|
||
/// declarations are visible, false otherwise.
|
||
static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
|
||
TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
|
||
|
||
for (/**/; DI != DE; ++DI)
|
||
if (!LookupResult::isVisible(SemaRef, *DI))
|
||
break;
|
||
// No filtering needed if all decls are visible.
|
||
if (DI == DE) {
|
||
TC.setRequiresImport(false);
|
||
return;
|
||
}
|
||
|
||
llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
|
||
bool AnyVisibleDecls = !NewDecls.empty();
|
||
|
||
for (/**/; DI != DE; ++DI) {
|
||
if (LookupResult::isVisible(SemaRef, *DI)) {
|
||
if (!AnyVisibleDecls) {
|
||
// Found a visible decl, discard all hidden ones.
|
||
AnyVisibleDecls = true;
|
||
NewDecls.clear();
|
||
}
|
||
NewDecls.push_back(*DI);
|
||
} else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
|
||
NewDecls.push_back(*DI);
|
||
}
|
||
|
||
if (NewDecls.empty())
|
||
TC = TypoCorrection();
|
||
else {
|
||
TC.setCorrectionDecls(NewDecls);
|
||
TC.setRequiresImport(!AnyVisibleDecls);
|
||
}
|
||
}
|
||
|
||
// Fill the supplied vector with the IdentifierInfo pointers for each piece of
|
||
// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
|
||
// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
|
||
static void getNestedNameSpecifierIdentifiers(
|
||
NestedNameSpecifier *NNS,
|
||
SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
|
||
if (NestedNameSpecifier *Prefix = NNS->getPrefix())
|
||
getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
|
||
else
|
||
Identifiers.clear();
|
||
|
||
const IdentifierInfo *II = nullptr;
|
||
|
||
switch (NNS->getKind()) {
|
||
case NestedNameSpecifier::Identifier:
|
||
II = NNS->getAsIdentifier();
|
||
break;
|
||
|
||
case NestedNameSpecifier::Namespace:
|
||
if (NNS->getAsNamespace()->isAnonymousNamespace())
|
||
return;
|
||
II = NNS->getAsNamespace()->getIdentifier();
|
||
break;
|
||
|
||
case NestedNameSpecifier::NamespaceAlias:
|
||
II = NNS->getAsNamespaceAlias()->getIdentifier();
|
||
break;
|
||
|
||
case NestedNameSpecifier::TypeSpecWithTemplate:
|
||
case NestedNameSpecifier::TypeSpec:
|
||
II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
|
||
break;
|
||
|
||
case NestedNameSpecifier::Global:
|
||
case NestedNameSpecifier::Super:
|
||
return;
|
||
}
|
||
|
||
if (II)
|
||
Identifiers.push_back(II);
|
||
}
|
||
|
||
void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
|
||
DeclContext *Ctx, bool InBaseClass) {
|
||
// Don't consider hidden names for typo correction.
|
||
if (Hiding)
|
||
return;
|
||
|
||
// Only consider entities with identifiers for names, ignoring
|
||
// special names (constructors, overloaded operators, selectors,
|
||
// etc.).
|
||
IdentifierInfo *Name = ND->getIdentifier();
|
||
if (!Name)
|
||
return;
|
||
|
||
// Only consider visible declarations and declarations from modules with
|
||
// names that exactly match.
|
||
if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo)
|
||
return;
|
||
|
||
FoundName(Name->getName());
|
||
}
|
||
|
||
void TypoCorrectionConsumer::FoundName(StringRef Name) {
|
||
// Compute the edit distance between the typo and the name of this
|
||
// entity, and add the identifier to the list of results.
|
||
addName(Name, nullptr);
|
||
}
|
||
|
||
void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
|
||
// Compute the edit distance between the typo and this keyword,
|
||
// and add the keyword to the list of results.
|
||
addName(Keyword, nullptr, nullptr, true);
|
||
}
|
||
|
||
void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
|
||
NestedNameSpecifier *NNS, bool isKeyword) {
|
||
// Use a simple length-based heuristic to determine the minimum possible
|
||
// edit distance. If the minimum isn't good enough, bail out early.
|
||
StringRef TypoStr = Typo->getName();
|
||
unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
|
||
if (MinED && TypoStr.size() / MinED < 3)
|
||
return;
|
||
|
||
// Compute an upper bound on the allowable edit distance, so that the
|
||
// edit-distance algorithm can short-circuit.
|
||
unsigned UpperBound = (TypoStr.size() + 2) / 3;
|
||
unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
|
||
if (ED > UpperBound) return;
|
||
|
||
TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
|
||
if (isKeyword) TC.makeKeyword();
|
||
TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
|
||
addCorrection(TC);
|
||
}
|
||
|
||
static const unsigned MaxTypoDistanceResultSets = 5;
|
||
|
||
void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
|
||
StringRef TypoStr = Typo->getName();
|
||
StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
|
||
|
||
// For very short typos, ignore potential corrections that have a different
|
||
// base identifier from the typo or which have a normalized edit distance
|
||
// longer than the typo itself.
|
||
if (TypoStr.size() < 3 &&
|
||
(Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
|
||
return;
|
||
|
||
// If the correction is resolved but is not viable, ignore it.
|
||
if (Correction.isResolved()) {
|
||
checkCorrectionVisibility(SemaRef, Correction);
|
||
if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
|
||
return;
|
||
}
|
||
|
||
TypoResultList &CList =
|
||
CorrectionResults[Correction.getEditDistance(false)][Name];
|
||
|
||
if (!CList.empty() && !CList.back().isResolved())
|
||
CList.pop_back();
|
||
if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
|
||
auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) {
|
||
return TypoCorr.getCorrectionDecl() == NewND;
|
||
});
|
||
if (RI != CList.end()) {
|
||
// The Correction refers to a decl already in the list. No insertion is
|
||
// necessary and all further cases will return.
|
||
|
||
auto IsDeprecated = [](Decl *D) {
|
||
while (D) {
|
||
if (D->isDeprecated())
|
||
return true;
|
||
D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext());
|
||
}
|
||
return false;
|
||
};
|
||
|
||
// Prefer non deprecated Corrections over deprecated and only then
|
||
// sort using an alphabetical order.
|
||
std::pair<bool, std::string> NewKey = {
|
||
IsDeprecated(Correction.getFoundDecl()),
|
||
Correction.getAsString(SemaRef.getLangOpts())};
|
||
|
||
std::pair<bool, std::string> PrevKey = {
|
||
IsDeprecated(RI->getFoundDecl()),
|
||
RI->getAsString(SemaRef.getLangOpts())};
|
||
|
||
if (NewKey < PrevKey)
|
||
*RI = Correction;
|
||
return;
|
||
}
|
||
}
|
||
if (CList.empty() || Correction.isResolved())
|
||
CList.push_back(Correction);
|
||
|
||
while (CorrectionResults.size() > MaxTypoDistanceResultSets)
|
||
CorrectionResults.erase(std::prev(CorrectionResults.end()));
|
||
}
|
||
|
||
void TypoCorrectionConsumer::addNamespaces(
|
||
const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
|
||
SearchNamespaces = true;
|
||
|
||
for (auto KNPair : KnownNamespaces)
|
||
Namespaces.addNameSpecifier(KNPair.first);
|
||
|
||
bool SSIsTemplate = false;
|
||
if (NestedNameSpecifier *NNS =
|
||
(SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
|
||
if (const Type *T = NNS->getAsType())
|
||
SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
|
||
}
|
||
// Do not transform this into an iterator-based loop. The loop body can
|
||
// trigger the creation of further types (through lazy deserialization) and
|
||
// invalid iterators into this list.
|
||
auto &Types = SemaRef.getASTContext().getTypes();
|
||
for (unsigned I = 0; I != Types.size(); ++I) {
|
||
const auto *TI = Types[I];
|
||
if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
|
||
CD = CD->getCanonicalDecl();
|
||
if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
|
||
!CD->isUnion() && CD->getIdentifier() &&
|
||
(SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
|
||
(CD->isBeingDefined() || CD->isCompleteDefinition()))
|
||
Namespaces.addNameSpecifier(CD);
|
||
}
|
||
}
|
||
}
|
||
|
||
const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
|
||
if (++CurrentTCIndex < ValidatedCorrections.size())
|
||
return ValidatedCorrections[CurrentTCIndex];
|
||
|
||
CurrentTCIndex = ValidatedCorrections.size();
|
||
while (!CorrectionResults.empty()) {
|
||
auto DI = CorrectionResults.begin();
|
||
if (DI->second.empty()) {
|
||
CorrectionResults.erase(DI);
|
||
continue;
|
||
}
|
||
|
||
auto RI = DI->second.begin();
|
||
if (RI->second.empty()) {
|
||
DI->second.erase(RI);
|
||
performQualifiedLookups();
|
||
continue;
|
||
}
|
||
|
||
TypoCorrection TC = RI->second.pop_back_val();
|
||
if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
|
||
ValidatedCorrections.push_back(TC);
|
||
return ValidatedCorrections[CurrentTCIndex];
|
||
}
|
||
}
|
||
return ValidatedCorrections[0]; // The empty correction.
|
||
}
|
||
|
||
bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
|
||
IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
|
||
DeclContext *TempMemberContext = MemberContext;
|
||
CXXScopeSpec *TempSS = SS.get();
|
||
retry_lookup:
|
||
LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
|
||
EnteringContext,
|
||
CorrectionValidator->IsObjCIvarLookup,
|
||
Name == Typo && !Candidate.WillReplaceSpecifier());
|
||
switch (Result.getResultKind()) {
|
||
case LookupResult::NotFound:
|
||
case LookupResult::NotFoundInCurrentInstantiation:
|
||
case LookupResult::FoundUnresolvedValue:
|
||
if (TempSS) {
|
||
// Immediately retry the lookup without the given CXXScopeSpec
|
||
TempSS = nullptr;
|
||
Candidate.WillReplaceSpecifier(true);
|
||
goto retry_lookup;
|
||
}
|
||
if (TempMemberContext) {
|
||
if (SS && !TempSS)
|
||
TempSS = SS.get();
|
||
TempMemberContext = nullptr;
|
||
goto retry_lookup;
|
||
}
|
||
if (SearchNamespaces)
|
||
QualifiedResults.push_back(Candidate);
|
||
break;
|
||
|
||
case LookupResult::Ambiguous:
|
||
// We don't deal with ambiguities.
|
||
break;
|
||
|
||
case LookupResult::Found:
|
||
case LookupResult::FoundOverloaded:
|
||
// Store all of the Decls for overloaded symbols
|
||
for (auto *TRD : Result)
|
||
Candidate.addCorrectionDecl(TRD);
|
||
checkCorrectionVisibility(SemaRef, Candidate);
|
||
if (!isCandidateViable(*CorrectionValidator, Candidate)) {
|
||
if (SearchNamespaces)
|
||
QualifiedResults.push_back(Candidate);
|
||
break;
|
||
}
|
||
Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void TypoCorrectionConsumer::performQualifiedLookups() {
|
||
unsigned TypoLen = Typo->getName().size();
|
||
for (const TypoCorrection &QR : QualifiedResults) {
|
||
for (const auto &NSI : Namespaces) {
|
||
DeclContext *Ctx = NSI.DeclCtx;
|
||
const Type *NSType = NSI.NameSpecifier->getAsType();
|
||
|
||
// If the current NestedNameSpecifier refers to a class and the
|
||
// current correction candidate is the name of that class, then skip
|
||
// it as it is unlikely a qualified version of the class' constructor
|
||
// is an appropriate correction.
|
||
if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
|
||
nullptr) {
|
||
if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
|
||
continue;
|
||
}
|
||
|
||
TypoCorrection TC(QR);
|
||
TC.ClearCorrectionDecls();
|
||
TC.setCorrectionSpecifier(NSI.NameSpecifier);
|
||
TC.setQualifierDistance(NSI.EditDistance);
|
||
TC.setCallbackDistance(0); // Reset the callback distance
|
||
|
||
// If the current correction candidate and namespace combination are
|
||
// too far away from the original typo based on the normalized edit
|
||
// distance, then skip performing a qualified name lookup.
|
||
unsigned TmpED = TC.getEditDistance(true);
|
||
if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
|
||
TypoLen / TmpED < 3)
|
||
continue;
|
||
|
||
Result.clear();
|
||
Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
|
||
if (!SemaRef.LookupQualifiedName(Result, Ctx))
|
||
continue;
|
||
|
||
// Any corrections added below will be validated in subsequent
|
||
// iterations of the main while() loop over the Consumer's contents.
|
||
switch (Result.getResultKind()) {
|
||
case LookupResult::Found:
|
||
case LookupResult::FoundOverloaded: {
|
||
if (SS && SS->isValid()) {
|
||
std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
|
||
std::string OldQualified;
|
||
llvm::raw_string_ostream OldOStream(OldQualified);
|
||
SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
|
||
OldOStream << Typo->getName();
|
||
// If correction candidate would be an identical written qualified
|
||
// identifier, then the existing CXXScopeSpec probably included a
|
||
// typedef that didn't get accounted for properly.
|
||
if (OldOStream.str() == NewQualified)
|
||
break;
|
||
}
|
||
for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
|
||
TRD != TRDEnd; ++TRD) {
|
||
if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
|
||
NSType ? NSType->getAsCXXRecordDecl()
|
||
: nullptr,
|
||
TRD.getPair()) == Sema::AR_accessible)
|
||
TC.addCorrectionDecl(*TRD);
|
||
}
|
||
if (TC.isResolved()) {
|
||
TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
|
||
addCorrection(TC);
|
||
}
|
||
break;
|
||
}
|
||
case LookupResult::NotFound:
|
||
case LookupResult::NotFoundInCurrentInstantiation:
|
||
case LookupResult::Ambiguous:
|
||
case LookupResult::FoundUnresolvedValue:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
QualifiedResults.clear();
|
||
}
|
||
|
||
TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
|
||
ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
|
||
: Context(Context), CurContextChain(buildContextChain(CurContext)) {
|
||
if (NestedNameSpecifier *NNS =
|
||
CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
|
||
llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
|
||
NNS->print(SpecifierOStream, Context.getPrintingPolicy());
|
||
|
||
getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
|
||
}
|
||
// Build the list of identifiers that would be used for an absolute
|
||
// (from the global context) NestedNameSpecifier referring to the current
|
||
// context.
|
||
for (DeclContext *C : llvm::reverse(CurContextChain)) {
|
||
if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
|
||
CurContextIdentifiers.push_back(ND->getIdentifier());
|
||
}
|
||
|
||
// Add the global context as a NestedNameSpecifier
|
||
SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
|
||
NestedNameSpecifier::GlobalSpecifier(Context), 1};
|
||
DistanceMap[1].push_back(SI);
|
||
}
|
||
|
||
auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
|
||
DeclContext *Start) -> DeclContextList {
|
||
assert(Start && "Building a context chain from a null context");
|
||
DeclContextList Chain;
|
||
for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
|
||
DC = DC->getLookupParent()) {
|
||
NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
|
||
if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
|
||
!(ND && ND->isAnonymousNamespace()))
|
||
Chain.push_back(DC->getPrimaryContext());
|
||
}
|
||
return Chain;
|
||
}
|
||
|
||
unsigned
|
||
TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
|
||
DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
|
||
unsigned NumSpecifiers = 0;
|
||
for (DeclContext *C : llvm::reverse(DeclChain)) {
|
||
if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
|
||
NNS = NestedNameSpecifier::Create(Context, NNS, ND);
|
||
++NumSpecifiers;
|
||
} else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
|
||
NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
|
||
RD->getTypeForDecl());
|
||
++NumSpecifiers;
|
||
}
|
||
}
|
||
return NumSpecifiers;
|
||
}
|
||
|
||
void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
|
||
DeclContext *Ctx) {
|
||
NestedNameSpecifier *NNS = nullptr;
|
||
unsigned NumSpecifiers = 0;
|
||
DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
|
||
DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
|
||
|
||
// Eliminate common elements from the two DeclContext chains.
|
||
for (DeclContext *C : llvm::reverse(CurContextChain)) {
|
||
if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
|
||
break;
|
||
NamespaceDeclChain.pop_back();
|
||
}
|
||
|
||
// Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
|
||
NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
|
||
|
||
// Add an explicit leading '::' specifier if needed.
|
||
if (NamespaceDeclChain.empty()) {
|
||
// Rebuild the NestedNameSpecifier as a globally-qualified specifier.
|
||
NNS = NestedNameSpecifier::GlobalSpecifier(Context);
|
||
NumSpecifiers =
|
||
buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
|
||
} else if (NamedDecl *ND =
|
||
dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
|
||
IdentifierInfo *Name = ND->getIdentifier();
|
||
bool SameNameSpecifier = false;
|
||
if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) {
|
||
std::string NewNameSpecifier;
|
||
llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
|
||
SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
|
||
getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
|
||
NNS->print(SpecifierOStream, Context.getPrintingPolicy());
|
||
SpecifierOStream.flush();
|
||
SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
|
||
}
|
||
if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) {
|
||
// Rebuild the NestedNameSpecifier as a globally-qualified specifier.
|
||
NNS = NestedNameSpecifier::GlobalSpecifier(Context);
|
||
NumSpecifiers =
|
||
buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
|
||
}
|
||
}
|
||
|
||
// If the built NestedNameSpecifier would be replacing an existing
|
||
// NestedNameSpecifier, use the number of component identifiers that
|
||
// would need to be changed as the edit distance instead of the number
|
||
// of components in the built NestedNameSpecifier.
|
||
if (NNS && !CurNameSpecifierIdentifiers.empty()) {
|
||
SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
|
||
getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
|
||
NumSpecifiers = llvm::ComputeEditDistance(
|
||
llvm::makeArrayRef(CurNameSpecifierIdentifiers),
|
||
llvm::makeArrayRef(NewNameSpecifierIdentifiers));
|
||
}
|
||
|
||
SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
|
||
DistanceMap[NumSpecifiers].push_back(SI);
|
||
}
|
||
|
||
/// Perform name lookup for a possible result for typo correction.
|
||
static void LookupPotentialTypoResult(Sema &SemaRef,
|
||
LookupResult &Res,
|
||
IdentifierInfo *Name,
|
||
Scope *S, CXXScopeSpec *SS,
|
||
DeclContext *MemberContext,
|
||
bool EnteringContext,
|
||
bool isObjCIvarLookup,
|
||
bool FindHidden) {
|
||
Res.suppressDiagnostics();
|
||
Res.clear();
|
||
Res.setLookupName(Name);
|
||
Res.setAllowHidden(FindHidden);
|
||
if (MemberContext) {
|
||
if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
|
||
if (isObjCIvarLookup) {
|
||
if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
|
||
Res.addDecl(Ivar);
|
||
Res.resolveKind();
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
|
||
Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
|
||
Res.addDecl(Prop);
|
||
Res.resolveKind();
|
||
return;
|
||
}
|
||
}
|
||
|
||
SemaRef.LookupQualifiedName(Res, MemberContext);
|
||
return;
|
||
}
|
||
|
||
SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
|
||
EnteringContext);
|
||
|
||
// Fake ivar lookup; this should really be part of
|
||
// LookupParsedName.
|
||
if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
|
||
if (Method->isInstanceMethod() && Method->getClassInterface() &&
|
||
(Res.empty() ||
|
||
(Res.isSingleResult() &&
|
||
Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
|
||
if (ObjCIvarDecl *IV
|
||
= Method->getClassInterface()->lookupInstanceVariable(Name)) {
|
||
Res.addDecl(IV);
|
||
Res.resolveKind();
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Add keywords to the consumer as possible typo corrections.
|
||
static void AddKeywordsToConsumer(Sema &SemaRef,
|
||
TypoCorrectionConsumer &Consumer,
|
||
Scope *S, CorrectionCandidateCallback &CCC,
|
||
bool AfterNestedNameSpecifier) {
|
||
if (AfterNestedNameSpecifier) {
|
||
// For 'X::', we know exactly which keywords can appear next.
|
||
Consumer.addKeywordResult("template");
|
||
if (CCC.WantExpressionKeywords)
|
||
Consumer.addKeywordResult("operator");
|
||
return;
|
||
}
|
||
|
||
if (CCC.WantObjCSuper)
|
||
Consumer.addKeywordResult("super");
|
||
|
||
if (CCC.WantTypeSpecifiers) {
|
||
// Add type-specifier keywords to the set of results.
|
||
static const char *const CTypeSpecs[] = {
|
||
"char", "const", "double", "enum", "float", "int", "long", "short",
|
||
"signed", "struct", "union", "unsigned", "void", "volatile",
|
||
"_Complex", "_Imaginary",
|
||
// storage-specifiers as well
|
||
"extern", "inline", "static", "typedef"
|
||
};
|
||
|
||
const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
|
||
for (unsigned I = 0; I != NumCTypeSpecs; ++I)
|
||
Consumer.addKeywordResult(CTypeSpecs[I]);
|
||
|
||
if (SemaRef.getLangOpts().C99)
|
||
Consumer.addKeywordResult("restrict");
|
||
if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
|
||
Consumer.addKeywordResult("bool");
|
||
else if (SemaRef.getLangOpts().C99)
|
||
Consumer.addKeywordResult("_Bool");
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("class");
|
||
Consumer.addKeywordResult("typename");
|
||
Consumer.addKeywordResult("wchar_t");
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus11) {
|
||
Consumer.addKeywordResult("char16_t");
|
||
Consumer.addKeywordResult("char32_t");
|
||
Consumer.addKeywordResult("constexpr");
|
||
Consumer.addKeywordResult("decltype");
|
||
Consumer.addKeywordResult("thread_local");
|
||
}
|
||
}
|
||
|
||
if (SemaRef.getLangOpts().GNUKeywords)
|
||
Consumer.addKeywordResult("typeof");
|
||
} else if (CCC.WantFunctionLikeCasts) {
|
||
static const char *const CastableTypeSpecs[] = {
|
||
"char", "double", "float", "int", "long", "short",
|
||
"signed", "unsigned", "void"
|
||
};
|
||
for (auto *kw : CastableTypeSpecs)
|
||
Consumer.addKeywordResult(kw);
|
||
}
|
||
|
||
if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("const_cast");
|
||
Consumer.addKeywordResult("dynamic_cast");
|
||
Consumer.addKeywordResult("reinterpret_cast");
|
||
Consumer.addKeywordResult("static_cast");
|
||
}
|
||
|
||
if (CCC.WantExpressionKeywords) {
|
||
Consumer.addKeywordResult("sizeof");
|
||
if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("false");
|
||
Consumer.addKeywordResult("true");
|
||
}
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
static const char *const CXXExprs[] = {
|
||
"delete", "new", "operator", "throw", "typeid"
|
||
};
|
||
const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
|
||
for (unsigned I = 0; I != NumCXXExprs; ++I)
|
||
Consumer.addKeywordResult(CXXExprs[I]);
|
||
|
||
if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
|
||
cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
|
||
Consumer.addKeywordResult("this");
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus11) {
|
||
Consumer.addKeywordResult("alignof");
|
||
Consumer.addKeywordResult("nullptr");
|
||
}
|
||
}
|
||
|
||
if (SemaRef.getLangOpts().C11) {
|
||
// FIXME: We should not suggest _Alignof if the alignof macro
|
||
// is present.
|
||
Consumer.addKeywordResult("_Alignof");
|
||
}
|
||
}
|
||
|
||
if (CCC.WantRemainingKeywords) {
|
||
if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
|
||
// Statements.
|
||
static const char *const CStmts[] = {
|
||
"do", "else", "for", "goto", "if", "return", "switch", "while" };
|
||
const unsigned NumCStmts = llvm::array_lengthof(CStmts);
|
||
for (unsigned I = 0; I != NumCStmts; ++I)
|
||
Consumer.addKeywordResult(CStmts[I]);
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("catch");
|
||
Consumer.addKeywordResult("try");
|
||
}
|
||
|
||
if (S && S->getBreakParent())
|
||
Consumer.addKeywordResult("break");
|
||
|
||
if (S && S->getContinueParent())
|
||
Consumer.addKeywordResult("continue");
|
||
|
||
if (SemaRef.getCurFunction() &&
|
||
!SemaRef.getCurFunction()->SwitchStack.empty()) {
|
||
Consumer.addKeywordResult("case");
|
||
Consumer.addKeywordResult("default");
|
||
}
|
||
} else {
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("namespace");
|
||
Consumer.addKeywordResult("template");
|
||
}
|
||
|
||
if (S && S->isClassScope()) {
|
||
Consumer.addKeywordResult("explicit");
|
||
Consumer.addKeywordResult("friend");
|
||
Consumer.addKeywordResult("mutable");
|
||
Consumer.addKeywordResult("private");
|
||
Consumer.addKeywordResult("protected");
|
||
Consumer.addKeywordResult("public");
|
||
Consumer.addKeywordResult("virtual");
|
||
}
|
||
}
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus) {
|
||
Consumer.addKeywordResult("using");
|
||
|
||
if (SemaRef.getLangOpts().CPlusPlus11)
|
||
Consumer.addKeywordResult("static_assert");
|
||
}
|
||
}
|
||
}
|
||
|
||
std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
|
||
const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
|
||
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
|
||
DeclContext *MemberContext, bool EnteringContext,
|
||
const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
|
||
|
||
if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
|
||
DisableTypoCorrection)
|
||
return nullptr;
|
||
|
||
// In Microsoft mode, don't perform typo correction in a template member
|
||
// function dependent context because it interferes with the "lookup into
|
||
// dependent bases of class templates" feature.
|
||
if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
|
||
isa<CXXMethodDecl>(CurContext))
|
||
return nullptr;
|
||
|
||
// We only attempt to correct typos for identifiers.
|
||
IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
|
||
if (!Typo)
|
||
return nullptr;
|
||
|
||
// If the scope specifier itself was invalid, don't try to correct
|
||
// typos.
|
||
if (SS && SS->isInvalid())
|
||
return nullptr;
|
||
|
||
// Never try to correct typos during any kind of code synthesis.
|
||
if (!CodeSynthesisContexts.empty())
|
||
return nullptr;
|
||
|
||
// Don't try to correct 'super'.
|
||
if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
|
||
return nullptr;
|
||
|
||
// Abort if typo correction already failed for this specific typo.
|
||
IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
|
||
if (locs != TypoCorrectionFailures.end() &&
|
||
locs->second.count(TypoName.getLoc()))
|
||
return nullptr;
|
||
|
||
// Don't try to correct the identifier "vector" when in AltiVec mode.
|
||
// TODO: Figure out why typo correction misbehaves in this case, fix it, and
|
||
// remove this workaround.
|
||
if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
|
||
return nullptr;
|
||
|
||
// Provide a stop gap for files that are just seriously broken. Trying
|
||
// to correct all typos can turn into a HUGE performance penalty, causing
|
||
// some files to take minutes to get rejected by the parser.
|
||
unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
|
||
if (Limit && TyposCorrected >= Limit)
|
||
return nullptr;
|
||
++TyposCorrected;
|
||
|
||
// If we're handling a missing symbol error, using modules, and the
|
||
// special search all modules option is used, look for a missing import.
|
||
if (ErrorRecovery && getLangOpts().Modules &&
|
||
getLangOpts().ModulesSearchAll) {
|
||
// The following has the side effect of loading the missing module.
|
||
getModuleLoader().lookupMissingImports(Typo->getName(),
|
||
TypoName.getBeginLoc());
|
||
}
|
||
|
||
// Extend the lifetime of the callback. We delayed this until here
|
||
// to avoid allocations in the hot path (which is where no typo correction
|
||
// occurs). Note that CorrectionCandidateCallback is polymorphic and
|
||
// initially stack-allocated.
|
||
std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone();
|
||
auto Consumer = std::make_unique<TypoCorrectionConsumer>(
|
||
*this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext,
|
||
EnteringContext);
|
||
|
||
// Perform name lookup to find visible, similarly-named entities.
|
||
bool IsUnqualifiedLookup = false;
|
||
DeclContext *QualifiedDC = MemberContext;
|
||
if (MemberContext) {
|
||
LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
|
||
|
||
// Look in qualified interfaces.
|
||
if (OPT) {
|
||
for (auto *I : OPT->quals())
|
||
LookupVisibleDecls(I, LookupKind, *Consumer);
|
||
}
|
||
} else if (SS && SS->isSet()) {
|
||
QualifiedDC = computeDeclContext(*SS, EnteringContext);
|
||
if (!QualifiedDC)
|
||
return nullptr;
|
||
|
||
LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
|
||
} else {
|
||
IsUnqualifiedLookup = true;
|
||
}
|
||
|
||
// Determine whether we are going to search in the various namespaces for
|
||
// corrections.
|
||
bool SearchNamespaces
|
||
= getLangOpts().CPlusPlus &&
|
||
(IsUnqualifiedLookup || (SS && SS->isSet()));
|
||
|
||
if (IsUnqualifiedLookup || SearchNamespaces) {
|
||
// For unqualified lookup, look through all of the names that we have
|
||
// seen in this translation unit.
|
||
// FIXME: Re-add the ability to skip very unlikely potential corrections.
|
||
for (const auto &I : Context.Idents)
|
||
Consumer->FoundName(I.getKey());
|
||
|
||
// Walk through identifiers in external identifier sources.
|
||
// FIXME: Re-add the ability to skip very unlikely potential corrections.
|
||
if (IdentifierInfoLookup *External
|
||
= Context.Idents.getExternalIdentifierLookup()) {
|
||
std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
|
||
do {
|
||
StringRef Name = Iter->Next();
|
||
if (Name.empty())
|
||
break;
|
||
|
||
Consumer->FoundName(Name);
|
||
} while (true);
|
||
}
|
||
}
|
||
|
||
AddKeywordsToConsumer(*this, *Consumer, S,
|
||
*Consumer->getCorrectionValidator(),
|
||
SS && SS->isNotEmpty());
|
||
|
||
// Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
|
||
// to search those namespaces.
|
||
if (SearchNamespaces) {
|
||
// Load any externally-known namespaces.
|
||
if (ExternalSource && !LoadedExternalKnownNamespaces) {
|
||
SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
|
||
LoadedExternalKnownNamespaces = true;
|
||
ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
|
||
for (auto *N : ExternalKnownNamespaces)
|
||
KnownNamespaces[N] = true;
|
||
}
|
||
|
||
Consumer->addNamespaces(KnownNamespaces);
|
||
}
|
||
|
||
return Consumer;
|
||
}
|
||
|
||
/// Try to "correct" a typo in the source code by finding
|
||
/// visible declarations whose names are similar to the name that was
|
||
/// present in the source code.
|
||
///
|
||
/// \param TypoName the \c DeclarationNameInfo structure that contains
|
||
/// the name that was present in the source code along with its location.
|
||
///
|
||
/// \param LookupKind the name-lookup criteria used to search for the name.
|
||
///
|
||
/// \param S the scope in which name lookup occurs.
|
||
///
|
||
/// \param SS the nested-name-specifier that precedes the name we're
|
||
/// looking for, if present.
|
||
///
|
||
/// \param CCC A CorrectionCandidateCallback object that provides further
|
||
/// validation of typo correction candidates. It also provides flags for
|
||
/// determining the set of keywords permitted.
|
||
///
|
||
/// \param MemberContext if non-NULL, the context in which to look for
|
||
/// a member access expression.
|
||
///
|
||
/// \param EnteringContext whether we're entering the context described by
|
||
/// the nested-name-specifier SS.
|
||
///
|
||
/// \param OPT when non-NULL, the search for visible declarations will
|
||
/// also walk the protocols in the qualified interfaces of \p OPT.
|
||
///
|
||
/// \returns a \c TypoCorrection containing the corrected name if the typo
|
||
/// along with information such as the \c NamedDecl where the corrected name
|
||
/// was declared, and any additional \c NestedNameSpecifier needed to access
|
||
/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
|
||
TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
|
||
Sema::LookupNameKind LookupKind,
|
||
Scope *S, CXXScopeSpec *SS,
|
||
CorrectionCandidateCallback &CCC,
|
||
CorrectTypoKind Mode,
|
||
DeclContext *MemberContext,
|
||
bool EnteringContext,
|
||
const ObjCObjectPointerType *OPT,
|
||
bool RecordFailure) {
|
||
// Always let the ExternalSource have the first chance at correction, even
|
||
// if we would otherwise have given up.
|
||
if (ExternalSource) {
|
||
if (TypoCorrection Correction =
|
||
ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC,
|
||
MemberContext, EnteringContext, OPT))
|
||
return Correction;
|
||
}
|
||
|
||
// Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
|
||
// WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
|
||
// some instances of CTC_Unknown, while WantRemainingKeywords is true
|
||
// for CTC_Unknown but not for CTC_ObjCMessageReceiver.
|
||
bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords;
|
||
|
||
IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
|
||
auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
|
||
MemberContext, EnteringContext,
|
||
OPT, Mode == CTK_ErrorRecovery);
|
||
|
||
if (!Consumer)
|
||
return TypoCorrection();
|
||
|
||
// If we haven't found anything, we're done.
|
||
if (Consumer->empty())
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
|
||
// Make sure the best edit distance (prior to adding any namespace qualifiers)
|
||
// is not more that about a third of the length of the typo's identifier.
|
||
unsigned ED = Consumer->getBestEditDistance(true);
|
||
unsigned TypoLen = Typo->getName().size();
|
||
if (ED > 0 && TypoLen / ED < 3)
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
|
||
TypoCorrection BestTC = Consumer->getNextCorrection();
|
||
TypoCorrection SecondBestTC = Consumer->getNextCorrection();
|
||
if (!BestTC)
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
|
||
ED = BestTC.getEditDistance();
|
||
|
||
if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
|
||
// If this was an unqualified lookup and we believe the callback
|
||
// object wouldn't have filtered out possible corrections, note
|
||
// that no correction was found.
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
}
|
||
|
||
// If only a single name remains, return that result.
|
||
if (!SecondBestTC ||
|
||
SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
|
||
const TypoCorrection &Result = BestTC;
|
||
|
||
// Don't correct to a keyword that's the same as the typo; the keyword
|
||
// wasn't actually in scope.
|
||
if (ED == 0 && Result.isKeyword())
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
|
||
TypoCorrection TC = Result;
|
||
TC.setCorrectionRange(SS, TypoName);
|
||
checkCorrectionVisibility(*this, TC);
|
||
return TC;
|
||
} else if (SecondBestTC && ObjCMessageReceiver) {
|
||
// Prefer 'super' when we're completing in a message-receiver
|
||
// context.
|
||
|
||
if (BestTC.getCorrection().getAsString() != "super") {
|
||
if (SecondBestTC.getCorrection().getAsString() == "super")
|
||
BestTC = SecondBestTC;
|
||
else if ((*Consumer)["super"].front().isKeyword())
|
||
BestTC = (*Consumer)["super"].front();
|
||
}
|
||
// Don't correct to a keyword that's the same as the typo; the keyword
|
||
// wasn't actually in scope.
|
||
if (BestTC.getEditDistance() == 0 ||
|
||
BestTC.getCorrection().getAsString() != "super")
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
|
||
|
||
BestTC.setCorrectionRange(SS, TypoName);
|
||
return BestTC;
|
||
}
|
||
|
||
// Record the failure's location if needed and return an empty correction. If
|
||
// this was an unqualified lookup and we believe the callback object did not
|
||
// filter out possible corrections, also cache the failure for the typo.
|
||
return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
|
||
}
|
||
|
||
/// Try to "correct" a typo in the source code by finding
|
||
/// visible declarations whose names are similar to the name that was
|
||
/// present in the source code.
|
||
///
|
||
/// \param TypoName the \c DeclarationNameInfo structure that contains
|
||
/// the name that was present in the source code along with its location.
|
||
///
|
||
/// \param LookupKind the name-lookup criteria used to search for the name.
|
||
///
|
||
/// \param S the scope in which name lookup occurs.
|
||
///
|
||
/// \param SS the nested-name-specifier that precedes the name we're
|
||
/// looking for, if present.
|
||
///
|
||
/// \param CCC A CorrectionCandidateCallback object that provides further
|
||
/// validation of typo correction candidates. It also provides flags for
|
||
/// determining the set of keywords permitted.
|
||
///
|
||
/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
|
||
/// diagnostics when the actual typo correction is attempted.
|
||
///
|
||
/// \param TRC A TypoRecoveryCallback functor that will be used to build an
|
||
/// Expr from a typo correction candidate.
|
||
///
|
||
/// \param MemberContext if non-NULL, the context in which to look for
|
||
/// a member access expression.
|
||
///
|
||
/// \param EnteringContext whether we're entering the context described by
|
||
/// the nested-name-specifier SS.
|
||
///
|
||
/// \param OPT when non-NULL, the search for visible declarations will
|
||
/// also walk the protocols in the qualified interfaces of \p OPT.
|
||
///
|
||
/// \returns a new \c TypoExpr that will later be replaced in the AST with an
|
||
/// Expr representing the result of performing typo correction, or nullptr if
|
||
/// typo correction is not possible. If nullptr is returned, no diagnostics will
|
||
/// be emitted and it is the responsibility of the caller to emit any that are
|
||
/// needed.
|
||
TypoExpr *Sema::CorrectTypoDelayed(
|
||
const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
|
||
Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC,
|
||
TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
|
||
DeclContext *MemberContext, bool EnteringContext,
|
||
const ObjCObjectPointerType *OPT) {
|
||
auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC,
|
||
MemberContext, EnteringContext,
|
||
OPT, Mode == CTK_ErrorRecovery);
|
||
|
||
// Give the external sema source a chance to correct the typo.
|
||
TypoCorrection ExternalTypo;
|
||
if (ExternalSource && Consumer) {
|
||
ExternalTypo = ExternalSource->CorrectTypo(
|
||
TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
|
||
MemberContext, EnteringContext, OPT);
|
||
if (ExternalTypo)
|
||
Consumer->addCorrection(ExternalTypo);
|
||
}
|
||
|
||
if (!Consumer || Consumer->empty())
|
||
return nullptr;
|
||
|
||
// Make sure the best edit distance (prior to adding any namespace qualifiers)
|
||
// is not more that about a third of the length of the typo's identifier.
|
||
unsigned ED = Consumer->getBestEditDistance(true);
|
||
IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
|
||
if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
|
||
return nullptr;
|
||
ExprEvalContexts.back().NumTypos++;
|
||
return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC),
|
||
TypoName.getLoc());
|
||
}
|
||
|
||
void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
|
||
if (!CDecl) return;
|
||
|
||
if (isKeyword())
|
||
CorrectionDecls.clear();
|
||
|
||
CorrectionDecls.push_back(CDecl);
|
||
|
||
if (!CorrectionName)
|
||
CorrectionName = CDecl->getDeclName();
|
||
}
|
||
|
||
std::string TypoCorrection::getAsString(const LangOptions &LO) const {
|
||
if (CorrectionNameSpec) {
|
||
std::string tmpBuffer;
|
||
llvm::raw_string_ostream PrefixOStream(tmpBuffer);
|
||
CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
|
||
PrefixOStream << CorrectionName;
|
||
return PrefixOStream.str();
|
||
}
|
||
|
||
return CorrectionName.getAsString();
|
||
}
|
||
|
||
bool CorrectionCandidateCallback::ValidateCandidate(
|
||
const TypoCorrection &candidate) {
|
||
if (!candidate.isResolved())
|
||
return true;
|
||
|
||
if (candidate.isKeyword())
|
||
return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
|
||
WantRemainingKeywords || WantObjCSuper;
|
||
|
||
bool HasNonType = false;
|
||
bool HasStaticMethod = false;
|
||
bool HasNonStaticMethod = false;
|
||
for (Decl *D : candidate) {
|
||
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
|
||
D = FTD->getTemplatedDecl();
|
||
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
||
if (Method->isStatic())
|
||
HasStaticMethod = true;
|
||
else
|
||
HasNonStaticMethod = true;
|
||
}
|
||
if (!isa<TypeDecl>(D))
|
||
HasNonType = true;
|
||
}
|
||
|
||
if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
|
||
!candidate.getCorrectionSpecifier())
|
||
return false;
|
||
|
||
return WantTypeSpecifiers || HasNonType;
|
||
}
|
||
|
||
FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
|
||
bool HasExplicitTemplateArgs,
|
||
MemberExpr *ME)
|
||
: NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
|
||
CurContext(SemaRef.CurContext), MemberFn(ME) {
|
||
WantTypeSpecifiers = false;
|
||
WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus &&
|
||
!HasExplicitTemplateArgs && NumArgs == 1;
|
||
WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1;
|
||
WantRemainingKeywords = false;
|
||
}
|
||
|
||
bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
|
||
if (!candidate.getCorrectionDecl())
|
||
return candidate.isKeyword();
|
||
|
||
for (auto *C : candidate) {
|
||
FunctionDecl *FD = nullptr;
|
||
NamedDecl *ND = C->getUnderlyingDecl();
|
||
if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
|
||
FD = FTD->getTemplatedDecl();
|
||
if (!HasExplicitTemplateArgs && !FD) {
|
||
if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
|
||
// If the Decl is neither a function nor a template function,
|
||
// determine if it is a pointer or reference to a function. If so,
|
||
// check against the number of arguments expected for the pointee.
|
||
QualType ValType = cast<ValueDecl>(ND)->getType();
|
||
if (ValType.isNull())
|
||
continue;
|
||
if (ValType->isAnyPointerType() || ValType->isReferenceType())
|
||
ValType = ValType->getPointeeType();
|
||
if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
|
||
if (FPT->getNumParams() == NumArgs)
|
||
return true;
|
||
}
|
||
}
|
||
|
||
// A typo for a function-style cast can look like a function call in C++.
|
||
if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr
|
||
: isa<TypeDecl>(ND)) &&
|
||
CurContext->getParentASTContext().getLangOpts().CPlusPlus)
|
||
// Only a class or class template can take two or more arguments.
|
||
return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND);
|
||
|
||
// Skip the current candidate if it is not a FunctionDecl or does not accept
|
||
// the current number of arguments.
|
||
if (!FD || !(FD->getNumParams() >= NumArgs &&
|
||
FD->getMinRequiredArguments() <= NumArgs))
|
||
continue;
|
||
|
||
// If the current candidate is a non-static C++ method, skip the candidate
|
||
// unless the method being corrected--or the current DeclContext, if the
|
||
// function being corrected is not a method--is a method in the same class
|
||
// or a descendent class of the candidate's parent class.
|
||
if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
|
||
if (MemberFn || !MD->isStatic()) {
|
||
CXXMethodDecl *CurMD =
|
||
MemberFn
|
||
? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
|
||
: dyn_cast_or_null<CXXMethodDecl>(CurContext);
|
||
CXXRecordDecl *CurRD =
|
||
CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
|
||
CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
|
||
if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
|
||
continue;
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
void Sema::diagnoseTypo(const TypoCorrection &Correction,
|
||
const PartialDiagnostic &TypoDiag,
|
||
bool ErrorRecovery) {
|
||
diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
|
||
ErrorRecovery);
|
||
}
|
||
|
||
/// Find which declaration we should import to provide the definition of
|
||
/// the given declaration.
|
||
static NamedDecl *getDefinitionToImport(NamedDecl *D) {
|
||
if (VarDecl *VD = dyn_cast<VarDecl>(D))
|
||
return VD->getDefinition();
|
||
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
|
||
return FD->getDefinition();
|
||
if (TagDecl *TD = dyn_cast<TagDecl>(D))
|
||
return TD->getDefinition();
|
||
if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
|
||
return ID->getDefinition();
|
||
if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
|
||
return PD->getDefinition();
|
||
if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
|
||
if (NamedDecl *TTD = TD->getTemplatedDecl())
|
||
return getDefinitionToImport(TTD);
|
||
return nullptr;
|
||
}
|
||
|
||
void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
|
||
MissingImportKind MIK, bool Recover) {
|
||
// Suggest importing a module providing the definition of this entity, if
|
||
// possible.
|
||
NamedDecl *Def = getDefinitionToImport(Decl);
|
||
if (!Def)
|
||
Def = Decl;
|
||
|
||
Module *Owner = getOwningModule(Def);
|
||
assert(Owner && "definition of hidden declaration is not in a module");
|
||
|
||
llvm::SmallVector<Module*, 8> OwningModules;
|
||
OwningModules.push_back(Owner);
|
||
auto Merged = Context.getModulesWithMergedDefinition(Def);
|
||
OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
|
||
|
||
diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK,
|
||
Recover);
|
||
}
|
||
|
||
/// Get a "quoted.h" or <angled.h> include path to use in a diagnostic
|
||
/// suggesting the addition of a #include of the specified file.
|
||
static std::string getHeaderNameForHeader(Preprocessor &PP, const FileEntry *E,
|
||
llvm::StringRef IncludingFile) {
|
||
bool IsSystem = false;
|
||
auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(
|
||
E, IncludingFile, &IsSystem);
|
||
return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
|
||
}
|
||
|
||
void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
|
||
SourceLocation DeclLoc,
|
||
ArrayRef<Module *> Modules,
|
||
MissingImportKind MIK, bool Recover) {
|
||
assert(!Modules.empty());
|
||
|
||
auto NotePrevious = [&] {
|
||
// FIXME: Suppress the note backtrace even under
|
||
// -fdiagnostics-show-note-include-stack. We don't care how this
|
||
// declaration was previously reached.
|
||
Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK;
|
||
};
|
||
|
||
// Weed out duplicates from module list.
|
||
llvm::SmallVector<Module*, 8> UniqueModules;
|
||
llvm::SmallDenseSet<Module*, 8> UniqueModuleSet;
|
||
for (auto *M : Modules) {
|
||
if (M->Kind == Module::GlobalModuleFragment)
|
||
continue;
|
||
if (UniqueModuleSet.insert(M).second)
|
||
UniqueModules.push_back(M);
|
||
}
|
||
|
||
// Try to find a suitable header-name to #include.
|
||
std::string HeaderName;
|
||
if (const FileEntry *Header =
|
||
PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
|
||
if (const FileEntry *FE =
|
||
SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc)))
|
||
HeaderName = getHeaderNameForHeader(PP, Header, FE->tryGetRealPathName());
|
||
}
|
||
|
||
// If we have a #include we should suggest, or if all definition locations
|
||
// were in global module fragments, don't suggest an import.
|
||
if (!HeaderName.empty() || UniqueModules.empty()) {
|
||
// FIXME: Find a smart place to suggest inserting a #include, and add
|
||
// a FixItHint there.
|
||
Diag(UseLoc, diag::err_module_unimported_use_header)
|
||
<< (int)MIK << Decl << !HeaderName.empty() << HeaderName;
|
||
// Produce a note showing where the entity was declared.
|
||
NotePrevious();
|
||
if (Recover)
|
||
createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
|
||
return;
|
||
}
|
||
|
||
Modules = UniqueModules;
|
||
|
||
if (Modules.size() > 1) {
|
||
std::string ModuleList;
|
||
unsigned N = 0;
|
||
for (Module *M : Modules) {
|
||
ModuleList += "\n ";
|
||
if (++N == 5 && N != Modules.size()) {
|
||
ModuleList += "[...]";
|
||
break;
|
||
}
|
||
ModuleList += M->getFullModuleName();
|
||
}
|
||
|
||
Diag(UseLoc, diag::err_module_unimported_use_multiple)
|
||
<< (int)MIK << Decl << ModuleList;
|
||
} else {
|
||
// FIXME: Add a FixItHint that imports the corresponding module.
|
||
Diag(UseLoc, diag::err_module_unimported_use)
|
||
<< (int)MIK << Decl << Modules[0]->getFullModuleName();
|
||
}
|
||
|
||
NotePrevious();
|
||
|
||
// Try to recover by implicitly importing this module.
|
||
if (Recover)
|
||
createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
|
||
}
|
||
|
||
/// Diagnose a successfully-corrected typo. Separated from the correction
|
||
/// itself to allow external validation of the result, etc.
|
||
///
|
||
/// \param Correction The result of performing typo correction.
|
||
/// \param TypoDiag The diagnostic to produce. This will have the corrected
|
||
/// string added to it (and usually also a fixit).
|
||
/// \param PrevNote A note to use when indicating the location of the entity to
|
||
/// which we are correcting. Will have the correction string added to it.
|
||
/// \param ErrorRecovery If \c true (the default), the caller is going to
|
||
/// recover from the typo as if the corrected string had been typed.
|
||
/// In this case, \c PDiag must be an error, and we will attach a fixit
|
||
/// to it.
|
||
void Sema::diagnoseTypo(const TypoCorrection &Correction,
|
||
const PartialDiagnostic &TypoDiag,
|
||
const PartialDiagnostic &PrevNote,
|
||
bool ErrorRecovery) {
|
||
std::string CorrectedStr = Correction.getAsString(getLangOpts());
|
||
std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
|
||
FixItHint FixTypo = FixItHint::CreateReplacement(
|
||
Correction.getCorrectionRange(), CorrectedStr);
|
||
|
||
// Maybe we're just missing a module import.
|
||
if (Correction.requiresImport()) {
|
||
NamedDecl *Decl = Correction.getFoundDecl();
|
||
assert(Decl && "import required but no declaration to import");
|
||
|
||
diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
|
||
MissingImportKind::Declaration, ErrorRecovery);
|
||
return;
|
||
}
|
||
|
||
Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
|
||
<< CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
|
||
|
||
NamedDecl *ChosenDecl =
|
||
Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
|
||
if (PrevNote.getDiagID() && ChosenDecl)
|
||
Diag(ChosenDecl->getLocation(), PrevNote)
|
||
<< CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
|
||
|
||
// Add any extra diagnostics.
|
||
for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
|
||
Diag(Correction.getCorrectionRange().getBegin(), PD);
|
||
}
|
||
|
||
TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
|
||
TypoDiagnosticGenerator TDG,
|
||
TypoRecoveryCallback TRC,
|
||
SourceLocation TypoLoc) {
|
||
assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer");
|
||
auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc);
|
||
auto &State = DelayedTypos[TE];
|
||
State.Consumer = std::move(TCC);
|
||
State.DiagHandler = std::move(TDG);
|
||
State.RecoveryHandler = std::move(TRC);
|
||
if (TE)
|
||
TypoExprs.push_back(TE);
|
||
return TE;
|
||
}
|
||
|
||
const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
|
||
auto Entry = DelayedTypos.find(TE);
|
||
assert(Entry != DelayedTypos.end() &&
|
||
"Failed to get the state for a TypoExpr!");
|
||
return Entry->second;
|
||
}
|
||
|
||
void Sema::clearDelayedTypo(TypoExpr *TE) {
|
||
DelayedTypos.erase(TE);
|
||
}
|
||
|
||
void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
|
||
DeclarationNameInfo Name(II, IILoc);
|
||
LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
|
||
R.suppressDiagnostics();
|
||
R.setHideTags(false);
|
||
LookupName(R, S);
|
||
R.dump();
|
||
}
|