forked from OSchip/llvm-project
1166 lines
41 KiB
C++
1166 lines
41 KiB
C++
//===- SIFixSGPRCopies.cpp - Remove potential VGPR => SGPR copies ---------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// Copies from VGPR to SGPR registers are illegal and the register coalescer
|
|
/// will sometimes generate these illegal copies in situations like this:
|
|
///
|
|
/// Register Class <vsrc> is the union of <vgpr> and <sgpr>
|
|
///
|
|
/// BB0:
|
|
/// %0 <sgpr> = SCALAR_INST
|
|
/// %1 <vsrc> = COPY %0 <sgpr>
|
|
/// ...
|
|
/// BRANCH %cond BB1, BB2
|
|
/// BB1:
|
|
/// %2 <vgpr> = VECTOR_INST
|
|
/// %3 <vsrc> = COPY %2 <vgpr>
|
|
/// BB2:
|
|
/// %4 <vsrc> = PHI %1 <vsrc>, <%bb.0>, %3 <vrsc>, <%bb.1>
|
|
/// %5 <vgpr> = VECTOR_INST %4 <vsrc>
|
|
///
|
|
///
|
|
/// The coalescer will begin at BB0 and eliminate its copy, then the resulting
|
|
/// code will look like this:
|
|
///
|
|
/// BB0:
|
|
/// %0 <sgpr> = SCALAR_INST
|
|
/// ...
|
|
/// BRANCH %cond BB1, BB2
|
|
/// BB1:
|
|
/// %2 <vgpr> = VECTOR_INST
|
|
/// %3 <vsrc> = COPY %2 <vgpr>
|
|
/// BB2:
|
|
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <vsrc>, <%bb.1>
|
|
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
|
|
///
|
|
/// Now that the result of the PHI instruction is an SGPR, the register
|
|
/// allocator is now forced to constrain the register class of %3 to
|
|
/// <sgpr> so we end up with final code like this:
|
|
///
|
|
/// BB0:
|
|
/// %0 <sgpr> = SCALAR_INST
|
|
/// ...
|
|
/// BRANCH %cond BB1, BB2
|
|
/// BB1:
|
|
/// %2 <vgpr> = VECTOR_INST
|
|
/// %3 <sgpr> = COPY %2 <vgpr>
|
|
/// BB2:
|
|
/// %4 <sgpr> = PHI %0 <sgpr>, <%bb.0>, %3 <sgpr>, <%bb.1>
|
|
/// %5 <vgpr> = VECTOR_INST %4 <sgpr>
|
|
///
|
|
/// Now this code contains an illegal copy from a VGPR to an SGPR.
|
|
///
|
|
/// In order to avoid this problem, this pass searches for PHI instructions
|
|
/// which define a <vsrc> register and constrains its definition class to
|
|
/// <vgpr> if the user of the PHI's definition register is a vector instruction.
|
|
/// If the PHI's definition class is constrained to <vgpr> then the coalescer
|
|
/// will be unable to perform the COPY removal from the above example which
|
|
/// ultimately led to the creation of an illegal COPY.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "llvm/ADT/SetOperations.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "si-fix-sgpr-copies"
|
|
|
|
static cl::opt<bool> EnableM0Merge(
|
|
"amdgpu-enable-merge-m0",
|
|
cl::desc("Merge and hoist M0 initializations"),
|
|
cl::init(true));
|
|
|
|
namespace {
|
|
class SIFixSGPRCopies : public MachineFunctionPass {
|
|
MachineDominatorTree *MDT;
|
|
unsigned NextVGPRToSGPRCopyID;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
MachineRegisterInfo *MRI;
|
|
const SIRegisterInfo *TRI;
|
|
const SIInstrInfo *TII;
|
|
|
|
SIFixSGPRCopies() : MachineFunctionPass(ID), NextVGPRToSGPRCopyID(0) {}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
unsigned getNextVGPRToSGPRCopyId() { return ++NextVGPRToSGPRCopyID; }
|
|
void lowerVGPR2SGPRCopies(MachineFunction &MF);
|
|
// Handles copies which source register is:
|
|
// 1. Physical register
|
|
// 2. AGPR
|
|
// 3. Defined by the instruction the merely moves the immediate
|
|
bool lowerSpecialCase(MachineInstr &MI);
|
|
|
|
MachineBasicBlock *processPHINode(MachineInstr &MI);
|
|
|
|
StringRef getPassName() const override { return "SI Fix SGPR copies"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
INITIALIZE_PASS_BEGIN(SIFixSGPRCopies, DEBUG_TYPE,
|
|
"SI Fix SGPR copies", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_END(SIFixSGPRCopies, DEBUG_TYPE,
|
|
"SI Fix SGPR copies", false, false)
|
|
|
|
char SIFixSGPRCopies::ID = 0;
|
|
|
|
char &llvm::SIFixSGPRCopiesID = SIFixSGPRCopies::ID;
|
|
|
|
FunctionPass *llvm::createSIFixSGPRCopiesPass() {
|
|
return new SIFixSGPRCopies();
|
|
}
|
|
|
|
static bool hasVectorOperands(const MachineInstr &MI,
|
|
const SIRegisterInfo *TRI) {
|
|
const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || !MO.getReg().isVirtual())
|
|
continue;
|
|
|
|
if (TRI->hasVectorRegisters(MRI.getRegClass(MO.getReg())))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static std::pair<const TargetRegisterClass *, const TargetRegisterClass *>
|
|
getCopyRegClasses(const MachineInstr &Copy,
|
|
const SIRegisterInfo &TRI,
|
|
const MachineRegisterInfo &MRI) {
|
|
Register DstReg = Copy.getOperand(0).getReg();
|
|
Register SrcReg = Copy.getOperand(1).getReg();
|
|
|
|
const TargetRegisterClass *SrcRC = SrcReg.isVirtual()
|
|
? MRI.getRegClass(SrcReg)
|
|
: TRI.getPhysRegClass(SrcReg);
|
|
|
|
// We don't really care about the subregister here.
|
|
// SrcRC = TRI.getSubRegClass(SrcRC, Copy.getOperand(1).getSubReg());
|
|
|
|
const TargetRegisterClass *DstRC = DstReg.isVirtual()
|
|
? MRI.getRegClass(DstReg)
|
|
: TRI.getPhysRegClass(DstReg);
|
|
|
|
return std::make_pair(SrcRC, DstRC);
|
|
}
|
|
|
|
static bool isVGPRToSGPRCopy(const TargetRegisterClass *SrcRC,
|
|
const TargetRegisterClass *DstRC,
|
|
const SIRegisterInfo &TRI) {
|
|
return SrcRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(DstRC) &&
|
|
TRI.hasVectorRegisters(SrcRC);
|
|
}
|
|
|
|
static bool isSGPRToVGPRCopy(const TargetRegisterClass *SrcRC,
|
|
const TargetRegisterClass *DstRC,
|
|
const SIRegisterInfo &TRI) {
|
|
return DstRC != &AMDGPU::VReg_1RegClass && TRI.isSGPRClass(SrcRC) &&
|
|
TRI.hasVectorRegisters(DstRC);
|
|
}
|
|
|
|
static bool tryChangeVGPRtoSGPRinCopy(MachineInstr &MI,
|
|
const SIRegisterInfo *TRI,
|
|
const SIInstrInfo *TII) {
|
|
MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
|
|
auto &Src = MI.getOperand(1);
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = Src.getReg();
|
|
if (!SrcReg.isVirtual() || !DstReg.isVirtual())
|
|
return false;
|
|
|
|
for (const auto &MO : MRI.reg_nodbg_operands(DstReg)) {
|
|
const auto *UseMI = MO.getParent();
|
|
if (UseMI == &MI)
|
|
continue;
|
|
if (MO.isDef() || UseMI->getParent() != MI.getParent() ||
|
|
UseMI->getOpcode() <= TargetOpcode::GENERIC_OP_END)
|
|
return false;
|
|
|
|
unsigned OpIdx = UseMI->getOperandNo(&MO);
|
|
if (OpIdx >= UseMI->getDesc().getNumOperands() ||
|
|
!TII->isOperandLegal(*UseMI, OpIdx, &Src))
|
|
return false;
|
|
}
|
|
// Change VGPR to SGPR destination.
|
|
MRI.setRegClass(DstReg, TRI->getEquivalentSGPRClass(MRI.getRegClass(DstReg)));
|
|
return true;
|
|
}
|
|
|
|
// Distribute an SGPR->VGPR copy of a REG_SEQUENCE into a VGPR REG_SEQUENCE.
|
|
//
|
|
// SGPRx = ...
|
|
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
|
|
// VGPRz = COPY SGPRy
|
|
//
|
|
// ==>
|
|
//
|
|
// VGPRx = COPY SGPRx
|
|
// VGPRz = REG_SEQUENCE VGPRx, sub0
|
|
//
|
|
// This exposes immediate folding opportunities when materializing 64-bit
|
|
// immediates.
|
|
static bool foldVGPRCopyIntoRegSequence(MachineInstr &MI,
|
|
const SIRegisterInfo *TRI,
|
|
const SIInstrInfo *TII,
|
|
MachineRegisterInfo &MRI) {
|
|
assert(MI.isRegSequence());
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
if (!TRI->isSGPRClass(MRI.getRegClass(DstReg)))
|
|
return false;
|
|
|
|
if (!MRI.hasOneUse(DstReg))
|
|
return false;
|
|
|
|
MachineInstr &CopyUse = *MRI.use_instr_begin(DstReg);
|
|
if (!CopyUse.isCopy())
|
|
return false;
|
|
|
|
// It is illegal to have vreg inputs to a physreg defining reg_sequence.
|
|
if (CopyUse.getOperand(0).getReg().isPhysical())
|
|
return false;
|
|
|
|
const TargetRegisterClass *SrcRC, *DstRC;
|
|
std::tie(SrcRC, DstRC) = getCopyRegClasses(CopyUse, *TRI, MRI);
|
|
|
|
if (!isSGPRToVGPRCopy(SrcRC, DstRC, *TRI))
|
|
return false;
|
|
|
|
if (tryChangeVGPRtoSGPRinCopy(CopyUse, TRI, TII))
|
|
return true;
|
|
|
|
// TODO: Could have multiple extracts?
|
|
unsigned SubReg = CopyUse.getOperand(1).getSubReg();
|
|
if (SubReg != AMDGPU::NoSubRegister)
|
|
return false;
|
|
|
|
MRI.setRegClass(DstReg, DstRC);
|
|
|
|
// SGPRx = ...
|
|
// SGPRy = REG_SEQUENCE SGPRx, sub0 ...
|
|
// VGPRz = COPY SGPRy
|
|
|
|
// =>
|
|
// VGPRx = COPY SGPRx
|
|
// VGPRz = REG_SEQUENCE VGPRx, sub0
|
|
|
|
MI.getOperand(0).setReg(CopyUse.getOperand(0).getReg());
|
|
bool IsAGPR = TRI->isAGPRClass(DstRC);
|
|
|
|
for (unsigned I = 1, N = MI.getNumOperands(); I != N; I += 2) {
|
|
Register SrcReg = MI.getOperand(I).getReg();
|
|
unsigned SrcSubReg = MI.getOperand(I).getSubReg();
|
|
|
|
const TargetRegisterClass *SrcRC = MRI.getRegClass(SrcReg);
|
|
assert(TRI->isSGPRClass(SrcRC) &&
|
|
"Expected SGPR REG_SEQUENCE to only have SGPR inputs");
|
|
|
|
SrcRC = TRI->getSubRegClass(SrcRC, SrcSubReg);
|
|
const TargetRegisterClass *NewSrcRC = TRI->getEquivalentVGPRClass(SrcRC);
|
|
|
|
Register TmpReg = MRI.createVirtualRegister(NewSrcRC);
|
|
|
|
BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(AMDGPU::COPY),
|
|
TmpReg)
|
|
.add(MI.getOperand(I));
|
|
|
|
if (IsAGPR) {
|
|
const TargetRegisterClass *NewSrcRC = TRI->getEquivalentAGPRClass(SrcRC);
|
|
Register TmpAReg = MRI.createVirtualRegister(NewSrcRC);
|
|
unsigned Opc = NewSrcRC == &AMDGPU::AGPR_32RegClass ?
|
|
AMDGPU::V_ACCVGPR_WRITE_B32_e64 : AMDGPU::COPY;
|
|
BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(), TII->get(Opc),
|
|
TmpAReg)
|
|
.addReg(TmpReg, RegState::Kill);
|
|
TmpReg = TmpAReg;
|
|
}
|
|
|
|
MI.getOperand(I).setReg(TmpReg);
|
|
}
|
|
|
|
CopyUse.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
static bool isSafeToFoldImmIntoCopy(const MachineInstr *Copy,
|
|
const MachineInstr *MoveImm,
|
|
const SIInstrInfo *TII,
|
|
unsigned &SMovOp,
|
|
int64_t &Imm) {
|
|
if (Copy->getOpcode() != AMDGPU::COPY)
|
|
return false;
|
|
|
|
if (!MoveImm->isMoveImmediate())
|
|
return false;
|
|
|
|
const MachineOperand *ImmOp =
|
|
TII->getNamedOperand(*MoveImm, AMDGPU::OpName::src0);
|
|
if (!ImmOp->isImm())
|
|
return false;
|
|
|
|
// FIXME: Handle copies with sub-regs.
|
|
if (Copy->getOperand(0).getSubReg())
|
|
return false;
|
|
|
|
switch (MoveImm->getOpcode()) {
|
|
default:
|
|
return false;
|
|
case AMDGPU::V_MOV_B32_e32:
|
|
SMovOp = AMDGPU::S_MOV_B32;
|
|
break;
|
|
case AMDGPU::V_MOV_B64_PSEUDO:
|
|
SMovOp = AMDGPU::S_MOV_B64;
|
|
break;
|
|
}
|
|
Imm = ImmOp->getImm();
|
|
return true;
|
|
}
|
|
|
|
template <class UnaryPredicate>
|
|
bool searchPredecessors(const MachineBasicBlock *MBB,
|
|
const MachineBasicBlock *CutOff,
|
|
UnaryPredicate Predicate) {
|
|
if (MBB == CutOff)
|
|
return false;
|
|
|
|
DenseSet<const MachineBasicBlock *> Visited;
|
|
SmallVector<MachineBasicBlock *, 4> Worklist(MBB->predecessors());
|
|
|
|
while (!Worklist.empty()) {
|
|
MachineBasicBlock *MBB = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(MBB).second)
|
|
continue;
|
|
if (MBB == CutOff)
|
|
continue;
|
|
if (Predicate(MBB))
|
|
return true;
|
|
|
|
Worklist.append(MBB->pred_begin(), MBB->pred_end());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Checks if there is potential path From instruction To instruction.
|
|
// If CutOff is specified and it sits in between of that path we ignore
|
|
// a higher portion of the path and report it is not reachable.
|
|
static bool isReachable(const MachineInstr *From,
|
|
const MachineInstr *To,
|
|
const MachineBasicBlock *CutOff,
|
|
MachineDominatorTree &MDT) {
|
|
if (MDT.dominates(From, To))
|
|
return true;
|
|
|
|
const MachineBasicBlock *MBBFrom = From->getParent();
|
|
const MachineBasicBlock *MBBTo = To->getParent();
|
|
|
|
// Do predecessor search.
|
|
// We should almost never get here since we do not usually produce M0 stores
|
|
// other than -1.
|
|
return searchPredecessors(MBBTo, CutOff, [MBBFrom]
|
|
(const MachineBasicBlock *MBB) { return MBB == MBBFrom; });
|
|
}
|
|
|
|
// Return the first non-prologue instruction in the block.
|
|
static MachineBasicBlock::iterator
|
|
getFirstNonPrologue(MachineBasicBlock *MBB, const TargetInstrInfo *TII) {
|
|
MachineBasicBlock::iterator I = MBB->getFirstNonPHI();
|
|
while (I != MBB->end() && TII->isBasicBlockPrologue(*I))
|
|
++I;
|
|
|
|
return I;
|
|
}
|
|
|
|
// Hoist and merge identical SGPR initializations into a common predecessor.
|
|
// This is intended to combine M0 initializations, but can work with any
|
|
// SGPR. A VGPR cannot be processed since we cannot guarantee vector
|
|
// executioon.
|
|
static bool hoistAndMergeSGPRInits(unsigned Reg,
|
|
const MachineRegisterInfo &MRI,
|
|
const TargetRegisterInfo *TRI,
|
|
MachineDominatorTree &MDT,
|
|
const TargetInstrInfo *TII) {
|
|
// List of inits by immediate value.
|
|
using InitListMap = std::map<unsigned, std::list<MachineInstr *>>;
|
|
InitListMap Inits;
|
|
// List of clobbering instructions.
|
|
SmallVector<MachineInstr*, 8> Clobbers;
|
|
// List of instructions marked for deletion.
|
|
SmallSet<MachineInstr*, 8> MergedInstrs;
|
|
|
|
bool Changed = false;
|
|
|
|
for (auto &MI : MRI.def_instructions(Reg)) {
|
|
MachineOperand *Imm = nullptr;
|
|
for (auto &MO : MI.operands()) {
|
|
if ((MO.isReg() && ((MO.isDef() && MO.getReg() != Reg) || !MO.isDef())) ||
|
|
(!MO.isImm() && !MO.isReg()) || (MO.isImm() && Imm)) {
|
|
Imm = nullptr;
|
|
break;
|
|
} else if (MO.isImm())
|
|
Imm = &MO;
|
|
}
|
|
if (Imm)
|
|
Inits[Imm->getImm()].push_front(&MI);
|
|
else
|
|
Clobbers.push_back(&MI);
|
|
}
|
|
|
|
for (auto &Init : Inits) {
|
|
auto &Defs = Init.second;
|
|
|
|
for (auto I1 = Defs.begin(), E = Defs.end(); I1 != E; ) {
|
|
MachineInstr *MI1 = *I1;
|
|
|
|
for (auto I2 = std::next(I1); I2 != E; ) {
|
|
MachineInstr *MI2 = *I2;
|
|
|
|
// Check any possible interference
|
|
auto interferes = [&](MachineBasicBlock::iterator From,
|
|
MachineBasicBlock::iterator To) -> bool {
|
|
|
|
assert(MDT.dominates(&*To, &*From));
|
|
|
|
auto interferes = [&MDT, From, To](MachineInstr* &Clobber) -> bool {
|
|
const MachineBasicBlock *MBBFrom = From->getParent();
|
|
const MachineBasicBlock *MBBTo = To->getParent();
|
|
bool MayClobberFrom = isReachable(Clobber, &*From, MBBTo, MDT);
|
|
bool MayClobberTo = isReachable(Clobber, &*To, MBBTo, MDT);
|
|
if (!MayClobberFrom && !MayClobberTo)
|
|
return false;
|
|
if ((MayClobberFrom && !MayClobberTo) ||
|
|
(!MayClobberFrom && MayClobberTo))
|
|
return true;
|
|
// Both can clobber, this is not an interference only if both are
|
|
// dominated by Clobber and belong to the same block or if Clobber
|
|
// properly dominates To, given that To >> From, so it dominates
|
|
// both and located in a common dominator.
|
|
return !((MBBFrom == MBBTo &&
|
|
MDT.dominates(Clobber, &*From) &&
|
|
MDT.dominates(Clobber, &*To)) ||
|
|
MDT.properlyDominates(Clobber->getParent(), MBBTo));
|
|
};
|
|
|
|
return (llvm::any_of(Clobbers, interferes)) ||
|
|
(llvm::any_of(Inits, [&](InitListMap::value_type &C) {
|
|
return C.first != Init.first &&
|
|
llvm::any_of(C.second, interferes);
|
|
}));
|
|
};
|
|
|
|
if (MDT.dominates(MI1, MI2)) {
|
|
if (!interferes(MI2, MI1)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Erasing from "
|
|
<< printMBBReference(*MI2->getParent()) << " " << *MI2);
|
|
MergedInstrs.insert(MI2);
|
|
Changed = true;
|
|
++I2;
|
|
continue;
|
|
}
|
|
} else if (MDT.dominates(MI2, MI1)) {
|
|
if (!interferes(MI1, MI2)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Erasing from "
|
|
<< printMBBReference(*MI1->getParent()) << " " << *MI1);
|
|
MergedInstrs.insert(MI1);
|
|
Changed = true;
|
|
++I1;
|
|
break;
|
|
}
|
|
} else {
|
|
auto *MBB = MDT.findNearestCommonDominator(MI1->getParent(),
|
|
MI2->getParent());
|
|
if (!MBB) {
|
|
++I2;
|
|
continue;
|
|
}
|
|
|
|
MachineBasicBlock::iterator I = getFirstNonPrologue(MBB, TII);
|
|
if (!interferes(MI1, I) && !interferes(MI2, I)) {
|
|
LLVM_DEBUG(dbgs()
|
|
<< "Erasing from "
|
|
<< printMBBReference(*MI1->getParent()) << " " << *MI1
|
|
<< "and moving from "
|
|
<< printMBBReference(*MI2->getParent()) << " to "
|
|
<< printMBBReference(*I->getParent()) << " " << *MI2);
|
|
I->getParent()->splice(I, MI2->getParent(), MI2);
|
|
MergedInstrs.insert(MI1);
|
|
Changed = true;
|
|
++I1;
|
|
break;
|
|
}
|
|
}
|
|
++I2;
|
|
}
|
|
++I1;
|
|
}
|
|
}
|
|
|
|
// Remove initializations that were merged into another.
|
|
for (auto &Init : Inits) {
|
|
auto &Defs = Init.second;
|
|
auto I = Defs.begin();
|
|
while (I != Defs.end()) {
|
|
if (MergedInstrs.count(*I)) {
|
|
(*I)->eraseFromParent();
|
|
I = Defs.erase(I);
|
|
} else
|
|
++I;
|
|
}
|
|
}
|
|
|
|
// Try to schedule SGPR initializations as early as possible in the MBB.
|
|
for (auto &Init : Inits) {
|
|
auto &Defs = Init.second;
|
|
for (auto MI : Defs) {
|
|
auto MBB = MI->getParent();
|
|
MachineInstr &BoundaryMI = *getFirstNonPrologue(MBB, TII);
|
|
MachineBasicBlock::reverse_iterator B(BoundaryMI);
|
|
// Check if B should actually be a boundary. If not set the previous
|
|
// instruction as the boundary instead.
|
|
if (!TII->isBasicBlockPrologue(*B))
|
|
B++;
|
|
|
|
auto R = std::next(MI->getReverseIterator());
|
|
const unsigned Threshold = 50;
|
|
// Search until B or Threshold for a place to insert the initialization.
|
|
for (unsigned I = 0; R != B && I < Threshold; ++R, ++I)
|
|
if (R->readsRegister(Reg, TRI) || R->definesRegister(Reg, TRI) ||
|
|
TII->isSchedulingBoundary(*R, MBB, *MBB->getParent()))
|
|
break;
|
|
|
|
// Move to directly after R.
|
|
if (&*--R != MI)
|
|
MBB->splice(*R, MBB, MI);
|
|
}
|
|
}
|
|
|
|
if (Changed)
|
|
MRI.clearKillFlags(Reg);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool SIFixSGPRCopies::runOnMachineFunction(MachineFunction &MF) {
|
|
// Only need to run this in SelectionDAG path.
|
|
if (MF.getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::Selected))
|
|
return false;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
MRI = &MF.getRegInfo();
|
|
TRI = ST.getRegisterInfo();
|
|
TII = ST.getInstrInfo();
|
|
MDT = &getAnalysis<MachineDominatorTree>();
|
|
|
|
// We have to lower VGPR to SGPR copies before the main loop
|
|
// because the REG_SEQUENCE and PHI lowering in main loop
|
|
// convert the def-use chains to VALU and close the opportunities
|
|
// for keeping them scalar.
|
|
// TODO: REG_SEQENCE and PHIs are semantically copies. The next patch
|
|
// addresses their lowering and unify the processing in one main loop.
|
|
lowerVGPR2SGPRCopies(MF);
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
|
|
BI != BE; ++BI) {
|
|
MachineBasicBlock *MBB = &*BI;
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
|
|
++I) {
|
|
MachineInstr &MI = *I;
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
continue;
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::WQM:
|
|
case AMDGPU::STRICT_WQM:
|
|
case AMDGPU::SOFT_WQM:
|
|
case AMDGPU::STRICT_WWM: {
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
const TargetRegisterClass *SrcRC, *DstRC;
|
|
std::tie(SrcRC, DstRC) = getCopyRegClasses(MI, *TRI, *MRI);
|
|
|
|
if (MI.isCopy()) {
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (SrcReg == AMDGPU::SCC) {
|
|
Register SCCCopy = MRI->createVirtualRegister(
|
|
TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID));
|
|
I = BuildMI(*MI.getParent(),
|
|
std::next(MachineBasicBlock::iterator(MI)),
|
|
MI.getDebugLoc(),
|
|
TII->get(ST.isWave32() ? AMDGPU::S_CSELECT_B32
|
|
: AMDGPU::S_CSELECT_B64),
|
|
SCCCopy)
|
|
.addImm(-1)
|
|
.addImm(0);
|
|
I = BuildMI(*MI.getParent(), std::next(I), I->getDebugLoc(),
|
|
TII->get(AMDGPU::COPY), DstReg)
|
|
.addReg(SCCCopy);
|
|
MI.eraseFromParent();
|
|
continue;
|
|
} else if (DstReg == AMDGPU::SCC) {
|
|
unsigned Opcode =
|
|
ST.isWave64() ? AMDGPU::S_AND_B64 : AMDGPU::S_AND_B32;
|
|
Register Exec = ST.isWave64() ? AMDGPU::EXEC : AMDGPU::EXEC_LO;
|
|
Register Tmp = MRI->createVirtualRegister(TRI->getBoolRC());
|
|
I = BuildMI(*MI.getParent(),
|
|
std::next(MachineBasicBlock::iterator(MI)),
|
|
MI.getDebugLoc(), TII->get(Opcode))
|
|
.addReg(Tmp, getDefRegState(true))
|
|
.addReg(SrcReg)
|
|
.addReg(Exec);
|
|
MI.eraseFromParent();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!DstReg.isVirtual()) {
|
|
// If the destination register is a physical register there isn't
|
|
// really much we can do to fix this.
|
|
// Some special instructions use M0 as an input. Some even only use
|
|
// the first lane. Insert a readfirstlane and hope for the best.
|
|
if (DstReg == AMDGPU::M0 && TRI->hasVectorRegisters(SrcRC)) {
|
|
Register TmpReg
|
|
= MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
|
|
|
|
BuildMI(*MBB, MI, MI.getDebugLoc(),
|
|
TII->get(AMDGPU::V_READFIRSTLANE_B32), TmpReg)
|
|
.add(MI.getOperand(1));
|
|
MI.getOperand(1).setReg(TmpReg);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (isSGPRToVGPRCopy(SrcRC, DstRC, *TRI)) {
|
|
tryChangeVGPRtoSGPRinCopy(MI, TRI, TII);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case AMDGPU::PHI: {
|
|
MachineBasicBlock *NewBB = processPHINode(MI);
|
|
if (NewBB && NewBB != MBB) {
|
|
MBB = NewBB;
|
|
E = MBB->end();
|
|
BI = MachineFunction::iterator(MBB);
|
|
BE = MF.end();
|
|
}
|
|
assert((!NewBB || NewBB == I->getParent()) &&
|
|
"moveToVALU did not return the right basic block");
|
|
break;
|
|
}
|
|
case AMDGPU::REG_SEQUENCE: {
|
|
if (TRI->hasVectorRegisters(TII->getOpRegClass(MI, 0)) ||
|
|
!hasVectorOperands(MI, TRI)) {
|
|
foldVGPRCopyIntoRegSequence(MI, TRI, TII, *MRI);
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Fixing REG_SEQUENCE: " << MI);
|
|
|
|
MachineBasicBlock *NewBB = TII->moveToVALU(MI, MDT);
|
|
if (NewBB && NewBB != MBB) {
|
|
MBB = NewBB;
|
|
E = MBB->end();
|
|
BI = MachineFunction::iterator(MBB);
|
|
BE = MF.end();
|
|
}
|
|
assert((!NewBB || NewBB == I->getParent()) &&
|
|
"moveToVALU did not return the right basic block");
|
|
break;
|
|
}
|
|
case AMDGPU::INSERT_SUBREG: {
|
|
const TargetRegisterClass *DstRC, *Src0RC, *Src1RC;
|
|
DstRC = MRI->getRegClass(MI.getOperand(0).getReg());
|
|
Src0RC = MRI->getRegClass(MI.getOperand(1).getReg());
|
|
Src1RC = MRI->getRegClass(MI.getOperand(2).getReg());
|
|
if (TRI->isSGPRClass(DstRC) &&
|
|
(TRI->hasVectorRegisters(Src0RC) ||
|
|
TRI->hasVectorRegisters(Src1RC))) {
|
|
LLVM_DEBUG(dbgs() << " Fixing INSERT_SUBREG: " << MI);
|
|
MachineBasicBlock *NewBB = TII->moveToVALU(MI, MDT);
|
|
if (NewBB && NewBB != MBB) {
|
|
MBB = NewBB;
|
|
E = MBB->end();
|
|
BI = MachineFunction::iterator(MBB);
|
|
BE = MF.end();
|
|
}
|
|
assert((!NewBB || NewBB == I->getParent()) &&
|
|
"moveToVALU did not return the right basic block");
|
|
}
|
|
break;
|
|
}
|
|
case AMDGPU::V_WRITELANE_B32: {
|
|
// Some architectures allow more than one constant bus access without
|
|
// SGPR restriction
|
|
if (ST.getConstantBusLimit(MI.getOpcode()) != 1)
|
|
break;
|
|
|
|
// Writelane is special in that it can use SGPR and M0 (which would
|
|
// normally count as using the constant bus twice - but in this case it
|
|
// is allowed since the lane selector doesn't count as a use of the
|
|
// constant bus). However, it is still required to abide by the 1 SGPR
|
|
// rule. Apply a fix here as we might have multiple SGPRs after
|
|
// legalizing VGPRs to SGPRs
|
|
int Src0Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
|
|
int Src1Idx =
|
|
AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src1);
|
|
MachineOperand &Src0 = MI.getOperand(Src0Idx);
|
|
MachineOperand &Src1 = MI.getOperand(Src1Idx);
|
|
|
|
// Check to see if the instruction violates the 1 SGPR rule
|
|
if ((Src0.isReg() && TRI->isSGPRReg(*MRI, Src0.getReg()) &&
|
|
Src0.getReg() != AMDGPU::M0) &&
|
|
(Src1.isReg() && TRI->isSGPRReg(*MRI, Src1.getReg()) &&
|
|
Src1.getReg() != AMDGPU::M0)) {
|
|
|
|
// Check for trivially easy constant prop into one of the operands
|
|
// If this is the case then perform the operation now to resolve SGPR
|
|
// issue. If we don't do that here we will always insert a mov to m0
|
|
// that can't be resolved in later operand folding pass
|
|
bool Resolved = false;
|
|
for (MachineOperand *MO : {&Src0, &Src1}) {
|
|
if (MO->getReg().isVirtual()) {
|
|
MachineInstr *DefMI = MRI->getVRegDef(MO->getReg());
|
|
if (DefMI && TII->isFoldableCopy(*DefMI)) {
|
|
const MachineOperand &Def = DefMI->getOperand(0);
|
|
if (Def.isReg() &&
|
|
MO->getReg() == Def.getReg() &&
|
|
MO->getSubReg() == Def.getSubReg()) {
|
|
const MachineOperand &Copied = DefMI->getOperand(1);
|
|
if (Copied.isImm() &&
|
|
TII->isInlineConstant(APInt(64, Copied.getImm(), true))) {
|
|
MO->ChangeToImmediate(Copied.getImm());
|
|
Resolved = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Resolved) {
|
|
// Haven't managed to resolve by replacing an SGPR with an immediate
|
|
// Move src1 to be in M0
|
|
BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
|
|
TII->get(AMDGPU::COPY), AMDGPU::M0)
|
|
.add(Src1);
|
|
Src1.ChangeToRegister(AMDGPU::M0, false);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MF.getTarget().getOptLevel() > CodeGenOpt::None && EnableM0Merge)
|
|
hoistAndMergeSGPRInits(AMDGPU::M0, *MRI, TRI, *MDT, TII);
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock *SIFixSGPRCopies::processPHINode(MachineInstr &MI) {
|
|
unsigned numVGPRUses = 0;
|
|
bool AllAGPRUses = true;
|
|
SetVector<const MachineInstr *> worklist;
|
|
SmallSet<const MachineInstr *, 4> Visited;
|
|
SetVector<MachineInstr *> PHIOperands;
|
|
MachineBasicBlock *CreatedBB = nullptr;
|
|
worklist.insert(&MI);
|
|
Visited.insert(&MI);
|
|
while (!worklist.empty()) {
|
|
const MachineInstr *Instr = worklist.pop_back_val();
|
|
Register Reg = Instr->getOperand(0).getReg();
|
|
for (const auto &Use : MRI->use_operands(Reg)) {
|
|
const MachineInstr *UseMI = Use.getParent();
|
|
AllAGPRUses &= (UseMI->isCopy() &&
|
|
TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg())) ||
|
|
TRI->isAGPR(*MRI, Use.getReg());
|
|
if (UseMI->isCopy() || UseMI->isRegSequence()) {
|
|
if (UseMI->isCopy() &&
|
|
UseMI->getOperand(0).getReg().isPhysical() &&
|
|
!TRI->isSGPRReg(*MRI, UseMI->getOperand(0).getReg())) {
|
|
numVGPRUses++;
|
|
}
|
|
if (Visited.insert(UseMI).second)
|
|
worklist.insert(UseMI);
|
|
|
|
continue;
|
|
}
|
|
|
|
if (UseMI->isPHI()) {
|
|
const TargetRegisterClass *UseRC = MRI->getRegClass(Use.getReg());
|
|
if (!TRI->isSGPRReg(*MRI, Use.getReg()) &&
|
|
UseRC != &AMDGPU::VReg_1RegClass)
|
|
numVGPRUses++;
|
|
continue;
|
|
}
|
|
|
|
const TargetRegisterClass *OpRC =
|
|
TII->getOpRegClass(*UseMI, UseMI->getOperandNo(&Use));
|
|
if (!TRI->isSGPRClass(OpRC) && OpRC != &AMDGPU::VS_32RegClass &&
|
|
OpRC != &AMDGPU::VS_64RegClass) {
|
|
numVGPRUses++;
|
|
}
|
|
}
|
|
}
|
|
|
|
Register PHIRes = MI.getOperand(0).getReg();
|
|
const TargetRegisterClass *RC0 = MRI->getRegClass(PHIRes);
|
|
if (AllAGPRUses && numVGPRUses && !TRI->isAGPRClass(RC0)) {
|
|
LLVM_DEBUG(dbgs() << "Moving PHI to AGPR: " << MI);
|
|
MRI->setRegClass(PHIRes, TRI->getEquivalentAGPRClass(RC0));
|
|
for (unsigned I = 1, N = MI.getNumOperands(); I != N; I += 2) {
|
|
MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(I).getReg());
|
|
if (DefMI && DefMI->isPHI())
|
|
PHIOperands.insert(DefMI);
|
|
}
|
|
}
|
|
|
|
bool hasVGPRInput = false;
|
|
for (unsigned i = 1; i < MI.getNumOperands(); i += 2) {
|
|
Register InputReg = MI.getOperand(i).getReg();
|
|
MachineInstr *Def = MRI->getVRegDef(InputReg);
|
|
if (TRI->isVectorRegister(*MRI, InputReg)) {
|
|
if (Def->isCopy()) {
|
|
Register SrcReg = Def->getOperand(1).getReg();
|
|
const TargetRegisterClass *RC =
|
|
TRI->getRegClassForReg(*MRI, SrcReg);
|
|
if (TRI->isSGPRClass(RC))
|
|
continue;
|
|
}
|
|
hasVGPRInput = true;
|
|
break;
|
|
}
|
|
else if (Def->isCopy() &&
|
|
TRI->isVectorRegister(*MRI, Def->getOperand(1).getReg())) {
|
|
Register SrcReg = Def->getOperand(1).getReg();
|
|
MachineInstr *SrcDef = MRI->getVRegDef(SrcReg);
|
|
unsigned SMovOp;
|
|
int64_t Imm;
|
|
if (!isSafeToFoldImmIntoCopy(Def, SrcDef, TII, SMovOp, Imm)) {
|
|
hasVGPRInput = true;
|
|
break;
|
|
} else {
|
|
// Formally, if we did not do this right away
|
|
// it would be done on the next iteration of the
|
|
// runOnMachineFunction main loop. But why not if we can?
|
|
MachineFunction *MF = MI.getParent()->getParent();
|
|
Def->getOperand(1).ChangeToImmediate(Imm);
|
|
Def->addImplicitDefUseOperands(*MF);
|
|
Def->setDesc(TII->get(SMovOp));
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((!TRI->isVectorRegister(*MRI, PHIRes) &&
|
|
RC0 != &AMDGPU::VReg_1RegClass) &&
|
|
(hasVGPRInput || numVGPRUses > 1)) {
|
|
LLVM_DEBUG(dbgs() << "Fixing PHI: " << MI);
|
|
CreatedBB = TII->moveToVALU(MI);
|
|
}
|
|
else {
|
|
LLVM_DEBUG(dbgs() << "Legalizing PHI: " << MI);
|
|
TII->legalizeOperands(MI, MDT);
|
|
}
|
|
|
|
// Propagate register class back to PHI operands which are PHI themselves.
|
|
while (!PHIOperands.empty()) {
|
|
processPHINode(*PHIOperands.pop_back_val());
|
|
}
|
|
return CreatedBB;
|
|
}
|
|
|
|
bool SIFixSGPRCopies::lowerSpecialCase(MachineInstr &MI) {
|
|
MachineBasicBlock *MBB = MI.getParent();
|
|
const TargetRegisterClass *SrcRC, *DstRC;
|
|
std::tie(SrcRC, DstRC) = getCopyRegClasses(MI, *TRI, *MRI);
|
|
|
|
// We return true to indicate that no further processing needed
|
|
if (!isVGPRToSGPRCopy(SrcRC, DstRC, *TRI))
|
|
return true;
|
|
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
if (!SrcReg.isVirtual() || TRI->isAGPR(*MRI, SrcReg)) {
|
|
TII->moveToVALU(MI, MDT);
|
|
return true;
|
|
}
|
|
|
|
unsigned SMovOp;
|
|
int64_t Imm;
|
|
// If we are just copying an immediate, we can replace the copy with
|
|
// s_mov_b32.
|
|
if (isSafeToFoldImmIntoCopy(&MI, MRI->getVRegDef(SrcReg), TII, SMovOp, Imm)) {
|
|
MI.getOperand(1).ChangeToImmediate(Imm);
|
|
MI.addImplicitDefUseOperands(*MBB->getParent());
|
|
MI.setDesc(TII->get(SMovOp));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
class V2SCopyInfo {
|
|
public:
|
|
// VGPR to SGPR copy being processed
|
|
MachineInstr *Copy;
|
|
// All SALU instructions reachable from this copy in SSA graph
|
|
DenseSet<MachineInstr *> SChain;
|
|
// Number of SGPR to VGPR copies that are used to put the SALU computation
|
|
// results back to VALU.
|
|
unsigned NumSVCopies;
|
|
|
|
unsigned Score;
|
|
// Actual count of v_readfirstlane_b32
|
|
// which need to be inserted to keep SChain SALU
|
|
unsigned NumReadfirstlanes;
|
|
// Current score state. To speedup selection V2SCopyInfos for processing
|
|
bool NeedToBeConvertedToVALU = false;
|
|
// Unique ID. Used as a key for mapping to keep permanent order.
|
|
unsigned ID;
|
|
|
|
// Count of another VGPR to SGPR copies that contribute to the
|
|
// current copy SChain
|
|
unsigned SiblingPenalty = 0;
|
|
SetVector<unsigned> Siblings;
|
|
V2SCopyInfo() : Copy(nullptr), ID(0){};
|
|
V2SCopyInfo(unsigned Id, MachineInstr *C, unsigned Width)
|
|
: Copy(C), NumSVCopies(0), NumReadfirstlanes(Width / 32), ID(Id){};
|
|
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
|
|
void dump() {
|
|
dbgs() << ID << " : " << *Copy << "\n\tS:" << SChain.size()
|
|
<< "\n\tSV:" << NumSVCopies << "\n\tSP: " << SiblingPenalty
|
|
<< "\nScore: " << Score << "\n";
|
|
}
|
|
#endif
|
|
};
|
|
|
|
void SIFixSGPRCopies::lowerVGPR2SGPRCopies(MachineFunction &MF) {
|
|
|
|
DenseMap<unsigned, V2SCopyInfo> Copies;
|
|
DenseMap<MachineInstr *, SetVector<unsigned>> SiblingPenalty;
|
|
|
|
// The main function that computes the VGPR to SGPR copy score
|
|
// and determines copy further lowering way: v_readfirstlane_b32 or moveToVALU
|
|
auto needToBeConvertedToVALU = [&](V2SCopyInfo *I) -> bool {
|
|
if (I->SChain.empty())
|
|
return true;
|
|
I->Siblings = SiblingPenalty[*std::max_element(
|
|
I->SChain.begin(), I->SChain.end(),
|
|
[&](MachineInstr *A, MachineInstr *B) -> bool {
|
|
return SiblingPenalty[A].size() < SiblingPenalty[B].size();
|
|
})];
|
|
I->Siblings.remove_if([&](unsigned ID) { return ID == I->ID; });
|
|
// The loop below computes the number of another VGPR to SGPR copies
|
|
// which contribute to the current copy SALU chain. We assume that all the
|
|
// copies with the same source virtual register will be squashed to one by
|
|
// regalloc. Also we take careof the copies of the differnt subregs of the
|
|
// same register.
|
|
SmallSet<std::pair<Register, unsigned>, 4> SrcRegs;
|
|
for (auto J : I->Siblings) {
|
|
auto InfoIt = Copies.find(J);
|
|
if (InfoIt != Copies.end()) {
|
|
MachineInstr *SiblingCopy = InfoIt->getSecond().Copy;
|
|
if (SiblingCopy->isImplicitDef())
|
|
// the COPY has already been MoveToVALUed
|
|
continue;
|
|
|
|
SrcRegs.insert(std::make_pair(SiblingCopy->getOperand(1).getReg(),
|
|
SiblingCopy->getOperand(1).getSubReg()));
|
|
}
|
|
}
|
|
I->SiblingPenalty = SrcRegs.size();
|
|
|
|
unsigned Penalty =
|
|
I->NumSVCopies + I->SiblingPenalty + I->NumReadfirstlanes;
|
|
unsigned Profit = I->SChain.size();
|
|
I->Score = Penalty > Profit ? 0 : Profit - Penalty;
|
|
I->NeedToBeConvertedToVALU = I->Score < 3;
|
|
return I->NeedToBeConvertedToVALU;
|
|
};
|
|
|
|
auto needProcessing = [](MachineInstr &MI) -> bool {
|
|
switch (MI.getOpcode()) {
|
|
case AMDGPU::COPY:
|
|
case AMDGPU::WQM:
|
|
case AMDGPU::STRICT_WQM:
|
|
case AMDGPU::SOFT_WQM:
|
|
case AMDGPU::STRICT_WWM:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
|
|
++BI) {
|
|
MachineBasicBlock *MBB = &*BI;
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
|
|
++I) {
|
|
MachineInstr &MI = *I;
|
|
if (!needProcessing(MI))
|
|
continue;
|
|
if (lowerSpecialCase(MI))
|
|
continue;
|
|
|
|
// Compute the COPY width to pass it to V2SCopyInfo Ctor
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
|
|
const TargetRegisterClass *DstRC = TRI->getRegClassForReg(*MRI, DstReg);
|
|
|
|
V2SCopyInfo In(getNextVGPRToSGPRCopyId(), &MI,
|
|
TRI->getRegSizeInBits(*DstRC));
|
|
|
|
SmallVector<MachineInstr *, 8> AnalysisWorklist;
|
|
// Needed because the SSA is not a tree but a graph and may have
|
|
// forks and joins. We should not then go same way twice.
|
|
DenseSet<MachineInstr *> Visited;
|
|
AnalysisWorklist.push_back(&MI);
|
|
while (!AnalysisWorklist.empty()) {
|
|
|
|
MachineInstr *Inst = AnalysisWorklist.pop_back_val();
|
|
|
|
if (!Visited.insert(Inst).second)
|
|
continue;
|
|
|
|
// Copies and REG_SEQUENCE do not contribute to the final assembly
|
|
// So, skip them but take care of the SGPR to VGPR copies bookkeeping.
|
|
if (Inst->isCopy() || Inst->isRegSequence()) {
|
|
if (TRI->isVGPR(*MRI, Inst->getOperand(0).getReg())) {
|
|
if (!Inst->isCopy() ||
|
|
!tryChangeVGPRtoSGPRinCopy(*Inst, TRI, TII)) {
|
|
In.NumSVCopies++;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
SiblingPenalty[Inst].insert(In.ID);
|
|
|
|
SmallVector<MachineInstr *, 4> Users;
|
|
if ((TII->isSALU(*Inst) && Inst->isCompare()) ||
|
|
(Inst->isCopy() && Inst->getOperand(0).getReg() == AMDGPU::SCC)) {
|
|
auto I = Inst->getIterator();
|
|
auto E = Inst->getParent()->end();
|
|
while (++I != E && !I->findRegisterDefOperand(AMDGPU::SCC)) {
|
|
if (I->readsRegister(AMDGPU::SCC))
|
|
Users.push_back(&*I);
|
|
}
|
|
} else if (Inst->getNumExplicitDefs() != 0) {
|
|
Register Reg = Inst->getOperand(0).getReg();
|
|
if (TRI->isSGPRReg(*MRI, Reg))
|
|
for (auto &U : MRI->use_instructions(Reg))
|
|
Users.push_back(&U);
|
|
}
|
|
for (auto U : Users) {
|
|
if (TII->isSALU(*U))
|
|
In.SChain.insert(U);
|
|
AnalysisWorklist.push_back(U);
|
|
}
|
|
}
|
|
Copies[In.ID] = In;
|
|
}
|
|
}
|
|
|
|
SmallVector<unsigned, 8> LoweringWorklist;
|
|
for (auto &C : Copies) {
|
|
if (needToBeConvertedToVALU(&C.second))
|
|
LoweringWorklist.push_back(C.second.ID);
|
|
}
|
|
|
|
while (!LoweringWorklist.empty()) {
|
|
unsigned CurID = LoweringWorklist.pop_back_val();
|
|
auto CurInfoIt = Copies.find(CurID);
|
|
if (CurInfoIt != Copies.end()) {
|
|
V2SCopyInfo C = CurInfoIt->getSecond();
|
|
LLVM_DEBUG(dbgs() << "Processing ...\n"; C.dump());
|
|
for (auto S : C.Siblings) {
|
|
auto SibInfoIt = Copies.find(S);
|
|
if (SibInfoIt != Copies.end()) {
|
|
V2SCopyInfo &SI = SibInfoIt->getSecond();
|
|
LLVM_DEBUG(dbgs() << "Sibling:\n"; SI.dump());
|
|
if (!SI.NeedToBeConvertedToVALU) {
|
|
set_subtract(SI.SChain, C.SChain);
|
|
if (needToBeConvertedToVALU(&SI))
|
|
LoweringWorklist.push_back(SI.ID);
|
|
}
|
|
SI.Siblings.remove_if([&](unsigned ID) { return ID == C.ID; });
|
|
}
|
|
}
|
|
LLVM_DEBUG(dbgs() << "V2S copy " << *C.Copy
|
|
<< " is being turned to VALU\n");
|
|
Copies.erase(C.ID);
|
|
TII->moveToVALU(*C.Copy, MDT);
|
|
}
|
|
}
|
|
|
|
// Now do actual lowering
|
|
for (auto C : Copies) {
|
|
MachineInstr *MI = C.second.Copy;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
// We decide to turn V2S copy to v_readfirstlane_b32
|
|
// remove it from the V2SCopies and remove it from all its siblings
|
|
LLVM_DEBUG(dbgs() << "V2S copy " << *MI
|
|
<< " is being turned to v_readfirstlane_b32"
|
|
<< " Score: " << C.second.Score << "\n");
|
|
Register DstReg = MI->getOperand(0).getReg();
|
|
Register SrcReg = MI->getOperand(1).getReg();
|
|
unsigned SubReg = MI->getOperand(1).getSubReg();
|
|
const TargetRegisterClass *SrcRC = TRI->getRegClassForReg(*MRI, SrcReg);
|
|
SrcRC = TRI->getSubRegClass(SrcRC, SubReg);
|
|
size_t SrcSize = TRI->getRegSizeInBits(*SrcRC);
|
|
if (SrcSize == 16) {
|
|
// HACK to handle possible 16bit VGPR source
|
|
auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(AMDGPU::V_READFIRSTLANE_B32), DstReg);
|
|
MIB.addReg(SrcReg, 0, AMDGPU::NoSubRegister);
|
|
} else if (SrcSize == 32) {
|
|
auto MIB = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(AMDGPU::V_READFIRSTLANE_B32), DstReg);
|
|
MIB.addReg(SrcReg, 0, SubReg);
|
|
} else {
|
|
auto Result = BuildMI(*MBB, MI, MI->getDebugLoc(),
|
|
TII->get(AMDGPU::REG_SEQUENCE), DstReg);
|
|
int N = TRI->getRegSizeInBits(*SrcRC) / 32;
|
|
for (int i = 0; i < N; i++) {
|
|
Register PartialSrc = TII->buildExtractSubReg(
|
|
Result, *MRI, MI->getOperand(1), SrcRC,
|
|
TRI->getSubRegFromChannel(i), &AMDGPU::VGPR_32RegClass);
|
|
Register PartialDst =
|
|
MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
BuildMI(*MBB, *Result, Result->getDebugLoc(),
|
|
TII->get(AMDGPU::V_READFIRSTLANE_B32), PartialDst)
|
|
.addReg(PartialSrc);
|
|
Result.addReg(PartialDst).addImm(TRI->getSubRegFromChannel(i));
|
|
}
|
|
}
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|