llvm-project/flang/lib/Semantics/tools.cpp

1480 lines
50 KiB
C++

//===-- lib/Semantics/tools.cpp -------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Parser/tools.h"
#include "flang/Common/Fortran.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/dump-parse-tree.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-tree.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/semantics.h"
#include "flang/Semantics/symbol.h"
#include "flang/Semantics/tools.h"
#include "flang/Semantics/type.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <set>
#include <variant>
namespace Fortran::semantics {
// Find this or containing scope that matches predicate
static const Scope *FindScopeContaining(
const Scope &start, std::function<bool(const Scope &)> predicate) {
for (const Scope *scope{&start};; scope = &scope->parent()) {
if (predicate(*scope)) {
return scope;
}
if (scope->IsGlobal()) {
return nullptr;
}
}
}
const Scope &GetTopLevelUnitContaining(const Scope &start) {
CHECK(!start.IsGlobal());
return DEREF(FindScopeContaining(
start, [](const Scope &scope) { return scope.parent().IsGlobal(); }));
}
const Scope &GetTopLevelUnitContaining(const Symbol &symbol) {
return GetTopLevelUnitContaining(symbol.owner());
}
const Scope *FindModuleContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModule(); });
}
const Scope *FindModuleFileContaining(const Scope &start) {
return FindScopeContaining(
start, [](const Scope &scope) { return scope.IsModuleFile(); });
}
const Scope &GetProgramUnitContaining(const Scope &start) {
CHECK(!start.IsGlobal());
return DEREF(FindScopeContaining(start, [](const Scope &scope) {
switch (scope.kind()) {
case Scope::Kind::Module:
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
case Scope::Kind::BlockData:
return true;
default:
return false;
}
}));
}
const Scope &GetProgramUnitContaining(const Symbol &symbol) {
return GetProgramUnitContaining(symbol.owner());
}
const Scope *FindPureProcedureContaining(const Scope &start) {
// N.B. We only need to examine the innermost containing program unit
// because an internal subprogram of a pure subprogram must also
// be pure (C1592).
if (start.IsGlobal()) {
return nullptr;
} else {
const Scope &scope{GetProgramUnitContaining(start)};
return IsPureProcedure(scope) ? &scope : nullptr;
}
}
static bool MightHaveCompatibleDerivedtypes(
const std::optional<evaluate::DynamicType> &lhsType,
const std::optional<evaluate::DynamicType> &rhsType) {
const DerivedTypeSpec *lhsDerived{evaluate::GetDerivedTypeSpec(lhsType)};
const DerivedTypeSpec *rhsDerived{evaluate::GetDerivedTypeSpec(rhsType)};
if (!lhsDerived || !rhsDerived) {
return false;
}
return *lhsDerived == *rhsDerived ||
lhsDerived->MightBeAssignmentCompatibleWith(*rhsDerived);
}
Tristate IsDefinedAssignment(
const std::optional<evaluate::DynamicType> &lhsType, int lhsRank,
const std::optional<evaluate::DynamicType> &rhsType, int rhsRank) {
if (!lhsType || !rhsType) {
return Tristate::No; // error or rhs is untyped
}
TypeCategory lhsCat{lhsType->category()};
TypeCategory rhsCat{rhsType->category()};
if (rhsRank > 0 && lhsRank != rhsRank) {
return Tristate::Yes;
} else if (lhsCat != TypeCategory::Derived) {
return ToTristate(lhsCat != rhsCat &&
(!IsNumericTypeCategory(lhsCat) || !IsNumericTypeCategory(rhsCat)));
} else if (MightHaveCompatibleDerivedtypes(lhsType, rhsType)) {
return Tristate::Maybe; // TYPE(t) = TYPE(t) can be defined or intrinsic
} else {
return Tristate::Yes;
}
}
bool IsIntrinsicRelational(common::RelationalOperator opr,
const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
if (!evaluate::AreConformable(rank0, rank1)) {
return false;
} else {
auto cat0{type0.category()};
auto cat1{type1.category()};
if (IsNumericTypeCategory(cat0) && IsNumericTypeCategory(cat1)) {
// numeric types: EQ/NE always ok, others ok for non-complex
return opr == common::RelationalOperator::EQ ||
opr == common::RelationalOperator::NE ||
(cat0 != TypeCategory::Complex && cat1 != TypeCategory::Complex);
} else {
// not both numeric: only Character is ok
return cat0 == TypeCategory::Character && cat1 == TypeCategory::Character;
}
}
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0) {
return IsNumericTypeCategory(type0.category());
}
bool IsIntrinsicNumeric(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
IsNumericTypeCategory(type0.category()) &&
IsNumericTypeCategory(type1.category());
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0) {
return type0.category() == TypeCategory::Logical;
}
bool IsIntrinsicLogical(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Logical &&
type1.category() == TypeCategory::Logical;
}
bool IsIntrinsicConcat(const evaluate::DynamicType &type0, int rank0,
const evaluate::DynamicType &type1, int rank1) {
return evaluate::AreConformable(rank0, rank1) &&
type0.category() == TypeCategory::Character &&
type1.category() == TypeCategory::Character &&
type0.kind() == type1.kind();
}
bool IsGenericDefinedOp(const Symbol &symbol) {
const Symbol &ultimate{symbol.GetUltimate()};
if (const auto *generic{ultimate.detailsIf<GenericDetails>()}) {
return generic->kind().IsDefinedOperator();
} else if (const auto *misc{ultimate.detailsIf<MiscDetails>()}) {
return misc->kind() == MiscDetails::Kind::TypeBoundDefinedOp;
} else {
return false;
}
}
bool IsDefinedOperator(SourceName name) {
const char *begin{name.begin()};
const char *end{name.end()};
return begin != end && begin[0] == '.' && end[-1] == '.';
}
std::string MakeOpName(SourceName name) {
std::string result{name.ToString()};
return IsDefinedOperator(name) ? "OPERATOR(" + result + ")"
: result.find("operator(", 0) == 0 ? parser::ToUpperCaseLetters(result)
: result;
}
bool IsCommonBlockContaining(const Symbol &block, const Symbol &object) {
const auto &objects{block.get<CommonBlockDetails>().objects()};
auto found{std::find(objects.begin(), objects.end(), object)};
return found != objects.end();
}
bool IsUseAssociated(const Symbol &symbol, const Scope &scope) {
const Scope &owner{GetProgramUnitContaining(symbol.GetUltimate().owner())};
return owner.kind() == Scope::Kind::Module &&
owner != GetProgramUnitContaining(scope);
}
bool DoesScopeContain(
const Scope *maybeAncestor, const Scope &maybeDescendent) {
return maybeAncestor && !maybeDescendent.IsGlobal() &&
FindScopeContaining(maybeDescendent.parent(),
[&](const Scope &scope) { return &scope == maybeAncestor; });
}
bool DoesScopeContain(const Scope *maybeAncestor, const Symbol &symbol) {
return DoesScopeContain(maybeAncestor, symbol.owner());
}
static const Symbol &FollowHostAssoc(const Symbol &symbol) {
for (const Symbol *s{&symbol};;) {
const auto *details{s->detailsIf<HostAssocDetails>()};
if (!details) {
return *s;
}
s = &details->symbol();
}
}
bool IsHostAssociated(const Symbol &symbol, const Scope &scope) {
const Scope &subprogram{GetProgramUnitContaining(scope)};
return DoesScopeContain(
&GetProgramUnitContaining(FollowHostAssoc(symbol)), subprogram);
}
bool IsInStmtFunction(const Symbol &symbol) {
if (const Symbol * function{symbol.owner().symbol()}) {
return IsStmtFunction(*function);
}
return false;
}
bool IsStmtFunctionDummy(const Symbol &symbol) {
return IsDummy(symbol) && IsInStmtFunction(symbol);
}
bool IsStmtFunctionResult(const Symbol &symbol) {
return IsFunctionResult(symbol) && IsInStmtFunction(symbol);
}
bool IsPointerDummy(const Symbol &symbol) {
return IsPointer(symbol) && IsDummy(symbol);
}
// proc-name
bool IsProcName(const Symbol &symbol) {
return symbol.GetUltimate().has<ProcEntityDetails>();
}
bool IsBindCProcedure(const Symbol &symbol) {
if (const auto *procDetails{symbol.detailsIf<ProcEntityDetails>()}) {
if (const Symbol * procInterface{procDetails->interface().symbol()}) {
// procedure component with a BIND(C) interface
return IsBindCProcedure(*procInterface);
}
}
return symbol.attrs().test(Attr::BIND_C) && IsProcedure(symbol);
}
bool IsBindCProcedure(const Scope &scope) {
if (const Symbol * symbol{scope.GetSymbol()}) {
return IsBindCProcedure(*symbol);
} else {
return false;
}
}
static const Symbol *FindPointerComponent(
const Scope &scope, std::set<const Scope *> &visited) {
if (!scope.IsDerivedType()) {
return nullptr;
}
if (!visited.insert(&scope).second) {
return nullptr;
}
// If there's a top-level pointer component, return it for clearer error
// messaging.
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (IsPointer(symbol)) {
return &symbol;
}
}
for (const auto &pair : scope) {
const Symbol &symbol{*pair.second};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
if (const Scope * nested{derived->scope()}) {
if (const Symbol *
pointer{FindPointerComponent(*nested, visited)}) {
return pointer;
}
}
}
}
}
}
return nullptr;
}
const Symbol *FindPointerComponent(const Scope &scope) {
std::set<const Scope *> visited;
return FindPointerComponent(scope, visited);
}
const Symbol *FindPointerComponent(const DerivedTypeSpec &derived) {
if (const Scope * scope{derived.scope()}) {
return FindPointerComponent(*scope);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec &type) {
if (const DerivedTypeSpec * derived{type.AsDerived()}) {
return FindPointerComponent(*derived);
} else {
return nullptr;
}
}
const Symbol *FindPointerComponent(const DeclTypeSpec *type) {
return type ? FindPointerComponent(*type) : nullptr;
}
const Symbol *FindPointerComponent(const Symbol &symbol) {
return IsPointer(symbol) ? &symbol : FindPointerComponent(symbol.GetType());
}
// C1594 specifies several ways by which an object might be globally visible.
const Symbol *FindExternallyVisibleObject(
const Symbol &object, const Scope &scope) {
// TODO: Storage association with any object for which this predicate holds,
// once EQUIVALENCE is supported.
const Symbol &ultimate{GetAssociationRoot(object)};
if (IsDummy(ultimate)) {
if (IsIntentIn(ultimate)) {
return &ultimate;
}
if (IsPointer(ultimate) && IsPureProcedure(ultimate.owner()) &&
IsFunction(ultimate.owner())) {
return &ultimate;
}
} else if (&GetProgramUnitContaining(ultimate) !=
&GetProgramUnitContaining(scope)) {
return &object;
} else if (const Symbol * block{FindCommonBlockContaining(ultimate)}) {
return block;
}
return nullptr;
}
bool ExprHasTypeCategory(
const SomeExpr &expr, const common::TypeCategory &type) {
auto dynamicType{expr.GetType()};
return dynamicType && dynamicType->category() == type;
}
bool ExprTypeKindIsDefault(
const SomeExpr &expr, const SemanticsContext &context) {
auto dynamicType{expr.GetType()};
return dynamicType &&
dynamicType->category() != common::TypeCategory::Derived &&
dynamicType->kind() == context.GetDefaultKind(dynamicType->category());
}
// If an analyzed expr or assignment is missing, dump the node and die.
template <typename T>
static void CheckMissingAnalysis(bool absent, const T &x) {
if (absent) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << "node has not been analyzed:\n";
parser::DumpTree(ss, x);
common::die(ss.str().c_str());
}
}
template <typename T> static const SomeExpr *GetTypedExpr(const T &x) {
CheckMissingAnalysis(!x.typedExpr, x);
return common::GetPtrFromOptional(x.typedExpr->v);
}
const SomeExpr *GetExprHelper::Get(const parser::Expr &x) {
return GetTypedExpr(x);
}
const SomeExpr *GetExprHelper::Get(const parser::Variable &x) {
return GetTypedExpr(x);
}
const SomeExpr *GetExprHelper::Get(const parser::DataStmtConstant &x) {
return GetTypedExpr(x);
}
const SomeExpr *GetExprHelper::Get(const parser::AllocateObject &x) {
return GetTypedExpr(x);
}
const SomeExpr *GetExprHelper::Get(const parser::PointerObject &x) {
return GetTypedExpr(x);
}
const evaluate::Assignment *GetAssignment(const parser::AssignmentStmt &x) {
CheckMissingAnalysis(!x.typedAssignment, x);
return common::GetPtrFromOptional(x.typedAssignment->v);
}
const evaluate::Assignment *GetAssignment(
const parser::PointerAssignmentStmt &x) {
CheckMissingAnalysis(!x.typedAssignment, x);
return common::GetPtrFromOptional(x.typedAssignment->v);
}
const Symbol *FindInterface(const Symbol &symbol) {
return std::visit(
common::visitors{
[](const ProcEntityDetails &details) {
return details.interface().symbol();
},
[](const ProcBindingDetails &details) { return &details.symbol(); },
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindSubprogram(const Symbol &symbol) {
return std::visit(
common::visitors{
[&](const ProcEntityDetails &details) -> const Symbol * {
if (const Symbol * interface{details.interface().symbol()}) {
return FindSubprogram(*interface);
} else {
return &symbol;
}
},
[](const ProcBindingDetails &details) {
return FindSubprogram(details.symbol());
},
[&](const SubprogramDetails &) { return &symbol; },
[](const UseDetails &details) {
return FindSubprogram(details.symbol());
},
[](const HostAssocDetails &details) {
return FindSubprogram(details.symbol());
},
[](const auto &) -> const Symbol * { return nullptr; },
},
symbol.details());
}
const Symbol *FindOverriddenBinding(const Symbol &symbol) {
if (symbol.has<ProcBindingDetails>()) {
if (const DeclTypeSpec * parentType{FindParentTypeSpec(symbol.owner())}) {
if (const DerivedTypeSpec * parentDerived{parentType->AsDerived()}) {
if (const Scope * parentScope{parentDerived->typeSymbol().scope()}) {
return parentScope->FindComponent(symbol.name());
}
}
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const DerivedTypeSpec &derived) {
return FindParentTypeSpec(derived.typeSymbol());
}
const DeclTypeSpec *FindParentTypeSpec(const DeclTypeSpec &decl) {
if (const DerivedTypeSpec * derived{decl.AsDerived()}) {
return FindParentTypeSpec(*derived);
} else {
return nullptr;
}
}
const DeclTypeSpec *FindParentTypeSpec(const Scope &scope) {
if (scope.kind() == Scope::Kind::DerivedType) {
if (const auto *symbol{scope.symbol()}) {
return FindParentTypeSpec(*symbol);
}
}
return nullptr;
}
const DeclTypeSpec *FindParentTypeSpec(const Symbol &symbol) {
if (const Scope * scope{symbol.scope()}) {
if (const auto *details{symbol.detailsIf<DerivedTypeDetails>()}) {
if (const Symbol * parent{details->GetParentComponent(*scope)}) {
return parent->GetType();
}
}
}
return nullptr;
}
bool IsExtensibleType(const DerivedTypeSpec *derived) {
return derived && !IsIsoCType(derived) &&
!derived->typeSymbol().attrs().test(Attr::BIND_C) &&
!derived->typeSymbol().get<DerivedTypeDetails>().sequence();
}
bool IsBuiltinDerivedType(const DerivedTypeSpec *derived, const char *name) {
if (!derived) {
return false;
} else {
const auto &symbol{derived->typeSymbol()};
return symbol.owner().IsModule() &&
(symbol.owner().GetName().value() == "__fortran_builtins" ||
symbol.owner().GetName().value() == "__fortran_type_info") &&
symbol.name() == "__builtin_"s + name;
}
}
bool IsIsoCType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "c_ptr") ||
IsBuiltinDerivedType(derived, "c_funptr");
}
bool IsTeamType(const DerivedTypeSpec *derived) {
return IsBuiltinDerivedType(derived, "team_type");
}
bool IsEventTypeOrLockType(const DerivedTypeSpec *derivedTypeSpec) {
return IsBuiltinDerivedType(derivedTypeSpec, "event_type") ||
IsBuiltinDerivedType(derivedTypeSpec, "lock_type");
}
bool IsOrContainsEventOrLockComponent(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return IsEventTypeOrLockType(derived) ||
FindEventOrLockPotentialComponent(*derived);
}
}
}
return false;
}
// Check this symbol suitable as a type-bound procedure - C769
bool CanBeTypeBoundProc(const Symbol *symbol) {
if (!symbol || IsDummy(*symbol) || IsProcedurePointer(*symbol)) {
return false;
} else if (symbol->has<SubprogramNameDetails>()) {
return symbol->owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return symbol->owner().kind() == Scope::Kind::Module ||
details->isInterface();
} else if (const auto *proc{symbol->detailsIf<ProcEntityDetails>()}) {
return !symbol->attrs().test(Attr::INTRINSIC) &&
proc->HasExplicitInterface();
} else {
return false;
}
}
bool IsStaticallyInitialized(const Symbol &symbol, bool ignoreDATAstatements) {
if (!ignoreDATAstatements && symbol.test(Symbol::Flag::InDataStmt)) {
return true;
} else if (IsNamedConstant(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
return object->init().has_value();
} else if (const auto *proc{symbol.detailsIf<ProcEntityDetails>()}) {
return proc->init().has_value();
}
return false;
}
bool IsInitialized(const Symbol &symbol, bool ignoreDATAstatements,
const Symbol *derivedTypeSymbol) {
if (IsStaticallyInitialized(symbol, ignoreDATAstatements) ||
IsAllocatable(symbol)) {
return true;
} else if (IsNamedConstant(symbol) || IsFunctionResult(symbol) ||
IsPointer(symbol)) {
return false;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && object->type()) {
const auto *derived{object->type()->AsDerived()};
// error recovery: avoid infinite recursion on invalid
// recursive usage of a derived type
return derived && &derived->typeSymbol() != derivedTypeSymbol &&
derived->HasDefaultInitialization();
}
}
return false;
}
bool HasIntrinsicTypeName(const Symbol &symbol) {
std::string name{symbol.name().ToString()};
if (name == "doubleprecision") {
return true;
} else if (name == "derived") {
return false;
} else {
for (int i{0}; i != common::TypeCategory_enumSize; ++i) {
if (name == parser::ToLowerCaseLetters(EnumToString(TypeCategory{i}))) {
return true;
}
}
return false;
}
}
bool IsSeparateModuleProcedureInterface(const Symbol *symbol) {
if (symbol && symbol->attrs().test(Attr::MODULE)) {
if (auto *details{symbol->detailsIf<SubprogramDetails>()}) {
return details->isInterface();
}
}
return false;
}
// 3.11 automatic data object
bool IsAutomatic(const Symbol &symbol) {
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (!object->isDummy() && !IsAllocatable(symbol) && !IsPointer(symbol)) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
// If a type parameter value is not a constant expression, the
// object is automatic.
if (type->category() == DeclTypeSpec::Character) {
if (const auto &length{
type->characterTypeSpec().length().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*length)) {
return true;
}
}
} else if (const DerivedTypeSpec * derived{type->AsDerived()}) {
for (const auto &pair : derived->parameters()) {
if (const auto &value{pair.second.GetExplicit()}) {
if (!evaluate::IsConstantExpr(*value)) {
return true;
}
}
}
}
}
// If an array bound is not a constant expression, the object is
// automatic.
for (const ShapeSpec &dim : object->shape()) {
if (const auto &lb{dim.lbound().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*lb)) {
return true;
}
}
if (const auto &ub{dim.ubound().GetExplicit()}) {
if (!evaluate::IsConstantExpr(*ub)) {
return true;
}
}
}
}
}
return false;
}
bool IsFinalizable(const Symbol &symbol) {
if (IsPointer(symbol)) {
return false;
}
if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (object->isDummy() && !IsIntentOut(symbol)) {
return false;
}
const DeclTypeSpec *type{object->type()};
const DerivedTypeSpec *derived{type ? type->AsDerived() : nullptr};
return derived && IsFinalizable(*derived);
}
return false;
}
bool IsFinalizable(const DerivedTypeSpec &derived) {
if (!derived.typeSymbol().get<DerivedTypeDetails>().finals().empty()) {
return true;
}
DirectComponentIterator components{derived};
return bool{std::find_if(components.begin(), components.end(),
[](const Symbol &component) { return IsFinalizable(component); })};
}
bool HasImpureFinal(const DerivedTypeSpec &derived) {
if (const auto *details{
derived.typeSymbol().detailsIf<DerivedTypeDetails>()}) {
const auto &finals{details->finals()};
return std::any_of(finals.begin(), finals.end(),
[](const auto &x) { return !x.second->attrs().test(Attr::PURE); });
} else {
return false;
}
}
bool IsCoarray(const Symbol &symbol) { return symbol.Corank() > 0; }
bool IsAutomaticObject(const Symbol &symbol) {
if (IsDummy(symbol) || IsPointer(symbol) || IsAllocatable(symbol)) {
return false;
}
if (const DeclTypeSpec * type{symbol.GetType()}) {
if (type->category() == DeclTypeSpec::Character) {
ParamValue length{type->characterTypeSpec().length()};
if (length.isExplicit()) {
if (MaybeIntExpr lengthExpr{length.GetExplicit()}) {
if (!ToInt64(lengthExpr)) {
return true;
}
}
}
}
}
if (symbol.IsObjectArray()) {
for (const ShapeSpec &spec : symbol.get<ObjectEntityDetails>().shape()) {
auto &lbound{spec.lbound().GetExplicit()};
auto &ubound{spec.ubound().GetExplicit()};
if ((lbound && !evaluate::ToInt64(*lbound)) ||
(ubound && !evaluate::ToInt64(*ubound))) {
return true;
}
}
}
return false;
}
bool IsAssumedLengthCharacter(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->category() == DeclTypeSpec::Character &&
type->characterTypeSpec().length().isAssumed();
} else {
return false;
}
}
bool IsInBlankCommon(const Symbol &symbol) {
const Symbol *block{FindCommonBlockContaining(symbol)};
return block && block->name().empty();
}
// C722 and C723: For a function to be assumed length, it must be external and
// of CHARACTER type
bool IsExternal(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::External;
}
bool IsModuleProcedure(const Symbol &symbol) {
return ClassifyProcedure(symbol) == ProcedureDefinitionClass::Module;
}
const Symbol *IsExternalInPureContext(
const Symbol &symbol, const Scope &scope) {
if (const auto *pureProc{FindPureProcedureContaining(scope)}) {
return FindExternallyVisibleObject(symbol.GetUltimate(), *pureProc);
}
return nullptr;
}
PotentialComponentIterator::const_iterator FindPolymorphicPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && type->IsPolymorphic();
}
return false;
});
}
bool IsOrContainsPolymorphicComponent(const Symbol &original) {
const Symbol &symbol{ResolveAssociations(original)};
if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (type->IsPolymorphic()) {
return true;
}
if (const DerivedTypeSpec * derived{type->AsDerived()}) {
return (bool)FindPolymorphicPotentialComponent(*derived);
}
}
}
return false;
}
bool InProtectedContext(const Symbol &symbol, const Scope &currentScope) {
return IsProtected(symbol) && !IsHostAssociated(symbol, currentScope);
}
// C1101 and C1158
// Modifiability checks on the leftmost symbol ("base object")
// of a data-ref
std::optional<parser::MessageFixedText> WhyNotModifiableFirst(
const Symbol &symbol, const Scope &scope) {
if (symbol.has<AssocEntityDetails>()) {
return "'%s' is construct associated with an expression"_en_US;
} else if (IsExternalInPureContext(symbol, scope)) {
return "'%s' is externally visible and referenced in a pure"
" procedure"_en_US;
} else if (!IsVariableName(symbol)) {
return "'%s' is not a variable"_en_US;
} else {
return std::nullopt;
}
}
// Modifiability checks on the rightmost symbol of a data-ref
std::optional<parser::MessageFixedText> WhyNotModifiableLast(
const Symbol &symbol, const Scope &scope) {
if (IsOrContainsEventOrLockComponent(symbol)) {
return "'%s' is an entity with either an EVENT_TYPE or LOCK_TYPE"_en_US;
} else {
return std::nullopt;
}
}
// Modifiability checks on the leftmost (base) symbol of a data-ref
// that apply only when there are no pointer components or a base
// that is a pointer.
std::optional<parser::MessageFixedText> WhyNotModifiableIfNoPtr(
const Symbol &symbol, const Scope &scope) {
if (InProtectedContext(symbol, scope)) {
return "'%s' is protected in this scope"_en_US;
} else if (IsIntentIn(symbol)) {
return "'%s' is an INTENT(IN) dummy argument"_en_US;
} else {
return std::nullopt;
}
}
// Apply all modifiability checks to a single symbol
std::optional<parser::MessageFixedText> WhyNotModifiable(
const Symbol &original, const Scope &scope) {
const Symbol &symbol{GetAssociationRoot(original)};
if (auto first{WhyNotModifiableFirst(symbol, scope)}) {
return first;
} else if (auto last{WhyNotModifiableLast(symbol, scope)}) {
return last;
} else if (!IsPointer(symbol)) {
return WhyNotModifiableIfNoPtr(symbol, scope);
} else {
return std::nullopt;
}
}
// Modifiability checks for a data-ref
std::optional<parser::Message> WhyNotModifiable(parser::CharBlock at,
const SomeExpr &expr, const Scope &scope, bool vectorSubscriptIsOk) {
if (auto dataRef{evaluate::ExtractDataRef(expr, true)}) {
if (!vectorSubscriptIsOk && evaluate::HasVectorSubscript(expr)) {
return parser::Message{at, "Variable has a vector subscript"_en_US};
}
const Symbol &first{GetAssociationRoot(dataRef->GetFirstSymbol())};
if (auto maybeWhyFirst{WhyNotModifiableFirst(first, scope)}) {
return parser::Message{first.name(),
parser::MessageFormattedText{
std::move(*maybeWhyFirst), first.name()}};
}
const Symbol &last{dataRef->GetLastSymbol()};
if (auto maybeWhyLast{WhyNotModifiableLast(last, scope)}) {
return parser::Message{last.name(),
parser::MessageFormattedText{std::move(*maybeWhyLast), last.name()}};
}
if (!GetLastPointerSymbol(*dataRef)) {
if (auto maybeWhyFirst{WhyNotModifiableIfNoPtr(first, scope)}) {
return parser::Message{first.name(),
parser::MessageFormattedText{
std::move(*maybeWhyFirst), first.name()}};
}
}
} else if (!evaluate::IsVariable(expr)) {
return parser::Message{
at, "'%s' is not a variable"_en_US, expr.AsFortran()};
} else {
// reference to function returning POINTER
}
return std::nullopt;
}
class ImageControlStmtHelper {
using ImageControlStmts = std::variant<parser::ChangeTeamConstruct,
parser::CriticalConstruct, parser::EventPostStmt, parser::EventWaitStmt,
parser::FormTeamStmt, parser::LockStmt, parser::StopStmt,
parser::SyncAllStmt, parser::SyncImagesStmt, parser::SyncMemoryStmt,
parser::SyncTeamStmt, parser::UnlockStmt>;
public:
template <typename T> bool operator()(const T &) {
return common::HasMember<T, ImageControlStmts>;
}
template <typename T> bool operator()(const common::Indirection<T> &x) {
return (*this)(x.value());
}
bool operator()(const parser::AllocateStmt &stmt) {
const auto &allocationList{std::get<std::list<parser::Allocation>>(stmt.t)};
for (const auto &allocation : allocationList) {
const auto &allocateObject{
std::get<parser::AllocateObject>(allocation.t)};
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::DeallocateStmt &stmt) {
const auto &allocateObjectList{
std::get<std::list<parser::AllocateObject>>(stmt.t)};
for (const auto &allocateObject : allocateObjectList) {
if (IsCoarrayObject(allocateObject)) {
return true;
}
}
return false;
}
bool operator()(const parser::CallStmt &stmt) {
const auto &procedureDesignator{
std::get<parser::ProcedureDesignator>(stmt.v.t)};
if (auto *name{std::get_if<parser::Name>(&procedureDesignator.u)}) {
// TODO: also ensure that the procedure is, in fact, an intrinsic
if (name->source == "move_alloc") {
const auto &args{std::get<std::list<parser::ActualArgSpec>>(stmt.v.t)};
if (!args.empty()) {
const parser::ActualArg &actualArg{
std::get<parser::ActualArg>(args.front().t)};
if (const auto *argExpr{
std::get_if<common::Indirection<parser::Expr>>(
&actualArg.u)}) {
return HasCoarray(argExpr->value());
}
}
}
}
return false;
}
bool operator()(const parser::Statement<parser::ActionStmt> &stmt) {
return std::visit(*this, stmt.statement.u);
}
private:
bool IsCoarrayObject(const parser::AllocateObject &allocateObject) {
const parser::Name &name{GetLastName(allocateObject)};
return name.symbol && IsCoarray(*name.symbol);
}
};
bool IsImageControlStmt(const parser::ExecutableConstruct &construct) {
return std::visit(ImageControlStmtHelper{}, construct.u);
}
std::optional<parser::MessageFixedText> GetImageControlStmtCoarrayMsg(
const parser::ExecutableConstruct &construct) {
if (const auto *actionStmt{
std::get_if<parser::Statement<parser::ActionStmt>>(&construct.u)}) {
return std::visit(
common::visitors{
[](const common::Indirection<parser::AllocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "ALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::DeallocateStmt> &)
-> std::optional<parser::MessageFixedText> {
return "DEALLOCATE of a coarray is an image control"
" statement"_en_US;
},
[](const common::Indirection<parser::CallStmt> &)
-> std::optional<parser::MessageFixedText> {
return "MOVE_ALLOC of a coarray is an image control"
" statement "_en_US;
},
[](const auto &) -> std::optional<parser::MessageFixedText> {
return std::nullopt;
},
},
actionStmt->statement.u);
}
return std::nullopt;
}
parser::CharBlock GetImageControlStmtLocation(
const parser::ExecutableConstruct &executableConstruct) {
return std::visit(
common::visitors{
[](const common::Indirection<parser::ChangeTeamConstruct>
&construct) {
return std::get<parser::Statement<parser::ChangeTeamStmt>>(
construct.value().t)
.source;
},
[](const common::Indirection<parser::CriticalConstruct> &construct) {
return std::get<parser::Statement<parser::CriticalStmt>>(
construct.value().t)
.source;
},
[](const parser::Statement<parser::ActionStmt> &actionStmt) {
return actionStmt.source;
},
[](const auto &) { return parser::CharBlock{}; },
},
executableConstruct.u);
}
bool HasCoarray(const parser::Expr &expression) {
if (const auto *expr{GetExpr(expression)}) {
for (const Symbol &symbol : evaluate::CollectSymbols(*expr)) {
if (IsCoarray(GetAssociationRoot(symbol))) {
return true;
}
}
}
return false;
}
bool IsPolymorphic(const Symbol &symbol) {
if (const DeclTypeSpec * type{symbol.GetType()}) {
return type->IsPolymorphic();
}
return false;
}
bool IsPolymorphicAllocatable(const Symbol &symbol) {
return IsAllocatable(symbol) && IsPolymorphic(symbol);
}
std::optional<parser::MessageFormattedText> CheckAccessibleComponent(
const Scope &scope, const Symbol &symbol) {
CHECK(symbol.owner().IsDerivedType()); // symbol must be a component
if (symbol.attrs().test(Attr::PRIVATE)) {
if (FindModuleFileContaining(scope)) {
// Don't enforce component accessibility checks in module files;
// there may be forward-substituted named constants of derived type
// whose structure constructors reference private components.
} else if (const Scope *
moduleScope{FindModuleContaining(symbol.owner())}) {
if (!moduleScope->Contains(scope)) {
return parser::MessageFormattedText{
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
symbol.name(), moduleScope->GetName().value()};
}
}
}
return std::nullopt;
}
std::list<SourceName> OrderParameterNames(const Symbol &typeSymbol) {
std::list<SourceName> result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterNames(spec->typeSymbol());
}
const auto &paramNames{typeSymbol.get<DerivedTypeDetails>().paramNames()};
result.insert(result.end(), paramNames.begin(), paramNames.end());
return result;
}
SymbolVector OrderParameterDeclarations(const Symbol &typeSymbol) {
SymbolVector result;
if (const DerivedTypeSpec * spec{typeSymbol.GetParentTypeSpec()}) {
result = OrderParameterDeclarations(spec->typeSymbol());
}
const auto &paramDecls{typeSymbol.get<DerivedTypeDetails>().paramDecls()};
result.insert(result.end(), paramDecls.begin(), paramDecls.end());
return result;
}
const DeclTypeSpec &FindOrInstantiateDerivedType(
Scope &scope, DerivedTypeSpec &&spec, DeclTypeSpec::Category category) {
spec.EvaluateParameters(scope.context());
if (const DeclTypeSpec *
type{scope.FindInstantiatedDerivedType(spec, category)}) {
return *type;
}
// Create a new instantiation of this parameterized derived type
// for this particular distinct set of actual parameter values.
DeclTypeSpec &type{scope.MakeDerivedType(category, std::move(spec))};
type.derivedTypeSpec().Instantiate(scope);
return type;
}
const Symbol *FindSeparateModuleSubprogramInterface(const Symbol *proc) {
if (proc) {
if (const Symbol * submodule{proc->owner().symbol()}) {
if (const auto *details{submodule->detailsIf<ModuleDetails>()}) {
if (const Scope * ancestor{details->ancestor()}) {
const Symbol *iface{ancestor->FindSymbol(proc->name())};
if (IsSeparateModuleProcedureInterface(iface)) {
return iface;
}
}
}
}
}
return nullptr;
}
ProcedureDefinitionClass ClassifyProcedure(const Symbol &symbol) { // 15.2.2
const Symbol &ultimate{symbol.GetUltimate()};
if (ultimate.attrs().test(Attr::INTRINSIC)) {
return ProcedureDefinitionClass::Intrinsic;
} else if (ultimate.attrs().test(Attr::EXTERNAL)) {
return ProcedureDefinitionClass::External;
} else if (const auto *procDetails{ultimate.detailsIf<ProcEntityDetails>()}) {
if (procDetails->isDummy()) {
return ProcedureDefinitionClass::Dummy;
} else if (IsPointer(ultimate)) {
return ProcedureDefinitionClass::Pointer;
}
} else if (const Symbol * subp{FindSubprogram(symbol)}) {
if (const auto *subpDetails{subp->detailsIf<SubprogramDetails>()}) {
if (subpDetails->stmtFunction()) {
return ProcedureDefinitionClass::StatementFunction;
}
}
switch (ultimate.owner().kind()) {
case Scope::Kind::Global:
return ProcedureDefinitionClass::External;
case Scope::Kind::Module:
return ProcedureDefinitionClass::Module;
case Scope::Kind::MainProgram:
case Scope::Kind::Subprogram:
return ProcedureDefinitionClass::Internal;
default:
break;
}
}
return ProcedureDefinitionClass::None;
}
// ComponentIterator implementation
template <ComponentKind componentKind>
typename ComponentIterator<componentKind>::const_iterator
ComponentIterator<componentKind>::const_iterator::Create(
const DerivedTypeSpec &derived) {
const_iterator it{};
it.componentPath_.emplace_back(derived);
it.Increment(); // cue up first relevant component, if any
return it;
}
template <ComponentKind componentKind>
const DerivedTypeSpec *
ComponentIterator<componentKind>::const_iterator::PlanComponentTraversal(
const Symbol &component) const {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
if (const DeclTypeSpec * type{details->type()}) {
if (const auto *derived{type->AsDerived()}) {
bool traverse{false};
if constexpr (componentKind == ComponentKind::Ordered) {
// Order Component (only visit parents)
traverse = component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Ultimate) {
traverse = !IsAllocatableOrPointer(component);
} else if constexpr (componentKind == ComponentKind::Potential) {
traverse = !IsPointer(component);
} else if constexpr (componentKind == ComponentKind::Scope) {
traverse = !IsAllocatableOrPointer(component);
}
if (traverse) {
const Symbol &newTypeSymbol{derived->typeSymbol()};
// Avoid infinite loop if the type is already part of the types
// being visited. It is possible to have "loops in type" because
// C744 does not forbid to use not yet declared type for
// ALLOCATABLE or POINTER components.
for (const auto &node : componentPath_) {
if (&newTypeSymbol == &node.GetTypeSymbol()) {
return nullptr;
}
}
return derived;
}
}
} // intrinsic & unlimited polymorphic not traversable
}
return nullptr;
}
template <ComponentKind componentKind>
static bool StopAtComponentPre(const Symbol &component) {
if constexpr (componentKind == ComponentKind::Ordered) {
// Parent components need to be iterated upon after their
// sub-components in structure constructor analysis.
return !component.test(Symbol::Flag::ParentComp);
} else if constexpr (componentKind == ComponentKind::Direct) {
return true;
} else if constexpr (componentKind == ComponentKind::Ultimate) {
return component.has<ProcEntityDetails>() ||
IsAllocatableOrPointer(component) ||
(component.get<ObjectEntityDetails>().type() &&
component.get<ObjectEntityDetails>().type()->AsIntrinsic());
} else if constexpr (componentKind == ComponentKind::Potential) {
return !IsPointer(component);
}
}
template <ComponentKind componentKind>
static bool StopAtComponentPost(const Symbol &component) {
return componentKind == ComponentKind::Ordered &&
component.test(Symbol::Flag::ParentComp);
}
template <ComponentKind componentKind>
void ComponentIterator<componentKind>::const_iterator::Increment() {
while (!componentPath_.empty()) {
ComponentPathNode &deepest{componentPath_.back()};
if (deepest.component()) {
if (!deepest.descended()) {
deepest.set_descended(true);
if (const DerivedTypeSpec *
derived{PlanComponentTraversal(*deepest.component())}) {
componentPath_.emplace_back(*derived);
continue;
}
} else if (!deepest.visited()) {
deepest.set_visited(true);
return; // this is the next component to visit, after descending
}
}
auto &nameIterator{deepest.nameIterator()};
if (nameIterator == deepest.nameEnd()) {
componentPath_.pop_back();
} else if constexpr (componentKind == ComponentKind::Scope) {
deepest.set_component(*nameIterator++->second);
deepest.set_descended(false);
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
const Scope &scope{deepest.GetScope()};
auto scopeIter{scope.find(*nameIterator++)};
if (scopeIter != scope.cend()) {
const Symbol &component{*scopeIter->second};
deepest.set_component(component);
deepest.set_descended(false);
if (StopAtComponentPre<componentKind>(component)) {
deepest.set_visited(true);
return; // this is the next component to visit, before descending
} else {
deepest.set_visited(!StopAtComponentPost<componentKind>(component));
}
}
}
}
}
template <ComponentKind componentKind>
std::string
ComponentIterator<componentKind>::const_iterator::BuildResultDesignatorName()
const {
std::string designator{""};
for (const auto &node : componentPath_) {
designator += "%" + DEREF(node.component()).name().ToString();
}
return designator;
}
template class ComponentIterator<ComponentKind::Ordered>;
template class ComponentIterator<ComponentKind::Direct>;
template class ComponentIterator<ComponentKind::Ultimate>;
template class ComponentIterator<ComponentKind::Potential>;
template class ComponentIterator<ComponentKind::Scope>;
UltimateComponentIterator::const_iterator FindCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsCoarray);
}
UltimateComponentIterator::const_iterator FindPointerUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsPointer);
}
PotentialComponentIterator::const_iterator FindEventOrLockPotentialComponent(
const DerivedTypeSpec &derived) {
PotentialComponentIterator potentials{derived};
return std::find_if(
potentials.begin(), potentials.end(), [](const Symbol &component) {
if (const auto *details{component.detailsIf<ObjectEntityDetails>()}) {
const DeclTypeSpec *type{details->type()};
return type && IsEventTypeOrLockType(type->AsDerived());
}
return false;
});
}
UltimateComponentIterator::const_iterator FindAllocatableUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), IsAllocatable);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableUltimateComponent(const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(
ultimates.begin(), ultimates.end(), IsPolymorphicAllocatable);
}
UltimateComponentIterator::const_iterator
FindPolymorphicAllocatableNonCoarrayUltimateComponent(
const DerivedTypeSpec &derived) {
UltimateComponentIterator ultimates{derived};
return std::find_if(ultimates.begin(), ultimates.end(), [](const Symbol &x) {
return IsPolymorphicAllocatable(x) && !IsCoarray(x);
});
}
const Symbol *FindUltimateComponent(const DerivedTypeSpec &derived,
const std::function<bool(const Symbol &)> &predicate) {
UltimateComponentIterator ultimates{derived};
if (auto it{std::find_if(ultimates.begin(), ultimates.end(),
[&predicate](const Symbol &component) -> bool {
return predicate(component);
})}) {
return &*it;
}
return nullptr;
}
const Symbol *FindUltimateComponent(const Symbol &symbol,
const std::function<bool(const Symbol &)> &predicate) {
if (predicate(symbol)) {
return &symbol;
} else if (const auto *object{symbol.detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindUltimateComponent(*derived, predicate);
}
}
}
return nullptr;
}
const Symbol *FindImmediateComponent(const DerivedTypeSpec &type,
const std::function<bool(const Symbol &)> &predicate) {
if (const Scope * scope{type.scope()}) {
const Symbol *parent{nullptr};
for (const auto &pair : *scope) {
const Symbol *symbol{&*pair.second};
if (predicate(*symbol)) {
return symbol;
}
if (symbol->test(Symbol::Flag::ParentComp)) {
parent = symbol;
}
}
if (parent) {
if (const auto *object{parent->detailsIf<ObjectEntityDetails>()}) {
if (const auto *type{object->type()}) {
if (const auto *derived{type->AsDerived()}) {
return FindImmediateComponent(*derived, predicate);
}
}
}
}
}
return nullptr;
}
bool IsFunctionResultWithSameNameAsFunction(const Symbol &symbol) {
if (IsFunctionResult(symbol)) {
if (const Symbol * function{symbol.owner().symbol()}) {
return symbol.name() == function->name();
}
}
return false;
}
void LabelEnforce::Post(const parser::GotoStmt &gotoStmt) {
checkLabelUse(gotoStmt.v);
}
void LabelEnforce::Post(const parser::ComputedGotoStmt &computedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(computedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::ArithmeticIfStmt &arithmeticIfStmt) {
checkLabelUse(std::get<1>(arithmeticIfStmt.t));
checkLabelUse(std::get<2>(arithmeticIfStmt.t));
checkLabelUse(std::get<3>(arithmeticIfStmt.t));
}
void LabelEnforce::Post(const parser::AssignStmt &assignStmt) {
checkLabelUse(std::get<parser::Label>(assignStmt.t));
}
void LabelEnforce::Post(const parser::AssignedGotoStmt &assignedGotoStmt) {
for (auto &i : std::get<std::list<parser::Label>>(assignedGotoStmt.t)) {
checkLabelUse(i);
}
}
void LabelEnforce::Post(const parser::AltReturnSpec &altReturnSpec) {
checkLabelUse(altReturnSpec.v);
}
void LabelEnforce::Post(const parser::ErrLabel &errLabel) {
checkLabelUse(errLabel.v);
}
void LabelEnforce::Post(const parser::EndLabel &endLabel) {
checkLabelUse(endLabel.v);
}
void LabelEnforce::Post(const parser::EorLabel &eorLabel) {
checkLabelUse(eorLabel.v);
}
void LabelEnforce::checkLabelUse(const parser::Label &labelUsed) {
if (labels_.find(labelUsed) == labels_.end()) {
SayWithConstruct(context_, currentStatementSourcePosition_,
parser::MessageFormattedText{
"Control flow escapes from %s"_err_en_US, construct_},
constructSourcePosition_);
}
}
parser::MessageFormattedText LabelEnforce::GetEnclosingConstructMsg() {
return {"Enclosing %s statement"_en_US, construct_};
}
void LabelEnforce::SayWithConstruct(SemanticsContext &context,
parser::CharBlock stmtLocation, parser::MessageFormattedText &&message,
parser::CharBlock constructLocation) {
context.Say(stmtLocation, message)
.Attach(constructLocation, GetEnclosingConstructMsg());
}
bool HasAlternateReturns(const Symbol &subprogram) {
for (const auto *dummyArg : subprogram.get<SubprogramDetails>().dummyArgs()) {
if (!dummyArg) {
return true;
}
}
return false;
}
bool InCommonBlock(const Symbol &symbol) {
const auto *details{symbol.detailsIf<ObjectEntityDetails>()};
return details && details->commonBlock();
}
const std::optional<parser::Name> &MaybeGetNodeName(
const ConstructNode &construct) {
return std::visit(
common::visitors{
[&](const parser::BlockConstruct *blockConstruct)
-> const std::optional<parser::Name> & {
return std::get<0>(blockConstruct->t).statement.v;
},
[&](const auto *a) -> const std::optional<parser::Name> & {
return std::get<0>(std::get<0>(a->t).statement.t);
},
},
construct);
}
std::optional<ArraySpec> ToArraySpec(
evaluate::FoldingContext &context, const evaluate::Shape &shape) {
if (auto extents{evaluate::AsConstantExtents(context, shape)}) {
ArraySpec result;
for (const auto &extent : *extents) {
result.emplace_back(ShapeSpec::MakeExplicit(Bound{extent}));
}
return {std::move(result)};
} else {
return std::nullopt;
}
}
std::optional<ArraySpec> ToArraySpec(evaluate::FoldingContext &context,
const std::optional<evaluate::Shape> &shape) {
return shape ? ToArraySpec(context, *shape) : std::nullopt;
}
} // namespace Fortran::semantics