llvm-project/llvm/lib/Target/RISCV/RISCVInstrInfo.cpp

1437 lines
50 KiB
C++

//===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "RISCVInstrInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCV.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/MC/MCInstBuilder.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
#define GEN_CHECK_COMPRESS_INSTR
#include "RISCVGenCompressInstEmitter.inc"
#define GET_INSTRINFO_CTOR_DTOR
#include "RISCVGenInstrInfo.inc"
namespace llvm {
namespace RISCVVPseudosTable {
using namespace RISCV;
#define GET_RISCVVPseudosTable_IMPL
#include "RISCVGenSearchableTables.inc"
} // namespace RISCVVPseudosTable
} // namespace llvm
RISCVInstrInfo::RISCVInstrInfo(RISCVSubtarget &STI)
: RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP),
STI(STI) {}
MCInst RISCVInstrInfo::getNop() const {
if (STI.getFeatureBits()[RISCV::FeatureStdExtC])
return MCInstBuilder(RISCV::C_NOP);
return MCInstBuilder(RISCV::ADDI)
.addReg(RISCV::X0)
.addReg(RISCV::X0)
.addImm(0);
}
unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
switch (MI.getOpcode()) {
default:
return 0;
case RISCV::LB:
case RISCV::LBU:
case RISCV::LH:
case RISCV::LHU:
case RISCV::FLH:
case RISCV::LW:
case RISCV::FLW:
case RISCV::LWU:
case RISCV::LD:
case RISCV::FLD:
break;
}
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
return 0;
}
unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const {
switch (MI.getOpcode()) {
default:
return 0;
case RISCV::SB:
case RISCV::SH:
case RISCV::SW:
case RISCV::FSH:
case RISCV::FSW:
case RISCV::SD:
case RISCV::FSD:
break;
}
if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0) {
FrameIndex = MI.getOperand(1).getIndex();
return MI.getOperand(0).getReg();
}
return 0;
}
static bool forwardCopyWillClobberTuple(unsigned DstReg, unsigned SrcReg,
unsigned NumRegs) {
// We really want the positive remainder mod 32 here, that happens to be
// easily obtainable with a mask.
return ((DstReg - SrcReg) & 0x1f) < NumRegs;
}
void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, MCRegister DstReg,
MCRegister SrcReg, bool KillSrc) const {
if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc))
.addImm(0);
return;
}
// FPR->FPR copies and VR->VR copies.
unsigned Opc;
bool IsScalableVector = true;
unsigned NF = 1;
unsigned LMul = 1;
unsigned SubRegIdx = RISCV::sub_vrm1_0;
if (RISCV::FPR16RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::FSGNJ_H;
IsScalableVector = false;
} else if (RISCV::FPR32RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::FSGNJ_S;
IsScalableVector = false;
} else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::FSGNJ_D;
IsScalableVector = false;
} else if (RISCV::VRRegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
} else if (RISCV::VRM2RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV2R_V;
} else if (RISCV::VRM4RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV4R_V;
} else if (RISCV::VRM8RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV8R_V;
} else if (RISCV::VRN2M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 2;
LMul = 1;
} else if (RISCV::VRN2M2RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV2R_V;
SubRegIdx = RISCV::sub_vrm2_0;
NF = 2;
LMul = 2;
} else if (RISCV::VRN2M4RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV4R_V;
SubRegIdx = RISCV::sub_vrm4_0;
NF = 2;
LMul = 4;
} else if (RISCV::VRN3M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 3;
LMul = 1;
} else if (RISCV::VRN3M2RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV2R_V;
SubRegIdx = RISCV::sub_vrm2_0;
NF = 3;
LMul = 2;
} else if (RISCV::VRN4M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 4;
LMul = 1;
} else if (RISCV::VRN4M2RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV2R_V;
SubRegIdx = RISCV::sub_vrm2_0;
NF = 4;
LMul = 2;
} else if (RISCV::VRN5M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 5;
LMul = 1;
} else if (RISCV::VRN6M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 6;
LMul = 1;
} else if (RISCV::VRN7M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 7;
LMul = 1;
} else if (RISCV::VRN8M1RegClass.contains(DstReg, SrcReg)) {
Opc = RISCV::PseudoVMV1R_V;
SubRegIdx = RISCV::sub_vrm1_0;
NF = 8;
LMul = 1;
} else {
llvm_unreachable("Impossible reg-to-reg copy");
}
if (IsScalableVector) {
if (NF == 1) {
BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc));
} else {
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
int I = 0, End = NF, Incr = 1;
unsigned SrcEncoding = TRI->getEncodingValue(SrcReg);
unsigned DstEncoding = TRI->getEncodingValue(DstReg);
if (forwardCopyWillClobberTuple(DstEncoding, SrcEncoding, NF * LMul)) {
I = NF - 1;
End = -1;
Incr = -1;
}
for (; I != End; I += Incr) {
BuildMI(MBB, MBBI, DL, get(Opc), TRI->getSubReg(DstReg, SubRegIdx + I))
.addReg(TRI->getSubReg(SrcReg, SubRegIdx + I),
getKillRegState(KillSrc));
}
}
} else {
BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
.addReg(SrcReg, getKillRegState(KillSrc))
.addReg(SrcReg, getKillRegState(KillSrc));
}
}
void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register SrcReg, bool IsKill, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
MachineFunction *MF = MBB.getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
unsigned Opcode;
bool IsScalableVector = true;
bool IsZvlsseg = true;
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
RISCV::SW : RISCV::SD;
IsScalableVector = false;
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FSH;
IsScalableVector = false;
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FSW;
IsScalableVector = false;
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FSD;
IsScalableVector = false;
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVSPILL_M1;
IsZvlsseg = false;
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVSPILL_M2;
IsZvlsseg = false;
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVSPILL_M4;
IsZvlsseg = false;
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVSPILL_M8;
IsZvlsseg = false;
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL2_M1;
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL2_M2;
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL2_M4;
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL3_M1;
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL3_M2;
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL4_M1;
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL4_M2;
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL5_M1;
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL6_M1;
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL7_M1;
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVSPILL8_M1;
else
llvm_unreachable("Can't store this register to stack slot");
if (IsScalableVector) {
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
MFI.setStackID(FI, TargetStackID::ScalableVector);
auto MIB = BuildMI(MBB, I, DL, get(Opcode))
.addReg(SrcReg, getKillRegState(IsKill))
.addFrameIndex(FI)
.addMemOperand(MMO);
if (IsZvlsseg) {
// For spilling/reloading Zvlsseg registers, append the dummy field for
// the scaled vector length. The argument will be used when expanding
// these pseudo instructions.
MIB.addReg(RISCV::X0);
}
} else {
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOStore,
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
BuildMI(MBB, I, DL, get(Opcode))
.addReg(SrcReg, getKillRegState(IsKill))
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
}
}
void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
Register DstReg, int FI,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const {
DebugLoc DL;
if (I != MBB.end())
DL = I->getDebugLoc();
MachineFunction *MF = MBB.getParent();
MachineFrameInfo &MFI = MF->getFrameInfo();
unsigned Opcode;
bool IsScalableVector = true;
bool IsZvlsseg = true;
if (RISCV::GPRRegClass.hasSubClassEq(RC)) {
Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
RISCV::LW : RISCV::LD;
IsScalableVector = false;
} else if (RISCV::FPR16RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FLH;
IsScalableVector = false;
} else if (RISCV::FPR32RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FLW;
IsScalableVector = false;
} else if (RISCV::FPR64RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::FLD;
IsScalableVector = false;
} else if (RISCV::VRRegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVRELOAD_M1;
IsZvlsseg = false;
} else if (RISCV::VRM2RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVRELOAD_M2;
IsZvlsseg = false;
} else if (RISCV::VRM4RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVRELOAD_M4;
IsZvlsseg = false;
} else if (RISCV::VRM8RegClass.hasSubClassEq(RC)) {
Opcode = RISCV::PseudoVRELOAD_M8;
IsZvlsseg = false;
} else if (RISCV::VRN2M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD2_M1;
else if (RISCV::VRN2M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD2_M2;
else if (RISCV::VRN2M4RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD2_M4;
else if (RISCV::VRN3M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD3_M1;
else if (RISCV::VRN3M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD3_M2;
else if (RISCV::VRN4M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD4_M1;
else if (RISCV::VRN4M2RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD4_M2;
else if (RISCV::VRN5M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD5_M1;
else if (RISCV::VRN6M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD6_M1;
else if (RISCV::VRN7M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD7_M1;
else if (RISCV::VRN8M1RegClass.hasSubClassEq(RC))
Opcode = RISCV::PseudoVRELOAD8_M1;
else
llvm_unreachable("Can't load this register from stack slot");
if (IsScalableVector) {
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
MemoryLocation::UnknownSize, MFI.getObjectAlign(FI));
MFI.setStackID(FI, TargetStackID::ScalableVector);
auto MIB = BuildMI(MBB, I, DL, get(Opcode), DstReg)
.addFrameIndex(FI)
.addMemOperand(MMO);
if (IsZvlsseg) {
// For spilling/reloading Zvlsseg registers, append the dummy field for
// the scaled vector length. The argument will be used when expanding
// these pseudo instructions.
MIB.addReg(RISCV::X0);
}
} else {
MachineMemOperand *MMO = MF->getMachineMemOperand(
MachinePointerInfo::getFixedStack(*MF, FI), MachineMemOperand::MOLoad,
MFI.getObjectSize(FI), MFI.getObjectAlign(FI));
BuildMI(MBB, I, DL, get(Opcode), DstReg)
.addFrameIndex(FI)
.addImm(0)
.addMemOperand(MMO);
}
}
void RISCVInstrInfo::movImm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, Register DstReg, uint64_t Val,
MachineInstr::MIFlag Flag) const {
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
bool IsRV64 = MF->getSubtarget<RISCVSubtarget>().is64Bit();
Register SrcReg = RISCV::X0;
Register Result = MRI.createVirtualRegister(&RISCV::GPRRegClass);
unsigned Num = 0;
if (!IsRV64 && !isInt<32>(Val))
report_fatal_error("Should only materialize 32-bit constants for RV32");
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Val, IsRV64);
assert(Seq.size() > 0);
for (RISCVMatInt::Inst &Inst : Seq) {
// Write the final result to DstReg if it's the last instruction in the Seq.
// Otherwise, write the result to the temp register.
if (++Num == Seq.size())
Result = DstReg;
if (Inst.Opc == RISCV::LUI) {
BuildMI(MBB, MBBI, DL, get(RISCV::LUI), Result)
.addImm(Inst.Imm)
.setMIFlag(Flag);
} else {
BuildMI(MBB, MBBI, DL, get(Inst.Opc), Result)
.addReg(SrcReg, RegState::Kill)
.addImm(Inst.Imm)
.setMIFlag(Flag);
}
// Only the first instruction has X0 as its source.
SrcReg = Result;
}
}
// The contents of values added to Cond are not examined outside of
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
// push BranchOpcode, Reg1, Reg2.
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
SmallVectorImpl<MachineOperand> &Cond) {
// Block ends with fall-through condbranch.
assert(LastInst.getDesc().isConditionalBranch() &&
"Unknown conditional branch");
Target = LastInst.getOperand(2).getMBB();
Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
Cond.push_back(LastInst.getOperand(0));
Cond.push_back(LastInst.getOperand(1));
}
static unsigned getOppositeBranchOpcode(int Opc) {
switch (Opc) {
default:
llvm_unreachable("Unrecognized conditional branch");
case RISCV::BEQ:
return RISCV::BNE;
case RISCV::BNE:
return RISCV::BEQ;
case RISCV::BLT:
return RISCV::BGE;
case RISCV::BGE:
return RISCV::BLT;
case RISCV::BLTU:
return RISCV::BGEU;
case RISCV::BGEU:
return RISCV::BLTU;
}
}
bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
TBB = FBB = nullptr;
Cond.clear();
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end() || !isUnpredicatedTerminator(*I))
return false;
// Count the number of terminators and find the first unconditional or
// indirect branch.
MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
int NumTerminators = 0;
for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
J++) {
NumTerminators++;
if (J->getDesc().isUnconditionalBranch() ||
J->getDesc().isIndirectBranch()) {
FirstUncondOrIndirectBr = J.getReverse();
}
}
// If AllowModify is true, we can erase any terminators after
// FirstUncondOrIndirectBR.
if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
std::next(FirstUncondOrIndirectBr)->eraseFromParent();
NumTerminators--;
}
I = FirstUncondOrIndirectBr;
}
// We can't handle blocks that end in an indirect branch.
if (I->getDesc().isIndirectBranch())
return true;
// We can't handle blocks with more than 2 terminators.
if (NumTerminators > 2)
return true;
// Handle a single unconditional branch.
if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
TBB = getBranchDestBlock(*I);
return false;
}
// Handle a single conditional branch.
if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
parseCondBranch(*I, TBB, Cond);
return false;
}
// Handle a conditional branch followed by an unconditional branch.
if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
I->getDesc().isUnconditionalBranch()) {
parseCondBranch(*std::prev(I), TBB, Cond);
FBB = getBranchDestBlock(*I);
return false;
}
// Otherwise, we can't handle this.
return true;
}
unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
if (BytesRemoved)
*BytesRemoved = 0;
MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
if (I == MBB.end())
return 0;
if (!I->getDesc().isUnconditionalBranch() &&
!I->getDesc().isConditionalBranch())
return 0;
// Remove the branch.
if (BytesRemoved)
*BytesRemoved += getInstSizeInBytes(*I);
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin())
return 1;
--I;
if (!I->getDesc().isConditionalBranch())
return 1;
// Remove the branch.
if (BytesRemoved)
*BytesRemoved += getInstSizeInBytes(*I);
I->eraseFromParent();
return 2;
}
// Inserts a branch into the end of the specific MachineBasicBlock, returning
// the number of instructions inserted.
unsigned RISCVInstrInfo::insertBranch(
MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
if (BytesAdded)
*BytesAdded = 0;
// Shouldn't be a fall through.
assert(TBB && "insertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 3 || Cond.size() == 0) &&
"RISCV branch conditions have two components!");
// Unconditional branch.
if (Cond.empty()) {
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
if (BytesAdded)
*BytesAdded += getInstSizeInBytes(MI);
return 1;
}
// Either a one or two-way conditional branch.
unsigned Opc = Cond[0].getImm();
MachineInstr &CondMI =
*BuildMI(&MBB, DL, get(Opc)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
if (BytesAdded)
*BytesAdded += getInstSizeInBytes(CondMI);
// One-way conditional branch.
if (!FBB)
return 1;
// Two-way conditional branch.
MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
if (BytesAdded)
*BytesAdded += getInstSizeInBytes(MI);
return 2;
}
unsigned RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
MachineBasicBlock &DestBB,
const DebugLoc &DL,
int64_t BrOffset,
RegScavenger *RS) const {
assert(RS && "RegScavenger required for long branching");
assert(MBB.empty() &&
"new block should be inserted for expanding unconditional branch");
assert(MBB.pred_size() == 1);
MachineFunction *MF = MBB.getParent();
MachineRegisterInfo &MRI = MF->getRegInfo();
if (!isInt<32>(BrOffset))
report_fatal_error(
"Branch offsets outside of the signed 32-bit range not supported");
// FIXME: A virtual register must be used initially, as the register
// scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
// uses the same workaround).
Register ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
auto II = MBB.end();
MachineInstr &MI = *BuildMI(MBB, II, DL, get(RISCV::PseudoJump))
.addReg(ScratchReg, RegState::Define | RegState::Dead)
.addMBB(&DestBB, RISCVII::MO_CALL);
RS->enterBasicBlockEnd(MBB);
unsigned Scav = RS->scavengeRegisterBackwards(RISCV::GPRRegClass,
MI.getIterator(), false, 0);
MRI.replaceRegWith(ScratchReg, Scav);
MRI.clearVirtRegs();
RS->setRegUsed(Scav);
return 8;
}
bool RISCVInstrInfo::reverseBranchCondition(
SmallVectorImpl<MachineOperand> &Cond) const {
assert((Cond.size() == 3) && "Invalid branch condition!");
Cond[0].setImm(getOppositeBranchOpcode(Cond[0].getImm()));
return false;
}
MachineBasicBlock *
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
assert(MI.getDesc().isBranch() && "Unexpected opcode!");
// The branch target is always the last operand.
int NumOp = MI.getNumExplicitOperands();
return MI.getOperand(NumOp - 1).getMBB();
}
bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
int64_t BrOffset) const {
unsigned XLen = STI.getXLen();
// Ideally we could determine the supported branch offset from the
// RISCVII::FormMask, but this can't be used for Pseudo instructions like
// PseudoBR.
switch (BranchOp) {
default:
llvm_unreachable("Unexpected opcode!");
case RISCV::BEQ:
case RISCV::BNE:
case RISCV::BLT:
case RISCV::BGE:
case RISCV::BLTU:
case RISCV::BGEU:
return isIntN(13, BrOffset);
case RISCV::JAL:
case RISCV::PseudoBR:
return isIntN(21, BrOffset);
case RISCV::PseudoJump:
return isIntN(32, SignExtend64(BrOffset + 0x800, XLen));
}
}
unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default: {
if (MI.getParent() && MI.getParent()->getParent()) {
const auto MF = MI.getMF();
const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
const MCRegisterInfo &MRI = *TM.getMCRegisterInfo();
const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
const RISCVSubtarget &ST = MF->getSubtarget<RISCVSubtarget>();
if (isCompressibleInst(MI, &ST, MRI, STI))
return 2;
}
return get(Opcode).getSize();
}
case TargetOpcode::EH_LABEL:
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
case TargetOpcode::DBG_VALUE:
return 0;
// These values are determined based on RISCVExpandAtomicPseudoInsts,
// RISCVExpandPseudoInsts and RISCVMCCodeEmitter, depending on where the
// pseudos are expanded.
case RISCV::PseudoCALLReg:
case RISCV::PseudoCALL:
case RISCV::PseudoJump:
case RISCV::PseudoTAIL:
case RISCV::PseudoLLA:
case RISCV::PseudoLA:
case RISCV::PseudoLA_TLS_IE:
case RISCV::PseudoLA_TLS_GD:
return 8;
case RISCV::PseudoAtomicLoadNand32:
case RISCV::PseudoAtomicLoadNand64:
return 20;
case RISCV::PseudoMaskedAtomicSwap32:
case RISCV::PseudoMaskedAtomicLoadAdd32:
case RISCV::PseudoMaskedAtomicLoadSub32:
return 28;
case RISCV::PseudoMaskedAtomicLoadNand32:
return 32;
case RISCV::PseudoMaskedAtomicLoadMax32:
case RISCV::PseudoMaskedAtomicLoadMin32:
return 44;
case RISCV::PseudoMaskedAtomicLoadUMax32:
case RISCV::PseudoMaskedAtomicLoadUMin32:
return 36;
case RISCV::PseudoCmpXchg32:
case RISCV::PseudoCmpXchg64:
return 16;
case RISCV::PseudoMaskedCmpXchg32:
return 32;
case TargetOpcode::INLINEASM:
case TargetOpcode::INLINEASM_BR: {
const MachineFunction &MF = *MI.getParent()->getParent();
const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
*TM.getMCAsmInfo());
}
case RISCV::PseudoVSPILL2_M1:
case RISCV::PseudoVSPILL2_M2:
case RISCV::PseudoVSPILL2_M4:
case RISCV::PseudoVSPILL3_M1:
case RISCV::PseudoVSPILL3_M2:
case RISCV::PseudoVSPILL4_M1:
case RISCV::PseudoVSPILL4_M2:
case RISCV::PseudoVSPILL5_M1:
case RISCV::PseudoVSPILL6_M1:
case RISCV::PseudoVSPILL7_M1:
case RISCV::PseudoVSPILL8_M1:
case RISCV::PseudoVRELOAD2_M1:
case RISCV::PseudoVRELOAD2_M2:
case RISCV::PseudoVRELOAD2_M4:
case RISCV::PseudoVRELOAD3_M1:
case RISCV::PseudoVRELOAD3_M2:
case RISCV::PseudoVRELOAD4_M1:
case RISCV::PseudoVRELOAD4_M2:
case RISCV::PseudoVRELOAD5_M1:
case RISCV::PseudoVRELOAD6_M1:
case RISCV::PseudoVRELOAD7_M1:
case RISCV::PseudoVRELOAD8_M1: {
// The values are determined based on expandVSPILL and expandVRELOAD that
// expand the pseudos depending on NF.
unsigned NF = isRVVSpillForZvlsseg(Opcode)->first;
return 4 * (2 * NF - 1);
}
}
}
bool RISCVInstrInfo::isAsCheapAsAMove(const MachineInstr &MI) const {
const unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
break;
case RISCV::FSGNJ_D:
case RISCV::FSGNJ_S:
// The canonical floating-point move is fsgnj rd, rs, rs.
return MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
MI.getOperand(1).getReg() == MI.getOperand(2).getReg();
case RISCV::ADDI:
case RISCV::ORI:
case RISCV::XORI:
return (MI.getOperand(1).isReg() &&
MI.getOperand(1).getReg() == RISCV::X0) ||
(MI.getOperand(2).isImm() && MI.getOperand(2).getImm() == 0);
}
return MI.isAsCheapAsAMove();
}
Optional<DestSourcePair>
RISCVInstrInfo::isCopyInstrImpl(const MachineInstr &MI) const {
if (MI.isMoveReg())
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
switch (MI.getOpcode()) {
default:
break;
case RISCV::ADDI:
// Operand 1 can be a frameindex but callers expect registers
if (MI.getOperand(1).isReg() && MI.getOperand(2).isImm() &&
MI.getOperand(2).getImm() == 0)
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
break;
case RISCV::FSGNJ_D:
case RISCV::FSGNJ_S:
// The canonical floating-point move is fsgnj rd, rs, rs.
if (MI.getOperand(1).isReg() && MI.getOperand(2).isReg() &&
MI.getOperand(1).getReg() == MI.getOperand(2).getReg())
return DestSourcePair{MI.getOperand(0), MI.getOperand(1)};
break;
}
return None;
}
bool RISCVInstrInfo::verifyInstruction(const MachineInstr &MI,
StringRef &ErrInfo) const {
const MCInstrInfo *MCII = STI.getInstrInfo();
MCInstrDesc const &Desc = MCII->get(MI.getOpcode());
for (auto &OI : enumerate(Desc.operands())) {
unsigned OpType = OI.value().OperandType;
if (OpType >= RISCVOp::OPERAND_FIRST_RISCV_IMM &&
OpType <= RISCVOp::OPERAND_LAST_RISCV_IMM) {
const MachineOperand &MO = MI.getOperand(OI.index());
if (MO.isImm()) {
int64_t Imm = MO.getImm();
bool Ok;
switch (OpType) {
default:
llvm_unreachable("Unexpected operand type");
case RISCVOp::OPERAND_UIMM4:
Ok = isUInt<4>(Imm);
break;
case RISCVOp::OPERAND_UIMM5:
Ok = isUInt<5>(Imm);
break;
case RISCVOp::OPERAND_UIMM12:
Ok = isUInt<12>(Imm);
break;
case RISCVOp::OPERAND_SIMM12:
Ok = isInt<12>(Imm);
break;
case RISCVOp::OPERAND_UIMM20:
Ok = isUInt<20>(Imm);
break;
case RISCVOp::OPERAND_UIMMLOG2XLEN:
if (STI.getTargetTriple().isArch64Bit())
Ok = isUInt<6>(Imm);
else
Ok = isUInt<5>(Imm);
break;
}
if (!Ok) {
ErrInfo = "Invalid immediate";
return false;
}
}
}
}
return true;
}
// Return true if get the base operand, byte offset of an instruction and the
// memory width. Width is the size of memory that is being loaded/stored.
bool RISCVInstrInfo::getMemOperandWithOffsetWidth(
const MachineInstr &LdSt, const MachineOperand *&BaseReg, int64_t &Offset,
unsigned &Width, const TargetRegisterInfo *TRI) const {
if (!LdSt.mayLoadOrStore())
return false;
// Here we assume the standard RISC-V ISA, which uses a base+offset
// addressing mode. You'll need to relax these conditions to support custom
// load/stores instructions.
if (LdSt.getNumExplicitOperands() != 3)
return false;
if (!LdSt.getOperand(1).isReg() || !LdSt.getOperand(2).isImm())
return false;
if (!LdSt.hasOneMemOperand())
return false;
Width = (*LdSt.memoperands_begin())->getSize();
BaseReg = &LdSt.getOperand(1);
Offset = LdSt.getOperand(2).getImm();
return true;
}
bool RISCVInstrInfo::areMemAccessesTriviallyDisjoint(
const MachineInstr &MIa, const MachineInstr &MIb) const {
assert(MIa.mayLoadOrStore() && "MIa must be a load or store.");
assert(MIb.mayLoadOrStore() && "MIb must be a load or store.");
if (MIa.hasUnmodeledSideEffects() || MIb.hasUnmodeledSideEffects() ||
MIa.hasOrderedMemoryRef() || MIb.hasOrderedMemoryRef())
return false;
// Retrieve the base register, offset from the base register and width. Width
// is the size of memory that is being loaded/stored (e.g. 1, 2, 4). If
// base registers are identical, and the offset of a lower memory access +
// the width doesn't overlap the offset of a higher memory access,
// then the memory accesses are different.
const TargetRegisterInfo *TRI = STI.getRegisterInfo();
const MachineOperand *BaseOpA = nullptr, *BaseOpB = nullptr;
int64_t OffsetA = 0, OffsetB = 0;
unsigned int WidthA = 0, WidthB = 0;
if (getMemOperandWithOffsetWidth(MIa, BaseOpA, OffsetA, WidthA, TRI) &&
getMemOperandWithOffsetWidth(MIb, BaseOpB, OffsetB, WidthB, TRI)) {
if (BaseOpA->isIdenticalTo(*BaseOpB)) {
int LowOffset = std::min(OffsetA, OffsetB);
int HighOffset = std::max(OffsetA, OffsetB);
int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB;
if (LowOffset + LowWidth <= HighOffset)
return true;
}
}
return false;
}
std::pair<unsigned, unsigned>
RISCVInstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const {
const unsigned Mask = RISCVII::MO_DIRECT_FLAG_MASK;
return std::make_pair(TF & Mask, TF & ~Mask);
}
ArrayRef<std::pair<unsigned, const char *>>
RISCVInstrInfo::getSerializableDirectMachineOperandTargetFlags() const {
using namespace RISCVII;
static const std::pair<unsigned, const char *> TargetFlags[] = {
{MO_CALL, "riscv-call"},
{MO_PLT, "riscv-plt"},
{MO_LO, "riscv-lo"},
{MO_HI, "riscv-hi"},
{MO_PCREL_LO, "riscv-pcrel-lo"},
{MO_PCREL_HI, "riscv-pcrel-hi"},
{MO_GOT_HI, "riscv-got-hi"},
{MO_TPREL_LO, "riscv-tprel-lo"},
{MO_TPREL_HI, "riscv-tprel-hi"},
{MO_TPREL_ADD, "riscv-tprel-add"},
{MO_TLS_GOT_HI, "riscv-tls-got-hi"},
{MO_TLS_GD_HI, "riscv-tls-gd-hi"}};
return makeArrayRef(TargetFlags);
}
bool RISCVInstrInfo::isFunctionSafeToOutlineFrom(
MachineFunction &MF, bool OutlineFromLinkOnceODRs) const {
const Function &F = MF.getFunction();
// Can F be deduplicated by the linker? If it can, don't outline from it.
if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage())
return false;
// Don't outline from functions with section markings; the program could
// expect that all the code is in the named section.
if (F.hasSection())
return false;
// It's safe to outline from MF.
return true;
}
bool RISCVInstrInfo::isMBBSafeToOutlineFrom(MachineBasicBlock &MBB,
unsigned &Flags) const {
// More accurate safety checking is done in getOutliningCandidateInfo.
return true;
}
// Enum values indicating how an outlined call should be constructed.
enum MachineOutlinerConstructionID {
MachineOutlinerDefault
};
outliner::OutlinedFunction RISCVInstrInfo::getOutliningCandidateInfo(
std::vector<outliner::Candidate> &RepeatedSequenceLocs) const {
// First we need to filter out candidates where the X5 register (IE t0) can't
// be used to setup the function call.
auto CannotInsertCall = [](outliner::Candidate &C) {
const TargetRegisterInfo *TRI = C.getMF()->getSubtarget().getRegisterInfo();
C.initLRU(*TRI);
LiveRegUnits LRU = C.LRU;
return !LRU.available(RISCV::X5);
};
llvm::erase_if(RepeatedSequenceLocs, CannotInsertCall);
// If the sequence doesn't have enough candidates left, then we're done.
if (RepeatedSequenceLocs.size() < 2)
return outliner::OutlinedFunction();
unsigned SequenceSize = 0;
auto I = RepeatedSequenceLocs[0].front();
auto E = std::next(RepeatedSequenceLocs[0].back());
for (; I != E; ++I)
SequenceSize += getInstSizeInBytes(*I);
// call t0, function = 8 bytes.
unsigned CallOverhead = 8;
for (auto &C : RepeatedSequenceLocs)
C.setCallInfo(MachineOutlinerDefault, CallOverhead);
// jr t0 = 4 bytes, 2 bytes if compressed instructions are enabled.
unsigned FrameOverhead = 4;
if (RepeatedSequenceLocs[0].getMF()->getSubtarget()
.getFeatureBits()[RISCV::FeatureStdExtC])
FrameOverhead = 2;
return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize,
FrameOverhead, MachineOutlinerDefault);
}
outliner::InstrType
RISCVInstrInfo::getOutliningType(MachineBasicBlock::iterator &MBBI,
unsigned Flags) const {
MachineInstr &MI = *MBBI;
MachineBasicBlock *MBB = MI.getParent();
const TargetRegisterInfo *TRI =
MBB->getParent()->getSubtarget().getRegisterInfo();
// Positions generally can't safely be outlined.
if (MI.isPosition()) {
// We can manually strip out CFI instructions later.
if (MI.isCFIInstruction())
return outliner::InstrType::Invisible;
return outliner::InstrType::Illegal;
}
// Don't trust the user to write safe inline assembly.
if (MI.isInlineAsm())
return outliner::InstrType::Illegal;
// We can't outline branches to other basic blocks.
if (MI.isTerminator() && !MBB->succ_empty())
return outliner::InstrType::Illegal;
// We need support for tail calls to outlined functions before return
// statements can be allowed.
if (MI.isReturn())
return outliner::InstrType::Illegal;
// Don't allow modifying the X5 register which we use for return addresses for
// these outlined functions.
if (MI.modifiesRegister(RISCV::X5, TRI) ||
MI.getDesc().hasImplicitDefOfPhysReg(RISCV::X5))
return outliner::InstrType::Illegal;
// Make sure the operands don't reference something unsafe.
for (const auto &MO : MI.operands())
if (MO.isMBB() || MO.isBlockAddress() || MO.isCPI())
return outliner::InstrType::Illegal;
// Don't allow instructions which won't be materialized to impact outlining
// analysis.
if (MI.isMetaInstruction())
return outliner::InstrType::Invisible;
return outliner::InstrType::Legal;
}
void RISCVInstrInfo::buildOutlinedFrame(
MachineBasicBlock &MBB, MachineFunction &MF,
const outliner::OutlinedFunction &OF) const {
// Strip out any CFI instructions
bool Changed = true;
while (Changed) {
Changed = false;
auto I = MBB.begin();
auto E = MBB.end();
for (; I != E; ++I) {
if (I->isCFIInstruction()) {
I->removeFromParent();
Changed = true;
break;
}
}
}
MBB.addLiveIn(RISCV::X5);
// Add in a return instruction to the end of the outlined frame.
MBB.insert(MBB.end(), BuildMI(MF, DebugLoc(), get(RISCV::JALR))
.addReg(RISCV::X0, RegState::Define)
.addReg(RISCV::X5)
.addImm(0));
}
MachineBasicBlock::iterator RISCVInstrInfo::insertOutlinedCall(
Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It,
MachineFunction &MF, const outliner::Candidate &C) const {
// Add in a call instruction to the outlined function at the given location.
It = MBB.insert(It,
BuildMI(MF, DebugLoc(), get(RISCV::PseudoCALLReg), RISCV::X5)
.addGlobalAddress(M.getNamedValue(MF.getName()), 0,
RISCVII::MO_CALL));
return It;
}
// clang-format off
#define CASE_VFMA_OPCODE_COMMON(OP, TYPE, LMUL) \
RISCV::PseudoV##OP##_##TYPE##_##LMUL##_COMMUTABLE
#define CASE_VFMA_OPCODE_LMULS(OP, TYPE) \
CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF8): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF4): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, MF2): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M1): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M2): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M4): \
case CASE_VFMA_OPCODE_COMMON(OP, TYPE, M8)
#define CASE_VFMA_SPLATS(OP) \
CASE_VFMA_OPCODE_LMULS(OP, VF16): \
case CASE_VFMA_OPCODE_LMULS(OP, VF32): \
case CASE_VFMA_OPCODE_LMULS(OP, VF64)
// clang-format on
bool RISCVInstrInfo::findCommutedOpIndices(const MachineInstr &MI,
unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const {
const MCInstrDesc &Desc = MI.getDesc();
if (!Desc.isCommutable())
return false;
switch (MI.getOpcode()) {
case CASE_VFMA_SPLATS(FMADD):
case CASE_VFMA_SPLATS(FMSUB):
case CASE_VFMA_SPLATS(FMACC):
case CASE_VFMA_SPLATS(FMSAC):
case CASE_VFMA_SPLATS(FNMADD):
case CASE_VFMA_SPLATS(FNMSUB):
case CASE_VFMA_SPLATS(FNMACC):
case CASE_VFMA_SPLATS(FNMSAC):
case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV): {
// For these instructions we can only swap operand 1 and operand 3 by
// changing the opcode.
unsigned CommutableOpIdx1 = 1;
unsigned CommutableOpIdx2 = 3;
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
CommutableOpIdx2))
return false;
return true;
}
case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV): {
// For these instructions we have more freedom. We can commute with the
// other multiplicand or with the addend/subtrahend/minuend.
// Any fixed operand must be from source 1, 2 or 3.
if (SrcOpIdx1 != CommuteAnyOperandIndex && SrcOpIdx1 > 3)
return false;
if (SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx2 > 3)
return false;
// It both ops are fixed one must be the tied source.
if (SrcOpIdx1 != CommuteAnyOperandIndex &&
SrcOpIdx2 != CommuteAnyOperandIndex && SrcOpIdx1 != 1 && SrcOpIdx2 != 1)
return false;
// Look for two different register operands assumed to be commutable
// regardless of the FMA opcode. The FMA opcode is adjusted later if
// needed.
if (SrcOpIdx1 == CommuteAnyOperandIndex ||
SrcOpIdx2 == CommuteAnyOperandIndex) {
// At least one of operands to be commuted is not specified and
// this method is free to choose appropriate commutable operands.
unsigned CommutableOpIdx1 = SrcOpIdx1;
if (SrcOpIdx1 == SrcOpIdx2) {
// Both of operands are not fixed. Set one of commutable
// operands to the tied source.
CommutableOpIdx1 = 1;
} else if (SrcOpIdx1 == CommutableOpIdx1) {
// Only one of the operands is not fixed.
CommutableOpIdx1 = SrcOpIdx2;
}
// CommutableOpIdx1 is well defined now. Let's choose another commutable
// operand and assign its index to CommutableOpIdx2.
unsigned CommutableOpIdx2;
if (CommutableOpIdx1 != 1) {
// If we haven't already used the tied source, we must use it now.
CommutableOpIdx2 = 1;
} else {
Register Op1Reg = MI.getOperand(CommutableOpIdx1).getReg();
// The commuted operands should have different registers.
// Otherwise, the commute transformation does not change anything and
// is useless. We use this as a hint to make our decision.
if (Op1Reg != MI.getOperand(2).getReg())
CommutableOpIdx2 = 2;
else
CommutableOpIdx2 = 3;
}
// Assign the found pair of commutable indices to SrcOpIdx1 and
// SrcOpIdx2 to return those values.
if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1,
CommutableOpIdx2))
return false;
}
return true;
}
}
return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2);
}
#define CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, LMUL) \
case RISCV::PseudoV##OLDOP##_##TYPE##_##LMUL##_COMMUTABLE: \
Opc = RISCV::PseudoV##NEWOP##_##TYPE##_##LMUL##_COMMUTABLE; \
break;
#define CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, TYPE) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF8) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF4) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, MF2) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M1) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M2) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M4) \
CASE_VFMA_CHANGE_OPCODE_COMMON(OLDOP, NEWOP, TYPE, M8)
#define CASE_VFMA_CHANGE_OPCODE_SPLATS(OLDOP, NEWOP) \
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF16) \
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF32) \
CASE_VFMA_CHANGE_OPCODE_LMULS(OLDOP, NEWOP, VF64)
MachineInstr *RISCVInstrInfo::commuteInstructionImpl(MachineInstr &MI,
bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const {
auto cloneIfNew = [NewMI](MachineInstr &MI) -> MachineInstr & {
if (NewMI)
return *MI.getParent()->getParent()->CloneMachineInstr(&MI);
return MI;
};
switch (MI.getOpcode()) {
case CASE_VFMA_SPLATS(FMACC):
case CASE_VFMA_SPLATS(FMADD):
case CASE_VFMA_SPLATS(FMSAC):
case CASE_VFMA_SPLATS(FMSUB):
case CASE_VFMA_SPLATS(FNMACC):
case CASE_VFMA_SPLATS(FNMADD):
case CASE_VFMA_SPLATS(FNMSAC):
case CASE_VFMA_SPLATS(FNMSUB):
case CASE_VFMA_OPCODE_LMULS(FMACC, VV):
case CASE_VFMA_OPCODE_LMULS(FMSAC, VV):
case CASE_VFMA_OPCODE_LMULS(FNMACC, VV):
case CASE_VFMA_OPCODE_LMULS(FNMSAC, VV): {
// It only make sense to toggle these between clobbering the
// addend/subtrahend/minuend one of the multiplicands.
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
assert((OpIdx1 == 3 || OpIdx2 == 3) && "Unexpected opcode index");
unsigned Opc;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode");
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMACC, FMADD)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMADD, FMACC)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSAC, FMSUB)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FMSUB, FMSAC)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMACC, FNMADD)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMADD, FNMACC)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSAC, FNMSUB)
CASE_VFMA_CHANGE_OPCODE_SPLATS(FNMSUB, FNMSAC)
CASE_VFMA_CHANGE_OPCODE_LMULS(FMACC, FMADD, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FMSAC, FMSUB, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMACC, FNMADD, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSAC, FNMSUB, VV)
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
case CASE_VFMA_OPCODE_LMULS(FMADD, VV):
case CASE_VFMA_OPCODE_LMULS(FMSUB, VV):
case CASE_VFMA_OPCODE_LMULS(FNMADD, VV):
case CASE_VFMA_OPCODE_LMULS(FNMSUB, VV): {
assert((OpIdx1 == 1 || OpIdx2 == 1) && "Unexpected opcode index");
// If one of the operands, is the addend we need to change opcode.
// Otherwise we're just swapping 2 of the multiplicands.
if (OpIdx1 == 3 || OpIdx2 == 3) {
unsigned Opc;
switch (MI.getOpcode()) {
default:
llvm_unreachable("Unexpected opcode");
CASE_VFMA_CHANGE_OPCODE_LMULS(FMADD, FMACC, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FMSUB, FMSAC, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMADD, FNMACC, VV)
CASE_VFMA_CHANGE_OPCODE_LMULS(FNMSUB, FNMSAC, VV)
}
auto &WorkingMI = cloneIfNew(MI);
WorkingMI.setDesc(get(Opc));
return TargetInstrInfo::commuteInstructionImpl(WorkingMI, /*NewMI=*/false,
OpIdx1, OpIdx2);
}
// Let the default code handle it.
break;
}
}
return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
}
#undef CASE_VFMA_CHANGE_OPCODE_SPLATS
#undef CASE_VFMA_CHANGE_OPCODE_LMULS
#undef CASE_VFMA_CHANGE_OPCODE_COMMON
#undef CASE_VFMA_SPLATS
#undef CASE_VFMA_OPCODE_LMULS
#undef CASE_VFMA_OPCODE_COMMON
Register RISCVInstrInfo::getVLENFactoredAmount(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator II,
int64_t Amount) const {
assert(Amount > 0 && "There is no need to get VLEN scaled value.");
assert(Amount % 8 == 0 &&
"Reserve the stack by the multiple of one vector size.");
MachineRegisterInfo &MRI = MF.getRegInfo();
const RISCVInstrInfo *TII = MF.getSubtarget<RISCVSubtarget>().getInstrInfo();
DebugLoc DL = II->getDebugLoc();
int64_t NumOfVReg = Amount / 8;
Register VL = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::PseudoReadVLENB), VL);
assert(isInt<12>(NumOfVReg) &&
"Expect the number of vector registers within 12-bits.");
if (isPowerOf2_32(NumOfVReg)) {
uint32_t ShiftAmount = Log2_32(NumOfVReg);
if (ShiftAmount == 0)
return VL;
BuildMI(MBB, II, DL, TII->get(RISCV::SLLI), VL)
.addReg(VL, RegState::Kill)
.addImm(ShiftAmount);
} else {
Register N = MRI.createVirtualRegister(&RISCV::GPRRegClass);
BuildMI(MBB, II, DL, TII->get(RISCV::ADDI), N)
.addReg(RISCV::X0)
.addImm(NumOfVReg);
if (!MF.getSubtarget<RISCVSubtarget>().hasStdExtM())
MF.getFunction().getContext().diagnose(DiagnosticInfoUnsupported{
MF.getFunction(),
"M-extension must be enabled to calculate the vscaled size/offset."});
BuildMI(MBB, II, DL, TII->get(RISCV::MUL), VL)
.addReg(VL, RegState::Kill)
.addReg(N, RegState::Kill);
}
return VL;
}
Optional<std::pair<unsigned, unsigned>>
RISCVInstrInfo::isRVVSpillForZvlsseg(unsigned Opcode) const {
switch (Opcode) {
default:
return None;
case RISCV::PseudoVSPILL2_M1:
case RISCV::PseudoVRELOAD2_M1:
return std::make_pair(2u, 1u);
case RISCV::PseudoVSPILL2_M2:
case RISCV::PseudoVRELOAD2_M2:
return std::make_pair(2u, 2u);
case RISCV::PseudoVSPILL2_M4:
case RISCV::PseudoVRELOAD2_M4:
return std::make_pair(2u, 4u);
case RISCV::PseudoVSPILL3_M1:
case RISCV::PseudoVRELOAD3_M1:
return std::make_pair(3u, 1u);
case RISCV::PseudoVSPILL3_M2:
case RISCV::PseudoVRELOAD3_M2:
return std::make_pair(3u, 2u);
case RISCV::PseudoVSPILL4_M1:
case RISCV::PseudoVRELOAD4_M1:
return std::make_pair(4u, 1u);
case RISCV::PseudoVSPILL4_M2:
case RISCV::PseudoVRELOAD4_M2:
return std::make_pair(4u, 2u);
case RISCV::PseudoVSPILL5_M1:
case RISCV::PseudoVRELOAD5_M1:
return std::make_pair(5u, 1u);
case RISCV::PseudoVSPILL6_M1:
case RISCV::PseudoVRELOAD6_M1:
return std::make_pair(6u, 1u);
case RISCV::PseudoVSPILL7_M1:
case RISCV::PseudoVRELOAD7_M1:
return std::make_pair(7u, 1u);
case RISCV::PseudoVSPILL8_M1:
case RISCV::PseudoVRELOAD8_M1:
return std::make_pair(8u, 1u);
}
}