llvm-project/clang-tools-extra/clangd/FindSymbols.cpp

345 lines
12 KiB
C++

//===--- FindSymbols.cpp ------------------------------------*- C++-*------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "FindSymbols.h"
#include "AST.h"
#include "FuzzyMatch.h"
#include "ParsedAST.h"
#include "Quality.h"
#include "SourceCode.h"
#include "index/Index.h"
#include "support/Logger.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Index/IndexDataConsumer.h"
#include "clang/Index/IndexSymbol.h"
#include "clang/Index/IndexingAction.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ScopedPrinter.h"
#include <tuple>
#define DEBUG_TYPE "FindSymbols"
namespace clang {
namespace clangd {
namespace {
using ScoredSymbolInfo = std::pair<float, SymbolInformation>;
struct ScoredSymbolGreater {
bool operator()(const ScoredSymbolInfo &L, const ScoredSymbolInfo &R) {
if (L.first != R.first)
return L.first > R.first;
return L.second.name < R.second.name; // Earlier name is better.
}
};
// Returns true if \p Query can be found as a sub-sequence inside \p Scope.
bool approximateScopeMatch(llvm::StringRef Scope, llvm::StringRef Query) {
assert(Scope.empty() || Scope.endswith("::"));
assert(Query.empty() || Query.endswith("::"));
while (!Scope.empty() && !Query.empty()) {
auto Colons = Scope.find("::");
assert(Colons != llvm::StringRef::npos);
llvm::StringRef LeadingSpecifier = Scope.slice(0, Colons + 2);
Scope = Scope.slice(Colons + 2, llvm::StringRef::npos);
Query.consume_front(LeadingSpecifier);
}
return Query.empty();
}
} // namespace
llvm::Expected<Location> indexToLSPLocation(const SymbolLocation &Loc,
llvm::StringRef TUPath) {
auto Path = URI::resolve(Loc.FileURI, TUPath);
if (!Path)
return error("Could not resolve path for file '{0}': {1}", Loc.FileURI,
Path.takeError());
Location L;
L.uri = URIForFile::canonicalize(*Path, TUPath);
Position Start, End;
Start.line = Loc.Start.line();
Start.character = Loc.Start.column();
End.line = Loc.End.line();
End.character = Loc.End.column();
L.range = {Start, End};
return L;
}
llvm::Expected<Location> symbolToLocation(const Symbol &Sym,
llvm::StringRef TUPath) {
// Prefer the definition over e.g. a function declaration in a header
return indexToLSPLocation(
Sym.Definition ? Sym.Definition : Sym.CanonicalDeclaration, TUPath);
}
llvm::Expected<std::vector<SymbolInformation>>
getWorkspaceSymbols(llvm::StringRef Query, int Limit,
const SymbolIndex *const Index, llvm::StringRef HintPath) {
std::vector<SymbolInformation> Result;
if (Query.empty() || !Index)
return Result;
// Lookup for qualified names are performed as:
// - Exact namespaces are boosted by the index.
// - Approximate matches are (sub-scope match) included via AnyScope logic.
// - Non-matching namespaces (no sub-scope match) are post-filtered.
auto Names = splitQualifiedName(Query);
FuzzyFindRequest Req;
Req.Query = std::string(Names.second);
// FuzzyFind doesn't want leading :: qualifier.
auto HasLeadingColons = Names.first.consume_front("::");
// Limit the query to specific namespace if it is fully-qualified.
Req.AnyScope = !HasLeadingColons;
// Boost symbols from desired namespace.
if (HasLeadingColons || !Names.first.empty())
Req.Scopes = {std::string(Names.first)};
if (Limit) {
Req.Limit = Limit;
// If we are boosting a specific scope allow more results to be retrieved,
// since some symbols from preferred namespaces might not make the cut.
if (Req.AnyScope && !Req.Scopes.empty())
*Req.Limit *= 5;
}
TopN<ScoredSymbolInfo, ScoredSymbolGreater> Top(
Req.Limit ? *Req.Limit : std::numeric_limits<size_t>::max());
FuzzyMatcher Filter(Req.Query);
Index->fuzzyFind(Req, [HintPath, &Top, &Filter, AnyScope = Req.AnyScope,
ReqScope = Names.first](const Symbol &Sym) {
llvm::StringRef Scope = Sym.Scope;
// Fuzzyfind might return symbols from irrelevant namespaces if query was
// not fully-qualified, drop those.
if (AnyScope && !approximateScopeMatch(Scope, ReqScope))
return;
auto Loc = symbolToLocation(Sym, HintPath);
if (!Loc) {
log("Workspace symbols: {0}", Loc.takeError());
return;
}
SymbolQualitySignals Quality;
Quality.merge(Sym);
SymbolRelevanceSignals Relevance;
Relevance.Name = Sym.Name;
Relevance.Query = SymbolRelevanceSignals::Generic;
// If symbol and request scopes do not match exactly, apply a penalty.
Relevance.InBaseClass = AnyScope && Scope != ReqScope;
if (auto NameMatch = Filter.match(Sym.Name))
Relevance.NameMatch = *NameMatch;
else {
log("Workspace symbol: {0} didn't match query {1}", Sym.Name,
Filter.pattern());
return;
}
Relevance.merge(Sym);
auto Score = evaluateSymbolAndRelevance(Quality.evaluateHeuristics(),
Relevance.evaluateHeuristics());
dlog("FindSymbols: {0}{1} = {2}\n{3}{4}\n", Sym.Scope, Sym.Name, Score,
Quality, Relevance);
SymbolInformation Info;
Info.name = (Sym.Name + Sym.TemplateSpecializationArgs).str();
Info.kind = indexSymbolKindToSymbolKind(Sym.SymInfo.Kind);
Info.location = *Loc;
Scope.consume_back("::");
Info.containerName = Scope.str();
// Exposed score excludes fuzzy-match component, for client-side re-ranking.
Info.score = Score / Relevance.NameMatch;
Top.push({Score, std::move(Info)});
});
for (auto &R : std::move(Top).items())
Result.push_back(std::move(R.second));
return Result;
}
namespace {
llvm::Optional<DocumentSymbol> declToSym(ASTContext &Ctx, const NamedDecl &ND) {
auto &SM = Ctx.getSourceManager();
SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc()));
SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc()));
const auto SymbolRange =
toHalfOpenFileRange(SM, Ctx.getLangOpts(), {BeginLoc, EndLoc});
if (!SymbolRange)
return llvm::None;
index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
// FIXME: This is not classifying constructors, destructors and operators
// correctly.
SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);
DocumentSymbol SI;
SI.name = printName(Ctx, ND);
SI.kind = SK;
SI.deprecated = ND.isDeprecated();
SI.range = Range{sourceLocToPosition(SM, SymbolRange->getBegin()),
sourceLocToPosition(SM, SymbolRange->getEnd())};
SourceLocation NameLoc = ND.getLocation();
SourceLocation FallbackNameLoc;
if (NameLoc.isMacroID()) {
if (isSpelledInSource(NameLoc, SM)) {
// Prefer the spelling loc, but save the expansion loc as a fallback.
FallbackNameLoc = SM.getExpansionLoc(NameLoc);
NameLoc = SM.getSpellingLoc(NameLoc);
} else {
NameLoc = SM.getExpansionLoc(NameLoc);
}
}
auto ComputeSelectionRange = [&](SourceLocation L) -> Range {
Position NameBegin = sourceLocToPosition(SM, L);
Position NameEnd = sourceLocToPosition(
SM, Lexer::getLocForEndOfToken(L, 0, SM, Ctx.getLangOpts()));
return Range{NameBegin, NameEnd};
};
SI.selectionRange = ComputeSelectionRange(NameLoc);
if (!SI.range.contains(SI.selectionRange) && FallbackNameLoc.isValid()) {
// 'selectionRange' must be contained in 'range'. In cases where clang
// reports unrelated ranges, we first try falling back to the expansion
// loc for the selection range.
SI.selectionRange = ComputeSelectionRange(FallbackNameLoc);
}
if (!SI.range.contains(SI.selectionRange)) {
// If the containment relationship still doesn't hold, throw away
// 'range' and use 'selectionRange' for both.
SI.range = SI.selectionRange;
}
return SI;
}
/// A helper class to build an outline for the parse AST. It traverses the AST
/// directly instead of using RecursiveASTVisitor (RAV) for three main reasons:
/// - there is no way to keep RAV from traversing subtrees we are not
/// interested in. E.g. not traversing function locals or implicit template
/// instantiations.
/// - it's easier to combine results of recursive passes,
/// - visiting decls is actually simple, so we don't hit the complicated
/// cases that RAV mostly helps with (types, expressions, etc.)
class DocumentOutline {
public:
DocumentOutline(ParsedAST &AST) : AST(AST) {}
/// Builds the document outline for the generated AST.
std::vector<DocumentSymbol> build() {
std::vector<DocumentSymbol> Results;
for (auto &TopLevel : AST.getLocalTopLevelDecls())
traverseDecl(TopLevel, Results);
return Results;
}
private:
enum class VisitKind { No, OnlyDecl, OnlyChildren, DeclAndChildren };
void traverseDecl(Decl *D, std::vector<DocumentSymbol> &Results) {
if (auto *Templ = llvm::dyn_cast<TemplateDecl>(D)) {
// TemplatedDecl might be null, e.g. concepts.
if (auto *TD = Templ->getTemplatedDecl())
D = TD;
}
VisitKind Visit = shouldVisit(D);
if (Visit == VisitKind::No)
return;
if (Visit == VisitKind::OnlyChildren)
return traverseChildren(D, Results);
auto *ND = llvm::cast<NamedDecl>(D);
auto Sym = declToSym(AST.getASTContext(), *ND);
if (!Sym)
return;
Results.push_back(std::move(*Sym));
if (Visit == VisitKind::OnlyDecl)
return;
assert(Visit == VisitKind::DeclAndChildren && "Unexpected VisitKind");
traverseChildren(ND, Results.back().children);
}
void traverseChildren(Decl *D, std::vector<DocumentSymbol> &Results) {
auto *Scope = llvm::dyn_cast<DeclContext>(D);
if (!Scope)
return;
for (auto *C : Scope->decls())
traverseDecl(C, Results);
}
VisitKind shouldVisit(Decl *D) {
if (D->isImplicit())
return VisitKind::No;
if (llvm::isa<LinkageSpecDecl>(D) || llvm::isa<ExportDecl>(D))
return VisitKind::OnlyChildren;
if (!llvm::isa<NamedDecl>(D))
return VisitKind::No;
if (auto Func = llvm::dyn_cast<FunctionDecl>(D)) {
// Some functions are implicit template instantiations, those should be
// ignored.
if (auto *Info = Func->getTemplateSpecializationInfo()) {
if (!Info->isExplicitInstantiationOrSpecialization())
return VisitKind::No;
}
// Only visit the function itself, do not visit the children (i.e.
// function parameters, etc.)
return VisitKind::OnlyDecl;
}
// Handle template instantiations. We have three cases to consider:
// - explicit instantiations, e.g. 'template class std::vector<int>;'
// Visit the decl itself (it's present in the code), but not the
// children.
// - implicit instantiations, i.e. not written by the user.
// Do not visit at all, they are not present in the code.
// - explicit specialization, e.g. 'template <> class vector<bool> {};'
// Visit both the decl and its children, both are written in the code.
if (auto *TemplSpec = llvm::dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (TemplSpec->isExplicitInstantiationOrSpecialization())
return TemplSpec->isExplicitSpecialization()
? VisitKind::DeclAndChildren
: VisitKind::OnlyDecl;
return VisitKind::No;
}
if (auto *TemplSpec = llvm::dyn_cast<VarTemplateSpecializationDecl>(D)) {
if (TemplSpec->isExplicitInstantiationOrSpecialization())
return TemplSpec->isExplicitSpecialization()
? VisitKind::DeclAndChildren
: VisitKind::OnlyDecl;
return VisitKind::No;
}
// For all other cases, visit both the children and the decl.
return VisitKind::DeclAndChildren;
}
ParsedAST &AST;
};
std::vector<DocumentSymbol> collectDocSymbols(ParsedAST &AST) {
return DocumentOutline(AST).build();
}
} // namespace
llvm::Expected<std::vector<DocumentSymbol>> getDocumentSymbols(ParsedAST &AST) {
return collectDocSymbols(AST);
}
} // namespace clangd
} // namespace clang