Go to file
Jay Foad 2da58826a5 [TableGen] Allow identical MnemonicAliases with no predicate
My use case for this is illustrated in the test case: I want to define
the same instruction twice with different (disjoint) predicates, because
the instruction has different operands on different subtargets. It's
convenient to do this with a multiclass that also defines an alias for
the instruction.

Previously tablegen would complain if this alias was defined twice with
no predicate. One way to fix this would be to add a predicate on each
definition of the alias, matching the predicate on the instruction. But
this (a) is slightly awkward to do in the real world use case I had, and
(b) leads to an inefficient matcher that will do something like this:

  if (Mnemonic == "foo_alias") {
    if (Features.test(Feature_Subtarget1Bit))
      Mnemonic == "foo";
    else if (Features.test(Feature_Subtarget2Bit))
      Mnemonic == "foo";
    return;
  }

It would be more efficient to skip the feature tests and return "foo"
unconditionally.

Overall it seems better to allow multiple definitions of the identical
alias with no predicate.

Differential Revision: https://reviews.llvm.org/D105033
2021-06-30 10:53:39 +01:00
.github Removing the main to master sync GitHub workflow. 2021-01-28 12:18:25 -08:00
clang [analyzer][satest][NFC] Relax dependencies requirements 2021-06-30 12:50:21 +03:00
clang-tools-extra Conditionalize function only used in an assert to address -Wunused-function 2021-06-29 16:39:59 -07:00
compiler-rt [dfsan] Expose dfsan_get_track_origins to get origin tracking status 2021-06-29 20:32:39 +00:00
cross-project-tests [cross-project-tests] Add/update check-* targets for cross-project-tests 2021-06-28 11:31:41 +01:00
flang [Flang][test] Fix Windows buildbot after D104930. 2021-06-29 17:01:45 +00:00
libc [libc] Allow target architecture independent configs 2021-06-29 20:41:28 +00:00
libclc Support: Stop using F_{None,Text,Append} compatibility synonyms, NFC 2021-04-30 11:00:03 -07:00
libcxx [libc++] NFC: Fix return-by-const-value and pass-by-const-value typos 2021-06-29 13:57:04 -04:00
libcxxabi [libc++] Serialize Lit parameters to make them available to from-scratch configs 2021-06-29 10:51:42 -04:00
libunwind [libc++] Serialize Lit parameters to make them available to from-scratch configs 2021-06-29 10:51:42 -04:00
lld [ARMInstPrinter] Print the target address of a branch instruction 2021-06-30 16:35:28 +07:00
lldb Fix buildbot compile error for https://reviews.llvm.org/D105160. 2021-06-29 18:03:25 -07:00
llvm [TableGen] Allow identical MnemonicAliases with no predicate 2021-06-30 10:53:39 +01:00
mlir [mlir][linalg][python] Explicit shape and dimension order in OpDSL. 2021-06-30 08:59:39 +00:00
openmp [libomptarget] [amdgpu] Change default number of teams per computation unit 2021-06-29 15:34:35 -07:00
parallel-libs Reapply "Try enabling -Wsuggest-override again, using add_compile_options instead of add_compile_definitions for disabling it in unittests/ directories." 2020-07-22 17:50:19 -07:00
polly [Polly][ScopInliner] Indicate if the IR has changed. 2021-06-24 15:44:39 -05:00
pstl [pstl] Workaround more errors in the test suite 2021-05-26 15:45:01 -04:00
runtimes [runtimes] Add the libc project to the list of runtimes. 2021-03-23 17:33:03 +00:00
utils [mlir] Generare .cpp.inc files for dialects. 2021-06-29 20:10:30 +00:00
.arcconfig Add modern arc config for default "onto" branch 2021-02-22 11:58:13 -08:00
.arclint PR46997: don't run clang-format on clang's testcases. 2020-08-04 17:53:25 -07:00
.clang-format Revert "Title: [RISCV] Add missing part of instruction vmsge {u}. VX Review By: craig.topper Differential Revision : https://reviews.llvm.org/D100115" 2021-04-14 08:04:37 +01:00
.clang-tidy .clang-tidy: Disable misc-no-recursion in general/across the monorepo 2021-06-08 08:31:33 -07:00
.git-blame-ignore-revs [lldb] Add 9494c510af to .git-blame-ignore-revs 2021-06-10 09:29:59 -07:00
.gitignore [NFC] Add CMakeUserPresets.json filename to .gitignore 2021-01-22 12:45:29 +01:00
.mailmap mailmap: add mappings for myself 2021-06-23 15:11:15 -07:00
CONTRIBUTING.md
README.md [RFC][debuginfo-test] Rename debug-info lit tests for general purposes 2021-06-28 11:31:40 +01:00
SECURITY.md [docs] Describe reporting security issues on the chromium tracker. 2021-05-19 15:21:50 -07:00

README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or cross-project-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.