forked from OSchip/llvm-project
880 lines
29 KiB
C++
880 lines
29 KiB
C++
//==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements uninitialized values analysis for source-level CFGs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/PackedVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
|
|
#include "clang/Analysis/Analyses/UninitializedValues.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
|
|
using namespace clang;
|
|
|
|
static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
|
|
if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
|
|
!vd->isExceptionVariable() &&
|
|
vd->getDeclContext() == dc) {
|
|
QualType ty = vd->getType();
|
|
return ty->isScalarType() || ty->isVectorType();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// DeclToIndex: a mapping from Decls we track to value indices.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class DeclToIndex {
|
|
llvm::DenseMap<const VarDecl *, unsigned> map;
|
|
public:
|
|
DeclToIndex() {}
|
|
|
|
/// Compute the actual mapping from declarations to bits.
|
|
void computeMap(const DeclContext &dc);
|
|
|
|
/// Return the number of declarations in the map.
|
|
unsigned size() const { return map.size(); }
|
|
|
|
/// Returns the bit vector index for a given declaration.
|
|
llvm::Optional<unsigned> getValueIndex(const VarDecl *d) const;
|
|
};
|
|
}
|
|
|
|
void DeclToIndex::computeMap(const DeclContext &dc) {
|
|
unsigned count = 0;
|
|
DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
|
|
E(dc.decls_end());
|
|
for ( ; I != E; ++I) {
|
|
const VarDecl *vd = *I;
|
|
if (isTrackedVar(vd, &dc))
|
|
map[vd] = count++;
|
|
}
|
|
}
|
|
|
|
llvm::Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
|
|
llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
|
|
if (I == map.end())
|
|
return llvm::Optional<unsigned>();
|
|
return I->second;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// CFGBlockValues: dataflow values for CFG blocks.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
// These values are defined in such a way that a merge can be done using
|
|
// a bitwise OR.
|
|
enum Value { Unknown = 0x0, /* 00 */
|
|
Initialized = 0x1, /* 01 */
|
|
Uninitialized = 0x2, /* 10 */
|
|
MayUninitialized = 0x3 /* 11 */ };
|
|
|
|
static bool isUninitialized(const Value v) {
|
|
return v >= Uninitialized;
|
|
}
|
|
static bool isAlwaysUninit(const Value v) {
|
|
return v == Uninitialized;
|
|
}
|
|
|
|
namespace {
|
|
|
|
typedef llvm::PackedVector<Value, 2> ValueVector;
|
|
typedef std::pair<ValueVector *, ValueVector *> BVPair;
|
|
|
|
class CFGBlockValues {
|
|
const CFG &cfg;
|
|
BVPair *vals;
|
|
ValueVector scratch;
|
|
DeclToIndex declToIndex;
|
|
|
|
ValueVector &lazyCreate(ValueVector *&bv);
|
|
public:
|
|
CFGBlockValues(const CFG &cfg);
|
|
~CFGBlockValues();
|
|
|
|
unsigned getNumEntries() const { return declToIndex.size(); }
|
|
|
|
void computeSetOfDeclarations(const DeclContext &dc);
|
|
ValueVector &getValueVector(const CFGBlock *block,
|
|
const CFGBlock *dstBlock);
|
|
|
|
BVPair &getValueVectors(const CFGBlock *block, bool shouldLazyCreate);
|
|
|
|
void setAllScratchValues(Value V);
|
|
void mergeIntoScratch(ValueVector const &source, bool isFirst);
|
|
bool updateValueVectorWithScratch(const CFGBlock *block);
|
|
bool updateValueVectors(const CFGBlock *block, const BVPair &newVals);
|
|
|
|
bool hasNoDeclarations() const {
|
|
return declToIndex.size() == 0;
|
|
}
|
|
|
|
void resetScratch();
|
|
ValueVector &getScratch() { return scratch; }
|
|
|
|
ValueVector::reference operator[](const VarDecl *vd);
|
|
|
|
Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
|
|
const VarDecl *vd) {
|
|
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
|
|
assert(idx.hasValue());
|
|
return getValueVector(block, dstBlock)[idx.getValue()];
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {
|
|
unsigned n = cfg.getNumBlockIDs();
|
|
if (!n)
|
|
return;
|
|
vals = new std::pair<ValueVector*, ValueVector*>[n];
|
|
memset((void*)vals, 0, sizeof(*vals) * n);
|
|
}
|
|
|
|
CFGBlockValues::~CFGBlockValues() {
|
|
unsigned n = cfg.getNumBlockIDs();
|
|
if (n == 0)
|
|
return;
|
|
for (unsigned i = 0; i < n; ++i) {
|
|
delete vals[i].first;
|
|
delete vals[i].second;
|
|
}
|
|
delete [] vals;
|
|
}
|
|
|
|
void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
|
|
declToIndex.computeMap(dc);
|
|
scratch.resize(declToIndex.size());
|
|
}
|
|
|
|
ValueVector &CFGBlockValues::lazyCreate(ValueVector *&bv) {
|
|
if (!bv)
|
|
bv = new ValueVector(declToIndex.size());
|
|
return *bv;
|
|
}
|
|
|
|
/// This function pattern matches for a '&&' or '||' that appears at
|
|
/// the beginning of a CFGBlock that also (1) has a terminator and
|
|
/// (2) has no other elements. If such an expression is found, it is returned.
|
|
static const BinaryOperator *getLogicalOperatorInChain(const CFGBlock *block) {
|
|
if (block->empty())
|
|
return 0;
|
|
|
|
CFGElement front = block->front();
|
|
const CFGStmt *cstmt = front.getAs<CFGStmt>();
|
|
if (!cstmt)
|
|
return 0;
|
|
|
|
const BinaryOperator *b = dyn_cast_or_null<BinaryOperator>(cstmt->getStmt());
|
|
|
|
if (!b || !b->isLogicalOp())
|
|
return 0;
|
|
|
|
if (block->pred_size() == 2) {
|
|
if (block->getTerminatorCondition() == b) {
|
|
if (block->succ_size() == 2)
|
|
return b;
|
|
}
|
|
else if (block->size() == 1)
|
|
return b;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
ValueVector &CFGBlockValues::getValueVector(const CFGBlock *block,
|
|
const CFGBlock *dstBlock) {
|
|
unsigned idx = block->getBlockID();
|
|
if (dstBlock && getLogicalOperatorInChain(block)) {
|
|
if (*block->succ_begin() == dstBlock)
|
|
return lazyCreate(vals[idx].first);
|
|
assert(*(block->succ_begin()+1) == dstBlock);
|
|
return lazyCreate(vals[idx].second);
|
|
}
|
|
|
|
assert(vals[idx].second == 0);
|
|
return lazyCreate(vals[idx].first);
|
|
}
|
|
|
|
BVPair &CFGBlockValues::getValueVectors(const clang::CFGBlock *block,
|
|
bool shouldLazyCreate) {
|
|
unsigned idx = block->getBlockID();
|
|
lazyCreate(vals[idx].first);
|
|
if (shouldLazyCreate)
|
|
lazyCreate(vals[idx].second);
|
|
return vals[idx];
|
|
}
|
|
|
|
#if 0
|
|
static void printVector(const CFGBlock *block, ValueVector &bv,
|
|
unsigned num) {
|
|
|
|
llvm::errs() << block->getBlockID() << " :";
|
|
for (unsigned i = 0; i < bv.size(); ++i) {
|
|
llvm::errs() << ' ' << bv[i];
|
|
}
|
|
llvm::errs() << " : " << num << '\n';
|
|
}
|
|
|
|
static void printVector(const char *name, ValueVector const &bv) {
|
|
llvm::errs() << name << " : ";
|
|
for (unsigned i = 0; i < bv.size(); ++i) {
|
|
llvm::errs() << ' ' << bv[i];
|
|
}
|
|
llvm::errs() << "\n";
|
|
}
|
|
#endif
|
|
|
|
void CFGBlockValues::setAllScratchValues(Value V) {
|
|
for (unsigned I = 0, E = scratch.size(); I != E; ++I)
|
|
scratch[I] = V;
|
|
}
|
|
|
|
void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
|
|
bool isFirst) {
|
|
if (isFirst)
|
|
scratch = source;
|
|
else
|
|
scratch |= source;
|
|
}
|
|
|
|
bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
|
|
ValueVector &dst = getValueVector(block, 0);
|
|
bool changed = (dst != scratch);
|
|
if (changed)
|
|
dst = scratch;
|
|
#if 0
|
|
printVector(block, scratch, 0);
|
|
#endif
|
|
return changed;
|
|
}
|
|
|
|
bool CFGBlockValues::updateValueVectors(const CFGBlock *block,
|
|
const BVPair &newVals) {
|
|
BVPair &vals = getValueVectors(block, true);
|
|
bool changed = *newVals.first != *vals.first ||
|
|
*newVals.second != *vals.second;
|
|
*vals.first = *newVals.first;
|
|
*vals.second = *newVals.second;
|
|
#if 0
|
|
printVector(block, *vals.first, 1);
|
|
printVector(block, *vals.second, 2);
|
|
#endif
|
|
return changed;
|
|
}
|
|
|
|
void CFGBlockValues::resetScratch() {
|
|
scratch.reset();
|
|
}
|
|
|
|
ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
|
|
const llvm::Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
|
|
assert(idx.hasValue());
|
|
return scratch[idx.getValue()];
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// Worklist: worklist for dataflow analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class DataflowWorklist {
|
|
SmallVector<const CFGBlock *, 20> worklist;
|
|
llvm::BitVector enqueuedBlocks;
|
|
public:
|
|
DataflowWorklist(const CFG &cfg) : enqueuedBlocks(cfg.getNumBlockIDs()) {}
|
|
|
|
void enqueueSuccessors(const CFGBlock *block);
|
|
const CFGBlock *dequeue();
|
|
};
|
|
}
|
|
|
|
void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
|
|
unsigned OldWorklistSize = worklist.size();
|
|
for (CFGBlock::const_succ_iterator I = block->succ_begin(),
|
|
E = block->succ_end(); I != E; ++I) {
|
|
const CFGBlock *Successor = *I;
|
|
if (!Successor || enqueuedBlocks[Successor->getBlockID()])
|
|
continue;
|
|
worklist.push_back(Successor);
|
|
enqueuedBlocks[Successor->getBlockID()] = true;
|
|
}
|
|
if (OldWorklistSize == 0 || OldWorklistSize == worklist.size())
|
|
return;
|
|
|
|
// Rotate the newly added blocks to the start of the worklist so that it forms
|
|
// a proper queue when we pop off the end of the worklist.
|
|
std::rotate(worklist.begin(), worklist.begin() + OldWorklistSize,
|
|
worklist.end());
|
|
}
|
|
|
|
const CFGBlock *DataflowWorklist::dequeue() {
|
|
if (worklist.empty())
|
|
return 0;
|
|
const CFGBlock *b = worklist.back();
|
|
worklist.pop_back();
|
|
enqueuedBlocks[b->getBlockID()] = false;
|
|
return b;
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// Transfer function for uninitialized values analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
namespace {
|
|
class FindVarResult {
|
|
const VarDecl *vd;
|
|
const DeclRefExpr *dr;
|
|
public:
|
|
FindVarResult(VarDecl *vd, DeclRefExpr *dr) : vd(vd), dr(dr) {}
|
|
|
|
const DeclRefExpr *getDeclRefExpr() const { return dr; }
|
|
const VarDecl *getDecl() const { return vd; }
|
|
};
|
|
|
|
class TransferFunctions : public StmtVisitor<TransferFunctions> {
|
|
CFGBlockValues &vals;
|
|
const CFG &cfg;
|
|
const CFGBlock *block;
|
|
AnalysisDeclContext ∾
|
|
UninitVariablesHandler *handler;
|
|
|
|
/// The last DeclRefExpr seen when analyzing a block. Used to
|
|
/// cheat when detecting cases when the address of a variable is taken.
|
|
DeclRefExpr *lastDR;
|
|
|
|
/// The last lvalue-to-rvalue conversion of a variable whose value
|
|
/// was uninitialized. Normally this results in a warning, but it is
|
|
/// possible to either silence the warning in some cases, or we
|
|
/// propagate the uninitialized value.
|
|
CastExpr *lastLoad;
|
|
|
|
/// For some expressions, we want to ignore any post-processing after
|
|
/// visitation.
|
|
bool skipProcessUses;
|
|
|
|
public:
|
|
TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
|
|
const CFGBlock *block, AnalysisDeclContext &ac,
|
|
UninitVariablesHandler *handler)
|
|
: vals(vals), cfg(cfg), block(block), ac(ac), handler(handler),
|
|
lastDR(0), lastLoad(0),
|
|
skipProcessUses(false) {}
|
|
|
|
void reportUse(const Expr *ex, const VarDecl *vd);
|
|
|
|
void VisitBlockExpr(BlockExpr *be);
|
|
void VisitCallExpr(CallExpr *ce);
|
|
void VisitDeclStmt(DeclStmt *ds);
|
|
void VisitDeclRefExpr(DeclRefExpr *dr);
|
|
void VisitUnaryOperator(UnaryOperator *uo);
|
|
void VisitBinaryOperator(BinaryOperator *bo);
|
|
void VisitCastExpr(CastExpr *ce);
|
|
void VisitObjCForCollectionStmt(ObjCForCollectionStmt *fs);
|
|
void Visit(Stmt *s);
|
|
|
|
bool isTrackedVar(const VarDecl *vd) {
|
|
return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
|
|
}
|
|
|
|
UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
|
|
UninitUse Use(ex, isAlwaysUninit(v));
|
|
|
|
assert(isUninitialized(v));
|
|
if (Use.getKind() == UninitUse::Always)
|
|
return Use;
|
|
|
|
// If an edge which leads unconditionally to this use did not initialize
|
|
// the variable, we can say something stronger than 'may be uninitialized':
|
|
// we can say 'either it's used uninitialized or you have dead code'.
|
|
//
|
|
// We track the number of successors of a node which have been visited, and
|
|
// visit a node once we have visited all of its successors. Only edges where
|
|
// the variable might still be uninitialized are followed. Since a variable
|
|
// can't transfer from being initialized to being uninitialized, this will
|
|
// trace out the subgraph which inevitably leads to the use and does not
|
|
// initialize the variable. We do not want to skip past loops, since their
|
|
// non-termination might be correlated with the initialization condition.
|
|
//
|
|
// For example:
|
|
//
|
|
// void f(bool a, bool b) {
|
|
// block1: int n;
|
|
// if (a) {
|
|
// block2: if (b)
|
|
// block3: n = 1;
|
|
// block4: } else if (b) {
|
|
// block5: while (!a) {
|
|
// block6: do_work(&a);
|
|
// n = 2;
|
|
// }
|
|
// }
|
|
// block7: if (a)
|
|
// block8: g();
|
|
// block9: return n;
|
|
// }
|
|
//
|
|
// Starting from the maybe-uninitialized use in block 9:
|
|
// * Block 7 is not visited because we have only visited one of its two
|
|
// successors.
|
|
// * Block 8 is visited because we've visited its only successor.
|
|
// From block 8:
|
|
// * Block 7 is visited because we've now visited both of its successors.
|
|
// From block 7:
|
|
// * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
|
|
// of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
|
|
// * Block 3 is not visited because it initializes 'n'.
|
|
// Now the algorithm terminates, having visited blocks 7 and 8, and having
|
|
// found the frontier is blocks 2, 4, and 5.
|
|
//
|
|
// 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
|
|
// and 4), so we report that any time either of those edges is taken (in
|
|
// each case when 'b == false'), 'n' is used uninitialized.
|
|
llvm::SmallVector<const CFGBlock*, 32> Queue;
|
|
llvm::SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
|
|
Queue.push_back(block);
|
|
// Specify that we've already visited all successors of the starting block.
|
|
// This has the dual purpose of ensuring we never add it to the queue, and
|
|
// of marking it as not being a candidate element of the frontier.
|
|
SuccsVisited[block->getBlockID()] = block->succ_size();
|
|
while (!Queue.empty()) {
|
|
const CFGBlock *B = Queue.back();
|
|
Queue.pop_back();
|
|
for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
|
|
I != E; ++I) {
|
|
const CFGBlock *Pred = *I;
|
|
if (vals.getValue(Pred, B, vd) == Initialized)
|
|
// This block initializes the variable.
|
|
continue;
|
|
|
|
if (++SuccsVisited[Pred->getBlockID()] == Pred->succ_size())
|
|
// All paths from this block lead to the use and don't initialize the
|
|
// variable.
|
|
Queue.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
// Scan the frontier, looking for blocks where the variable was
|
|
// uninitialized.
|
|
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
|
|
const CFGBlock *Block = *BI;
|
|
unsigned BlockID = Block->getBlockID();
|
|
const Stmt *Term = Block->getTerminator();
|
|
if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
|
|
Term) {
|
|
// This block inevitably leads to the use. If we have an edge from here
|
|
// to a post-dominator block, and the variable is uninitialized on that
|
|
// edge, we have found a bug.
|
|
for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
|
|
E = Block->succ_end(); I != E; ++I) {
|
|
const CFGBlock *Succ = *I;
|
|
if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
|
|
vals.getValue(Block, Succ, vd) == Uninitialized) {
|
|
// Switch cases are a special case: report the label to the caller
|
|
// as the 'terminator', not the switch statement itself. Suppress
|
|
// situations where no label matched: we can't be sure that's
|
|
// possible.
|
|
if (isa<SwitchStmt>(Term)) {
|
|
const Stmt *Label = Succ->getLabel();
|
|
if (!Label || !isa<SwitchCase>(Label))
|
|
// Might not be possible.
|
|
continue;
|
|
UninitUse::Branch Branch;
|
|
Branch.Terminator = Label;
|
|
Branch.Output = 0; // Ignored.
|
|
Use.addUninitBranch(Branch);
|
|
} else {
|
|
UninitUse::Branch Branch;
|
|
Branch.Terminator = Term;
|
|
Branch.Output = I - Block->succ_begin();
|
|
Use.addUninitBranch(Branch);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return Use;
|
|
}
|
|
|
|
FindVarResult findBlockVarDecl(Expr *ex);
|
|
|
|
void ProcessUses(Stmt *s = 0);
|
|
};
|
|
}
|
|
|
|
static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
|
|
while (Ex) {
|
|
Ex = Ex->IgnoreParenNoopCasts(C);
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
|
|
if (CE->getCastKind() == CK_LValueBitCast) {
|
|
Ex = CE->getSubExpr();
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return Ex;
|
|
}
|
|
|
|
void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
|
|
if (!handler)
|
|
return;
|
|
Value v = vals[vd];
|
|
if (isUninitialized(v))
|
|
handler->handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
|
|
}
|
|
|
|
FindVarResult TransferFunctions::findBlockVarDecl(Expr *ex) {
|
|
if (DeclRefExpr *dr = dyn_cast<DeclRefExpr>(ex->IgnoreParenCasts()))
|
|
if (VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
|
|
if (isTrackedVar(vd))
|
|
return FindVarResult(vd, dr);
|
|
return FindVarResult(0, 0);
|
|
}
|
|
|
|
void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *fs) {
|
|
// This represents an initialization of the 'element' value.
|
|
Stmt *element = fs->getElement();
|
|
const VarDecl *vd = 0;
|
|
|
|
if (DeclStmt *ds = dyn_cast<DeclStmt>(element)) {
|
|
vd = cast<VarDecl>(ds->getSingleDecl());
|
|
if (!isTrackedVar(vd))
|
|
vd = 0;
|
|
} else {
|
|
// Initialize the value of the reference variable.
|
|
const FindVarResult &res = findBlockVarDecl(cast<Expr>(element));
|
|
vd = res.getDecl();
|
|
}
|
|
|
|
if (vd)
|
|
vals[vd] = Initialized;
|
|
}
|
|
|
|
void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
|
|
const BlockDecl *bd = be->getBlockDecl();
|
|
for (BlockDecl::capture_const_iterator i = bd->capture_begin(),
|
|
e = bd->capture_end() ; i != e; ++i) {
|
|
const VarDecl *vd = i->getVariable();
|
|
if (!isTrackedVar(vd))
|
|
continue;
|
|
if (i->isByRef()) {
|
|
vals[vd] = Initialized;
|
|
continue;
|
|
}
|
|
reportUse(be, vd);
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitCallExpr(CallExpr *ce) {
|
|
// After a call to a function like setjmp or vfork, any variable which is
|
|
// initialized anywhere within this function may now be initialized. For now,
|
|
// just assume such a call initializes all variables.
|
|
// FIXME: Only mark variables as initialized if they have an initializer which
|
|
// is reachable from here.
|
|
Decl *Callee = ce->getCalleeDecl();
|
|
if (Callee && Callee->hasAttr<ReturnsTwiceAttr>())
|
|
vals.setAllScratchValues(Initialized);
|
|
}
|
|
|
|
void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
|
|
// Record the last DeclRefExpr seen. This is an lvalue computation.
|
|
// We use this value to later detect if a variable "escapes" the analysis.
|
|
if (const VarDecl *vd = dyn_cast<VarDecl>(dr->getDecl()))
|
|
if (isTrackedVar(vd)) {
|
|
ProcessUses();
|
|
lastDR = dr;
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitDeclStmt(DeclStmt *ds) {
|
|
for (DeclStmt::decl_iterator DI = ds->decl_begin(), DE = ds->decl_end();
|
|
DI != DE; ++DI) {
|
|
if (VarDecl *vd = dyn_cast<VarDecl>(*DI)) {
|
|
if (isTrackedVar(vd)) {
|
|
if (Expr *init = vd->getInit()) {
|
|
// If the initializer consists solely of a reference to itself, we
|
|
// explicitly mark the variable as uninitialized. This allows code
|
|
// like the following:
|
|
//
|
|
// int x = x;
|
|
//
|
|
// to deliberately leave a variable uninitialized. Different analysis
|
|
// clients can detect this pattern and adjust their reporting
|
|
// appropriately, but we need to continue to analyze subsequent uses
|
|
// of the variable.
|
|
if (init == lastLoad) {
|
|
const DeclRefExpr *DR
|
|
= cast<DeclRefExpr>(stripCasts(ac.getASTContext(),
|
|
lastLoad->getSubExpr()));
|
|
if (DR->getDecl() == vd) {
|
|
// int x = x;
|
|
// Propagate uninitialized value, but don't immediately report
|
|
// a problem.
|
|
vals[vd] = Uninitialized;
|
|
lastLoad = 0;
|
|
lastDR = 0;
|
|
if (handler)
|
|
handler->handleSelfInit(vd);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// All other cases: treat the new variable as initialized.
|
|
// This is a minor optimization to reduce the propagation
|
|
// of the analysis, since we will have already reported
|
|
// the use of the uninitialized value (which visiting the
|
|
// initializer).
|
|
vals[vd] = Initialized;
|
|
} else {
|
|
// No initializer: the variable is now uninitialized. This matters
|
|
// for cases like:
|
|
// while (...) {
|
|
// int n;
|
|
// use(n);
|
|
// n = 0;
|
|
// }
|
|
// FIXME: Mark the variable as uninitialized whenever its scope is
|
|
// left, since its scope could be re-entered by a jump over the
|
|
// declaration.
|
|
vals[vd] = Uninitialized;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitBinaryOperator(clang::BinaryOperator *bo) {
|
|
if (bo->isAssignmentOp()) {
|
|
const FindVarResult &res = findBlockVarDecl(bo->getLHS());
|
|
if (const VarDecl *vd = res.getDecl()) {
|
|
if (bo->getOpcode() != BO_Assign)
|
|
reportUse(res.getDeclRefExpr(), vd);
|
|
else
|
|
vals[vd] = Initialized;
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitUnaryOperator(clang::UnaryOperator *uo) {
|
|
switch (uo->getOpcode()) {
|
|
case clang::UO_PostDec:
|
|
case clang::UO_PostInc:
|
|
case clang::UO_PreDec:
|
|
case clang::UO_PreInc: {
|
|
const FindVarResult &res = findBlockVarDecl(uo->getSubExpr());
|
|
if (const VarDecl *vd = res.getDecl()) {
|
|
assert(res.getDeclRefExpr() == lastDR);
|
|
// We null out lastDR to indicate we have fully processed it
|
|
// and we don't want the auto-value setting in Visit().
|
|
lastDR = 0;
|
|
reportUse(res.getDeclRefExpr(), vd);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::VisitCastExpr(clang::CastExpr *ce) {
|
|
if (ce->getCastKind() == CK_LValueToRValue) {
|
|
const FindVarResult &res = findBlockVarDecl(ce->getSubExpr());
|
|
if (res.getDecl()) {
|
|
assert(res.getDeclRefExpr() == lastDR);
|
|
lastLoad = ce;
|
|
}
|
|
}
|
|
else if (ce->getCastKind() == CK_NoOp ||
|
|
ce->getCastKind() == CK_LValueBitCast) {
|
|
skipProcessUses = true;
|
|
}
|
|
else if (CStyleCastExpr *cse = dyn_cast<CStyleCastExpr>(ce)) {
|
|
if (cse->getType()->isVoidType()) {
|
|
// e.g. (void) x;
|
|
if (lastLoad == cse->getSubExpr()) {
|
|
// Squelch any detected load of an uninitialized value if
|
|
// we cast it to void.
|
|
lastLoad = 0;
|
|
lastDR = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void TransferFunctions::Visit(clang::Stmt *s) {
|
|
skipProcessUses = false;
|
|
StmtVisitor<TransferFunctions>::Visit(s);
|
|
if (!skipProcessUses)
|
|
ProcessUses(s);
|
|
}
|
|
|
|
void TransferFunctions::ProcessUses(Stmt *s) {
|
|
// This method is typically called after visiting a CFGElement statement
|
|
// in the CFG. We delay processing of reporting many loads of uninitialized
|
|
// values until here.
|
|
if (lastLoad) {
|
|
// If we just visited the lvalue-to-rvalue cast, there is nothing
|
|
// left to do.
|
|
if (lastLoad == s)
|
|
return;
|
|
|
|
const DeclRefExpr *DR =
|
|
cast<DeclRefExpr>(stripCasts(ac.getASTContext(),
|
|
lastLoad->getSubExpr()));
|
|
const VarDecl *VD = cast<VarDecl>(DR->getDecl());
|
|
|
|
// If we reach here, we may have seen a load of an uninitialized value
|
|
// and it hasn't been casted to void or otherwise handled. In this
|
|
// situation, report the incident.
|
|
reportUse(DR, VD);
|
|
|
|
lastLoad = 0;
|
|
|
|
if (DR == lastDR) {
|
|
lastDR = 0;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Any other uses of 'lastDR' involve taking an lvalue of variable.
|
|
// In this case, it "escapes" the analysis.
|
|
if (lastDR && lastDR != s) {
|
|
vals[cast<VarDecl>(lastDR->getDecl())] = Initialized;
|
|
lastDR = 0;
|
|
}
|
|
}
|
|
|
|
//------------------------------------------------------------------------====//
|
|
// High-level "driver" logic for uninitialized values analysis.
|
|
//====------------------------------------------------------------------------//
|
|
|
|
static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
|
|
AnalysisDeclContext &ac, CFGBlockValues &vals,
|
|
llvm::BitVector &wasAnalyzed,
|
|
UninitVariablesHandler *handler = 0) {
|
|
|
|
wasAnalyzed[block->getBlockID()] = true;
|
|
|
|
if (const BinaryOperator *b = getLogicalOperatorInChain(block)) {
|
|
CFGBlock::const_pred_iterator itr = block->pred_begin();
|
|
BVPair vA = vals.getValueVectors(*itr, false);
|
|
++itr;
|
|
BVPair vB = vals.getValueVectors(*itr, false);
|
|
|
|
BVPair valsAB;
|
|
|
|
if (b->getOpcode() == BO_LAnd) {
|
|
// Merge the 'F' bits from the first and second.
|
|
vals.mergeIntoScratch(*(vA.second ? vA.second : vA.first), true);
|
|
vals.mergeIntoScratch(*(vB.second ? vB.second : vB.first), false);
|
|
valsAB.first = vA.first;
|
|
valsAB.second = &vals.getScratch();
|
|
} else {
|
|
// Merge the 'T' bits from the first and second.
|
|
assert(b->getOpcode() == BO_LOr);
|
|
vals.mergeIntoScratch(*vA.first, true);
|
|
vals.mergeIntoScratch(*vB.first, false);
|
|
valsAB.first = &vals.getScratch();
|
|
valsAB.second = vA.second ? vA.second : vA.first;
|
|
}
|
|
return vals.updateValueVectors(block, valsAB);
|
|
}
|
|
|
|
// Default behavior: merge in values of predecessor blocks.
|
|
vals.resetScratch();
|
|
bool isFirst = true;
|
|
for (CFGBlock::const_pred_iterator I = block->pred_begin(),
|
|
E = block->pred_end(); I != E; ++I) {
|
|
const CFGBlock *pred = *I;
|
|
if (wasAnalyzed[pred->getBlockID()]) {
|
|
vals.mergeIntoScratch(vals.getValueVector(pred, block), isFirst);
|
|
isFirst = false;
|
|
}
|
|
}
|
|
// Apply the transfer function.
|
|
TransferFunctions tf(vals, cfg, block, ac, handler);
|
|
for (CFGBlock::const_iterator I = block->begin(), E = block->end();
|
|
I != E; ++I) {
|
|
if (const CFGStmt *cs = dyn_cast<CFGStmt>(&*I)) {
|
|
tf.Visit(const_cast<Stmt*>(cs->getStmt()));
|
|
}
|
|
}
|
|
tf.ProcessUses();
|
|
return vals.updateValueVectorWithScratch(block);
|
|
}
|
|
|
|
void clang::runUninitializedVariablesAnalysis(
|
|
const DeclContext &dc,
|
|
const CFG &cfg,
|
|
AnalysisDeclContext &ac,
|
|
UninitVariablesHandler &handler,
|
|
UninitVariablesAnalysisStats &stats) {
|
|
CFGBlockValues vals(cfg);
|
|
vals.computeSetOfDeclarations(dc);
|
|
if (vals.hasNoDeclarations())
|
|
return;
|
|
#if 0
|
|
cfg.dump(dc.getParentASTContext().getLangOpts(), true);
|
|
#endif
|
|
|
|
stats.NumVariablesAnalyzed = vals.getNumEntries();
|
|
|
|
// Mark all variables uninitialized at the entry.
|
|
const CFGBlock &entry = cfg.getEntry();
|
|
for (CFGBlock::const_succ_iterator i = entry.succ_begin(),
|
|
e = entry.succ_end(); i != e; ++i) {
|
|
if (const CFGBlock *succ = *i) {
|
|
ValueVector &vec = vals.getValueVector(&entry, succ);
|
|
const unsigned n = vals.getNumEntries();
|
|
for (unsigned j = 0; j < n ; ++j) {
|
|
vec[j] = Uninitialized;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Proceed with the workist.
|
|
DataflowWorklist worklist(cfg);
|
|
llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
|
|
worklist.enqueueSuccessors(&cfg.getEntry());
|
|
llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
|
|
wasAnalyzed[cfg.getEntry().getBlockID()] = true;
|
|
|
|
while (const CFGBlock *block = worklist.dequeue()) {
|
|
// Did the block change?
|
|
bool changed = runOnBlock(block, cfg, ac, vals, wasAnalyzed);
|
|
++stats.NumBlockVisits;
|
|
if (changed || !previouslyVisited[block->getBlockID()])
|
|
worklist.enqueueSuccessors(block);
|
|
previouslyVisited[block->getBlockID()] = true;
|
|
}
|
|
|
|
// Run through the blocks one more time, and report uninitialized variabes.
|
|
for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
|
|
const CFGBlock *block = *BI;
|
|
if (wasAnalyzed[block->getBlockID()]) {
|
|
runOnBlock(block, cfg, ac, vals, wasAnalyzed, &handler);
|
|
++stats.NumBlockVisits;
|
|
}
|
|
}
|
|
}
|
|
|
|
UninitVariablesHandler::~UninitVariablesHandler() {}
|