llvm-project/clang/lib/AST/DeclBase.cpp

577 lines
17 KiB
C++

//===--- DeclBase.cpp - Declaration AST Node Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Decl and DeclContext classes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclBase.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Type.h"
#include "llvm/ADT/DenseMap.h"
#include <algorithm>
#include <functional>
#include <vector>
using namespace clang;
//===----------------------------------------------------------------------===//
// Statistics
//===----------------------------------------------------------------------===//
#define DECL(Derived, Base) static int n##Derived##s = 0;
#include "clang/AST/DeclNodes.def"
static bool StatSwitch = false;
// This keeps track of all decl attributes. Since so few decls have attrs, we
// keep them in a hash map instead of wasting space in the Decl class.
typedef llvm::DenseMap<const Decl*, Attr*> DeclAttrMapTy;
static DeclAttrMapTy *DeclAttrs = 0;
const char *Decl::getDeclKindName() const {
switch (DeclKind) {
default: assert(0 && "Declaration not in DeclNodes.def!");
#define DECL(Derived, Base) case Derived: return #Derived;
#include "clang/AST/DeclNodes.def"
}
}
const char *DeclContext::getDeclKindName() const {
switch (DeclKind) {
default: assert(0 && "Declaration context not in DeclNodes.def!");
#define DECL_CONTEXT(Node) case Decl::Node: return #Node;
#include "clang/AST/DeclNodes.def"
}
}
bool Decl::CollectingStats(bool Enable) {
if (Enable)
StatSwitch = true;
return StatSwitch;
}
void Decl::PrintStats() {
fprintf(stderr, "*** Decl Stats:\n");
int totalDecls = 0;
#define DECL(Derived, Base) totalDecls += n##Derived##s;
#include "clang/AST/DeclNodes.def"
fprintf(stderr, " %d decls total.\n", totalDecls);
int totalBytes = 0;
#define DECL(Derived, Base) \
if (n##Derived##s > 0) { \
totalBytes += (int)(n##Derived##s * sizeof(Derived##Decl)); \
fprintf(stderr, " %d " #Derived " decls, %d each (%d bytes)\n", \
n##Derived##s, (int)sizeof(Derived##Decl), \
(int)(n##Derived##s * sizeof(Derived##Decl))); \
}
#include "clang/AST/DeclNodes.def"
fprintf(stderr, "Total bytes = %d\n", totalBytes);
}
void Decl::addDeclKind(Kind k) {
switch (k) {
default: assert(0 && "Declaration not in DeclNodes.def!");
#define DECL(Derived, Base) case Derived: ++n##Derived##s; break;
#include "clang/AST/DeclNodes.def"
}
}
//===----------------------------------------------------------------------===//
// Decl Implementation
//===----------------------------------------------------------------------===//
void Decl::setDeclContext(DeclContext *DC) {
if (isOutOfSemaDC())
delete getMultipleDC();
DeclCtx = reinterpret_cast<uintptr_t>(DC);
}
void Decl::setLexicalDeclContext(DeclContext *DC) {
if (DC == getLexicalDeclContext())
return;
if (isInSemaDC()) {
MultipleDC *MDC = new MultipleDC();
MDC->SemanticDC = getDeclContext();
MDC->LexicalDC = DC;
DeclCtx = reinterpret_cast<uintptr_t>(MDC) | 0x1;
} else {
getMultipleDC()->LexicalDC = DC;
}
}
// Out-of-line virtual method providing a home for Decl.
Decl::~Decl() {
if (isOutOfSemaDC())
delete getMultipleDC();
if (!HasAttrs)
return;
DeclAttrMapTy::iterator it = DeclAttrs->find(this);
assert(it != DeclAttrs->end() && "No attrs found but HasAttrs is true!");
// release attributes.
delete it->second;
invalidateAttrs();
}
void Decl::addAttr(Attr *NewAttr) {
if (!DeclAttrs)
DeclAttrs = new DeclAttrMapTy();
Attr *&ExistingAttr = (*DeclAttrs)[this];
NewAttr->setNext(ExistingAttr);
ExistingAttr = NewAttr;
HasAttrs = true;
}
void Decl::invalidateAttrs() {
if (!HasAttrs) return;
HasAttrs = false;
(*DeclAttrs)[this] = 0;
DeclAttrs->erase(this);
if (DeclAttrs->empty()) {
delete DeclAttrs;
DeclAttrs = 0;
}
}
const Attr *Decl::getAttrs() const {
if (!HasAttrs)
return 0;
return (*DeclAttrs)[this];
}
void Decl::swapAttrs(Decl *RHS) {
bool HasLHSAttr = this->HasAttrs;
bool HasRHSAttr = RHS->HasAttrs;
// Usually, neither decl has attrs, nothing to do.
if (!HasLHSAttr && !HasRHSAttr) return;
// If 'this' has no attrs, swap the other way.
if (!HasLHSAttr)
return RHS->swapAttrs(this);
// Handle the case when both decls have attrs.
if (HasRHSAttr) {
std::swap((*DeclAttrs)[this], (*DeclAttrs)[RHS]);
return;
}
// Otherwise, LHS has an attr and RHS doesn't.
(*DeclAttrs)[RHS] = (*DeclAttrs)[this];
(*DeclAttrs).erase(this);
this->HasAttrs = false;
RHS->HasAttrs = true;
}
void Decl::Destroy(ASTContext& C) {
#if 0
// FIXME: Once ownership is fully understood, we can enable this code
if (DeclContext *DC = dyn_cast<DeclContext>(this))
DC->decls_begin()->Destroy(C);
// Observe the unrolled recursion. By setting N->NextDeclInScope = 0x0
// within the loop, only the Destroy method for the first Decl
// will deallocate all of the Decls in a chain.
Decl* N = NextDeclInScope;
while (N) {
Decl* Tmp = N->NextDeclInScope;
N->NextDeclInScope = 0;
N->Destroy(C);
N = Tmp;
}
this->~Decl();
C.Deallocate((void *)this);
#endif
}
Decl *Decl::castFromDeclContext (const DeclContext *D) {
return DeclContext::CastTo<Decl>(D);
}
DeclContext *Decl::castToDeclContext(const Decl *D) {
return DeclContext::CastTo<DeclContext>(D);
}
//===----------------------------------------------------------------------===//
// DeclContext Implementation
//===----------------------------------------------------------------------===//
const DeclContext *DeclContext::getParent() const {
if (const Decl *D = dyn_cast<Decl>(this))
return D->getDeclContext();
return NULL;
}
const DeclContext *DeclContext::getLexicalParent() const {
if (const Decl *D = dyn_cast<Decl>(this))
return D->getLexicalDeclContext();
return getParent();
}
// FIXME: We really want to use a DenseSet here to eliminate the
// redundant storage of the declaration names, but (1) it doesn't give
// us the ability to search based on DeclarationName, (2) we really
// need something more like a DenseMultiSet, and (3) it's
// implemented in terms of DenseMap anyway. However, this data
// structure is really space-inefficient, so we'll have to do
// something.
typedef llvm::DenseMap<DeclarationName, std::vector<NamedDecl*> >
StoredDeclsMap;
DeclContext::~DeclContext() {
unsigned Size = LookupPtr.getInt();
if (Size == LookupIsMap) {
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
delete Map;
} else {
NamedDecl **Array = static_cast<NamedDecl**>(LookupPtr.getPointer());
delete [] Array;
}
}
void DeclContext::DestroyDecls(ASTContext &C) {
for (decl_iterator D = decls_begin(); D != decls_end(); )
(*D++)->Destroy(C);
}
bool DeclContext::isTransparentContext() const {
if (DeclKind == Decl::Enum)
return true; // FIXME: Check for C++0x scoped enums
else if (DeclKind == Decl::LinkageSpec)
return true;
else if (DeclKind == Decl::Record || DeclKind == Decl::CXXRecord)
return cast<RecordDecl>(this)->isAnonymousStructOrUnion();
else if (DeclKind == Decl::Namespace)
return false; // FIXME: Check for C++0x inline namespaces
return false;
}
DeclContext *DeclContext::getPrimaryContext() {
switch (DeclKind) {
case Decl::TranslationUnit:
case Decl::LinkageSpec:
case Decl::Block:
// There is only one DeclContext for these entities.
return this;
case Decl::Namespace:
// The original namespace is our primary context.
return static_cast<NamespaceDecl*>(this)->getOriginalNamespace();
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
// If this is a tag type that has a definition or is currently
// being defined, that definition is our primary context.
if (TagType *TagT = cast_or_null<TagType>(cast<TagDecl>(this)->TypeForDecl))
if (TagT->isBeingDefined() ||
(TagT->getDecl() && TagT->getDecl()->isDefinition()))
return TagT->getDecl();
return this;
case Decl::ObjCMethod:
return this;
case Decl::ObjCInterface:
case Decl::ObjCProtocol:
case Decl::ObjCCategory:
// FIXME: Can Objective-C interfaces be forward-declared?
return this;
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
return this;
default:
assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast &&
"Unknown DeclContext kind");
return this;
}
}
DeclContext *DeclContext::getNextContext() {
switch (DeclKind) {
case Decl::TranslationUnit:
case Decl::Enum:
case Decl::Record:
case Decl::CXXRecord:
case Decl::ObjCMethod:
case Decl::ObjCInterface:
case Decl::ObjCCategory:
case Decl::ObjCProtocol:
case Decl::ObjCImplementation:
case Decl::ObjCCategoryImpl:
case Decl::LinkageSpec:
case Decl::Block:
// There is only one DeclContext for these entities.
return 0;
case Decl::Namespace:
// Return the next namespace
return static_cast<NamespaceDecl*>(this)->getNextNamespace();
default:
assert(DeclKind >= Decl::FunctionFirst && DeclKind <= Decl::FunctionLast &&
"Unknown DeclContext kind");
return 0;
}
}
void DeclContext::addDecl(Decl *D) {
assert(D->getLexicalDeclContext() == this && "Decl inserted into wrong lexical context");
assert(!D->NextDeclInScope && D != LastDecl &&
"Decl already inserted into a DeclContext");
if (FirstDecl) {
LastDecl->NextDeclInScope = D;
LastDecl = D;
} else {
FirstDecl = LastDecl = D;
}
if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
ND->getDeclContext()->makeDeclVisibleInContext(ND);
}
/// buildLookup - Build the lookup data structure with all of the
/// declarations in DCtx (and any other contexts linked to it or
/// transparent contexts nested within it).
void DeclContext::buildLookup(DeclContext *DCtx) {
for (; DCtx; DCtx = DCtx->getNextContext()) {
for (decl_iterator D = DCtx->decls_begin(), DEnd = DCtx->decls_end();
D != DEnd; ++D) {
// Insert this declaration into the lookup structure
if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
makeDeclVisibleInContextImpl(ND);
// If this declaration is itself a transparent declaration context,
// add its members (recursively).
if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D))
if (InnerCtx->isTransparentContext())
buildLookup(InnerCtx->getPrimaryContext());
}
}
}
DeclContext::lookup_result
DeclContext::lookup(DeclarationName Name) {
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this)
return PrimaryContext->lookup(Name);
/// If there is no lookup data structure, build one now by walking
/// all of the linked DeclContexts (in declaration order!) and
/// inserting their values.
if (LookupPtr.getPointer() == 0)
buildLookup(this);
if (isLookupMap()) {
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsMap::iterator Pos = Map->find(Name);
if (Pos != Map->end())
return lookup_result(&Pos->second.front(),
&Pos->second.front() + Pos->second.size());
return lookup_result(0, 0);
}
// We have a small array. Look into it.
unsigned Size = LookupPtr.getInt();
NamedDecl **Array = static_cast<NamedDecl**>(LookupPtr.getPointer());
for (unsigned Idx = 0; Idx != Size; ++Idx)
if (Array[Idx]->getDeclName() == Name) {
unsigned Last = Idx + 1;
while (Last != Size && Array[Last]->getDeclName() == Name)
++Last;
return lookup_result(&Array[Idx], &Array[Last]);
}
return lookup_result(0, 0);
}
DeclContext::lookup_const_result
DeclContext::lookup(DeclarationName Name) const {
return const_cast<DeclContext*>(this)->lookup(Name);
}
const DeclContext *DeclContext::getLookupContext() const {
const DeclContext *Ctx = this;
// Skip through transparent contexts.
while (Ctx->isTransparentContext())
Ctx = Ctx->getParent();
return Ctx;
}
void DeclContext::makeDeclVisibleInContext(NamedDecl *D) {
DeclContext *PrimaryContext = getPrimaryContext();
if (PrimaryContext != this) {
PrimaryContext->makeDeclVisibleInContext(D);
return;
}
// If we already have a lookup data structure, perform the insertion
// into it. Otherwise, be lazy and don't build that structure until
// someone asks for it.
if (LookupPtr.getPointer())
makeDeclVisibleInContextImpl(D);
// If we are a transparent context, insert into our parent context,
// too. This operation is recursive.
if (isTransparentContext())
getParent()->makeDeclVisibleInContext(D);
}
void DeclContext::makeDeclVisibleInContextImpl(NamedDecl *D) {
// Skip unnamed declarations.
if (!D->getDeclName())
return;
bool MayBeRedeclaration = true;
if (!isLookupMap()) {
unsigned Size = LookupPtr.getInt();
// The lookup data is stored as an array. Search through the array
// to find the insertion location.
NamedDecl **Array;
if (Size == 0) {
Array = new NamedDecl*[LookupIsMap - 1];
LookupPtr.setPointer(Array);
} else {
Array = static_cast<NamedDecl **>(LookupPtr.getPointer());
}
// We always keep declarations of the same name next to each other
// in the array, so that it is easy to return multiple results
// from lookup().
unsigned FirstMatch;
for (FirstMatch = 0; FirstMatch != Size; ++FirstMatch)
if (Array[FirstMatch]->getDeclName() == D->getDeclName())
break;
unsigned InsertPos = FirstMatch;
if (FirstMatch != Size) {
// We found another declaration with the same name. First
// determine whether this is a redeclaration of an existing
// declaration in this scope, in which case we will replace the
// existing declaration.
unsigned LastMatch = FirstMatch;
for (; LastMatch != Size; ++LastMatch) {
if (Array[LastMatch]->getDeclName() != D->getDeclName())
break;
if (D->declarationReplaces(Array[LastMatch])) {
// D is a redeclaration of an existing element in the
// array. Replace that element with D.
Array[LastMatch] = D;
return;
}
}
// [FirstMatch, LastMatch) contains the set of declarations that
// have the same name as this declaration. Determine where the
// declaration D will be inserted into this range.
if (D->getKind() == Decl::UsingDirective ||
D->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch;
else if (Array[LastMatch-1]->getIdentifierNamespace() == Decl::IDNS_Tag)
InsertPos = LastMatch - 1;
else
InsertPos = LastMatch;
}
if (Size < LookupIsMap - 1) {
// The new declaration will fit in the array. Insert the new
// declaration at the position Match in the array.
for (unsigned Idx = Size; Idx > InsertPos; --Idx)
Array[Idx] = Array[Idx-1];
Array[InsertPos] = D;
LookupPtr.setInt(Size + 1);
return;
}
// We've reached capacity in this array. Create a map and copy in
// all of the declarations that were stored in the array.
StoredDeclsMap *Map = new StoredDeclsMap(16);
LookupPtr.setPointer(Map);
LookupPtr.setInt(LookupIsMap);
for (unsigned Idx = 0; Idx != LookupIsMap - 1; ++Idx)
makeDeclVisibleInContextImpl(Array[Idx]);
delete [] Array;
// Fall through to perform insertion into the map.
MayBeRedeclaration = false;
}
// Insert this declaration into the map.
StoredDeclsMap *Map = static_cast<StoredDeclsMap*>(LookupPtr.getPointer());
StoredDeclsMap::iterator Pos = Map->find(D->getDeclName());
if (Pos != Map->end()) {
if (MayBeRedeclaration) {
// Determine if this declaration is actually a redeclaration.
std::vector<NamedDecl *>::iterator Redecl
= std::find_if(Pos->second.begin(), Pos->second.end(),
std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
D));
if (Redecl != Pos->second.end()) {
*Redecl = D;
return;
}
}
// Put this declaration into the appropriate slot.
if (D->getKind() == Decl::UsingDirective ||
D->getIdentifierNamespace() == Decl::IDNS_Tag
|| Pos->second.empty())
Pos->second.push_back(D);
else if (Pos->second.back()->getIdentifierNamespace() == Decl::IDNS_Tag) {
NamedDecl *TagD = Pos->second.back();
Pos->second.back() = D;
Pos->second.push_back(TagD);
} else
Pos->second.push_back(D);
} else {
(*Map)[D->getDeclName()].push_back(D);
}
}
/// Returns iterator range [First, Last) of UsingDirectiveDecls stored within
/// this context.
DeclContext::udir_iterator_range DeclContext::getUsingDirectives() const {
lookup_const_result Result = lookup(UsingDirectiveDecl::getName());
return udir_iterator_range(reinterpret_cast<udir_iterator>(Result.first),
reinterpret_cast<udir_iterator>(Result.second));
}