llvm-project/mlir/lib/Conversion/GPUToNVVM/LowerGpuOpsToNVVMOps.cpp

182 lines
8.2 KiB
C++

//===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate NVVMIR operations for higher-level
// GPU operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/Passes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/FormatVariadic.h"
#include "../GPUCommon/GPUOpsLowering.h"
#include "../GPUCommon/IndexIntrinsicsOpLowering.h"
#include "../GPUCommon/OpToFuncCallLowering.h"
#include "../PassDetail.h"
using namespace mlir;
namespace {
struct GPUShuffleOpLowering : public ConvertToLLVMPattern {
explicit GPUShuffleOpLowering(LLVMTypeConverter &lowering_)
: ConvertToLLVMPattern(gpu::ShuffleOp::getOperationName(),
lowering_.getDialect()->getContext(), lowering_) {}
/// Lowers a shuffle to the corresponding NVVM op.
///
/// Convert the `width` argument into an activeMask (a bitmask which specifies
/// which threads participate in the shuffle) and a maskAndClamp (specifying
/// the highest lane which participates in the shuffle).
///
/// %one = llvm.constant(1 : i32) : !llvm.i32
/// %shl = llvm.shl %one, %width : !llvm.i32
/// %active_mask = llvm.sub %shl, %one : !llvm.i32
/// %mask_and_clamp = llvm.sub %width, %one : !llvm.i32
/// %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset,
/// %mask_and_clamp : !llvm<"{ float, i1 }">
/// %shfl_value = llvm.extractvalue %shfl[0 : index] :
/// !llvm<"{ float, i1 }">
/// %shfl_pred = llvm.extractvalue %shfl[1 : index] :
/// !llvm<"{ float, i1 }">
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
gpu::ShuffleOpAdaptor adaptor(operands);
auto dialect = typeConverter.getDialect();
auto valueTy = adaptor.value().getType().cast<LLVM::LLVMType>();
auto int32Type = LLVM::LLVMType::getInt32Ty(dialect);
auto predTy = LLVM::LLVMType::getInt1Ty(dialect);
auto resultTy = LLVM::LLVMType::getStructTy(dialect, {valueTy, predTy});
Value one = rewriter.create<LLVM::ConstantOp>(
loc, int32Type, rewriter.getI32IntegerAttr(1));
// Bit mask of active lanes: `(1 << activeWidth) - 1`.
Value activeMask = rewriter.create<LLVM::SubOp>(
loc, int32Type,
rewriter.create<LLVM::ShlOp>(loc, int32Type, one, adaptor.width()),
one);
// Clamp lane: `activeWidth - 1`
Value maskAndClamp =
rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.width(), one);
auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
Value shfl = rewriter.create<NVVM::ShflBflyOp>(
loc, resultTy, activeMask, adaptor.value(), adaptor.offset(),
maskAndClamp, returnValueAndIsValidAttr);
Value shflValue = rewriter.create<LLVM::ExtractValueOp>(
loc, valueTy, shfl, rewriter.getIndexArrayAttr(0));
Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(
loc, predTy, shfl, rewriter.getIndexArrayAttr(1));
rewriter.replaceOp(op, {shflValue, isActiveSrcLane});
return success();
}
};
/// Import the GPU Ops to NVVM Patterns.
#include "GPUToNVVM.cpp.inc"
/// A pass that replaces all occurrences of GPU device operations with their
/// corresponding NVVM equivalent.
///
/// This pass only handles device code and is not meant to be run on GPU host
/// code.
class LowerGpuOpsToNVVMOpsPass
: public ConvertGpuOpsToNVVMOpsBase<LowerGpuOpsToNVVMOpsPass> {
public:
void runOnOperation() override {
gpu::GPUModuleOp m = getOperation();
/// MemRef conversion for GPU to NVVM lowering. The GPU dialect uses memory
/// space 5 for private memory attributions, but NVVM represents private
/// memory allocations as local `alloca`s in the default address space. This
/// converter drops the private memory space to support the use case above.
LLVMTypeConverter converter(m.getContext());
converter.addConversion([&](MemRefType type) -> Optional<Type> {
if (type.getMemorySpace() != gpu::GPUDialect::getPrivateAddressSpace())
return llvm::None;
return converter.convertType(MemRefType::Builder(type).setMemorySpace(0));
});
OwningRewritePatternList patterns;
// Apply in-dialect lowering first. In-dialect lowering will replace ops
// which need to be lowered further, which is not supported by a single
// conversion pass.
populateGpuRewritePatterns(m.getContext(), patterns);
applyPatternsAndFoldGreedily(m, patterns);
patterns.clear();
populateStdToLLVMConversionPatterns(converter, patterns);
populateGpuToNVVMConversionPatterns(converter, patterns);
LLVMConversionTarget target(getContext());
target.addIllegalDialect<gpu::GPUDialect>();
target.addIllegalOp<LLVM::CosOp, LLVM::ExpOp, LLVM::FAbsOp, LLVM::FCeilOp,
LLVM::LogOp, LLVM::Log10Op, LLVM::Log2Op>();
target.addIllegalOp<FuncOp>();
target.addLegalDialect<NVVM::NVVMDialect>();
// TODO(csigg): Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
if (failed(applyPartialConversion(m, target, patterns, &converter)))
signalPassFailure();
}
};
} // anonymous namespace
void mlir::populateGpuToNVVMConversionPatterns(
LLVMTypeConverter &converter, OwningRewritePatternList &patterns) {
populateWithGenerated(converter.getDialect()->getContext(), &patterns);
patterns
.insert<GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp,
NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp,
NVVM::BlockDimYOp, NVVM::BlockDimZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp,
NVVM::BlockIdYOp, NVVM::BlockIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp,
NVVM::GridDimYOp, NVVM::GridDimZOp>,
GPUShuffleOpLowering, GPUReturnOpLowering,
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
GPUFuncOpLowering<0>>(converter);
patterns.insert<OpToFuncCallLowering<AbsFOp>>(converter, "__nv_fabsf",
"__nv_fabs");
patterns.insert<OpToFuncCallLowering<CeilFOp>>(converter, "__nv_ceilf",
"__nv_ceil");
patterns.insert<OpToFuncCallLowering<CosOp>>(converter, "__nv_cosf",
"__nv_cos");
patterns.insert<OpToFuncCallLowering<ExpOp>>(converter, "__nv_expf",
"__nv_exp");
patterns.insert<OpToFuncCallLowering<LogOp>>(converter, "__nv_logf",
"__nv_log");
patterns.insert<OpToFuncCallLowering<Log10Op>>(converter, "__nv_log10f",
"__nv_log10");
patterns.insert<OpToFuncCallLowering<Log2Op>>(converter, "__nv_log2f",
"__nv_log2");
patterns.insert<OpToFuncCallLowering<TanhOp>>(converter, "__nv_tanhf",
"__nv_tanh");
}
std::unique_ptr<OperationPass<gpu::GPUModuleOp>>
mlir::createLowerGpuOpsToNVVMOpsPass() {
return std::make_unique<LowerGpuOpsToNVVMOpsPass>();
}