forked from OSchip/llvm-project
994 lines
32 KiB
C++
994 lines
32 KiB
C++
//===- ThreadSafetyCommon.cpp ----------------------------------*- C++ --*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Implementation of the interfaces declared in ThreadSafetyCommon.h
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/StmtCXX.h"
|
|
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
|
|
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
|
|
#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
|
|
#include "clang/Analysis/AnalysisContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <vector>
|
|
|
|
|
|
namespace clang {
|
|
namespace threadSafety {
|
|
|
|
// From ThreadSafetyUtil.h
|
|
std::string getSourceLiteralString(const clang::Expr *CE) {
|
|
switch (CE->getStmtClass()) {
|
|
case Stmt::IntegerLiteralClass:
|
|
return cast<IntegerLiteral>(CE)->getValue().toString(10, true);
|
|
case Stmt::StringLiteralClass: {
|
|
std::string ret("\"");
|
|
ret += cast<StringLiteral>(CE)->getString();
|
|
ret += "\"";
|
|
return ret;
|
|
}
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
case Stmt::GNUNullExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
default:
|
|
return "#lit";
|
|
}
|
|
}
|
|
|
|
namespace til {
|
|
|
|
// Return true if E is a variable that points to an incomplete Phi node.
|
|
static bool isIncompletePhi(const SExpr *E) {
|
|
if (const auto *Ph = dyn_cast<Phi>(E))
|
|
return Ph->status() == Phi::PH_Incomplete;
|
|
return false;
|
|
}
|
|
|
|
} // end namespace til
|
|
|
|
|
|
typedef SExprBuilder::CallingContext CallingContext;
|
|
|
|
|
|
til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) {
|
|
auto It = SMap.find(S);
|
|
if (It != SMap.end())
|
|
return It->second;
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
|
|
Walker.walk(*this);
|
|
return Scfg;
|
|
}
|
|
|
|
|
|
|
|
inline bool isCalleeArrow(const Expr *E) {
|
|
const MemberExpr *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
|
|
return ME ? ME->isArrow() : false;
|
|
}
|
|
|
|
|
|
/// \brief Translate a clang expression in an attribute to a til::SExpr.
|
|
/// Constructs the context from D, DeclExp, and SelfDecl.
|
|
///
|
|
/// \param AttrExp The expression to translate.
|
|
/// \param D The declaration to which the attribute is attached.
|
|
/// \param DeclExp An expression involving the Decl to which the attribute
|
|
/// is attached. E.g. the call to a function.
|
|
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
|
|
const NamedDecl *D,
|
|
const Expr *DeclExp,
|
|
VarDecl *SelfDecl) {
|
|
// If we are processing a raw attribute expression, with no substitutions.
|
|
if (!DeclExp)
|
|
return translateAttrExpr(AttrExp, nullptr);
|
|
|
|
CallingContext Ctx(nullptr, D);
|
|
|
|
// Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
|
|
// for formal parameters when we call buildMutexID later.
|
|
if (const MemberExpr *ME = dyn_cast<MemberExpr>(DeclExp)) {
|
|
Ctx.SelfArg = ME->getBase();
|
|
Ctx.SelfArrow = ME->isArrow();
|
|
} else if (const CXXMemberCallExpr *CE =
|
|
dyn_cast<CXXMemberCallExpr>(DeclExp)) {
|
|
Ctx.SelfArg = CE->getImplicitObjectArgument();
|
|
Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
|
|
Ctx.NumArgs = CE->getNumArgs();
|
|
Ctx.FunArgs = CE->getArgs();
|
|
} else if (const CallExpr *CE = dyn_cast<CallExpr>(DeclExp)) {
|
|
Ctx.NumArgs = CE->getNumArgs();
|
|
Ctx.FunArgs = CE->getArgs();
|
|
} else if (const CXXConstructExpr *CE =
|
|
dyn_cast<CXXConstructExpr>(DeclExp)) {
|
|
Ctx.SelfArg = nullptr; // Will be set below
|
|
Ctx.NumArgs = CE->getNumArgs();
|
|
Ctx.FunArgs = CE->getArgs();
|
|
} else if (D && isa<CXXDestructorDecl>(D)) {
|
|
// There's no such thing as a "destructor call" in the AST.
|
|
Ctx.SelfArg = DeclExp;
|
|
}
|
|
|
|
// Hack to handle constructors, where self cannot be recovered from
|
|
// the expression.
|
|
if (SelfDecl && !Ctx.SelfArg) {
|
|
DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue,
|
|
SelfDecl->getLocation());
|
|
Ctx.SelfArg = &SelfDRE;
|
|
|
|
// If the attribute has no arguments, then assume the argument is "this".
|
|
if (!AttrExp)
|
|
return translateAttrExpr(Ctx.SelfArg, nullptr);
|
|
else // For most attributes.
|
|
return translateAttrExpr(AttrExp, &Ctx);
|
|
}
|
|
|
|
// If the attribute has no arguments, then assume the argument is "this".
|
|
if (!AttrExp)
|
|
return translateAttrExpr(Ctx.SelfArg, nullptr);
|
|
else // For most attributes.
|
|
return translateAttrExpr(AttrExp, &Ctx);
|
|
}
|
|
|
|
|
|
/// \brief Translate a clang expression in an attribute to a til::SExpr.
|
|
// This assumes a CallingContext has already been created.
|
|
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
|
|
CallingContext *Ctx) {
|
|
if (!AttrExp)
|
|
return CapabilityExpr(nullptr, false);
|
|
|
|
if (auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
|
|
if (SLit->getString() == StringRef("*"))
|
|
// The "*" expr is a universal lock, which essentially turns off
|
|
// checks until it is removed from the lockset.
|
|
return CapabilityExpr(new (Arena) til::Wildcard(), false);
|
|
else
|
|
// Ignore other string literals for now.
|
|
return CapabilityExpr(nullptr, false);
|
|
}
|
|
|
|
bool Neg = false;
|
|
if (auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
|
|
if (OE->getOperator() == OO_Exclaim) {
|
|
Neg = true;
|
|
AttrExp = OE->getArg(0);
|
|
}
|
|
}
|
|
else if (auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
|
|
if (UO->getOpcode() == UO_LNot) {
|
|
Neg = true;
|
|
AttrExp = UO->getSubExpr();
|
|
}
|
|
}
|
|
|
|
til::SExpr *E = translate(AttrExp, Ctx);
|
|
|
|
// Trap mutex expressions like nullptr, or 0.
|
|
// Any literal value is nonsense.
|
|
if (!E || isa<til::Literal>(E))
|
|
return CapabilityExpr(nullptr, false);
|
|
|
|
// Hack to deal with smart pointers -- strip off top-level pointer casts.
|
|
if (auto *CE = dyn_cast_or_null<til::Cast>(E)) {
|
|
if (CE->castOpcode() == til::CAST_objToPtr)
|
|
return CapabilityExpr(CE->expr(), Neg);
|
|
}
|
|
return CapabilityExpr(E, Neg);
|
|
}
|
|
|
|
|
|
|
|
// Translate a clang statement or expression to a TIL expression.
|
|
// Also performs substitution of variables; Ctx provides the context.
|
|
// Dispatches on the type of S.
|
|
til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
|
|
if (!S)
|
|
return nullptr;
|
|
|
|
// Check if S has already been translated and cached.
|
|
// This handles the lookup of SSA names for DeclRefExprs here.
|
|
if (til::SExpr *E = lookupStmt(S))
|
|
return E;
|
|
|
|
switch (S->getStmtClass()) {
|
|
case Stmt::DeclRefExprClass:
|
|
return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
|
|
case Stmt::CXXThisExprClass:
|
|
return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
|
|
case Stmt::MemberExprClass:
|
|
return translateMemberExpr(cast<MemberExpr>(S), Ctx);
|
|
case Stmt::CallExprClass:
|
|
return translateCallExpr(cast<CallExpr>(S), Ctx);
|
|
case Stmt::CXXMemberCallExprClass:
|
|
return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
|
|
case Stmt::CXXOperatorCallExprClass:
|
|
return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
|
|
case Stmt::UnaryOperatorClass:
|
|
return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
|
|
case Stmt::BinaryOperatorClass:
|
|
case Stmt::CompoundAssignOperatorClass:
|
|
return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
|
|
|
|
case Stmt::ArraySubscriptExprClass:
|
|
return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
|
|
case Stmt::ConditionalOperatorClass:
|
|
return translateAbstractConditionalOperator(
|
|
cast<ConditionalOperator>(S), Ctx);
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
return translateAbstractConditionalOperator(
|
|
cast<BinaryConditionalOperator>(S), Ctx);
|
|
|
|
// We treat these as no-ops
|
|
case Stmt::ParenExprClass:
|
|
return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
|
|
case Stmt::ExprWithCleanupsClass:
|
|
return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
|
|
case Stmt::CXXBindTemporaryExprClass:
|
|
return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
|
|
|
|
// Collect all literals
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXNullPtrLiteralExprClass:
|
|
case Stmt::GNUNullExprClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::ImaginaryLiteralClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
return new (Arena) til::Literal(cast<Expr>(S));
|
|
|
|
case Stmt::DeclStmtClass:
|
|
return translateDeclStmt(cast<DeclStmt>(S), Ctx);
|
|
default:
|
|
break;
|
|
}
|
|
if (const CastExpr *CE = dyn_cast<CastExpr>(S))
|
|
return translateCastExpr(CE, Ctx);
|
|
|
|
return new (Arena) til::Undefined(S);
|
|
}
|
|
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
|
|
CallingContext *Ctx) {
|
|
const ValueDecl *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
|
|
|
|
// Function parameters require substitution and/or renaming.
|
|
if (const ParmVarDecl *PV = dyn_cast_or_null<ParmVarDecl>(VD)) {
|
|
const FunctionDecl *FD =
|
|
cast<FunctionDecl>(PV->getDeclContext())->getCanonicalDecl();
|
|
unsigned I = PV->getFunctionScopeIndex();
|
|
|
|
if (Ctx && Ctx->FunArgs && FD == Ctx->AttrDecl->getCanonicalDecl()) {
|
|
// Substitute call arguments for references to function parameters
|
|
assert(I < Ctx->NumArgs);
|
|
return translate(Ctx->FunArgs[I], Ctx->Prev);
|
|
}
|
|
// Map the param back to the param of the original function declaration
|
|
// for consistent comparisons.
|
|
VD = FD->getParamDecl(I);
|
|
}
|
|
|
|
// For non-local variables, treat it as a referenced to a named object.
|
|
return new (Arena) til::LiteralPtr(VD);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
|
|
CallingContext *Ctx) {
|
|
// Substitute for 'this'
|
|
if (Ctx && Ctx->SelfArg)
|
|
return translate(Ctx->SelfArg, Ctx->Prev);
|
|
assert(SelfVar && "We have no variable for 'this'!");
|
|
return SelfVar;
|
|
}
|
|
|
|
|
|
const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
|
|
if (auto *V = dyn_cast<til::Variable>(E))
|
|
return V->clangDecl();
|
|
if (auto *Ph = dyn_cast<til::Phi>(E))
|
|
return Ph->clangDecl();
|
|
if (auto *P = dyn_cast<til::Project>(E))
|
|
return P->clangDecl();
|
|
if (auto *L = dyn_cast<til::LiteralPtr>(E))
|
|
return L->clangDecl();
|
|
return 0;
|
|
}
|
|
|
|
bool hasCppPointerType(const til::SExpr *E) {
|
|
auto *VD = getValueDeclFromSExpr(E);
|
|
if (VD && VD->getType()->isPointerType())
|
|
return true;
|
|
if (auto *C = dyn_cast<til::Cast>(E))
|
|
return C->castOpcode() == til::CAST_objToPtr;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Grab the very first declaration of virtual method D
|
|
const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) {
|
|
while (true) {
|
|
D = D->getCanonicalDecl();
|
|
CXXMethodDecl::method_iterator I = D->begin_overridden_methods(),
|
|
E = D->end_overridden_methods();
|
|
if (I == E)
|
|
return D; // Method does not override anything
|
|
D = *I; // FIXME: this does not work with multiple inheritance.
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
|
|
CallingContext *Ctx) {
|
|
til::SExpr *BE = translate(ME->getBase(), Ctx);
|
|
til::SExpr *E = new (Arena) til::SApply(BE);
|
|
|
|
const ValueDecl *D = ME->getMemberDecl();
|
|
if (auto *VD = dyn_cast<CXXMethodDecl>(D))
|
|
D = getFirstVirtualDecl(VD);
|
|
|
|
til::Project *P = new (Arena) til::Project(E, D);
|
|
if (hasCppPointerType(BE))
|
|
P->setArrow(true);
|
|
return P;
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
|
|
CallingContext *Ctx,
|
|
const Expr *SelfE) {
|
|
if (CapabilityExprMode) {
|
|
// Handle LOCK_RETURNED
|
|
const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl();
|
|
if (LockReturnedAttr* At = FD->getAttr<LockReturnedAttr>()) {
|
|
CallingContext LRCallCtx(Ctx);
|
|
LRCallCtx.AttrDecl = CE->getDirectCallee();
|
|
LRCallCtx.SelfArg = SelfE;
|
|
LRCallCtx.NumArgs = CE->getNumArgs();
|
|
LRCallCtx.FunArgs = CE->getArgs();
|
|
return const_cast<til::SExpr*>(
|
|
translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
|
|
}
|
|
}
|
|
|
|
til::SExpr *E = translate(CE->getCallee(), Ctx);
|
|
for (const auto *Arg : CE->arguments()) {
|
|
til::SExpr *A = translate(Arg, Ctx);
|
|
E = new (Arena) til::Apply(E, A);
|
|
}
|
|
return new (Arena) til::Call(E, CE);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
|
|
const CXXMemberCallExpr *ME, CallingContext *Ctx) {
|
|
if (CapabilityExprMode) {
|
|
// Ignore calls to get() on smart pointers.
|
|
if (ME->getMethodDecl()->getNameAsString() == "get" &&
|
|
ME->getNumArgs() == 0) {
|
|
auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
|
|
return new (Arena) til::Cast(til::CAST_objToPtr, E);
|
|
// return E;
|
|
}
|
|
}
|
|
return translateCallExpr(cast<CallExpr>(ME), Ctx,
|
|
ME->getImplicitObjectArgument());
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
|
|
const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
|
|
if (CapabilityExprMode) {
|
|
// Ignore operator * and operator -> on smart pointers.
|
|
OverloadedOperatorKind k = OCE->getOperator();
|
|
if (k == OO_Star || k == OO_Arrow) {
|
|
auto *E = translate(OCE->getArg(0), Ctx);
|
|
return new (Arena) til::Cast(til::CAST_objToPtr, E);
|
|
// return E;
|
|
}
|
|
}
|
|
return translateCallExpr(cast<CallExpr>(OCE), Ctx);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
|
|
CallingContext *Ctx) {
|
|
switch (UO->getOpcode()) {
|
|
case UO_PostInc:
|
|
case UO_PostDec:
|
|
case UO_PreInc:
|
|
case UO_PreDec:
|
|
return new (Arena) til::Undefined(UO);
|
|
|
|
case UO_AddrOf: {
|
|
if (CapabilityExprMode) {
|
|
// interpret &Graph::mu_ as an existential.
|
|
if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
|
|
if (DRE->getDecl()->isCXXInstanceMember()) {
|
|
// This is a pointer-to-member expression, e.g. &MyClass::mu_.
|
|
// We interpret this syntax specially, as a wildcard.
|
|
auto *W = new (Arena) til::Wildcard();
|
|
return new (Arena) til::Project(W, DRE->getDecl());
|
|
}
|
|
}
|
|
}
|
|
// otherwise, & is a no-op
|
|
return translate(UO->getSubExpr(), Ctx);
|
|
}
|
|
|
|
// We treat these as no-ops
|
|
case UO_Deref:
|
|
case UO_Plus:
|
|
return translate(UO->getSubExpr(), Ctx);
|
|
|
|
case UO_Minus:
|
|
return new (Arena)
|
|
til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
|
|
case UO_Not:
|
|
return new (Arena)
|
|
til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
|
|
case UO_LNot:
|
|
return new (Arena)
|
|
til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
|
|
|
|
// Currently unsupported
|
|
case UO_Real:
|
|
case UO_Imag:
|
|
case UO_Extension:
|
|
return new (Arena) til::Undefined(UO);
|
|
}
|
|
return new (Arena) til::Undefined(UO);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
|
|
const BinaryOperator *BO,
|
|
CallingContext *Ctx, bool Reverse) {
|
|
til::SExpr *E0 = translate(BO->getLHS(), Ctx);
|
|
til::SExpr *E1 = translate(BO->getRHS(), Ctx);
|
|
if (Reverse)
|
|
return new (Arena) til::BinaryOp(Op, E1, E0);
|
|
else
|
|
return new (Arena) til::BinaryOp(Op, E0, E1);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
|
|
const BinaryOperator *BO,
|
|
CallingContext *Ctx,
|
|
bool Assign) {
|
|
const Expr *LHS = BO->getLHS();
|
|
const Expr *RHS = BO->getRHS();
|
|
til::SExpr *E0 = translate(LHS, Ctx);
|
|
til::SExpr *E1 = translate(RHS, Ctx);
|
|
|
|
const ValueDecl *VD = nullptr;
|
|
til::SExpr *CV = nullptr;
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(LHS)) {
|
|
VD = DRE->getDecl();
|
|
CV = lookupVarDecl(VD);
|
|
}
|
|
|
|
if (!Assign) {
|
|
til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
|
|
E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
|
|
E1 = addStatement(E1, nullptr, VD);
|
|
}
|
|
if (VD && CV)
|
|
return updateVarDecl(VD, E1);
|
|
return new (Arena) til::Store(E0, E1);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
|
|
CallingContext *Ctx) {
|
|
switch (BO->getOpcode()) {
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
return new (Arena) til::Undefined(BO);
|
|
|
|
case BO_Mul: return translateBinOp(til::BOP_Mul, BO, Ctx);
|
|
case BO_Div: return translateBinOp(til::BOP_Div, BO, Ctx);
|
|
case BO_Rem: return translateBinOp(til::BOP_Rem, BO, Ctx);
|
|
case BO_Add: return translateBinOp(til::BOP_Add, BO, Ctx);
|
|
case BO_Sub: return translateBinOp(til::BOP_Sub, BO, Ctx);
|
|
case BO_Shl: return translateBinOp(til::BOP_Shl, BO, Ctx);
|
|
case BO_Shr: return translateBinOp(til::BOP_Shr, BO, Ctx);
|
|
case BO_LT: return translateBinOp(til::BOP_Lt, BO, Ctx);
|
|
case BO_GT: return translateBinOp(til::BOP_Lt, BO, Ctx, true);
|
|
case BO_LE: return translateBinOp(til::BOP_Leq, BO, Ctx);
|
|
case BO_GE: return translateBinOp(til::BOP_Leq, BO, Ctx, true);
|
|
case BO_EQ: return translateBinOp(til::BOP_Eq, BO, Ctx);
|
|
case BO_NE: return translateBinOp(til::BOP_Neq, BO, Ctx);
|
|
case BO_And: return translateBinOp(til::BOP_BitAnd, BO, Ctx);
|
|
case BO_Xor: return translateBinOp(til::BOP_BitXor, BO, Ctx);
|
|
case BO_Or: return translateBinOp(til::BOP_BitOr, BO, Ctx);
|
|
case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
|
|
case BO_LOr: return translateBinOp(til::BOP_LogicOr, BO, Ctx);
|
|
|
|
case BO_Assign: return translateBinAssign(til::BOP_Eq, BO, Ctx, true);
|
|
case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
|
|
case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
|
|
case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
|
|
case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
|
|
case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
|
|
case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
|
|
case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
|
|
case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
|
|
case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
|
|
case BO_OrAssign: return translateBinAssign(til::BOP_BitOr, BO, Ctx);
|
|
|
|
case BO_Comma:
|
|
// The clang CFG should have already processed both sides.
|
|
return translate(BO->getRHS(), Ctx);
|
|
}
|
|
return new (Arena) til::Undefined(BO);
|
|
}
|
|
|
|
|
|
til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
|
|
CallingContext *Ctx) {
|
|
clang::CastKind K = CE->getCastKind();
|
|
switch (K) {
|
|
case CK_LValueToRValue: {
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
|
|
til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
|
|
if (E0)
|
|
return E0;
|
|
}
|
|
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
|
|
return E0;
|
|
// FIXME!! -- get Load working properly
|
|
// return new (Arena) til::Load(E0);
|
|
}
|
|
case CK_NoOp:
|
|
case CK_DerivedToBase:
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_ArrayToPointerDecay:
|
|
case CK_FunctionToPointerDecay: {
|
|
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
|
|
return E0;
|
|
}
|
|
default: {
|
|
// FIXME: handle different kinds of casts.
|
|
til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
|
|
if (CapabilityExprMode)
|
|
return E0;
|
|
return new (Arena) til::Cast(til::CAST_none, E0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
til::SExpr *
|
|
SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
|
|
CallingContext *Ctx) {
|
|
til::SExpr *E0 = translate(E->getBase(), Ctx);
|
|
til::SExpr *E1 = translate(E->getIdx(), Ctx);
|
|
return new (Arena) til::ArrayIndex(E0, E1);
|
|
}
|
|
|
|
|
|
til::SExpr *
|
|
SExprBuilder::translateAbstractConditionalOperator(
|
|
const AbstractConditionalOperator *CO, CallingContext *Ctx) {
|
|
auto *C = translate(CO->getCond(), Ctx);
|
|
auto *T = translate(CO->getTrueExpr(), Ctx);
|
|
auto *E = translate(CO->getFalseExpr(), Ctx);
|
|
return new (Arena) til::IfThenElse(C, T, E);
|
|
}
|
|
|
|
|
|
til::SExpr *
|
|
SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
|
|
DeclGroupRef DGrp = S->getDeclGroup();
|
|
for (DeclGroupRef::iterator I = DGrp.begin(), E = DGrp.end(); I != E; ++I) {
|
|
if (VarDecl *VD = dyn_cast_or_null<VarDecl>(*I)) {
|
|
Expr *E = VD->getInit();
|
|
til::SExpr* SE = translate(E, Ctx);
|
|
|
|
// Add local variables with trivial type to the variable map
|
|
QualType T = VD->getType();
|
|
if (T.isTrivialType(VD->getASTContext())) {
|
|
return addVarDecl(VD, SE);
|
|
}
|
|
else {
|
|
// TODO: add alloca
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
|
|
// If (E) is non-trivial, then add it to the current basic block, and
|
|
// update the statement map so that S refers to E. Returns a new variable
|
|
// that refers to E.
|
|
// If E is trivial returns E.
|
|
til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
|
|
const ValueDecl *VD) {
|
|
if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
|
|
return E;
|
|
if (VD)
|
|
E = new (Arena) til::Variable(E, VD);
|
|
CurrentInstructions.push_back(E);
|
|
if (S)
|
|
insertStmt(S, E);
|
|
return E;
|
|
}
|
|
|
|
|
|
// Returns the current value of VD, if known, and nullptr otherwise.
|
|
til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
|
|
auto It = LVarIdxMap.find(VD);
|
|
if (It != LVarIdxMap.end()) {
|
|
assert(CurrentLVarMap[It->second].first == VD);
|
|
return CurrentLVarMap[It->second].second;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
// if E is a til::Variable, update its clangDecl.
|
|
inline void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
|
|
if (!E)
|
|
return;
|
|
if (til::Variable *V = dyn_cast<til::Variable>(E)) {
|
|
if (!V->clangDecl())
|
|
V->setClangDecl(VD);
|
|
}
|
|
}
|
|
|
|
// Adds a new variable declaration.
|
|
til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
|
|
maybeUpdateVD(E, VD);
|
|
LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
|
|
CurrentLVarMap.makeWritable();
|
|
CurrentLVarMap.push_back(std::make_pair(VD, E));
|
|
return E;
|
|
}
|
|
|
|
|
|
// Updates a current variable declaration. (E.g. by assignment)
|
|
til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
|
|
maybeUpdateVD(E, VD);
|
|
auto It = LVarIdxMap.find(VD);
|
|
if (It == LVarIdxMap.end()) {
|
|
til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
|
|
til::SExpr *St = new (Arena) til::Store(Ptr, E);
|
|
return St;
|
|
}
|
|
CurrentLVarMap.makeWritable();
|
|
CurrentLVarMap.elem(It->second).second = E;
|
|
return E;
|
|
}
|
|
|
|
|
|
// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
|
|
// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
|
|
// If E == null, this is a backedge and will be set later.
|
|
void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
|
|
unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
|
|
assert(ArgIndex > 0 && ArgIndex < NPreds);
|
|
|
|
til::SExpr *CurrE = CurrentLVarMap[i].second;
|
|
if (CurrE->block() == CurrentBB) {
|
|
// We already have a Phi node in the current block,
|
|
// so just add the new variable to the Phi node.
|
|
til::Phi *Ph = dyn_cast<til::Phi>(CurrE);
|
|
assert(Ph && "Expecting Phi node.");
|
|
if (E)
|
|
Ph->values()[ArgIndex] = E;
|
|
return;
|
|
}
|
|
|
|
// Make a new phi node: phi(..., E)
|
|
// All phi args up to the current index are set to the current value.
|
|
til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
|
|
Ph->values().setValues(NPreds, nullptr);
|
|
for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
|
|
Ph->values()[PIdx] = CurrE;
|
|
if (E)
|
|
Ph->values()[ArgIndex] = E;
|
|
Ph->setClangDecl(CurrentLVarMap[i].first);
|
|
// If E is from a back-edge, or either E or CurrE are incomplete, then
|
|
// mark this node as incomplete; we may need to remove it later.
|
|
if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE)) {
|
|
Ph->setStatus(til::Phi::PH_Incomplete);
|
|
}
|
|
|
|
// Add Phi node to current block, and update CurrentLVarMap[i]
|
|
CurrentArguments.push_back(Ph);
|
|
if (Ph->status() == til::Phi::PH_Incomplete)
|
|
IncompleteArgs.push_back(Ph);
|
|
|
|
CurrentLVarMap.makeWritable();
|
|
CurrentLVarMap.elem(i).second = Ph;
|
|
}
|
|
|
|
|
|
// Merge values from Map into the current variable map.
|
|
// This will construct Phi nodes in the current basic block as necessary.
|
|
void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
|
|
assert(CurrentBlockInfo && "Not processing a block!");
|
|
|
|
if (!CurrentLVarMap.valid()) {
|
|
// Steal Map, using copy-on-write.
|
|
CurrentLVarMap = std::move(Map);
|
|
return;
|
|
}
|
|
if (CurrentLVarMap.sameAs(Map))
|
|
return; // Easy merge: maps from different predecessors are unchanged.
|
|
|
|
unsigned NPreds = CurrentBB->numPredecessors();
|
|
unsigned ESz = CurrentLVarMap.size();
|
|
unsigned MSz = Map.size();
|
|
unsigned Sz = std::min(ESz, MSz);
|
|
|
|
for (unsigned i=0; i<Sz; ++i) {
|
|
if (CurrentLVarMap[i].first != Map[i].first) {
|
|
// We've reached the end of variables in common.
|
|
CurrentLVarMap.makeWritable();
|
|
CurrentLVarMap.downsize(i);
|
|
break;
|
|
}
|
|
if (CurrentLVarMap[i].second != Map[i].second)
|
|
makePhiNodeVar(i, NPreds, Map[i].second);
|
|
}
|
|
if (ESz > MSz) {
|
|
CurrentLVarMap.makeWritable();
|
|
CurrentLVarMap.downsize(Map.size());
|
|
}
|
|
}
|
|
|
|
|
|
// Merge a back edge into the current variable map.
|
|
// This will create phi nodes for all variables in the variable map.
|
|
void SExprBuilder::mergeEntryMapBackEdge() {
|
|
// We don't have definitions for variables on the backedge, because we
|
|
// haven't gotten that far in the CFG. Thus, when encountering a back edge,
|
|
// we conservatively create Phi nodes for all variables. Unnecessary Phi
|
|
// nodes will be marked as incomplete, and stripped out at the end.
|
|
//
|
|
// An Phi node is unnecessary if it only refers to itself and one other
|
|
// variable, e.g. x = Phi(y, y, x) can be reduced to x = y.
|
|
|
|
assert(CurrentBlockInfo && "Not processing a block!");
|
|
|
|
if (CurrentBlockInfo->HasBackEdges)
|
|
return;
|
|
CurrentBlockInfo->HasBackEdges = true;
|
|
|
|
CurrentLVarMap.makeWritable();
|
|
unsigned Sz = CurrentLVarMap.size();
|
|
unsigned NPreds = CurrentBB->numPredecessors();
|
|
|
|
for (unsigned i=0; i < Sz; ++i) {
|
|
makePhiNodeVar(i, NPreds, nullptr);
|
|
}
|
|
}
|
|
|
|
|
|
// Update the phi nodes that were initially created for a back edge
|
|
// once the variable definitions have been computed.
|
|
// I.e., merge the current variable map into the phi nodes for Blk.
|
|
void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
|
|
til::BasicBlock *BB = lookupBlock(Blk);
|
|
unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
|
|
assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
|
|
|
|
for (til::SExpr *PE : BB->arguments()) {
|
|
til::Phi *Ph = dyn_cast_or_null<til::Phi>(PE);
|
|
assert(Ph && "Expecting Phi Node.");
|
|
assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
|
|
|
|
til::SExpr *E = lookupVarDecl(Ph->clangDecl());
|
|
assert(E && "Couldn't find local variable for Phi node.");
|
|
Ph->values()[ArgIndex] = E;
|
|
}
|
|
}
|
|
|
|
void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
|
|
const CFGBlock *First) {
|
|
// Perform initial setup operations.
|
|
unsigned NBlocks = Cfg->getNumBlockIDs();
|
|
Scfg = new (Arena) til::SCFG(Arena, NBlocks);
|
|
|
|
// allocate all basic blocks immediately, to handle forward references.
|
|
BBInfo.resize(NBlocks);
|
|
BlockMap.resize(NBlocks, nullptr);
|
|
// create map from clang blockID to til::BasicBlocks
|
|
for (auto *B : *Cfg) {
|
|
auto *BB = new (Arena) til::BasicBlock(Arena);
|
|
BB->reserveInstructions(B->size());
|
|
BlockMap[B->getBlockID()] = BB;
|
|
}
|
|
|
|
CurrentBB = lookupBlock(&Cfg->getEntry());
|
|
auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
|
|
: cast<FunctionDecl>(D)->parameters();
|
|
for (auto *Pm : Parms) {
|
|
QualType T = Pm->getType();
|
|
if (!T.isTrivialType(Pm->getASTContext()))
|
|
continue;
|
|
|
|
// Add parameters to local variable map.
|
|
// FIXME: right now we emulate params with loads; that should be fixed.
|
|
til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
|
|
til::SExpr *Ld = new (Arena) til::Load(Lp);
|
|
til::SExpr *V = addStatement(Ld, nullptr, Pm);
|
|
addVarDecl(Pm, V);
|
|
}
|
|
}
|
|
|
|
|
|
void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
|
|
// Intialize TIL basic block and add it to the CFG.
|
|
CurrentBB = lookupBlock(B);
|
|
CurrentBB->reservePredecessors(B->pred_size());
|
|
Scfg->add(CurrentBB);
|
|
|
|
CurrentBlockInfo = &BBInfo[B->getBlockID()];
|
|
|
|
// CurrentLVarMap is moved to ExitMap on block exit.
|
|
// FIXME: the entry block will hold function parameters.
|
|
// assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
|
|
}
|
|
|
|
|
|
void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
|
|
// Compute CurrentLVarMap on entry from ExitMaps of predecessors
|
|
|
|
CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
|
|
BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
|
|
assert(PredInfo->UnprocessedSuccessors > 0);
|
|
|
|
if (--PredInfo->UnprocessedSuccessors == 0)
|
|
mergeEntryMap(std::move(PredInfo->ExitMap));
|
|
else
|
|
mergeEntryMap(PredInfo->ExitMap.clone());
|
|
|
|
++CurrentBlockInfo->ProcessedPredecessors;
|
|
}
|
|
|
|
|
|
void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
|
|
mergeEntryMapBackEdge();
|
|
}
|
|
|
|
|
|
void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
|
|
// The merge*() methods have created arguments.
|
|
// Push those arguments onto the basic block.
|
|
CurrentBB->arguments().reserve(
|
|
static_cast<unsigned>(CurrentArguments.size()), Arena);
|
|
for (auto *A : CurrentArguments)
|
|
CurrentBB->addArgument(A);
|
|
}
|
|
|
|
|
|
void SExprBuilder::handleStatement(const Stmt *S) {
|
|
til::SExpr *E = translate(S, nullptr);
|
|
addStatement(E, S);
|
|
}
|
|
|
|
|
|
void SExprBuilder::handleDestructorCall(const VarDecl *VD,
|
|
const CXXDestructorDecl *DD) {
|
|
til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
|
|
til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
|
|
til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
|
|
til::SExpr *E = new (Arena) til::Call(Ap);
|
|
addStatement(E, nullptr);
|
|
}
|
|
|
|
|
|
|
|
void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
|
|
CurrentBB->instructions().reserve(
|
|
static_cast<unsigned>(CurrentInstructions.size()), Arena);
|
|
for (auto *V : CurrentInstructions)
|
|
CurrentBB->addInstruction(V);
|
|
|
|
// Create an appropriate terminator
|
|
unsigned N = B->succ_size();
|
|
auto It = B->succ_begin();
|
|
if (N == 1) {
|
|
til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
|
|
// TODO: set index
|
|
unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
|
|
auto *Tm = new (Arena) til::Goto(BB, Idx);
|
|
CurrentBB->setTerminator(Tm);
|
|
}
|
|
else if (N == 2) {
|
|
til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
|
|
til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
|
|
++It;
|
|
til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
|
|
// FIXME: make sure these arent' critical edges.
|
|
auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
|
|
CurrentBB->setTerminator(Tm);
|
|
}
|
|
}
|
|
|
|
|
|
void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
|
|
++CurrentBlockInfo->UnprocessedSuccessors;
|
|
}
|
|
|
|
|
|
void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
|
|
mergePhiNodesBackEdge(Succ);
|
|
++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
|
|
}
|
|
|
|
|
|
void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
|
|
CurrentArguments.clear();
|
|
CurrentInstructions.clear();
|
|
CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
|
|
CurrentBB = nullptr;
|
|
CurrentBlockInfo = nullptr;
|
|
}
|
|
|
|
|
|
void SExprBuilder::exitCFG(const CFGBlock *Last) {
|
|
for (auto *Ph : IncompleteArgs) {
|
|
if (Ph->status() == til::Phi::PH_Incomplete)
|
|
simplifyIncompleteArg(Ph);
|
|
}
|
|
|
|
CurrentArguments.clear();
|
|
CurrentInstructions.clear();
|
|
IncompleteArgs.clear();
|
|
}
|
|
|
|
|
|
/*
|
|
void printSCFG(CFGWalker &Walker) {
|
|
llvm::BumpPtrAllocator Bpa;
|
|
til::MemRegionRef Arena(&Bpa);
|
|
SExprBuilder SxBuilder(Arena);
|
|
til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
|
|
TILPrinter::print(Scfg, llvm::errs());
|
|
}
|
|
*/
|
|
|
|
|
|
} // end namespace threadSafety
|
|
|
|
} // end namespace clang
|