llvm-project/lld/MachO/UnwindInfoSection.cpp

532 lines
22 KiB
C++

//===- UnwindInfoSection.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "UnwindInfoSection.h"
#include "Config.h"
#include "InputSection.h"
#include "MergedOutputSection.h"
#include "OutputSection.h"
#include "OutputSegment.h"
#include "SymbolTable.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "lld/Common/ErrorHandler.h"
#include "lld/Common/Memory.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/BinaryFormat/MachO.h"
using namespace llvm;
using namespace llvm::MachO;
using namespace lld;
using namespace lld::macho;
#define COMMON_ENCODINGS_MAX 127
#define COMPACT_ENCODINGS_MAX 256
#define SECOND_LEVEL_PAGE_BYTES 4096
#define SECOND_LEVEL_PAGE_WORDS (SECOND_LEVEL_PAGE_BYTES / sizeof(uint32_t))
#define REGULAR_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_regular_second_level_page_header)) / \
sizeof(unwind_info_regular_second_level_entry))
#define COMPRESSED_SECOND_LEVEL_ENTRIES_MAX \
((SECOND_LEVEL_PAGE_BYTES - \
sizeof(unwind_info_compressed_second_level_page_header)) / \
sizeof(uint32_t))
#define COMPRESSED_ENTRY_FUNC_OFFSET_BITS 24
#define COMPRESSED_ENTRY_FUNC_OFFSET_MASK \
UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(~0)
// Compact Unwind format is a Mach-O evolution of DWARF Unwind that
// optimizes space and exception-time lookup. Most DWARF unwind
// entries can be replaced with Compact Unwind entries, but the ones
// that cannot are retained in DWARF form.
//
// This comment will address macro-level organization of the pre-link
// and post-link compact unwind tables. For micro-level organization
// pertaining to the bitfield layout of the 32-bit compact unwind
// entries, see libunwind/include/mach-o/compact_unwind_encoding.h
//
// Important clarifying factoids:
//
// * __LD,__compact_unwind is the compact unwind format for compiler
// output and linker input. It is never a final output. It could be
// an intermediate output with the `-r` option which retains relocs.
//
// * __TEXT,__unwind_info is the compact unwind format for final
// linker output. It is never an input.
//
// * __TEXT,__eh_frame is the DWARF format for both linker input and output.
//
// * __TEXT,__unwind_info entries are divided into 4 KiB pages (2nd
// level) by ascending address, and the pages are referenced by an
// index (1st level) in the section header.
//
// * Following the headers in __TEXT,__unwind_info, the bulk of the
// section contains a vector of compact unwind entries
// `{functionOffset, encoding}` sorted by ascending `functionOffset`.
// Adjacent entries with the same encoding can be folded to great
// advantage, achieving a 3-order-of-magnitude reduction in the
// number of entries.
//
// * The __TEXT,__unwind_info format can accommodate up to 127 unique
// encodings for the space-efficient compressed format. In practice,
// fewer than a dozen unique encodings are used by C++ programs of
// all sizes. Therefore, we don't even bother implementing the regular
// non-compressed format. Time will tell if anyone in the field ever
// overflows the 127-encodings limit.
//
// Refer to the definition of unwind_info_section_header in
// compact_unwind_encoding.h for an overview of the format we are encoding
// here.
// TODO(gkm): prune __eh_frame entries superseded by __unwind_info
// TODO(gkm): how do we align the 2nd-level pages?
using EncodingMap = llvm::DenseMap<compact_unwind_encoding_t, size_t>;
template <class Ptr> struct CompactUnwindEntry {
Ptr functionAddress;
uint32_t functionLength;
compact_unwind_encoding_t encoding;
Ptr personality;
Ptr lsda;
};
struct SecondLevelPage {
uint32_t kind;
size_t entryIndex;
size_t entryCount;
size_t byteCount;
std::vector<compact_unwind_encoding_t> localEncodings;
EncodingMap localEncodingIndexes;
};
template <class Ptr> class UnwindInfoSectionImpl : public UnwindInfoSection {
public:
void prepareRelocations(InputSection *) override;
void finalize() override;
void writeTo(uint8_t *buf) const override;
private:
std::vector<std::pair<compact_unwind_encoding_t, size_t>> commonEncodings;
EncodingMap commonEncodingIndexes;
// Indices of personality functions within the GOT.
std::vector<uint32_t> personalities;
SmallDenseMap<std::pair<InputSection *, uint64_t /* addend */>, Symbol *>
personalityTable;
std::vector<unwind_info_section_header_lsda_index_entry> lsdaEntries;
// Map of function offset (from the image base) to an index within the LSDA
// array.
llvm::DenseMap<uint32_t, uint32_t> functionToLsdaIndex;
std::vector<CompactUnwindEntry<Ptr>> cuVector;
std::vector<CompactUnwindEntry<Ptr> *> cuPtrVector;
std::vector<SecondLevelPage> secondLevelPages;
uint64_t level2PagesOffset = 0;
};
// Compact unwind relocations have different semantics, so we handle them in a
// separate code path from regular relocations. First, we do not wish to add
// rebase opcodes for __LD,__compact_unwind, because that section doesn't
// actually end up in the final binary. Second, personality pointers always
// reside in the GOT and must be treated specially.
template <class Ptr>
void UnwindInfoSectionImpl<Ptr>::prepareRelocations(InputSection *isec) {
assert(isec->segname == segment_names::ld &&
isec->name == section_names::compactUnwind);
for (Reloc &r : isec->relocs) {
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
if (r.offset % sizeof(CompactUnwindEntry<Ptr>) !=
offsetof(CompactUnwindEntry<Ptr>, personality))
continue;
if (auto *s = r.referent.dyn_cast<Symbol *>()) {
if (auto *undefined = dyn_cast<Undefined>(s)) {
treatUndefinedSymbol(*undefined);
// treatUndefinedSymbol() can replace s with a DylibSymbol; re-check.
if (isa<Undefined>(s))
continue;
}
if (auto *defined = dyn_cast<Defined>(s)) {
// Check if we have created a synthetic symbol at the same address.
Symbol *&personality =
personalityTable[{defined->isec, defined->value}];
if (personality == nullptr) {
personality = defined;
in.got->addEntry(defined);
} else if (personality != defined) {
r.referent = personality;
}
continue;
}
assert(isa<DylibSymbol>(s));
in.got->addEntry(s);
continue;
}
if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
// Personality functions can be referenced via section relocations
// if they live in the same object file. Create placeholder synthetic
// symbols for them in the GOT.
Symbol *&s = personalityTable[{referentIsec, r.addend}];
if (s == nullptr) {
s = make<Defined>("<internal>", /*file=*/nullptr, referentIsec,
r.addend, /*size=*/0, /*isWeakDef=*/false,
/*isExternal=*/false, /*isPrivateExtern=*/false);
in.got->addEntry(s);
}
r.referent = s;
r.addend = 0;
}
}
}
// Unwind info lives in __DATA, and finalization of __TEXT will occur before
// finalization of __DATA. Moreover, the finalization of unwind info depends on
// the exact addresses that it references. So it is safe for compact unwind to
// reference addresses in __TEXT, but not addresses in any other segment.
static void checkTextSegment(InputSection *isec) {
if (isec->segname != segment_names::text)
error("compact unwind references address in " + toString(isec) +
" which is not in segment __TEXT");
}
// We need to apply the relocations to the pre-link compact unwind section
// before converting it to post-link form. There should only be absolute
// relocations here: since we are not emitting the pre-link CU section, there
// is no source address to make a relative location meaningful.
template <class Ptr>
static void
relocateCompactUnwind(MergedOutputSection *compactUnwindSection,
std::vector<CompactUnwindEntry<Ptr>> &cuVector) {
for (const InputSection *isec : compactUnwindSection->inputs) {
uint8_t *buf =
reinterpret_cast<uint8_t *>(cuVector.data()) + isec->outSecFileOff;
memcpy(buf, isec->data.data(), isec->data.size());
for (const Reloc &r : isec->relocs) {
uint64_t referentVA = 0;
if (auto *referentSym = r.referent.dyn_cast<Symbol *>()) {
if (!isa<Undefined>(referentSym)) {
assert(referentSym->isInGot());
if (auto *defined = dyn_cast<Defined>(referentSym))
checkTextSegment(defined->isec);
// At this point in the link, we may not yet know the final address of
// the GOT, so we just encode the index. We make it a 1-based index so
// that we can distinguish the null pointer case.
referentVA = referentSym->gotIndex + 1;
}
} else if (auto *referentIsec = r.referent.dyn_cast<InputSection *>()) {
checkTextSegment(referentIsec);
referentVA = referentIsec->getVA() + r.addend;
}
writeAddress(buf + r.offset, referentVA, r.length);
}
}
}
// There should only be a handful of unique personality pointers, so we can
// encode them as 2-bit indices into a small array.
template <class Ptr>
void encodePersonalities(
const std::vector<CompactUnwindEntry<Ptr> *> &cuPtrVector,
std::vector<uint32_t> &personalities) {
for (CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
if (cu->personality == 0)
continue;
// Linear search is fast enough for a small array.
auto it = find(personalities, cu->personality);
uint32_t personalityIndex; // 1-based index
if (it != personalities.end()) {
personalityIndex = std::distance(personalities.begin(), it) + 1;
} else {
personalities.push_back(cu->personality);
personalityIndex = personalities.size();
}
cu->encoding |=
personalityIndex << countTrailingZeros(
static_cast<compact_unwind_encoding_t>(UNWIND_PERSONALITY_MASK));
}
if (personalities.size() > 3)
error("too many personalities (" + std::to_string(personalities.size()) +
") for compact unwind to encode");
}
// Scan the __LD,__compact_unwind entries and compute the space needs of
// __TEXT,__unwind_info and __TEXT,__eh_frame
template <class Ptr> void UnwindInfoSectionImpl<Ptr>::finalize() {
if (compactUnwindSection == nullptr)
return;
// At this point, the address space for __TEXT,__text has been
// assigned, so we can relocate the __LD,__compact_unwind entries
// into a temporary buffer. Relocation is necessary in order to sort
// the CU entries by function address. Sorting is necessary so that
// we can fold adjacent CU entries with identical
// encoding+personality+lsda. Folding is necessary because it reduces
// the number of CU entries by as much as 3 orders of magnitude!
compactUnwindSection->finalize();
assert(compactUnwindSection->getSize() % sizeof(CompactUnwindEntry<Ptr>) ==
0);
size_t cuCount =
compactUnwindSection->getSize() / sizeof(CompactUnwindEntry<Ptr>);
cuVector.resize(cuCount);
relocateCompactUnwind(compactUnwindSection, cuVector);
// Rather than sort & fold the 32-byte entries directly, we create a
// vector of pointers to entries and sort & fold that instead.
cuPtrVector.reserve(cuCount);
for (CompactUnwindEntry<Ptr> &cuEntry : cuVector)
cuPtrVector.emplace_back(&cuEntry);
llvm::sort(cuPtrVector, [](const CompactUnwindEntry<Ptr> *a,
const CompactUnwindEntry<Ptr> *b) {
return a->functionAddress < b->functionAddress;
});
// Fold adjacent entries with matching encoding+personality+lsda
// We use three iterators on the same cuPtrVector to fold in-situ:
// (1) `foldBegin` is the first of a potential sequence of matching entries
// (2) `foldEnd` is the first non-matching entry after `foldBegin`.
// The semi-open interval [ foldBegin .. foldEnd ) contains a range
// entries that can be folded into a single entry and written to ...
// (3) `foldWrite`
auto foldWrite = cuPtrVector.begin();
for (auto foldBegin = cuPtrVector.begin(); foldBegin < cuPtrVector.end();) {
auto foldEnd = foldBegin;
while (++foldEnd < cuPtrVector.end() &&
(*foldBegin)->encoding == (*foldEnd)->encoding &&
(*foldBegin)->personality == (*foldEnd)->personality &&
(*foldBegin)->lsda == (*foldEnd)->lsda)
;
*foldWrite++ = *foldBegin;
foldBegin = foldEnd;
}
cuPtrVector.erase(foldWrite, cuPtrVector.end());
encodePersonalities(cuPtrVector, personalities);
// Count frequencies of the folded encodings
EncodingMap encodingFrequencies;
for (const CompactUnwindEntry<Ptr> *cuPtrEntry : cuPtrVector)
encodingFrequencies[cuPtrEntry->encoding]++;
// Make a vector of encodings, sorted by descending frequency
for (const auto &frequency : encodingFrequencies)
commonEncodings.emplace_back(frequency);
llvm::sort(commonEncodings,
[](const std::pair<compact_unwind_encoding_t, size_t> &a,
const std::pair<compact_unwind_encoding_t, size_t> &b) {
if (a.second == b.second)
// When frequencies match, secondarily sort on encoding
// to maintain parity with validate-unwind-info.py
return a.first > b.first;
return a.second > b.second;
});
// Truncate the vector to 127 elements.
// Common encoding indexes are limited to 0..126, while encoding
// indexes 127..255 are local to each second-level page
if (commonEncodings.size() > COMMON_ENCODINGS_MAX)
commonEncodings.resize(COMMON_ENCODINGS_MAX);
// Create a map from encoding to common-encoding-table index
for (size_t i = 0; i < commonEncodings.size(); i++)
commonEncodingIndexes[commonEncodings[i].first] = i;
// Split folded encodings into pages, where each page is limited by ...
// (a) 4 KiB capacity
// (b) 24-bit difference between first & final function address
// (c) 8-bit compact-encoding-table index,
// for which 0..126 references the global common-encodings table,
// and 127..255 references a local per-second-level-page table.
// First we try the compact format and determine how many entries fit.
// If more entries fit in the regular format, we use that.
for (size_t i = 0; i < cuPtrVector.size();) {
secondLevelPages.emplace_back();
SecondLevelPage &page = secondLevelPages.back();
page.entryIndex = i;
uintptr_t functionAddressMax =
cuPtrVector[i]->functionAddress + COMPRESSED_ENTRY_FUNC_OFFSET_MASK;
size_t n = commonEncodings.size();
size_t wordsRemaining =
SECOND_LEVEL_PAGE_WORDS -
sizeof(unwind_info_compressed_second_level_page_header) /
sizeof(uint32_t);
while (wordsRemaining >= 1 && i < cuPtrVector.size()) {
const CompactUnwindEntry<Ptr> *cuPtr = cuPtrVector[i];
if (cuPtr->functionAddress >= functionAddressMax) {
break;
} else if (commonEncodingIndexes.count(cuPtr->encoding) ||
page.localEncodingIndexes.count(cuPtr->encoding)) {
i++;
wordsRemaining--;
} else if (wordsRemaining >= 2 && n < COMPACT_ENCODINGS_MAX) {
page.localEncodings.emplace_back(cuPtr->encoding);
page.localEncodingIndexes[cuPtr->encoding] = n++;
i++;
wordsRemaining -= 2;
} else {
break;
}
}
page.entryCount = i - page.entryIndex;
// If this is not the final page, see if it's possible to fit more
// entries by using the regular format. This can happen when there
// are many unique encodings, and we we saturated the local
// encoding table early.
if (i < cuPtrVector.size() &&
page.entryCount < REGULAR_SECOND_LEVEL_ENTRIES_MAX) {
page.kind = UNWIND_SECOND_LEVEL_REGULAR;
page.entryCount = std::min(REGULAR_SECOND_LEVEL_ENTRIES_MAX,
cuPtrVector.size() - page.entryIndex);
i = page.entryIndex + page.entryCount;
} else {
page.kind = UNWIND_SECOND_LEVEL_COMPRESSED;
}
}
for (const CompactUnwindEntry<Ptr> *cu : cuPtrVector) {
uint32_t functionOffset = cu->functionAddress - in.header->addr;
functionToLsdaIndex[functionOffset] = lsdaEntries.size();
if (cu->lsda != 0)
lsdaEntries.push_back(
{functionOffset, static_cast<uint32_t>(cu->lsda - in.header->addr)});
}
// compute size of __TEXT,__unwind_info section
level2PagesOffset =
sizeof(unwind_info_section_header) +
commonEncodings.size() * sizeof(uint32_t) +
personalities.size() * sizeof(uint32_t) +
// The extra second-level-page entry is for the sentinel
(secondLevelPages.size() + 1) *
sizeof(unwind_info_section_header_index_entry) +
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
unwindInfoSize =
level2PagesOffset + secondLevelPages.size() * SECOND_LEVEL_PAGE_BYTES;
}
// All inputs are relocated and output addresses are known, so write!
template <class Ptr>
void UnwindInfoSectionImpl<Ptr>::writeTo(uint8_t *buf) const {
// section header
auto *uip = reinterpret_cast<unwind_info_section_header *>(buf);
uip->version = 1;
uip->commonEncodingsArraySectionOffset = sizeof(unwind_info_section_header);
uip->commonEncodingsArrayCount = commonEncodings.size();
uip->personalityArraySectionOffset =
uip->commonEncodingsArraySectionOffset +
(uip->commonEncodingsArrayCount * sizeof(uint32_t));
uip->personalityArrayCount = personalities.size();
uip->indexSectionOffset = uip->personalityArraySectionOffset +
(uip->personalityArrayCount * sizeof(uint32_t));
uip->indexCount = secondLevelPages.size() + 1;
// Common encodings
auto *i32p = reinterpret_cast<uint32_t *>(&uip[1]);
for (const auto &encoding : commonEncodings)
*i32p++ = encoding.first;
// Personalities
for (const uint32_t &personality : personalities)
*i32p++ =
in.got->addr + (personality - 1) * target->wordSize - in.header->addr;
// Level-1 index
uint32_t lsdaOffset =
uip->indexSectionOffset +
uip->indexCount * sizeof(unwind_info_section_header_index_entry);
uint64_t l2PagesOffset = level2PagesOffset;
auto *iep = reinterpret_cast<unwind_info_section_header_index_entry *>(i32p);
for (const SecondLevelPage &page : secondLevelPages) {
iep->functionOffset =
cuPtrVector[page.entryIndex]->functionAddress - in.header->addr;
iep->secondLevelPagesSectionOffset = l2PagesOffset;
iep->lsdaIndexArraySectionOffset =
lsdaOffset + functionToLsdaIndex.lookup(iep->functionOffset) *
sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
l2PagesOffset += SECOND_LEVEL_PAGE_BYTES;
}
// Level-1 sentinel
const CompactUnwindEntry<Ptr> &cuEnd = cuVector.back();
iep->functionOffset = cuEnd.functionAddress + cuEnd.functionLength;
iep->secondLevelPagesSectionOffset = 0;
iep->lsdaIndexArraySectionOffset =
lsdaOffset +
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
iep++;
// LSDAs
size_t lsdaBytes =
lsdaEntries.size() * sizeof(unwind_info_section_header_lsda_index_entry);
if (lsdaBytes > 0)
memcpy(iep, lsdaEntries.data(), lsdaBytes);
// Level-2 pages
auto *pp = reinterpret_cast<uint32_t *>(reinterpret_cast<uint8_t *>(iep) +
lsdaBytes);
for (const SecondLevelPage &page : secondLevelPages) {
if (page.kind == UNWIND_SECOND_LEVEL_COMPRESSED) {
uintptr_t functionAddressBase =
cuPtrVector[page.entryIndex]->functionAddress;
auto *p2p =
reinterpret_cast<unwind_info_compressed_second_level_page_header *>(
pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_compressed_second_level_page_header);
p2p->entryCount = page.entryCount;
p2p->encodingsPageOffset =
p2p->entryPageOffset + p2p->entryCount * sizeof(uint32_t);
p2p->encodingsCount = page.localEncodings.size();
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
auto it = commonEncodingIndexes.find(cuep->encoding);
if (it == commonEncodingIndexes.end())
it = page.localEncodingIndexes.find(cuep->encoding);
*ep++ = (it->second << COMPRESSED_ENTRY_FUNC_OFFSET_BITS) |
(cuep->functionAddress - functionAddressBase);
}
if (page.localEncodings.size() != 0)
memcpy(ep, page.localEncodings.data(),
page.localEncodings.size() * sizeof(uint32_t));
} else {
auto *p2p =
reinterpret_cast<unwind_info_regular_second_level_page_header *>(pp);
p2p->kind = page.kind;
p2p->entryPageOffset =
sizeof(unwind_info_regular_second_level_page_header);
p2p->entryCount = page.entryCount;
auto *ep = reinterpret_cast<uint32_t *>(&p2p[1]);
for (size_t i = 0; i < page.entryCount; i++) {
const CompactUnwindEntry<Ptr> *cuep = cuPtrVector[page.entryIndex + i];
*ep++ = cuep->functionAddress;
*ep++ = cuep->encoding;
}
}
pp += SECOND_LEVEL_PAGE_WORDS;
}
}
UnwindInfoSection *macho::makeUnwindInfoSection() {
if (target->wordSize == 8)
return make<UnwindInfoSectionImpl<uint64_t>>();
else
return make<UnwindInfoSectionImpl<uint32_t>>();
}