forked from OSchip/llvm-project
421 lines
17 KiB
C++
421 lines
17 KiB
C++
//===- ARMLegalizerInfo.cpp --------------------------------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for ARM.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMLegalizerInfo.h"
|
|
#include "ARMCallLowering.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
|
|
#include "llvm/CodeGen/LowLevelType.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
|
|
/// FIXME: The following static functions are SizeChangeStrategy functions
|
|
/// that are meant to temporarily mimic the behaviour of the old legalization
|
|
/// based on doubling/halving non-legal types as closely as possible. This is
|
|
/// not entirly possible as only legalizing the types that are exactly a power
|
|
/// of 2 times the size of the legal types would require specifying all those
|
|
/// sizes explicitly.
|
|
/// In practice, not specifying those isn't a problem, and the below functions
|
|
/// should disappear quickly as we add support for legalizing non-power-of-2
|
|
/// sized types further.
|
|
static void
|
|
addAndInterleaveWithUnsupported(LegalizerInfo::SizeAndActionsVec &result,
|
|
const LegalizerInfo::SizeAndActionsVec &v) {
|
|
for (unsigned i = 0; i < v.size(); ++i) {
|
|
result.push_back(v[i]);
|
|
if (i + 1 < v[i].first && i + 1 < v.size() &&
|
|
v[i + 1].first != v[i].first + 1)
|
|
result.push_back({v[i].first + 1, Unsupported});
|
|
}
|
|
}
|
|
|
|
static LegalizerInfo::SizeAndActionsVec
|
|
widen_8_16(const LegalizerInfo::SizeAndActionsVec &v) {
|
|
assert(v.size() >= 1);
|
|
assert(v[0].first > 17);
|
|
LegalizerInfo::SizeAndActionsVec result = {{1, Unsupported},
|
|
{8, WidenScalar},
|
|
{9, Unsupported},
|
|
{16, WidenScalar},
|
|
{17, Unsupported}};
|
|
addAndInterleaveWithUnsupported(result, v);
|
|
auto Largest = result.back().first;
|
|
result.push_back({Largest + 1, Unsupported});
|
|
return result;
|
|
}
|
|
|
|
static bool AEABI(const ARMSubtarget &ST) {
|
|
return ST.isTargetAEABI() || ST.isTargetGNUAEABI() || ST.isTargetMuslAEABI();
|
|
}
|
|
|
|
ARMLegalizerInfo::ARMLegalizerInfo(const ARMSubtarget &ST) {
|
|
using namespace TargetOpcode;
|
|
|
|
const LLT p0 = LLT::pointer(0, 32);
|
|
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0});
|
|
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
|
|
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR})
|
|
.legalFor({s32})
|
|
.minScalar(0, s32);
|
|
|
|
if (ST.hasDivideInARMMode())
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.legalFor({s32})
|
|
.clampScalar(0, s32, s32);
|
|
else
|
|
getActionDefinitionsBuilder({G_SDIV, G_UDIV})
|
|
.libcallFor({s32})
|
|
.clampScalar(0, s32, s32);
|
|
|
|
for (unsigned Op : {G_SREM, G_UREM}) {
|
|
setLegalizeScalarToDifferentSizeStrategy(Op, 0, widen_8_16);
|
|
if (ST.hasDivideInARMMode())
|
|
setAction({Op, s32}, Lower);
|
|
else if (AEABI(ST))
|
|
setAction({Op, s32}, Custom);
|
|
else
|
|
setAction({Op, s32}, Libcall);
|
|
}
|
|
|
|
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT}).legalFor({s32});
|
|
|
|
getActionDefinitionsBuilder(G_INTTOPTR).legalFor({{p0, s32}});
|
|
getActionDefinitionsBuilder(G_PTRTOINT).legalFor({{s32, p0}});
|
|
|
|
getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL}).legalFor({s32});
|
|
|
|
getActionDefinitionsBuilder(G_GEP).legalFor({{p0, s32}});
|
|
|
|
getActionDefinitionsBuilder(G_SELECT).legalForCartesianProduct({s32, p0},
|
|
{s1});
|
|
|
|
getActionDefinitionsBuilder(G_BRCOND).legalFor({s1});
|
|
|
|
getActionDefinitionsBuilder(G_CONSTANT)
|
|
.legalFor({s32, p0})
|
|
.clampScalar(0, s32, s32);
|
|
|
|
getActionDefinitionsBuilder(G_ICMP)
|
|
.legalForCartesianProduct({s1}, {s32, p0})
|
|
.minScalar(1, s32);
|
|
|
|
// We're keeping these builders around because we'll want to add support for
|
|
// floating point to them.
|
|
auto &LoadStoreBuilder =
|
|
getActionDefinitionsBuilder({G_LOAD, G_STORE})
|
|
.legalForCartesianProduct({s1, s8, s16, s32, p0}, {p0});
|
|
|
|
auto &PhiBuilder =
|
|
getActionDefinitionsBuilder(G_PHI).legalFor({s32, p0}).minScalar(0, s32);
|
|
|
|
if (!ST.useSoftFloat() && ST.hasVFP2()) {
|
|
getActionDefinitionsBuilder(
|
|
{G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FCONSTANT, G_FNEG})
|
|
.legalFor({s32, s64});
|
|
|
|
LoadStoreBuilder.legalFor({{s64, p0}});
|
|
PhiBuilder.legalFor({s64});
|
|
|
|
getActionDefinitionsBuilder(G_FCMP).legalForCartesianProduct({s1},
|
|
{s32, s64});
|
|
|
|
getActionDefinitionsBuilder(G_MERGE_VALUES).legalFor({{s64, s32}});
|
|
getActionDefinitionsBuilder(G_UNMERGE_VALUES).legalFor({{s32, s64}});
|
|
|
|
getActionDefinitionsBuilder(G_FPEXT).legalFor({{s64, s32}});
|
|
getActionDefinitionsBuilder(G_FPTRUNC).legalFor({{s32, s64}});
|
|
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.legalForCartesianProduct({s32}, {s32, s64});
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.legalForCartesianProduct({s32, s64}, {s32});
|
|
} else {
|
|
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV})
|
|
.libcallFor({s32, s64});
|
|
|
|
LoadStoreBuilder.maxScalar(0, s32);
|
|
|
|
for (auto Ty : {s32, s64})
|
|
setAction({G_FNEG, Ty}, Lower);
|
|
|
|
getActionDefinitionsBuilder(G_FCONSTANT).customFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder(G_FCMP).customForCartesianProduct({s1},
|
|
{s32, s64});
|
|
|
|
if (AEABI(ST))
|
|
setFCmpLibcallsAEABI();
|
|
else
|
|
setFCmpLibcallsGNU();
|
|
|
|
getActionDefinitionsBuilder(G_FPEXT).libcallFor({s64, s32});
|
|
getActionDefinitionsBuilder(G_FPTRUNC).libcallFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.libcallForCartesianProduct({s32}, {s32, s64});
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.libcallForCartesianProduct({s32, s64}, {s32});
|
|
}
|
|
|
|
if (!ST.useSoftFloat() && ST.hasVFP4())
|
|
getActionDefinitionsBuilder(G_FMA).legalFor({s32, s64});
|
|
else
|
|
getActionDefinitionsBuilder(G_FMA).libcallFor({s32, s64});
|
|
|
|
getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64});
|
|
|
|
computeTables();
|
|
}
|
|
|
|
void ARMLegalizerInfo::setFCmpLibcallsAEABI() {
|
|
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
|
|
// default-initialized.
|
|
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {
|
|
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGE] = {
|
|
{RTLIB::OGE_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGT] = {
|
|
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLE] = {
|
|
{RTLIB::OLE_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLT] = {
|
|
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNO] = {
|
|
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ONE] = {
|
|
{RTLIB::OGT_F32, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::OLT_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {
|
|
{RTLIB::OEQ_F32, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::UO_F32, CmpInst::BAD_ICMP_PREDICATE}};
|
|
|
|
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {
|
|
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGE] = {
|
|
{RTLIB::OGE_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGT] = {
|
|
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLE] = {
|
|
{RTLIB::OLE_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLT] = {
|
|
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNO] = {
|
|
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ONE] = {
|
|
{RTLIB::OGT_F64, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::OLT_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {
|
|
{RTLIB::OEQ_F64, CmpInst::BAD_ICMP_PREDICATE},
|
|
{RTLIB::UO_F64, CmpInst::BAD_ICMP_PREDICATE}};
|
|
}
|
|
|
|
void ARMLegalizerInfo::setFCmpLibcallsGNU() {
|
|
// FCMP_TRUE and FCMP_FALSE don't need libcalls, they should be
|
|
// default-initialized.
|
|
FCmp32Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp32Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F32, CmpInst::ICMP_SGE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F32, CmpInst::ICMP_SLE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F32, CmpInst::ICMP_EQ}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F32, CmpInst::ICMP_SGE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F32, CmpInst::ICMP_SGT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SLE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F32, CmpInst::ICMP_NE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F32, CmpInst::ICMP_NE}};
|
|
FCmp32Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F32, CmpInst::ICMP_SGT},
|
|
{RTLIB::OLT_F32, CmpInst::ICMP_SLT}};
|
|
FCmp32Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F32, CmpInst::ICMP_EQ},
|
|
{RTLIB::UO_F32, CmpInst::ICMP_NE}};
|
|
|
|
FCmp64Libcalls.resize(CmpInst::LAST_FCMP_PREDICATE + 1);
|
|
FCmp64Libcalls[CmpInst::FCMP_OEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGE] = {{RTLIB::OGE_F64, CmpInst::ICMP_SGE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OGT] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLE] = {{RTLIB::OLE_F64, CmpInst::ICMP_SLE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_OLT] = {{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ORD] = {{RTLIB::O_F64, CmpInst::ICMP_EQ}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGE] = {{RTLIB::OLT_F64, CmpInst::ICMP_SGE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UGT] = {{RTLIB::OLE_F64, CmpInst::ICMP_SGT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SLE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ULT] = {{RTLIB::OGE_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNE] = {{RTLIB::UNE_F64, CmpInst::ICMP_NE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UNO] = {{RTLIB::UO_F64, CmpInst::ICMP_NE}};
|
|
FCmp64Libcalls[CmpInst::FCMP_ONE] = {{RTLIB::OGT_F64, CmpInst::ICMP_SGT},
|
|
{RTLIB::OLT_F64, CmpInst::ICMP_SLT}};
|
|
FCmp64Libcalls[CmpInst::FCMP_UEQ] = {{RTLIB::OEQ_F64, CmpInst::ICMP_EQ},
|
|
{RTLIB::UO_F64, CmpInst::ICMP_NE}};
|
|
}
|
|
|
|
ARMLegalizerInfo::FCmpLibcallsList
|
|
ARMLegalizerInfo::getFCmpLibcalls(CmpInst::Predicate Predicate,
|
|
unsigned Size) const {
|
|
assert(CmpInst::isFPPredicate(Predicate) && "Unsupported FCmp predicate");
|
|
if (Size == 32)
|
|
return FCmp32Libcalls[Predicate];
|
|
if (Size == 64)
|
|
return FCmp64Libcalls[Predicate];
|
|
llvm_unreachable("Unsupported size for FCmp predicate");
|
|
}
|
|
|
|
bool ARMLegalizerInfo::legalizeCustom(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
using namespace TargetOpcode;
|
|
|
|
MIRBuilder.setInstr(MI);
|
|
LLVMContext &Ctx = MIRBuilder.getMF().getFunction().getContext();
|
|
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
return false;
|
|
case G_SREM:
|
|
case G_UREM: {
|
|
unsigned OriginalResult = MI.getOperand(0).getReg();
|
|
auto Size = MRI.getType(OriginalResult).getSizeInBits();
|
|
if (Size != 32)
|
|
return false;
|
|
|
|
auto Libcall =
|
|
MI.getOpcode() == G_SREM ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32;
|
|
|
|
// Our divmod libcalls return a struct containing the quotient and the
|
|
// remainder. We need to create a virtual register for it.
|
|
Type *ArgTy = Type::getInt32Ty(Ctx);
|
|
StructType *RetTy = StructType::get(Ctx, {ArgTy, ArgTy}, /* Packed */ true);
|
|
auto RetVal = MRI.createGenericVirtualRegister(
|
|
getLLTForType(*RetTy, MIRBuilder.getMF().getDataLayout()));
|
|
|
|
auto Status = createLibcall(MIRBuilder, Libcall, {RetVal, RetTy},
|
|
{{MI.getOperand(1).getReg(), ArgTy},
|
|
{MI.getOperand(2).getReg(), ArgTy}});
|
|
if (Status != LegalizerHelper::Legalized)
|
|
return false;
|
|
|
|
// The remainder is the second result of divmod. Split the return value into
|
|
// a new, unused register for the quotient and the destination of the
|
|
// original instruction for the remainder.
|
|
MIRBuilder.buildUnmerge(
|
|
{MRI.createGenericVirtualRegister(LLT::scalar(32)), OriginalResult},
|
|
RetVal);
|
|
break;
|
|
}
|
|
case G_FCMP: {
|
|
assert(MRI.getType(MI.getOperand(2).getReg()) ==
|
|
MRI.getType(MI.getOperand(3).getReg()) &&
|
|
"Mismatched operands for G_FCMP");
|
|
auto OpSize = MRI.getType(MI.getOperand(2).getReg()).getSizeInBits();
|
|
|
|
auto OriginalResult = MI.getOperand(0).getReg();
|
|
auto Predicate =
|
|
static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
|
|
auto Libcalls = getFCmpLibcalls(Predicate, OpSize);
|
|
|
|
if (Libcalls.empty()) {
|
|
assert((Predicate == CmpInst::FCMP_TRUE ||
|
|
Predicate == CmpInst::FCMP_FALSE) &&
|
|
"Predicate needs libcalls, but none specified");
|
|
MIRBuilder.buildConstant(OriginalResult,
|
|
Predicate == CmpInst::FCMP_TRUE ? 1 : 0);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
assert((OpSize == 32 || OpSize == 64) && "Unsupported operand size");
|
|
auto *ArgTy = OpSize == 32 ? Type::getFloatTy(Ctx) : Type::getDoubleTy(Ctx);
|
|
auto *RetTy = Type::getInt32Ty(Ctx);
|
|
|
|
SmallVector<unsigned, 2> Results;
|
|
for (auto Libcall : Libcalls) {
|
|
auto LibcallResult = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
auto Status =
|
|
createLibcall(MIRBuilder, Libcall.LibcallID, {LibcallResult, RetTy},
|
|
{{MI.getOperand(2).getReg(), ArgTy},
|
|
{MI.getOperand(3).getReg(), ArgTy}});
|
|
|
|
if (Status != LegalizerHelper::Legalized)
|
|
return false;
|
|
|
|
auto ProcessedResult =
|
|
Libcalls.size() == 1
|
|
? OriginalResult
|
|
: MRI.createGenericVirtualRegister(MRI.getType(OriginalResult));
|
|
|
|
// We have a result, but we need to transform it into a proper 1-bit 0 or
|
|
// 1, taking into account the different peculiarities of the values
|
|
// returned by the comparison functions.
|
|
CmpInst::Predicate ResultPred = Libcall.Predicate;
|
|
if (ResultPred == CmpInst::BAD_ICMP_PREDICATE) {
|
|
// We have a nice 0 or 1, and we just need to truncate it back to 1 bit
|
|
// to keep the types consistent.
|
|
MIRBuilder.buildTrunc(ProcessedResult, LibcallResult);
|
|
} else {
|
|
// We need to compare against 0.
|
|
assert(CmpInst::isIntPredicate(ResultPred) && "Unsupported predicate");
|
|
auto Zero = MRI.createGenericVirtualRegister(LLT::scalar(32));
|
|
MIRBuilder.buildConstant(Zero, 0);
|
|
MIRBuilder.buildICmp(ResultPred, ProcessedResult, LibcallResult, Zero);
|
|
}
|
|
Results.push_back(ProcessedResult);
|
|
}
|
|
|
|
if (Results.size() != 1) {
|
|
assert(Results.size() == 2 && "Unexpected number of results");
|
|
MIRBuilder.buildOr(OriginalResult, Results[0], Results[1]);
|
|
}
|
|
break;
|
|
}
|
|
case G_FCONSTANT: {
|
|
// Convert to integer constants, while preserving the binary representation.
|
|
auto AsInteger =
|
|
MI.getOperand(1).getFPImm()->getValueAPF().bitcastToAPInt();
|
|
MIRBuilder.buildConstant(MI.getOperand(0).getReg(),
|
|
*ConstantInt::get(Ctx, AsInteger));
|
|
break;
|
|
}
|
|
}
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|