llvm-project/llvm/lib/Target/AMDGPU/SIFrameLowering.cpp

830 lines
31 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===----------------------- SIFrameLowering.cpp --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//==-----------------------------------------------------------------------===//
#include "SIFrameLowering.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/RegisterScavenging.h"
using namespace llvm;
static ArrayRef<MCPhysReg> getAllSGPR128(const SISubtarget &ST,
const MachineFunction &MF) {
return makeArrayRef(AMDGPU::SGPR_128RegClass.begin(),
ST.getMaxNumSGPRs(MF) / 4);
}
static ArrayRef<MCPhysReg> getAllSGPRs(const SISubtarget &ST,
const MachineFunction &MF) {
return makeArrayRef(AMDGPU::SGPR_32RegClass.begin(),
ST.getMaxNumSGPRs(MF));
}
void SIFrameLowering::emitFlatScratchInit(const SISubtarget &ST,
MachineFunction &MF,
MachineBasicBlock &MBB) const {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo* TRI = &TII->getRegisterInfo();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// We don't need this if we only have spills since there is no user facing
// scratch.
// TODO: If we know we don't have flat instructions earlier, we can omit
// this from the input registers.
//
// TODO: We only need to know if we access scratch space through a flat
// pointer. Because we only detect if flat instructions are used at all,
// this will be used more often than necessary on VI.
// Debug location must be unknown since the first debug location is used to
// determine the end of the prologue.
DebugLoc DL;
MachineBasicBlock::iterator I = MBB.begin();
unsigned FlatScratchInitReg
= MFI->getPreloadedReg(AMDGPUFunctionArgInfo::FLAT_SCRATCH_INIT);
MachineRegisterInfo &MRI = MF.getRegInfo();
MRI.addLiveIn(FlatScratchInitReg);
MBB.addLiveIn(FlatScratchInitReg);
unsigned FlatScrInitLo = TRI->getSubReg(FlatScratchInitReg, AMDGPU::sub0);
unsigned FlatScrInitHi = TRI->getSubReg(FlatScratchInitReg, AMDGPU::sub1);
unsigned ScratchWaveOffsetReg = MFI->getScratchWaveOffsetReg();
// Do a 64-bit pointer add.
if (ST.flatScratchIsPointer()) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ADD_U32), AMDGPU::FLAT_SCR_LO)
.addReg(FlatScrInitLo)
.addReg(ScratchWaveOffsetReg);
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ADDC_U32), AMDGPU::FLAT_SCR_HI)
.addReg(FlatScrInitHi)
.addImm(0);
return;
}
// Copy the size in bytes.
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), AMDGPU::FLAT_SCR_LO)
.addReg(FlatScrInitHi, RegState::Kill);
// Add wave offset in bytes to private base offset.
// See comment in AMDKernelCodeT.h for enable_sgpr_flat_scratch_init.
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ADD_U32), FlatScrInitLo)
.addReg(FlatScrInitLo)
.addReg(ScratchWaveOffsetReg);
// Convert offset to 256-byte units.
BuildMI(MBB, I, DL, TII->get(AMDGPU::S_LSHR_B32), AMDGPU::FLAT_SCR_HI)
.addReg(FlatScrInitLo, RegState::Kill)
.addImm(8);
}
unsigned SIFrameLowering::getReservedPrivateSegmentBufferReg(
const SISubtarget &ST,
const SIInstrInfo *TII,
const SIRegisterInfo *TRI,
SIMachineFunctionInfo *MFI,
MachineFunction &MF) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
// We need to insert initialization of the scratch resource descriptor.
unsigned ScratchRsrcReg = MFI->getScratchRSrcReg();
if (ScratchRsrcReg == AMDGPU::NoRegister ||
!MRI.isPhysRegUsed(ScratchRsrcReg))
return AMDGPU::NoRegister;
if (ST.hasSGPRInitBug() ||
ScratchRsrcReg != TRI->reservedPrivateSegmentBufferReg(MF))
return ScratchRsrcReg;
// We reserved the last registers for this. Shift it down to the end of those
// which were actually used.
//
// FIXME: It might be safer to use a pseudoregister before replacement.
// FIXME: We should be able to eliminate unused input registers. We only
// cannot do this for the resources required for scratch access. For now we
// skip over user SGPRs and may leave unused holes.
// We find the resource first because it has an alignment requirement.
unsigned NumPreloaded = (MFI->getNumPreloadedSGPRs() + 3) / 4;
ArrayRef<MCPhysReg> AllSGPR128s = getAllSGPR128(ST, MF);
AllSGPR128s = AllSGPR128s.slice(std::min(static_cast<unsigned>(AllSGPR128s.size()), NumPreloaded));
// Skip the last N reserved elements because they should have already been
// reserved for VCC etc.
for (MCPhysReg Reg : AllSGPR128s) {
// Pick the first unallocated one. Make sure we don't clobber the other
// reserved input we needed.
if (!MRI.isPhysRegUsed(Reg) && MRI.isAllocatable(Reg)) {
MRI.replaceRegWith(ScratchRsrcReg, Reg);
MFI->setScratchRSrcReg(Reg);
return Reg;
}
}
return ScratchRsrcReg;
}
// Shift down registers reserved for the scratch wave offset and stack pointer
// SGPRs.
std::pair<unsigned, unsigned>
SIFrameLowering::getReservedPrivateSegmentWaveByteOffsetReg(
const SISubtarget &ST,
const SIInstrInfo *TII,
const SIRegisterInfo *TRI,
SIMachineFunctionInfo *MFI,
MachineFunction &MF) const {
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned ScratchWaveOffsetReg = MFI->getScratchWaveOffsetReg();
// No replacement necessary.
if (ScratchWaveOffsetReg == AMDGPU::NoRegister ||
!MRI.isPhysRegUsed(ScratchWaveOffsetReg)) {
assert(MFI->getStackPtrOffsetReg() == AMDGPU::SP_REG);
return std::make_pair(AMDGPU::NoRegister, AMDGPU::NoRegister);
}
unsigned SPReg = MFI->getStackPtrOffsetReg();
if (ST.hasSGPRInitBug())
return std::make_pair(ScratchWaveOffsetReg, SPReg);
unsigned NumPreloaded = MFI->getNumPreloadedSGPRs();
ArrayRef<MCPhysReg> AllSGPRs = getAllSGPRs(ST, MF);
if (NumPreloaded > AllSGPRs.size())
return std::make_pair(ScratchWaveOffsetReg, SPReg);
AllSGPRs = AllSGPRs.slice(NumPreloaded);
// We need to drop register from the end of the list that we cannot use
// for the scratch wave offset.
// + 2 s102 and s103 do not exist on VI.
// + 2 for vcc
// + 2 for xnack_mask
// + 2 for flat_scratch
// + 4 for registers reserved for scratch resource register
// + 1 for register reserved for scratch wave offset. (By exluding this
// register from the list to consider, it means that when this
// register is being used for the scratch wave offset and there
// are no other free SGPRs, then the value will stay in this register.
// + 1 if stack pointer is used.
// ----
// 13 (+1)
unsigned ReservedRegCount = 13;
if (AllSGPRs.size() < ReservedRegCount)
return std::make_pair(ScratchWaveOffsetReg, SPReg);
bool HandledScratchWaveOffsetReg =
ScratchWaveOffsetReg != TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
for (MCPhysReg Reg : AllSGPRs.drop_back(ReservedRegCount)) {
// Pick the first unallocated SGPR. Be careful not to pick an alias of the
// scratch descriptor, since we havent added its uses yet.
if (!MRI.isPhysRegUsed(Reg) && MRI.isAllocatable(Reg)) {
if (!HandledScratchWaveOffsetReg) {
HandledScratchWaveOffsetReg = true;
MRI.replaceRegWith(ScratchWaveOffsetReg, Reg);
MFI->setScratchWaveOffsetReg(Reg);
ScratchWaveOffsetReg = Reg;
break;
}
}
}
return std::make_pair(ScratchWaveOffsetReg, SPReg);
}
void SIFrameLowering::emitEntryFunctionPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
// Emit debugger prologue if "amdgpu-debugger-emit-prologue" attribute was
// specified.
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
if (ST.debuggerEmitPrologue())
emitDebuggerPrologue(MF, MBB);
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// If we only have SGPR spills, we won't actually be using scratch memory
// since these spill to VGPRs.
//
// FIXME: We should be cleaning up these unused SGPR spill frame indices
// somewhere.
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo *TRI = &TII->getRegisterInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
// We need to do the replacement of the private segment buffer and wave offset
// register even if there are no stack objects. There could be stores to undef
// or a constant without an associated object.
// FIXME: We still have implicit uses on SGPR spill instructions in case they
// need to spill to vector memory. It's likely that will not happen, but at
// this point it appears we need the setup. This part of the prolog should be
// emitted after frame indices are eliminated.
if (MFI->hasFlatScratchInit())
emitFlatScratchInit(ST, MF, MBB);
unsigned SPReg = MFI->getStackPtrOffsetReg();
if (SPReg != AMDGPU::SP_REG) {
assert(MRI.isReserved(SPReg) && "SPReg used but not reserved");
DebugLoc DL;
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
int64_t StackSize = FrameInfo.getStackSize();
if (StackSize == 0) {
BuildMI(MBB, MBB.begin(), DL, TII->get(AMDGPU::COPY), SPReg)
.addReg(MFI->getScratchWaveOffsetReg());
} else {
BuildMI(MBB, MBB.begin(), DL, TII->get(AMDGPU::S_ADD_U32), SPReg)
.addReg(MFI->getScratchWaveOffsetReg())
.addImm(StackSize * ST.getWavefrontSize());
}
}
unsigned ScratchRsrcReg
= getReservedPrivateSegmentBufferReg(ST, TII, TRI, MFI, MF);
unsigned ScratchWaveOffsetReg;
std::tie(ScratchWaveOffsetReg, SPReg)
= getReservedPrivateSegmentWaveByteOffsetReg(ST, TII, TRI, MFI, MF);
// It's possible to have uses of only ScratchWaveOffsetReg without
// ScratchRsrcReg if it's only used for the initialization of flat_scratch,
// but the inverse is not true.
if (ScratchWaveOffsetReg == AMDGPU::NoRegister) {
assert(ScratchRsrcReg == AMDGPU::NoRegister);
return;
}
// We need to insert initialization of the scratch resource descriptor.
unsigned PreloadedScratchWaveOffsetReg = MFI->getPreloadedReg(
AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
unsigned PreloadedPrivateBufferReg = AMDGPU::NoRegister;
if (ST.isAmdCodeObjectV2(MF)) {
PreloadedPrivateBufferReg = MFI->getPreloadedReg(
AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
}
bool OffsetRegUsed = MRI.isPhysRegUsed(ScratchWaveOffsetReg);
bool ResourceRegUsed = ScratchRsrcReg != AMDGPU::NoRegister &&
MRI.isPhysRegUsed(ScratchRsrcReg);
// We added live-ins during argument lowering, but since they were not used
// they were deleted. We're adding the uses now, so add them back.
if (OffsetRegUsed) {
assert(PreloadedScratchWaveOffsetReg != AMDGPU::NoRegister &&
"scratch wave offset input is required");
MRI.addLiveIn(PreloadedScratchWaveOffsetReg);
MBB.addLiveIn(PreloadedScratchWaveOffsetReg);
}
if (ResourceRegUsed && PreloadedPrivateBufferReg != AMDGPU::NoRegister) {
assert(ST.isAmdCodeObjectV2(MF) || ST.isMesaGfxShader(MF));
MRI.addLiveIn(PreloadedPrivateBufferReg);
MBB.addLiveIn(PreloadedPrivateBufferReg);
}
// Make the register selected live throughout the function.
for (MachineBasicBlock &OtherBB : MF) {
if (&OtherBB == &MBB)
continue;
if (OffsetRegUsed)
OtherBB.addLiveIn(ScratchWaveOffsetReg);
if (ResourceRegUsed)
OtherBB.addLiveIn(ScratchRsrcReg);
}
DebugLoc DL;
MachineBasicBlock::iterator I = MBB.begin();
// If we reserved the original input registers, we don't need to copy to the
// reserved registers.
bool CopyBuffer = ResourceRegUsed &&
PreloadedPrivateBufferReg != AMDGPU::NoRegister &&
ST.isAmdCodeObjectV2(MF) &&
ScratchRsrcReg != PreloadedPrivateBufferReg;
// This needs to be careful of the copying order to avoid overwriting one of
// the input registers before it's been copied to it's final
// destination. Usually the offset should be copied first.
bool CopyBufferFirst = TRI->isSubRegisterEq(PreloadedPrivateBufferReg,
ScratchWaveOffsetReg);
if (CopyBuffer && CopyBufferFirst) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), ScratchRsrcReg)
.addReg(PreloadedPrivateBufferReg, RegState::Kill);
}
if (OffsetRegUsed &&
PreloadedScratchWaveOffsetReg != ScratchWaveOffsetReg) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), ScratchWaveOffsetReg)
.addReg(PreloadedScratchWaveOffsetReg,
MRI.isPhysRegUsed(ScratchWaveOffsetReg) ? 0 : RegState::Kill);
}
if (CopyBuffer && !CopyBufferFirst) {
BuildMI(MBB, I, DL, TII->get(AMDGPU::COPY), ScratchRsrcReg)
.addReg(PreloadedPrivateBufferReg, RegState::Kill);
}
if (ResourceRegUsed)
emitEntryFunctionScratchSetup(ST, MF, MBB, MFI, I,
PreloadedPrivateBufferReg, ScratchRsrcReg);
}
// Emit scratch setup code for AMDPAL or Mesa, assuming ResourceRegUsed is set.
void SIFrameLowering::emitEntryFunctionScratchSetup(const SISubtarget &ST,
MachineFunction &MF, MachineBasicBlock &MBB, SIMachineFunctionInfo *MFI,
MachineBasicBlock::iterator I, unsigned PreloadedPrivateBufferReg,
unsigned ScratchRsrcReg) const {
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo *TRI = &TII->getRegisterInfo();
DebugLoc DL;
if (ST.isAmdPalOS()) {
// The pointer to the GIT is formed from the offset passed in and either
// the amdgpu-git-ptr-high function attribute or the top part of the PC
unsigned RsrcLo = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub0);
unsigned RsrcHi = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub1);
unsigned Rsrc01 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub0_sub1);
const MCInstrDesc &SMovB32 = TII->get(AMDGPU::S_MOV_B32);
if (MFI->getGITPtrHigh() != 0xffffffff) {
BuildMI(MBB, I, DL, SMovB32, RsrcHi)
.addImm(MFI->getGITPtrHigh())
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
} else {
const MCInstrDesc &GetPC64 = TII->get(AMDGPU::S_GETPC_B64);
BuildMI(MBB, I, DL, GetPC64, Rsrc01);
}
auto GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
if (ST.hasMergedShaders()) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_GS:
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
// ES+GS merged shader on gfx9+.
GitPtrLo = AMDGPU::SGPR8;
break;
default:
break;
}
}
BuildMI(MBB, I, DL, SMovB32, RsrcLo)
.addReg(GitPtrLo)
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
// We now have the GIT ptr - now get the scratch descriptor from the entry
// at offset 0.
PointerType *PtrTy =
PointerType::get(Type::getInt64Ty(MF.getFunction().getContext()),
AMDGPUAS::CONSTANT_ADDRESS);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
const MCInstrDesc &LoadDwordX4 = TII->get(AMDGPU::S_LOAD_DWORDX4_IMM);
auto MMO = MF.getMachineMemOperand(PtrInfo,
MachineMemOperand::MOLoad |
MachineMemOperand::MOInvariant |
MachineMemOperand::MODereferenceable,
0, 0);
BuildMI(MBB, I, DL, LoadDwordX4, ScratchRsrcReg)
.addReg(Rsrc01)
.addImm(0) // offset
.addImm(0) // glc
.addReg(ScratchRsrcReg, RegState::ImplicitDefine)
.addMemOperand(MMO);
return;
}
if (ST.isMesaGfxShader(MF)
|| (PreloadedPrivateBufferReg == AMDGPU::NoRegister)) {
assert(!ST.isAmdCodeObjectV2(MF));
const MCInstrDesc &SMovB32 = TII->get(AMDGPU::S_MOV_B32);
unsigned Rsrc2 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub2);
unsigned Rsrc3 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub3);
// Use relocations to get the pointer, and setup the other bits manually.
uint64_t Rsrc23 = TII->getScratchRsrcWords23();
if (MFI->hasImplicitBufferPtr()) {
unsigned Rsrc01 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub0_sub1);
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
const MCInstrDesc &Mov64 = TII->get(AMDGPU::S_MOV_B64);
BuildMI(MBB, I, DL, Mov64, Rsrc01)
.addReg(MFI->getImplicitBufferPtrUserSGPR())
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
} else {
const MCInstrDesc &LoadDwordX2 = TII->get(AMDGPU::S_LOAD_DWORDX2_IMM);
PointerType *PtrTy =
PointerType::get(Type::getInt64Ty(MF.getFunction().getContext()),
AMDGPUAS::CONSTANT_ADDRESS);
MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
auto MMO = MF.getMachineMemOperand(PtrInfo,
MachineMemOperand::MOLoad |
MachineMemOperand::MOInvariant |
MachineMemOperand::MODereferenceable,
0, 0);
BuildMI(MBB, I, DL, LoadDwordX2, Rsrc01)
.addReg(MFI->getImplicitBufferPtrUserSGPR())
.addImm(0) // offset
.addImm(0) // glc
.addMemOperand(MMO)
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
}
} else {
unsigned Rsrc0 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub0);
unsigned Rsrc1 = TRI->getSubReg(ScratchRsrcReg, AMDGPU::sub1);
BuildMI(MBB, I, DL, SMovB32, Rsrc0)
.addExternalSymbol("SCRATCH_RSRC_DWORD0")
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
BuildMI(MBB, I, DL, SMovB32, Rsrc1)
.addExternalSymbol("SCRATCH_RSRC_DWORD1")
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
}
BuildMI(MBB, I, DL, SMovB32, Rsrc2)
.addImm(Rsrc23 & 0xffffffff)
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
BuildMI(MBB, I, DL, SMovB32, Rsrc3)
.addImm(Rsrc23 >> 32)
.addReg(ScratchRsrcReg, RegState::ImplicitDefine);
}
}
// Find a scratch register that we can use at the start of the prologue to
// re-align the stack pointer. We avoid using callee-save registers since they
// may appear to be free when this is called from canUseAsPrologue (during
// shrink wrapping), but then no longer be free when this is called from
// emitPrologue.
//
// FIXME: This is a bit conservative, since in the above case we could use one
// of the callee-save registers as a scratch temp to re-align the stack pointer,
// but we would then have to make sure that we were in fact saving at least one
// callee-save register in the prologue, which is additional complexity that
// doesn't seem worth the benefit.
static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock &MBB) {
MachineFunction *MF = MBB.getParent();
const SISubtarget &Subtarget = MF->getSubtarget<SISubtarget>();
const SIRegisterInfo &TRI = *Subtarget.getRegisterInfo();
LivePhysRegs LiveRegs(TRI);
LiveRegs.addLiveIns(MBB);
// Mark callee saved registers as used so we will not choose them.
const MCPhysReg *CSRegs = TRI.getCalleeSavedRegs(MF);
for (unsigned i = 0; CSRegs[i]; ++i)
LiveRegs.addReg(CSRegs[i]);
MachineRegisterInfo &MRI = MF->getRegInfo();
for (unsigned Reg : AMDGPU::SReg_32_XM0RegClass) {
if (LiveRegs.available(MRI, Reg))
return Reg;
}
return AMDGPU::NoRegister;
}
void SIFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
if (FuncInfo->isEntryFunction()) {
emitEntryFunctionPrologue(MF, MBB);
return;
}
const MachineFrameInfo &MFI = MF.getFrameInfo();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
unsigned StackPtrReg = FuncInfo->getStackPtrOffsetReg();
unsigned FramePtrReg = FuncInfo->getFrameOffsetReg();
MachineBasicBlock::iterator MBBI = MBB.begin();
DebugLoc DL;
// XXX - Is this the right predicate?
bool NeedFP = hasFP(MF);
uint32_t NumBytes = MFI.getStackSize();
uint32_t RoundedSize = NumBytes;
const bool NeedsRealignment = TRI.needsStackRealignment(MF);
if (NeedsRealignment) {
assert(NeedFP);
const unsigned Alignment = MFI.getMaxAlignment();
RoundedSize += Alignment;
unsigned ScratchSPReg = findScratchNonCalleeSaveRegister(MBB);
assert(ScratchSPReg != AMDGPU::NoRegister);
// s_add_u32 tmp_reg, s32, NumBytes
// s_and_b32 s32, tmp_reg, 0b111...0000
BuildMI(MBB, MBBI, DL, TII->get(AMDGPU::S_ADD_U32), ScratchSPReg)
.addReg(StackPtrReg)
.addImm((Alignment - 1) * ST.getWavefrontSize())
.setMIFlag(MachineInstr::FrameSetup);
BuildMI(MBB, MBBI, DL, TII->get(AMDGPU::S_AND_B32), FramePtrReg)
.addReg(ScratchSPReg, RegState::Kill)
.addImm(-Alignment * ST.getWavefrontSize())
.setMIFlag(MachineInstr::FrameSetup);
FuncInfo->setIsStackRealigned(true);
} else if (NeedFP) {
// If we need a base pointer, set it up here. It's whatever the value of
// the stack pointer is at this point. Any variable size objects will be
// allocated after this, so we can still use the base pointer to reference
// locals.
BuildMI(MBB, MBBI, DL, TII->get(AMDGPU::COPY), FramePtrReg)
.addReg(StackPtrReg)
.setMIFlag(MachineInstr::FrameSetup);
}
if (RoundedSize != 0 && hasSP(MF)) {
BuildMI(MBB, MBBI, DL, TII->get(AMDGPU::S_ADD_U32), StackPtrReg)
.addReg(StackPtrReg)
.addImm(RoundedSize * ST.getWavefrontSize())
.setMIFlag(MachineInstr::FrameSetup);
}
for (const SIMachineFunctionInfo::SGPRSpillVGPRCSR &Reg
: FuncInfo->getSGPRSpillVGPRs()) {
if (!Reg.FI.hasValue())
continue;
TII->storeRegToStackSlot(MBB, MBBI, Reg.VGPR, true,
Reg.FI.getValue(), &AMDGPU::VGPR_32RegClass,
&TII->getRegisterInfo());
}
}
void SIFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
if (FuncInfo->isEntryFunction())
return;
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
for (const SIMachineFunctionInfo::SGPRSpillVGPRCSR &Reg
: FuncInfo->getSGPRSpillVGPRs()) {
if (!Reg.FI.hasValue())
continue;
TII->loadRegFromStackSlot(MBB, MBBI, Reg.VGPR,
Reg.FI.getValue(), &AMDGPU::VGPR_32RegClass,
&TII->getRegisterInfo());
}
unsigned StackPtrReg = FuncInfo->getStackPtrOffsetReg();
if (StackPtrReg == AMDGPU::NoRegister)
return;
const MachineFrameInfo &MFI = MF.getFrameInfo();
uint32_t NumBytes = MFI.getStackSize();
DebugLoc DL;
// FIXME: Clarify distinction between no set SP and SP. For callee functions,
// it's really whether we need SP to be accurate or not.
if (NumBytes != 0 && hasSP(MF)) {
uint32_t RoundedSize = FuncInfo->isStackRealigned() ?
NumBytes + MFI.getMaxAlignment() : NumBytes;
BuildMI(MBB, MBBI, DL, TII->get(AMDGPU::S_SUB_U32), StackPtrReg)
.addReg(StackPtrReg)
.addImm(RoundedSize * ST.getWavefrontSize());
}
}
static bool allStackObjectsAreDead(const MachineFrameInfo &MFI) {
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd();
I != E; ++I) {
if (!MFI.isDeadObjectIndex(I))
return false;
}
return true;
}
int SIFrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
unsigned &FrameReg) const {
const SIRegisterInfo *RI = MF.getSubtarget<SISubtarget>().getRegisterInfo();
FrameReg = RI->getFrameRegister(MF);
return MF.getFrameInfo().getObjectOffset(FI);
}
void SIFrameLowering::processFunctionBeforeFrameFinalized(
MachineFunction &MF,
RegScavenger *RS) const {
MachineFrameInfo &MFI = MF.getFrameInfo();
if (!MFI.hasStackObjects())
return;
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
bool AllSGPRSpilledToVGPRs = false;
if (TRI.spillSGPRToVGPR() && FuncInfo->hasSpilledSGPRs()) {
AllSGPRSpilledToVGPRs = true;
// Process all SGPR spills before frame offsets are finalized. Ideally SGPRs
// are spilled to VGPRs, in which case we can eliminate the stack usage.
//
// XXX - This operates under the assumption that only other SGPR spills are
// users of the frame index. I'm not 100% sure this is correct. The
// StackColoring pass has a comment saying a future improvement would be to
// merging of allocas with spill slots, but for now according to
// MachineFrameInfo isSpillSlot can't alias any other object.
for (MachineBasicBlock &MBB : MF) {
MachineBasicBlock::iterator Next;
for (auto I = MBB.begin(), E = MBB.end(); I != E; I = Next) {
MachineInstr &MI = *I;
Next = std::next(I);
if (TII->isSGPRSpill(MI)) {
int FI = TII->getNamedOperand(MI, AMDGPU::OpName::addr)->getIndex();
if (FuncInfo->allocateSGPRSpillToVGPR(MF, FI)) {
bool Spilled = TRI.eliminateSGPRToVGPRSpillFrameIndex(MI, FI, RS);
(void)Spilled;
assert(Spilled && "failed to spill SGPR to VGPR when allocated");
} else
AllSGPRSpilledToVGPRs = false;
}
}
}
FuncInfo->removeSGPRToVGPRFrameIndices(MFI);
}
// FIXME: The other checks should be redundant with allStackObjectsAreDead,
// but currently hasNonSpillStackObjects is set only from source
// allocas. Stack temps produced from legalization are not counted currently.
if (FuncInfo->hasNonSpillStackObjects() || FuncInfo->hasSpilledVGPRs() ||
!AllSGPRSpilledToVGPRs || !allStackObjectsAreDead(MFI)) {
assert(RS && "RegScavenger required if spilling");
// We force this to be at offset 0 so no user object ever has 0 as an
// address, so we may use 0 as an invalid pointer value. This is because
// LLVM assumes 0 is an invalid pointer in address space 0. Because alloca
// is required to be address space 0, we are forced to accept this for
// now. Ideally we could have the stack in another address space with 0 as a
// valid pointer, and -1 as the null value.
//
// This will also waste additional space when user stack objects require > 4
// byte alignment.
//
// The main cost here is losing the offset for addressing modes. However
// this also ensures we shouldn't need a register for the offset when
// emergency scavenging.
int ScavengeFI = MFI.CreateFixedObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false);
RS->addScavengingFrameIndex(ScavengeFI);
}
}
void SIFrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs,
RegScavenger *RS) const {
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// The SP is specifically managed and we don't want extra spills of it.
SavedRegs.reset(MFI->getStackPtrOffsetReg());
}
MachineBasicBlock::iterator SIFrameLowering::eliminateCallFramePseudoInstr(
MachineFunction &MF,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) const {
int64_t Amount = I->getOperand(0).getImm();
if (Amount == 0)
return MBB.erase(I);
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const DebugLoc &DL = I->getDebugLoc();
unsigned Opc = I->getOpcode();
bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode();
uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
if (!TFI->hasReservedCallFrame(MF)) {
unsigned Align = getStackAlignment();
Amount = alignTo(Amount, Align);
assert(isUInt<32>(Amount) && "exceeded stack address space size");
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned SPReg = MFI->getStackPtrOffsetReg();
unsigned Op = IsDestroy ? AMDGPU::S_SUB_U32 : AMDGPU::S_ADD_U32;
BuildMI(MBB, I, DL, TII->get(Op), SPReg)
.addReg(SPReg)
.addImm(Amount * ST.getWavefrontSize());
} else if (CalleePopAmount != 0) {
llvm_unreachable("is this used?");
}
return MBB.erase(I);
}
void SIFrameLowering::emitDebuggerPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo *TRI = &TII->getRegisterInfo();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
MachineBasicBlock::iterator I = MBB.begin();
DebugLoc DL;
// For each dimension:
for (unsigned i = 0; i < 3; ++i) {
// Get work group ID SGPR, and make it live-in again.
unsigned WorkGroupIDSGPR = MFI->getWorkGroupIDSGPR(i);
MF.getRegInfo().addLiveIn(WorkGroupIDSGPR);
MBB.addLiveIn(WorkGroupIDSGPR);
// Since SGPRs are spilled into VGPRs, copy work group ID SGPR to VGPR in
// order to spill it to scratch.
unsigned WorkGroupIDVGPR =
MF.getRegInfo().createVirtualRegister(&AMDGPU::VGPR_32RegClass);
BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), WorkGroupIDVGPR)
.addReg(WorkGroupIDSGPR);
// Spill work group ID.
int WorkGroupIDObjectIdx = MFI->getDebuggerWorkGroupIDStackObjectIndex(i);
TII->storeRegToStackSlot(MBB, I, WorkGroupIDVGPR, false,
WorkGroupIDObjectIdx, &AMDGPU::VGPR_32RegClass, TRI);
// Get work item ID VGPR, and make it live-in again.
unsigned WorkItemIDVGPR = MFI->getWorkItemIDVGPR(i);
MF.getRegInfo().addLiveIn(WorkItemIDVGPR);
MBB.addLiveIn(WorkItemIDVGPR);
// Spill work item ID.
int WorkItemIDObjectIdx = MFI->getDebuggerWorkItemIDStackObjectIndex(i);
TII->storeRegToStackSlot(MBB, I, WorkItemIDVGPR, false,
WorkItemIDObjectIdx, &AMDGPU::VGPR_32RegClass, TRI);
}
}
bool SIFrameLowering::hasFP(const MachineFunction &MF) const {
// All stack operations are relative to the frame offset SGPR.
// TODO: Still want to eliminate sometimes.
const MachineFrameInfo &MFI = MF.getFrameInfo();
// XXX - Is this only called after frame is finalized? Should be able to check
// frame size.
return MFI.hasStackObjects() && !allStackObjectsAreDead(MFI);
}
bool SIFrameLowering::hasSP(const MachineFunction &MF) const {
const SIRegisterInfo *TRI = MF.getSubtarget<SISubtarget>().getRegisterInfo();
// All stack operations are relative to the frame offset SGPR.
const MachineFrameInfo &MFI = MF.getFrameInfo();
return MFI.hasCalls() || MFI.hasVarSizedObjects() || TRI->needsStackRealignment(MF);
}