llvm-project/libcxxabi/src/cxa_personality.cpp

1377 lines
62 KiB
C++

//===------------------------- cxa_exception.cpp --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// This file implements the "Exception Handling APIs"
// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
// http://www.intel.com/design/itanium/downloads/245358.htm
//
//===----------------------------------------------------------------------===//
#include "unwind.h"
#include "cxa_exception.hpp"
#include "cxa_handlers.hpp"
#include "private_typeinfo.h"
#include <typeinfo>
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
/*
Exception Header Layout:
+---------------------------+-----------------------------+---------------+
| __cxa_exception | _Unwind_Exception CLNGC++\0 | thrown object |
+---------------------------+-----------------------------+---------------+
^
|
+-------------------------------------------------------+
|
+---------------------------+-----------------------------+
| __cxa_dependent_exception | _Unwind_Exception CLNGC++\1 |
+---------------------------+-----------------------------+
Exception Handling Table Layout:
+-----------------+--------+
| lpStartEncoding | (char) |
+---------+-------+--------+---------------+-----------------------+
| lpStart | (encoded wtih lpStartEncoding) | defaults to funcStart |
+---------+-----+--------+-----------------+---------------+-------+
| ttypeEncoding | (char) | Encoding of the type_info table |
+---------------+-+------+----+----------------------------+----------------+
| classInfoOffset | (ULEB128) | Offset to type_info table, defaults to null |
+-----------------++--------+-+----------------------------+----------------+
| callSiteEncoding | (char) | Encoding for Call Site Table |
+------------------+--+-----+-----+------------------------+--------------------------+
| callSiteTableLength | (ULEB128) | Call Site Table length, used to find Action table |
+---------------------+-----------+------------------------------------------------+--+
| Beginning of Call Site Table If the current ip lies within the |
| ... (start, length) range of one of these |
| call sites, there may be action needed. |
| +-------------+---------------------------------+------------------------------+ |
| | start | (encoded with callSiteEncoding) | offset relative to funcStart | |
| | length | (encoded with callSiteEncoding) | lenght of code fragment | |
| | landingPad | (encoded with callSiteEncoding) | offset relative to lpStart | |
| | actionEntry | (ULEB128) | Action Table Index 1-based | |
| | | | actionEntry == 0 -> cleanup | |
| +-------------+---------------------------------+------------------------------+ |
| ... |
+---------------------------------------------------------------------+------------+
| Beginning of Action Table ttypeIndex == 0 : cleanup |
| ... ttypeIndex > 0 : catch |
| ttypeIndex < 0 : exception spec |
| +--------------+-----------+--------------------------------------+ |
| | ttypeIndex | (SLEB128) | Index into type_info Table (1-based) | |
| | actionOffset | (SLEB128) | Offset into next Action Table entry | |
| +--------------+-----------+--------------------------------------+ |
| ... |
+---------------------------------------------------------------------+-----------------+
| type_info Table, but classInfoOffset does *not* point here! |
| +----------------+------------------------------------------------+-----------------+ |
| | Nth type_info* | Encoded with ttypeEncoding, 0 means catch(...) | ttypeIndex == N | |
| +----------------+------------------------------------------------+-----------------+ |
| ... |
| +----------------+------------------------------------------------+-----------------+ |
| | 1st type_info* | Encoded with ttypeEncoding, 0 means catch(...) | ttypeIndex == 1 | |
| +----------------+------------------------------------------------+-----------------+ |
| +---------------------------------------+-----------+------------------------------+ |
| | 1st ttypeIndex for 1st exception spec | (ULEB128) | classInfoOffset points here! | |
| | ... | (ULEB128) | | |
| | Mth ttypeIndex for 1st exception spec | (ULEB128) | | |
| | 0 | (ULEB128) | | |
| +---------------------------------------+------------------------------------------+ |
| ... |
| +---------------------------------------+------------------------------------------+ |
| | 0 | (ULEB128) | throw() | |
| +---------------------------------------+------------------------------------------+ |
| ... |
| +---------------------------------------+------------------------------------------+ |
| | 1st ttypeIndex for Nth exception spec | (ULEB128) | | |
| | ... | (ULEB128) | | |
| | Mth ttypeIndex for Nth exception spec | (ULEB128) | | |
| | 0 | (ULEB128) | | |
| +---------------------------------------+------------------------------------------+ |
+---------------------------------------------------------------------------------------+
Notes:
* ttypeIndex in the Action Table, and in the exception spec table, is an index,
not a byte count, if positive. It is a negative index offset of
classInfoOffset and the sizeof entry depends on ttypeEncoding.
But if ttypeIndex is negative, it is a positive 1-based byte offset into the
type_info Table.
And if ttypeIndex is zero, it refers to a catch (...).
* landingPad can be 0, this implies there is nothing to be done.
* landingPad != 0 and actionEntry == 0 implies a cleanup needs to be done
@landingPad.
* A cleanup can also be found under landingPad != 0 and actionEntry != 0 in
the Action Table with ttypeIndex == 0.
*/
namespace __cxxabiv1
{
extern "C"
{
// private API
// Heavily borrowed from llvm/examples/ExceptionDemo/ExceptionDemo.cpp
// DWARF Constants
enum
{
DW_EH_PE_absptr = 0x00,
DW_EH_PE_uleb128 = 0x01,
DW_EH_PE_udata2 = 0x02,
DW_EH_PE_udata4 = 0x03,
DW_EH_PE_udata8 = 0x04,
DW_EH_PE_sleb128 = 0x09,
DW_EH_PE_sdata2 = 0x0A,
DW_EH_PE_sdata4 = 0x0B,
DW_EH_PE_sdata8 = 0x0C,
DW_EH_PE_pcrel = 0x10,
DW_EH_PE_textrel = 0x20,
DW_EH_PE_datarel = 0x30,
DW_EH_PE_funcrel = 0x40,
DW_EH_PE_aligned = 0x50,
DW_EH_PE_indirect = 0x80,
DW_EH_PE_omit = 0xFF
};
/// Read a uleb128 encoded value and advance pointer
/// See Variable Length Data Appendix C in:
/// @link http://dwarfstd.org/Dwarf4.pdf @unlink
/// @param data reference variable holding memory pointer to decode from
/// @returns decoded value
static
uintptr_t
readULEB128(const uint8_t** data)
{
uintptr_t result = 0;
uintptr_t shift = 0;
unsigned char byte;
const uint8_t *p = *data;
do
{
byte = *p++;
result |= static_cast<uintptr_t>(byte & 0x7F) << shift;
shift += 7;
} while (byte & 0x80);
*data = p;
return result;
}
/// Read a sleb128 encoded value and advance pointer
/// See Variable Length Data Applendix C in:
/// @link http://dwarfstd.org/Dwarf4.pdf @unlink
/// @param data reference variable holding memory pointer to decode from
/// @returns decoded value
static
uintptr_t
readSLEB128(const uint8_t** data)
{
uintptr_t result = 0;
uintptr_t shift = 0;
unsigned char byte;
const uint8_t *p = *data;
do
{
byte = *p++;
result |= static_cast<uintptr_t>(byte & 0x7F) << shift;
shift += 7;
} while (byte & 0x80);
*data = p;
if ((byte & 0x40) && (shift < (sizeof(result) << 3)))
result |= static_cast<uintptr_t>(~0) << shift;
return result;
}
/// Read a pointer encoded value and advance pointer
/// See Variable Length Data in:
/// @link http://dwarfstd.org/Dwarf3.pdf @unlink
/// @param data reference variable holding memory pointer to decode from
/// @param encoding dwarf encoding type
/// @returns decoded value
static
uintptr_t
readEncodedPointer(const uint8_t** data, uint8_t encoding)
{
// TODO: Not quite rgiht. This should be able to read a 0 from the TType table
// and not dereference it. Pasted in temporayr workaround
// TODO: Sometimes this is clearly not always reading an encoded pointer, for
// example a length in the call site table. Needs new name?
uintptr_t result = 0;
if (encoding == DW_EH_PE_omit)
return result;
const uint8_t* p = *data;
// first get value
switch (encoding & 0x0F)
{
case DW_EH_PE_absptr:
result = *((uintptr_t*)p);
p += sizeof(uintptr_t);
break;
case DW_EH_PE_uleb128:
result = readULEB128(&p);
break;
case DW_EH_PE_sleb128:
result = readSLEB128(&p);
break;
case DW_EH_PE_udata2:
result = *((uint16_t*)p);
p += sizeof(uint16_t);
break;
case DW_EH_PE_udata4:
result = *((uint32_t*)p);
p += sizeof(uint32_t);
break;
case DW_EH_PE_udata8:
result = *((uint64_t*)p);
p += sizeof(uint64_t);
break;
case DW_EH_PE_sdata2:
result = *((int16_t*)p);
p += sizeof(int16_t);
break;
case DW_EH_PE_sdata4:
result = *((int32_t*)p);
p += sizeof(int32_t);
break;
case DW_EH_PE_sdata8:
result = *((int64_t*)p);
p += sizeof(int64_t);
break;
default:
// not supported
abort();
break;
}
// then add relative offset
switch (encoding & 0x70)
{
case DW_EH_PE_absptr:
// do nothing
break;
case DW_EH_PE_pcrel:
if (result)
result += (uintptr_t)(*data);
break;
case DW_EH_PE_textrel:
case DW_EH_PE_datarel:
case DW_EH_PE_funcrel:
case DW_EH_PE_aligned:
default:
// not supported
abort();
break;
}
// then apply indirection
if (result && (encoding & DW_EH_PE_indirect))
result = *((uintptr_t*)result);
*data = p;
return result;
}
static
void
call_terminate(bool native_exception, _Unwind_Exception* unwind_exception)
{
__cxa_begin_catch(unwind_exception);
if (native_exception)
{
// Use the stored terminate_handler if possible
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
std::__terminate(exception_header->terminateHandler);
}
std::terminate();
}
static
const __shim_type_info*
get_shim_type_info(int64_t ttypeIndex, const uint8_t* classInfo,
uint8_t ttypeEncoding, bool native_exception,
_Unwind_Exception* unwind_exception)
{
// TODO: Move this check sooner
if (classInfo == 0)
{
// this should not happen
call_terminate(native_exception, unwind_exception);
}
switch (ttypeEncoding & 0x0F)
{
case DW_EH_PE_absptr:
ttypeIndex *= sizeof(void*);
break;
case DW_EH_PE_udata2:
case DW_EH_PE_sdata2:
ttypeIndex *= 2;
break;
case DW_EH_PE_udata4:
case DW_EH_PE_sdata4:
ttypeIndex *= 4;
break;
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
ttypeIndex *= 8;
break;
default:
// TODO: Move this check sooner
// this should not happen
call_terminate(native_exception, unwind_exception);
}
classInfo -= ttypeIndex;
return (const __shim_type_info*)readEncodedPointer(&classInfo, ttypeEncoding);
}
static
bool
exception_spec_can_catch(int64_t specIndex, const uint8_t* classInfo,
uint8_t ttypeEncoding, const __shim_type_info* excpType,
void* adjustedPtr, _Unwind_Exception* unwind_exception)
{
// TODO: Move this check sooner
if (classInfo == 0)
{
// this should not happen
call_terminate(false, unwind_exception);
}
// specIndex is 1-based byte offset into classInfo;
--specIndex;
const uint8_t* temp = classInfo + specIndex;
// If any type in the spec list can catch excpType, return false, else return true
// adjustments to adjustedPtr are ignored.
while (true)
{
uint64_t ttypeIndex = readULEB128(&temp);
if (ttypeIndex == 0)
break;
const __shim_type_info* catchType = get_shim_type_info(ttypeIndex,
classInfo,
ttypeEncoding,
true,
unwind_exception);
void* tempPtr = adjustedPtr;
if (catchType->can_catch(excpType, tempPtr))
return false;
}
return true;
}
static
const uint8_t*
getTTypeEntry(int64_t ttypeIndex, const uint8_t* classInfo, uint8_t ttypeEncoding)
{
switch (ttypeEncoding & 0x0F)
{
case DW_EH_PE_absptr:
ttypeIndex *= sizeof(void*);
break;
case DW_EH_PE_udata2:
case DW_EH_PE_sdata2:
ttypeIndex *= 2;
break;
case DW_EH_PE_udata4:
case DW_EH_PE_sdata4:
ttypeIndex *= 4;
break;
case DW_EH_PE_udata8:
case DW_EH_PE_sdata8:
ttypeIndex *= 8;
break;
}
return classInfo - ttypeIndex;
}
static
void
save_state(__cxa_exception* exception_header, int handlerSwitchValue,
const uint8_t* actionRecord, const uint8_t* languageSpecificData,
void* landingPad, void* adjustedPtr)
{
exception_header->handlerSwitchValue = handlerSwitchValue;
exception_header->actionRecord = actionRecord;
exception_header->languageSpecificData = languageSpecificData;
exception_header->catchTemp = landingPad;
exception_header->adjustedPtr = adjustedPtr;
}
static
void
save_state_for_exception_spec(__cxa_exception* exception_header,
int handlerSwitchValue,
const void* classInfo,
uint8_t ttypeEncoding,
void* adjustedPtr)
{
exception_header->handlerSwitchValue = handlerSwitchValue;
exception_header->languageSpecificData = static_cast<const uint8_t*>(classInfo);
exception_header->catchTemp = (void*)(uintptr_t)ttypeEncoding;
exception_header->adjustedPtr = adjustedPtr;
}
/// Deals with Dwarf actions matching our type infos
/// (OurExceptionType_t instances). Returns whether or not a dwarf emitted
/// action matches the supplied exception type. If such a match succeeds,
/// the handlerSwitchValue will be set with > 0 index value. Only
/// corresponding llvm.eh.selector type info arguments, cleanup arguments
/// are supported. Filters are not supported.
/// See Variable Length Data in:
/// @link http://dwarfstd.org/Dwarf3.pdf @unlink
/// Also see @link http://refspecs.freestandards.org/abi-eh-1.21.html @unlink
/// @param classInfo our array of type info pointers (to globals)
/// @param actionEntry index into above type info array or 0 (cleanup).
/// We do not support filters.
/// @param unwind_exception thrown _Unwind_Exception instance.
/// @returns whether or not a type info was found. False is returned if only
/// a cleanup was found
static
bool
handleActionValue(const uint8_t* classInfo, uintptr_t actionEntry,
_Unwind_Exception* unwind_exception, uint8_t ttypeEncoding)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* thrown_object =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(exception_header->exceptionType);
const uint8_t* actionPos = (uint8_t*)actionEntry;
while (true)
{
// Each emitted dwarf action corresponds to a 2 tuple of
// type info address offset, and action offset to the next
// emitted action.
const uint8_t* SactionPos = actionPos;
int64_t ttypeIndex = readSLEB128(&actionPos);
const uint8_t* tempActionPos = actionPos;
int64_t actionOffset = readSLEB128(&tempActionPos);
if (ttypeIndex > 0) // a catch handler
{
const uint8_t* TTypeEntry = getTTypeEntry(ttypeIndex, classInfo,
ttypeEncoding);
const __shim_type_info* catchType =
(const __shim_type_info*)readEncodedPointer(&TTypeEntry,
ttypeEncoding);
void* adjustedPtr = thrown_object;
// catchType == 0 -> catch (...)
if (catchType == 0 || catchType->can_catch(excpType, adjustedPtr))
{
exception_header->handlerSwitchValue = ttypeIndex;
exception_header->actionRecord = SactionPos; // unnecessary?
// used by __cxa_get_exception_ptr and __cxa_begin_catch
exception_header->adjustedPtr = adjustedPtr;
return true;
}
}
else if (ttypeIndex < 0) // an exception spec
{
}
else // ttypeIndex == 0 // a cleanup
{
}
if (actionOffset == 0)
break;
actionPos += actionOffset;
}
return false;
}
// Return true if there is a handler and false otherwise
// cache handlerSwitchValue, actionRecord, languageSpecificData,
// catchTemp and adjustedPtr here.
static
bool
contains_handler(_Unwind_Exception* unwind_exception, _Unwind_Context* context)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
const uint8_t* lsda = (const uint8_t*)_Unwind_GetLanguageSpecificData(context);
exception_header->languageSpecificData = lsda;
if (lsda)
{
// Get the current instruction pointer and offset it before next
// instruction in the current frame which threw the exception.
uintptr_t ip = _Unwind_GetIP(context) - 1;
// Get beginning current frame's code (as defined by the
// emitted dwarf code)
uintptr_t funcStart = _Unwind_GetRegionStart(context);
uintptr_t ipOffset = ip - funcStart;
const uint8_t* classInfo = NULL;
// Note: See JITDwarfEmitter::EmitExceptionTable(...) for corresponding
// dwarf emission
// Parse LSDA header.
uint8_t lpStartEncoding = *lsda++;
const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding);
if (lpStart == 0)
lpStart = (const uint8_t*)funcStart;
uint8_t ttypeEncoding = *lsda++;
// TODO: preflight ttypeEncoding here and return error if there's a problem
if (ttypeEncoding != DW_EH_PE_omit)
{
// Calculate type info locations in emitted dwarf code which
// were flagged by type info arguments to llvm.eh.selector
// intrinsic
uintptr_t classInfoOffset = readULEB128(&lsda);
classInfo = lsda + classInfoOffset;
}
// Walk call-site table looking for range that
// includes current PC.
uint8_t callSiteEncoding = *lsda++;
uint32_t callSiteTableLength = readULEB128(&lsda);
const uint8_t* callSiteTableStart = lsda;
const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength;
const uint8_t* actionTableStart = callSiteTableEnd;
const uint8_t* callSitePtr = callSiteTableStart;
while (callSitePtr < callSiteTableEnd)
{
uintptr_t start = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t length = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t landingPad = readEncodedPointer(&callSitePtr, callSiteEncoding);
// Note: Action value
uintptr_t actionEntry = readULEB128(&callSitePtr);
if (landingPad == 0)
continue; // no landing pad for this entry
if (actionEntry)
actionEntry += ((uintptr_t)actionTableStart) - 1;
if ((start <= ipOffset) && (ipOffset < (start + length)))
{
exception_header->catchTemp = (void*)(lpStart + landingPad);
if (actionEntry)
return handleActionValue(classInfo,
actionEntry,
unwind_exception,
ttypeEncoding);
// Note: Only non-cleanup handlers are marked as
// found. Otherwise the cleanup handlers will be
// re-found and executed during the cleanup
// phase.
return false; // Won't find another call site in range of ipOffset
}
}
// Not found, need to properly terminate
}
return false;
}
static
_Unwind_Reason_Code
transfer_control_to_landing_pad(_Unwind_Exception* unwind_exception,
_Unwind_Context* context)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
_Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)unwind_exception);
_Unwind_SetGR(context, __builtin_eh_return_data_regno(1), exception_header->handlerSwitchValue);
_Unwind_SetIP(context, (uintptr_t)exception_header->catchTemp);
return _URC_INSTALL_CONTEXT;
}
static
_Unwind_Reason_Code
perform_cleanup(_Unwind_Exception* unwind_exception, _Unwind_Context* context)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
_Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)unwind_exception);
_Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0);
_Unwind_SetIP(context, (uintptr_t)exception_header->catchTemp);
return _URC_INSTALL_CONTEXT;
}
// public API
/*
A foreign exception is defined by by one with an exceptionClass that doesn't
have 'C++' in the 3 low order bytes 3 - 1:
big end | | ... | C | + | + |1/0| little end
The lowest order byte may be 0 or 1.
The personality function branches on actions like so:
_UA_SEARCH_PHASE
If _UA_CLEANUP_PHASE or _UA_HANDLER_FRAME or _UA_FORCE_UNWIND there's
an error from above, return _URC_FATAL_PHASE1_ERROR.
Scan for anything that could stop unwinding:
1. A catch clause that will catch this exception
(will never catch foreign).
2. A catch (...) (will always catch foreign).
3. An exception spec that will catch this exception
(will always catch foreign).
If a handler is found
If not foreign
Save state in header
return _URC_HANDLER_FOUND
Else a handler not found
return _URC_CONTINUE_UNWIND
_UA_CLEANUP_PHASE
If _UA_HANDLER_FRAME
If _UA_FORCE_UNWIND
How did this happen? return _URC_FATAL_PHASE2_ERROR
If foreign
Do _UA_SEARCH_PHASE to recover state
else
Recover state from header
Transfer control to landing pad. return _URC_INSTALL_CONTEXT
Else
Scan for anything that can not stop unwinding:
1. A cleanup.
If a cleanup is found
transfer control to it. return _URC_INSTALL_CONTEXT
Else a cleanup is not found: return _URC_CONTINUE_UNWIND
*/
_Unwind_Reason_Code
__gxx_personality_v0(int version, _Unwind_Action actions, uint64_t exceptionClass,
_Unwind_Exception* unwind_exception, _Unwind_Context* context)
{
printf("__gxx_personality_v0 start with unwind_exception = %p\n", unwind_exception);
if (version != 1 || unwind_exception == 0 || context == 0)
return _URC_FATAL_PHASE1_ERROR;
bool native_exception = (exceptionClass & get_language) ==
(kOurExceptionClass & get_language);
if (actions & _UA_SEARCH_PHASE)
{
printf("__gxx_personality_v0 start phase 1\n");
// Do Phase 1
if (actions & (_UA_CLEANUP_PHASE | _UA_HANDLER_FRAME | _UA_FORCE_UNWIND))
{
// None of these flags should be set during Phase 1
return _URC_FATAL_PHASE1_ERROR;
}
// Scan for handlers
// If a handler is found return _URC_HANDLER_FOUND else return _URC_CONTINUE_UNWIND
const uint8_t* lsda = (const uint8_t*)_Unwind_GetLanguageSpecificData(context);
if (lsda == 0)
{
// No LanguageSpecificData means no handlers
printf("__gxx_personality_v0 phase 1 no lsda, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
const uint8_t* languageSpecificData = lsda;
// Get the current instruction pointer and offset it before next
// instruction in the current frame which threw the exception.
uintptr_t ip = _Unwind_GetIP(context) - 1;
// Get beginning current frame's code (as defined by the
// emitted dwarf code)
uintptr_t funcStart = _Unwind_GetRegionStart(context);
uintptr_t ipOffset = ip - funcStart;
const uint8_t* classInfo = NULL;
// Note: See JITDwarfEmitter::EmitExceptionTable(...) for corresponding
// dwarf emission
// Parse LSDA header.
uint8_t lpStartEncoding = *lsda++;
const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding);
if (lpStart == 0)
lpStart = (const uint8_t*)funcStart;
uint8_t ttypeEncoding = *lsda++;
if (ttypeEncoding != DW_EH_PE_omit)
{
// Calculate type info locations in emitted dwarf code which
// were flagged by type info arguments to llvm.eh.selector
// intrinsic
uintptr_t classInfoOffset = readULEB128(&lsda);
classInfo = lsda + classInfoOffset;
}
// Walk call-site table looking for range that
// includes current PC.
uint8_t callSiteEncoding = *lsda++;
uint32_t callSiteTableLength = readULEB128(&lsda);
const uint8_t* callSiteTableStart = lsda;
const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength;
const uint8_t* actionTableStart = callSiteTableEnd;
const uint8_t* callSitePtr = callSiteTableStart;
while (true)
{
// There is one entry per call site.
// The call sites are non-overlapping in [start, start+length)
// The call sites are ordered in increasing value of start
uintptr_t start = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t length = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t landingPad = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t actionEntry = readULEB128(&callSitePtr);
if ((start <= ipOffset) && (ipOffset < (start + length)))
{
// Found the call site containing ip.
if (landingPad == 0 || actionEntry == 0)
{
// No handler here
printf("__gxx_personality_v0 phase 1 no landingPad or no actionEntry, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
// Convert 1-based byte offset into
const uint8_t* action = actionTableStart + (actionEntry - 1);
// Scan action entries until you find a matching handler, or they end
while (true)
{
const uint8_t* actionRecord = action;
int64_t ttypeIndex = readSLEB128(&action);
const uint8_t* temp = action;
int64_t actionOffset = readSLEB128(&temp);
if (ttypeIndex > 0)
{
// Does this handler match?
// First check for catch (...)
const __shim_type_info* catchType =
get_shim_type_info(ttypeIndex, classInfo,
ttypeEncoding, native_exception,
unwind_exception);
if (catchType == 0)
{
// catch (...) catches everything, including foreign exceptions
// If not foreign, safe state before returning
if (native_exception)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* adjustedPtr =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
save_state(exception_header, static_cast<int>(ttypeIndex),
actionRecord, languageSpecificData,
const_cast<uint8_t*>(lpStart + landingPad),
adjustedPtr);
}
printf("__gxx_personality_v0 phase 1 catch (...), returning _URC_HANDLER_FOUND\n");
return _URC_HANDLER_FOUND;
}
// Else this is a catch (T) clause and will never
// catch a foreign exception
if (native_exception)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* adjustedPtr =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(exception_header->exceptionType);
if (adjustedPtr == 0 || excpType == 0)
{
// Something very bad happened
call_terminate(native_exception, unwind_exception);
}
if (catchType->can_catch(excpType, adjustedPtr))
{
// Found a matching handler
save_state(exception_header, static_cast<int>(ttypeIndex),
actionRecord, languageSpecificData,
const_cast<uint8_t*>(lpStart + landingPad),
adjustedPtr);
printf("__gxx_personality_v0 phase 1 catch (T), returning _URC_HANDLER_FOUND\n");
return _URC_HANDLER_FOUND;
}
}
// Scan next action ...
}
else if (ttypeIndex < 0)
{
// Found an exception spec. If this is a foreign exception,
// it is always caught.
if (!native_exception)
{
printf("__gxx_personality_v0 phase 1 exception spec for foreign, returning _URC_HANDLER_FOUND\n");
return _URC_HANDLER_FOUND;
}
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* adjustedPtr =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(exception_header->exceptionType);
if (adjustedPtr == 0 || excpType == 0)
{
// Something very bad happened
call_terminate(native_exception, unwind_exception);
}
if (exception_spec_can_catch(ttypeIndex, classInfo,
ttypeEncoding, excpType,
adjustedPtr, unwind_exception))
{
// The state saved is a little different for exception specs
save_state(exception_header,
ttypeIndex,
actionRecord,
languageSpecificData,
const_cast<uint8_t*>(lpStart + landingPad),
adjustedPtr);
printf("__gxx_personality_v0 phase 1 exception spec for native, returning _URC_HANDLER_FOUND\n");
return _URC_HANDLER_FOUND;
}
// Scan next action ...
}
if (actionOffset == 0)
{
// End of action list, no matching handler found
printf("__gxx_personality_v0 phase 1 no handler found, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
// Go to next action
action += actionOffset;
}
}
else if (ipOffset < start)
{
// There is no call site for this ip
// Something bad has happened. We should never get here.
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
}
}
if (actions & _UA_CLEANUP_PHASE)
{
if (actions & _UA_HANDLER_FRAME)
{
printf("__gxx_personality_v0 start phase 2 handling\n");
// Search phase found a handler, now install it
if (actions & _UA_FORCE_UNWIND)
{
// This should never happen. The search phase isn't executed
// for forced unwinding, so no handler could have been found.
call_terminate(native_exception, unwind_exception);
}
// This is the state we need:
uintptr_t handlerSwitchValue;
uintptr_t landingPad;
if (native_exception)
{
// Just retrieve it from the exception_header
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
handlerSwitchValue = static_cast<uintptr_t>(static_cast<intptr_t>(exception_header->handlerSwitchValue));
landingPad = reinterpret_cast<uintptr_t>(exception_header->catchTemp);
}
else
{
// Else a foreign exception, we need to find the handler that caught it
const uint8_t* lsda = (const uint8_t*)_Unwind_GetLanguageSpecificData(context);
if (lsda == 0)
{
// If we don't find a handler, something bad happened
call_terminate(native_exception, unwind_exception);
}
// Get the current instruction pointer and offset it before next
// instruction in the current frame which threw the exception.
uintptr_t ip = _Unwind_GetIP(context) - 1;
// Get beginning current frame's code (as defined by the
// emitted dwarf code)
uintptr_t funcStart = _Unwind_GetRegionStart(context);
uintptr_t ipOffset = ip - funcStart;
const uint8_t* classInfo = NULL;
// Note: See JITDwarfEmitter::EmitExceptionTable(...) for corresponding
// dwarf emission
// Parse LSDA header.
uint8_t lpStartEncoding = *lsda++;
const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding);
if (lpStart == 0)
lpStart = (const uint8_t*)funcStart;
uint8_t ttypeEncoding = *lsda++;
if (ttypeEncoding != DW_EH_PE_omit)
{
// Calculate type info locations in emitted dwarf code which
// were flagged by type info arguments to llvm.eh.selector
// intrinsic
uintptr_t classInfoOffset = readULEB128(&lsda);
classInfo = lsda + classInfoOffset;
}
// Walk call-site table looking for range that
// includes current PC.
uint8_t callSiteEncoding = *lsda++;
uint32_t callSiteTableLength = readULEB128(&lsda);
const uint8_t* callSiteTableStart = lsda;
const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength;
const uint8_t* actionTableStart = callSiteTableEnd;
const uint8_t* callSitePtr = callSiteTableStart;
while (true)
{
// There is one entry per call site.
// The call sites are non-overlapping in [start, start+length)
// The call sites are ordered in increasing value of start
uintptr_t start = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t length = readEncodedPointer(&callSitePtr, callSiteEncoding);
landingPad = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t actionEntry = readULEB128(&callSitePtr);
if ((start <= ipOffset) && (ipOffset < (start + length)))
{
// Found the call site containing ip.
if (landingPad == 0 || actionEntry == 0)
{
// No handler here
// If we don't find a handler, something bad happened
call_terminate(native_exception, unwind_exception);
}
landingPad = (uintptr_t)lpStart + landingPad;
// Convert 1-based byte offset into
const uint8_t* action = actionTableStart + (actionEntry - 1);
// Scan action entries until you find a matching handler, or they end
while (true)
{
int64_t ttypeIndex = readSLEB128(&action);
const uint8_t* temp = action;
int64_t actionOffset = readSLEB128(&temp);
if (ttypeIndex > 0)
{
// Does this handler match?
// First check for catch (...)
const __shim_type_info* catchType =
get_shim_type_info(ttypeIndex, classInfo,
ttypeEncoding, native_exception,
unwind_exception);
if (catchType == 0)
{
// catch (...) catches everything, including foreign exceptions
handlerSwitchValue = ttypeIndex;
goto install_handler;
}
// Else this is a catch (T) clause and will never
// catch a foreign exception
// Scan next action ...
}
else if (ttypeIndex < 0)
{
// Found an exception spec. This is a foreign exception,
// and thus is always caught.
// However the landing pad is going to call either
// __cxa_call_unexpected (for a throw spec) or
// std::terminate (for noexcept). We
// don't know which. And __cxa_call_unexpected
// lacks the API to recover ttypeIndex. However
// if we were to call a variant of __cxa_call_unexpected
// from here, and if it throws an exception,
// that won't work either. We can't propagate
// an exception out of here. So just call
// the landing pad and let __cxa_call_unexpected
// force terminate. There's nothing else we
// can do.
handlerSwitchValue = ttypeIndex;
goto install_handler;
}
if (actionOffset == 0)
{
// End of action list, no matching handler found
// If we don't find a handler, something bad happened
call_terminate(native_exception, unwind_exception);
}
// Go to next action
action += actionOffset;
}
}
else if (ipOffset < start)
{
// There is no call site for this ip
// Something bad has happened. We should never get here.
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
}
}
install_handler:
_Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)unwind_exception);
_Unwind_SetGR(context, __builtin_eh_return_data_regno(1), handlerSwitchValue);
_Unwind_SetIP(context, landingPad);
printf("__gxx_personality_v0 phase 2 handler found, returning _URC_INSTALL_CONTEXT\n");
return _URC_INSTALL_CONTEXT;
}
printf("__gxx_personality_v0 start phase 2 cleanup\n");
// Else scan for a cleanup.
// If handler found and !_UA_FORCE_UNWIND, terminate.
// If cleanup found, install it.
// If nothing found return _URC_CONTINUE_UNWIND
const uint8_t* lsda = (const uint8_t*)_Unwind_GetLanguageSpecificData(context);
if (lsda == 0)
{
// No LanguageSpecificData means no handlers
printf("__gxx_personality_v0 phase 2 no lsda, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
// Get the current instruction pointer and offset it before next
// instruction in the current frame which threw the exception.
uintptr_t ip = _Unwind_GetIP(context) - 1;
// Get beginning current frame's code (as defined by the
// emitted dwarf code)
uintptr_t funcStart = _Unwind_GetRegionStart(context);
uintptr_t ipOffset = ip - funcStart;
const uint8_t* classInfo = NULL;
// Note: See JITDwarfEmitter::EmitExceptionTable(...) for corresponding
// dwarf emission
// Parse LSDA header.
uint8_t lpStartEncoding = *lsda++;
const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding);
if (lpStart == 0)
lpStart = (const uint8_t*)funcStart;
uint8_t ttypeEncoding = *lsda++;
if (ttypeEncoding != DW_EH_PE_omit)
{
// Calculate type info locations in emitted dwarf code which
// were flagged by type info arguments to llvm.eh.selector
// intrinsic
uintptr_t classInfoOffset = readULEB128(&lsda);
classInfo = lsda + classInfoOffset;
}
// Walk call-site table looking for range that
// includes current PC.
uint8_t callSiteEncoding = *lsda++;
uint32_t callSiteTableLength = readULEB128(&lsda);
const uint8_t* callSiteTableStart = lsda;
const uint8_t* callSiteTableEnd = callSiteTableStart + callSiteTableLength;
const uint8_t* actionTableStart = callSiteTableEnd;
const uint8_t* callSitePtr = callSiteTableStart;
while (true)
{
// There is one entry per call site.
// The call sites are non-overlapping in [start, start+length)
// The call sites are ordered in increasing value of start
uintptr_t start = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t length = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t landingPad = readEncodedPointer(&callSitePtr, callSiteEncoding);
uintptr_t actionEntry = readULEB128(&callSitePtr);
if ((start <= ipOffset) && (ipOffset < (start + length)))
{
// Found the call site containing ip.
if (landingPad == 0)
{
// No handler here
printf("__gxx_personality_v0 phase 2 no landingPad, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
landingPad = (uintptr_t)lpStart + landingPad;
if (actionEntry == 0)
{
// Found a cleanup, install it:
_Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)unwind_exception);
_Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0);
_Unwind_SetIP(context, landingPad);
printf("__gxx_personality_v0 phase 2 found cleanup 1, returning _URC_INSTALL_CONTEXT\n");
return _URC_INSTALL_CONTEXT;
}
// Convert 1-based byte offset into
const uint8_t* action = actionTableStart + (actionEntry - 1);
// Scan action entries until you find a matching handler, or they end
while (true)
{
int64_t ttypeIndex = readSLEB128(&action);
const uint8_t* temp = action;
int64_t actionOffset = readSLEB128(&temp);
if (ttypeIndex > 0)
{
// Does this handler match?
// First check for catch (...)
const __shim_type_info* catchType =
get_shim_type_info(ttypeIndex, classInfo,
ttypeEncoding, native_exception,
unwind_exception);
if (catchType == 0)
{
// catch (...) catches everything, including foreign exceptions
if (!(actions & _UA_FORCE_UNWIND))
{
// Something bad has happened. We should never get here.
// We should have found this handler in phase 1
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
// Ignoring this handler because we are forced
}
else
{
// Else this is a catch (T) clause and will never
// catch a foreign exception
if (native_exception)
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* adjustedPtr =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(exception_header->exceptionType);
if (adjustedPtr == 0 || excpType == 0)
{
// Something very bad happened
call_terminate(native_exception, unwind_exception);
}
if (catchType->can_catch(excpType, adjustedPtr))
{
// Found a matching handler
if (!(actions & _UA_FORCE_UNWIND))
{
// Something bad has happened. We should never get here.
// We should have found this handler in phase 1
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
// Ignoring this handler because we are forced
}
}
}
// Scan next action ...
}
else if (ttypeIndex < 0)
{
// Found an exception spec. If this is a foreign exception,
// it is always caught.
if (!native_exception)
{
if (!(actions & _UA_FORCE_UNWIND))
{
// Something bad has happened. We should never get here.
// We should have found this handler in phase 1
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
}
else
{
__cxa_exception* exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
void* adjustedPtr =
unwind_exception->exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)exception_header)->primaryException :
exception_header + 1;
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(exception_header->exceptionType);
if (adjustedPtr == 0 || excpType == 0)
{
// Something very bad happened
call_terminate(native_exception, unwind_exception);
}
if (exception_spec_can_catch(ttypeIndex, classInfo,
ttypeEncoding, excpType,
adjustedPtr, unwind_exception))
{
if (!(actions & _UA_FORCE_UNWIND))
{
// Something bad has happened. We should never get here.
// We should have found this handler in phase 1
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
}
}
// Scan next action ...
}
else // ttypeIndex == 0
{
// Found a cleanup, install it:
_Unwind_SetGR(context, __builtin_eh_return_data_regno(0), (uintptr_t)unwind_exception);
_Unwind_SetGR(context, __builtin_eh_return_data_regno(1), 0);
_Unwind_SetIP(context, landingPad);
printf("__gxx_personality_v0 phase 2 found cleanup 2, returning _URC_INSTALL_CONTEXT\n");
return _URC_INSTALL_CONTEXT;
}
if (actionOffset == 0)
{
// End of action list, no matching handler or cleanup found
printf("__gxx_personality_v0 phase 2 found no cleanups, returning _URC_CONTINUE_UNWIND\n");
return _URC_CONTINUE_UNWIND;
}
// Go to next action
action += actionOffset;
}
}
else if (ipOffset < start)
{
// There is no call site for this ip
// Something bad has happened. We should never get here.
// Possible stack corruption.
call_terminate(native_exception, unwind_exception);
}
}
}
// Neither _UA_SEARCH_PHASE nor _UA_CLEANUP_PHASE
return _URC_FATAL_PHASE1_ERROR;
}
__attribute__((noreturn))
void
__cxa_call_unexpected(void* arg)
{
printf("__cxa_call_unexpected A\n");
_Unwind_Exception* unwind_exception = static_cast<_Unwind_Exception*>(arg);
if (unwind_exception == 0)
call_terminate(true, unwind_exception);
__cxa_begin_catch(unwind_exception);
bool native_old_exception = (unwind_exception->exception_class & get_language) ==
(kOurExceptionClass & get_language);
std::unexpected_handler u_handler;
std::terminate_handler t_handler;
__cxa_exception* old_exception_header = 0;
if (native_old_exception)
{
old_exception_header = (__cxa_exception*)(unwind_exception+1) - 1;
t_handler = old_exception_header->terminateHandler;
u_handler = old_exception_header->unexpectedHandler;
}
else
{
t_handler = std::get_terminate();
u_handler = std::get_unexpected();
}
try
{
std::__unexpected(u_handler);
}
catch (...)
{
// If the old exception is foreign, then all we can do is terminate.
// We have no way to recover the needed old exception spec. There's
// no way to pass that information here. And the personality routine
// can't call us directly and do anything but terminate() if we throw
// from here.
if (native_old_exception)
{
int64_t ttypeIndex = old_exception_header->handlerSwitchValue;
// Have:
// old_exception_header->languageSpecificData
// old_exception_header->actionRecord
// Need
// const uint8_t* classInfo
// uint8_t ttypeEncoding
const uint8_t* lsda = old_exception_header->languageSpecificData;
uint8_t lpStartEncoding = *lsda++;
const uint8_t* lpStart = (const uint8_t*)readEncodedPointer(&lsda, lpStartEncoding);
uint8_t ttypeEncoding = *lsda++;
if (ttypeEncoding == DW_EH_PE_omit)
std::__terminate(t_handler);
uintptr_t classInfoOffset = readULEB128(&lsda);
const uint8_t* classInfo = lsda + classInfoOffset;
// Is this new exception catchable by the exception spec at ttypeIndex?
// The answer is obviously yes if the new and old exceptions are the same exception
// If no
// throw;
__cxa_eh_globals* globals = __cxa_get_globals_fast();
__cxa_exception* new_exception_header = globals->caughtExceptions;
if (new_exception_header == 0)
// This shouldn't be able to happen!
std::__terminate(t_handler);
bool native_new_exception =
(new_exception_header->unwindHeader.exception_class & get_language) ==
(kOurExceptionClass & get_language);
void* adjustedPtr;
if (native_new_exception && new_exception_header != old_exception_header)
{
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(new_exception_header->exceptionType);
adjustedPtr =
new_exception_header->unwindHeader.exception_class == kOurDependentExceptionClass ?
((__cxa_dependent_exception*)new_exception_header)->primaryException :
new_exception_header + 1;
if (!exception_spec_can_catch(ttypeIndex, classInfo, ttypeEncoding,
excpType, adjustedPtr, unwind_exception))
{
// We need to __cxa_end_catch, but for the old exception,
// not the new one. This is a little tricky ...
// Disguise new_exception_header as a rethrown exception, but
// don't actually rethrow it. This means you can temporarily
// end the catch clause enclosing new_exception_header without
// __cxa_end_catch destroying new_exception_header.
new_exception_header->handlerCount = -new_exception_header->handlerCount;
globals->uncaughtExceptions += 1;
// Call __cxa_end_catch for new_exception_header
__cxa_end_catch();
// Call __cxa_end_catch for old_exception_header
__cxa_end_catch();
// Renter this catch clause with new_exception_header
__cxa_begin_catch(&new_exception_header->unwindHeader);
// Rethrow new_exception_header
throw;
}
}
// Will a std::bad_exception be catchable by the exception spec at
// ttypeIndex?
// If no
// throw std::bad_exception();
const __shim_type_info* excpType =
static_cast<const __shim_type_info*>(&typeid(std::bad_exception));
std::bad_exception be;
adjustedPtr = &be;
if (!exception_spec_can_catch(ttypeIndex, classInfo, ttypeEncoding,
excpType, adjustedPtr, unwind_exception))
{
// We need to __cxa_end_catch for both the old exception and the
// new exception. Technically we should do it in that order.
// But it is expedent to do it in the opposite order:
// Call __cxa_end_catch for new_exception_header
__cxa_end_catch();
// Throw std::bad_exception will __cxa_end_catch for
// old_exception_header
throw be;
}
}
}
std::__terminate(t_handler);
}
/*
_Unwind_Reason_Code
__gxx_personality_v0(int version, _Unwind_Action actions, uint64_t exceptionClass,
_Unwind_Exception* unwind_exception, _Unwind_Context* context)
{
if (version == 1 && unwind_exception != 0 && context != 0)
{
bool native_exception = (exceptionClass & 0xFFFFFF00) == 0x432B2B00;
bool force_unwind = actions & _UA_FORCE_UNWIND;
if (native_exception && !force_unwind)
{
if (actions & _UA_SEARCH_PHASE)
{
if (actions & _UA_CLEANUP_PHASE)
return _URC_FATAL_PHASE1_ERROR;
if (contains_handler(unwind_exception, context))
return _URC_HANDLER_FOUND;
return _URC_CONTINUE_UNWIND;
}
if (actions & _UA_CLEANUP_PHASE)
{
if (actions & _UA_HANDLER_FRAME)
{
// return _URC_INSTALL_CONTEXT or _URC_FATAL_PHASE2_ERROR
return transfer_control_to_landing_pad(unwind_exception, context);
}
// return _URC_CONTINUE_UNWIND or _URC_FATAL_PHASE2_ERROR
return perform_cleanup(unwind_exception, context);
}
}
else // foreign exception or force_unwind
{
if (actions & _UA_SEARCH_PHASE)
{
if (actions & _UA_CLEANUP_PHASE)
return _URC_FATAL_PHASE1_ERROR;
return _URC_CONTINUE_UNWIND;
}
if (actions & _UA_CLEANUP_PHASE)
{
if (actions & _UA_HANDLER_FRAME)
return _URC_FATAL_PHASE2_ERROR;
// return _URC_CONTINUE_UNWIND or _URC_FATAL_PHASE2_ERROR
return perform_cleanup(unwind_exception, context);
}
}
}
return _URC_FATAL_PHASE1_ERROR;
}
*/
} // extern "C"
} // __cxxabiv1