llvm-project/llvm/unittests/ADT/StringMapTest.cpp

638 lines
18 KiB
C++

//===- llvm/unittest/ADT/StringMapMap.cpp - StringMap unit tests ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/DataTypes.h"
#include "gtest/gtest.h"
#include <limits>
#include <tuple>
using namespace llvm;
namespace {
// Test fixture
class StringMapTest : public testing::Test {
protected:
StringMap<uint32_t> testMap;
static const char testKey[];
static const uint32_t testValue;
static const char* testKeyFirst;
static size_t testKeyLength;
static const std::string testKeyStr;
void assertEmptyMap() {
// Size tests
EXPECT_EQ(0u, testMap.size());
EXPECT_TRUE(testMap.empty());
// Iterator tests
EXPECT_TRUE(testMap.begin() == testMap.end());
// Lookup tests
EXPECT_EQ(0u, testMap.count(testKey));
EXPECT_EQ(0u, testMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(0u, testMap.count(testKeyStr));
EXPECT_TRUE(testMap.find(testKey) == testMap.end());
EXPECT_TRUE(testMap.find(StringRef(testKeyFirst, testKeyLength)) ==
testMap.end());
EXPECT_TRUE(testMap.find(testKeyStr) == testMap.end());
}
void assertSingleItemMap() {
// Size tests
EXPECT_EQ(1u, testMap.size());
EXPECT_FALSE(testMap.begin() == testMap.end());
EXPECT_FALSE(testMap.empty());
// Iterator tests
StringMap<uint32_t>::iterator it = testMap.begin();
EXPECT_STREQ(testKey, it->first().data());
EXPECT_EQ(testValue, it->second);
++it;
EXPECT_TRUE(it == testMap.end());
// Lookup tests
EXPECT_EQ(1u, testMap.count(testKey));
EXPECT_EQ(1u, testMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(1u, testMap.count(testKeyStr));
EXPECT_TRUE(testMap.find(testKey) == testMap.begin());
EXPECT_TRUE(testMap.find(StringRef(testKeyFirst, testKeyLength)) ==
testMap.begin());
EXPECT_TRUE(testMap.find(testKeyStr) == testMap.begin());
}
};
const char StringMapTest::testKey[] = "key";
const uint32_t StringMapTest::testValue = 1u;
const char* StringMapTest::testKeyFirst = testKey;
size_t StringMapTest::testKeyLength = sizeof(testKey) - 1;
const std::string StringMapTest::testKeyStr(testKey);
struct CountCopyAndMove {
CountCopyAndMove() = default;
CountCopyAndMove(const CountCopyAndMove &) { copy = 1; }
CountCopyAndMove(CountCopyAndMove &&) { move = 1; }
void operator=(const CountCopyAndMove &) { ++copy; }
void operator=(CountCopyAndMove &&) { ++move; }
int copy = 0;
int move = 0;
};
// Empty map tests.
TEST_F(StringMapTest, EmptyMapTest) {
assertEmptyMap();
}
// Constant map tests.
TEST_F(StringMapTest, ConstEmptyMapTest) {
const StringMap<uint32_t>& constTestMap = testMap;
// Size tests
EXPECT_EQ(0u, constTestMap.size());
EXPECT_TRUE(constTestMap.empty());
// Iterator tests
EXPECT_TRUE(constTestMap.begin() == constTestMap.end());
// Lookup tests
EXPECT_EQ(0u, constTestMap.count(testKey));
EXPECT_EQ(0u, constTestMap.count(StringRef(testKeyFirst, testKeyLength)));
EXPECT_EQ(0u, constTestMap.count(testKeyStr));
EXPECT_TRUE(constTestMap.find(testKey) == constTestMap.end());
EXPECT_TRUE(constTestMap.find(StringRef(testKeyFirst, testKeyLength)) ==
constTestMap.end());
EXPECT_TRUE(constTestMap.find(testKeyStr) == constTestMap.end());
}
// initializer_list ctor test; also implicitly tests initializer_list and
// iterator overloads of insert().
TEST_F(StringMapTest, InitializerListCtor) {
testMap = StringMap<uint32_t>({{"key", 1}});
assertSingleItemMap();
}
// A map with a single entry.
TEST_F(StringMapTest, SingleEntryMapTest) {
testMap[testKey] = testValue;
assertSingleItemMap();
}
// Test clear() method.
TEST_F(StringMapTest, ClearTest) {
testMap[testKey] = testValue;
testMap.clear();
assertEmptyMap();
}
// Test erase(iterator) method.
TEST_F(StringMapTest, EraseIteratorTest) {
testMap[testKey] = testValue;
testMap.erase(testMap.begin());
assertEmptyMap();
}
// Test erase(value) method.
TEST_F(StringMapTest, EraseValueTest) {
testMap[testKey] = testValue;
testMap.erase(testKey);
assertEmptyMap();
}
// Test inserting two values and erasing one.
TEST_F(StringMapTest, InsertAndEraseTest) {
testMap[testKey] = testValue;
testMap["otherKey"] = 2;
testMap.erase("otherKey");
assertSingleItemMap();
}
TEST_F(StringMapTest, SmallFullMapTest) {
// StringMap has a tricky corner case when the map is small (<8 buckets) and
// it fills up through a balanced pattern of inserts and erases. This can
// lead to inf-loops in some cases (PR13148) so we test it explicitly here.
llvm::StringMap<int> Map(2);
Map["eins"] = 1;
Map["zwei"] = 2;
Map["drei"] = 3;
Map.erase("drei");
Map.erase("eins");
Map["veir"] = 4;
Map["funf"] = 5;
EXPECT_EQ(3u, Map.size());
EXPECT_EQ(0, Map.lookup("eins"));
EXPECT_EQ(2, Map.lookup("zwei"));
EXPECT_EQ(0, Map.lookup("drei"));
EXPECT_EQ(4, Map.lookup("veir"));
EXPECT_EQ(5, Map.lookup("funf"));
}
TEST_F(StringMapTest, CopyCtorTest) {
llvm::StringMap<int> Map;
Map["eins"] = 1;
Map["zwei"] = 2;
Map["drei"] = 3;
Map.erase("drei");
Map.erase("eins");
Map["veir"] = 4;
Map["funf"] = 5;
EXPECT_EQ(3u, Map.size());
EXPECT_EQ(0, Map.lookup("eins"));
EXPECT_EQ(2, Map.lookup("zwei"));
EXPECT_EQ(0, Map.lookup("drei"));
EXPECT_EQ(4, Map.lookup("veir"));
EXPECT_EQ(5, Map.lookup("funf"));
llvm::StringMap<int> Map2(Map);
EXPECT_EQ(3u, Map2.size());
EXPECT_EQ(0, Map2.lookup("eins"));
EXPECT_EQ(2, Map2.lookup("zwei"));
EXPECT_EQ(0, Map2.lookup("drei"));
EXPECT_EQ(4, Map2.lookup("veir"));
EXPECT_EQ(5, Map2.lookup("funf"));
}
// A more complex iteration test.
TEST_F(StringMapTest, IterationTest) {
bool visited[100];
// Insert 100 numbers into the map
for (int i = 0; i < 100; ++i) {
std::stringstream ss;
ss << "key_" << i;
testMap[ss.str()] = i;
visited[i] = false;
}
// Iterate over all numbers and mark each one found.
for (StringMap<uint32_t>::iterator it = testMap.begin();
it != testMap.end(); ++it) {
std::stringstream ss;
ss << "key_" << it->second;
ASSERT_STREQ(ss.str().c_str(), it->first().data());
visited[it->second] = true;
}
// Ensure every number was visited.
for (int i = 0; i < 100; ++i) {
ASSERT_TRUE(visited[i]) << "Entry #" << i << " was never visited";
}
}
// Test StringMapEntry::Create() method.
TEST_F(StringMapTest, StringMapEntryTest) {
MallocAllocator Allocator;
StringMap<uint32_t>::value_type *entry =
StringMap<uint32_t>::value_type::Create(
StringRef(testKeyFirst, testKeyLength), Allocator, 1u);
EXPECT_STREQ(testKey, entry->first().data());
EXPECT_EQ(1u, entry->second);
entry->Destroy(Allocator);
}
// Test insert() method.
TEST_F(StringMapTest, InsertTest) {
SCOPED_TRACE("InsertTest");
testMap.insert(
StringMap<uint32_t>::value_type::Create(
StringRef(testKeyFirst, testKeyLength),
testMap.getAllocator(), 1u));
assertSingleItemMap();
}
// Test insert(pair<K, V>) method
TEST_F(StringMapTest, InsertPairTest) {
bool Inserted;
StringMap<uint32_t>::iterator NewIt;
std::tie(NewIt, Inserted) =
testMap.insert(std::make_pair(testKeyFirst, testValue));
EXPECT_EQ(1u, testMap.size());
EXPECT_EQ(testValue, testMap[testKeyFirst]);
EXPECT_EQ(testKeyFirst, NewIt->first());
EXPECT_EQ(testValue, NewIt->second);
EXPECT_TRUE(Inserted);
StringMap<uint32_t>::iterator ExistingIt;
std::tie(ExistingIt, Inserted) =
testMap.insert(std::make_pair(testKeyFirst, testValue + 1));
EXPECT_EQ(1u, testMap.size());
EXPECT_EQ(testValue, testMap[testKeyFirst]);
EXPECT_FALSE(Inserted);
EXPECT_EQ(NewIt, ExistingIt);
}
// Test insert(pair<K, V>) method when rehashing occurs
TEST_F(StringMapTest, InsertRehashingPairTest) {
// Check that the correct iterator is returned when the inserted element is
// moved to a different bucket during internal rehashing. This depends on
// the particular key, and the implementation of StringMap and HashString.
// Changes to those might result in this test not actually checking that.
StringMap<uint32_t> t(0);
EXPECT_EQ(0u, t.getNumBuckets());
StringMap<uint32_t>::iterator It =
t.insert(std::make_pair("abcdef", 42)).first;
EXPECT_EQ(16u, t.getNumBuckets());
EXPECT_EQ("abcdef", It->first());
EXPECT_EQ(42u, It->second);
}
TEST_F(StringMapTest, InsertOrAssignTest) {
struct A : CountCopyAndMove {
A(int v) : v(v) {}
int v;
};
StringMap<A> t(0);
auto try1 = t.insert_or_assign("A", A(1));
EXPECT_TRUE(try1.second);
EXPECT_EQ(1, try1.first->second.v);
EXPECT_EQ(1, try1.first->second.move);
auto try2 = t.insert_or_assign("A", A(2));
EXPECT_FALSE(try2.second);
EXPECT_EQ(2, try2.first->second.v);
EXPECT_EQ(2, try1.first->second.move);
EXPECT_EQ(try1.first, try2.first);
EXPECT_EQ(0, try1.first->second.copy);
}
TEST_F(StringMapTest, IterMapKeysVector) {
StringMap<int> Map;
Map["A"] = 1;
Map["B"] = 2;
Map["C"] = 3;
Map["D"] = 3;
std::vector<StringRef> Keys{Map.keys().begin(), Map.keys().end()};
llvm::sort(Keys);
std::vector<StringRef> Expected{{"A", "B", "C", "D"}};
EXPECT_EQ(Expected, Keys);
}
TEST_F(StringMapTest, IterMapKeysSmallVector) {
StringMap<int> Map;
Map["A"] = 1;
Map["B"] = 2;
Map["C"] = 3;
Map["D"] = 3;
auto Keys = to_vector<4>(Map.keys());
llvm::sort(Keys);
SmallVector<StringRef, 4> Expected = {"A", "B", "C", "D"};
EXPECT_EQ(Expected, Keys);
}
// Create a non-default constructable value
struct StringMapTestStruct {
StringMapTestStruct(int i) : i(i) {}
StringMapTestStruct() = delete;
int i;
};
TEST_F(StringMapTest, NonDefaultConstructable) {
StringMap<StringMapTestStruct> t;
t.insert(std::make_pair("Test", StringMapTestStruct(123)));
StringMap<StringMapTestStruct>::iterator iter = t.find("Test");
ASSERT_NE(iter, t.end());
ASSERT_EQ(iter->second.i, 123);
}
struct Immovable {
Immovable() {}
Immovable(Immovable&&) = delete; // will disable the other special members
};
struct MoveOnly {
int i;
MoveOnly(int i) : i(i) {}
MoveOnly(const Immovable&) : i(0) {}
MoveOnly(MoveOnly &&RHS) : i(RHS.i) {}
MoveOnly &operator=(MoveOnly &&RHS) {
i = RHS.i;
return *this;
}
private:
MoveOnly(const MoveOnly &) = delete;
MoveOnly &operator=(const MoveOnly &) = delete;
};
TEST_F(StringMapTest, MoveOnly) {
StringMap<MoveOnly> t;
t.insert(std::make_pair("Test", MoveOnly(42)));
StringRef Key = "Test";
StringMapEntry<MoveOnly>::Create(Key, t.getAllocator(), MoveOnly(42))
->Destroy(t.getAllocator());
}
TEST_F(StringMapTest, CtorArg) {
StringRef Key = "Test";
MallocAllocator Allocator;
StringMapEntry<MoveOnly>::Create(Key, Allocator, Immovable())
->Destroy(Allocator);
}
TEST_F(StringMapTest, MoveConstruct) {
StringMap<int> A;
A["x"] = 42;
StringMap<int> B = std::move(A);
ASSERT_EQ(A.size(), 0u);
ASSERT_EQ(B.size(), 1u);
ASSERT_EQ(B["x"], 42);
ASSERT_EQ(B.count("y"), 0u);
}
TEST_F(StringMapTest, MoveAssignment) {
StringMap<int> A;
A["x"] = 42;
StringMap<int> B;
B["y"] = 117;
A = std::move(B);
ASSERT_EQ(A.size(), 1u);
ASSERT_EQ(B.size(), 0u);
ASSERT_EQ(A["y"], 117);
ASSERT_EQ(B.count("x"), 0u);
}
TEST_F(StringMapTest, EqualEmpty) {
StringMap<int> A;
StringMap<int> B;
ASSERT_TRUE(A == B);
ASSERT_FALSE(A != B);
ASSERT_TRUE(A == A); // self check
}
TEST_F(StringMapTest, EqualWithValues) {
StringMap<int> A;
A["A"] = 1;
A["B"] = 2;
A["C"] = 3;
A["D"] = 3;
StringMap<int> B;
B["A"] = 1;
B["B"] = 2;
B["C"] = 3;
B["D"] = 3;
ASSERT_TRUE(A == B);
ASSERT_TRUE(B == A);
ASSERT_FALSE(A != B);
ASSERT_FALSE(B != A);
ASSERT_TRUE(A == A); // self check
}
TEST_F(StringMapTest, NotEqualMissingKeys) {
StringMap<int> A;
A["A"] = 1;
A["B"] = 2;
StringMap<int> B;
B["A"] = 1;
B["B"] = 2;
B["C"] = 3;
B["D"] = 3;
ASSERT_FALSE(A == B);
ASSERT_FALSE(B == A);
ASSERT_TRUE(A != B);
ASSERT_TRUE(B != A);
}
TEST_F(StringMapTest, NotEqualWithDifferentValues) {
StringMap<int> A;
A["A"] = 1;
A["B"] = 2;
A["C"] = 100;
A["D"] = 3;
StringMap<int> B;
B["A"] = 1;
B["B"] = 2;
B["C"] = 3;
B["D"] = 3;
ASSERT_FALSE(A == B);
ASSERT_FALSE(B == A);
ASSERT_TRUE(A != B);
ASSERT_TRUE(B != A);
}
struct Countable {
int &InstanceCount;
int Number;
Countable(int Number, int &InstanceCount)
: InstanceCount(InstanceCount), Number(Number) {
++InstanceCount;
}
Countable(Countable &&C) : InstanceCount(C.InstanceCount), Number(C.Number) {
++InstanceCount;
C.Number = -1;
}
Countable(const Countable &C)
: InstanceCount(C.InstanceCount), Number(C.Number) {
++InstanceCount;
}
Countable &operator=(Countable C) {
Number = C.Number;
return *this;
}
~Countable() { --InstanceCount; }
};
TEST_F(StringMapTest, MoveDtor) {
int InstanceCount = 0;
StringMap<Countable> A;
A.insert(std::make_pair("x", Countable(42, InstanceCount)));
ASSERT_EQ(InstanceCount, 1);
auto I = A.find("x");
ASSERT_NE(I, A.end());
ASSERT_EQ(I->second.Number, 42);
StringMap<Countable> B;
B = std::move(A);
ASSERT_EQ(InstanceCount, 1);
ASSERT_TRUE(A.empty());
I = B.find("x");
ASSERT_NE(I, B.end());
ASSERT_EQ(I->second.Number, 42);
B = StringMap<Countable>();
ASSERT_EQ(InstanceCount, 0);
ASSERT_TRUE(B.empty());
}
namespace {
// Simple class that counts how many moves and copy happens when growing a map
struct CountCtorCopyAndMove {
static unsigned Ctor;
static unsigned Move;
static unsigned Copy;
int Data = 0;
CountCtorCopyAndMove(int Data) : Data(Data) { Ctor++; }
CountCtorCopyAndMove() { Ctor++; }
CountCtorCopyAndMove(const CountCtorCopyAndMove &) { Copy++; }
CountCtorCopyAndMove &operator=(const CountCtorCopyAndMove &) {
Copy++;
return *this;
}
CountCtorCopyAndMove(CountCtorCopyAndMove &&) { Move++; }
CountCtorCopyAndMove &operator=(const CountCtorCopyAndMove &&) {
Move++;
return *this;
}
};
unsigned CountCtorCopyAndMove::Copy = 0;
unsigned CountCtorCopyAndMove::Move = 0;
unsigned CountCtorCopyAndMove::Ctor = 0;
} // anonymous namespace
// Make sure creating the map with an initial size of N actually gives us enough
// buckets to insert N items without increasing allocation size.
TEST(StringMapCustomTest, InitialSizeTest) {
// 1 is an "edge value", 32 is an arbitrary power of two, and 67 is an
// arbitrary prime, picked without any good reason.
for (auto Size : {1, 32, 67}) {
StringMap<CountCtorCopyAndMove> Map(Size);
auto NumBuckets = Map.getNumBuckets();
CountCtorCopyAndMove::Move = 0;
CountCtorCopyAndMove::Copy = 0;
for (int i = 0; i < Size; ++i)
Map.insert(std::pair<std::string, CountCtorCopyAndMove>(
std::piecewise_construct, std::forward_as_tuple(Twine(i).str()),
std::forward_as_tuple(i)));
// After the initial move, the map will move the Elts in the Entry.
EXPECT_EQ((unsigned)Size * 2, CountCtorCopyAndMove::Move);
// We copy once the pair from the Elts vector
EXPECT_EQ(0u, CountCtorCopyAndMove::Copy);
// Check that the map didn't grow
EXPECT_EQ(Map.getNumBuckets(), NumBuckets);
}
}
TEST(StringMapCustomTest, BracketOperatorCtor) {
StringMap<CountCtorCopyAndMove> Map;
CountCtorCopyAndMove::Ctor = 0;
Map["abcd"];
EXPECT_EQ(1u, CountCtorCopyAndMove::Ctor);
// Test that operator[] does not create a value when it is already in the map
CountCtorCopyAndMove::Ctor = 0;
Map["abcd"];
EXPECT_EQ(0u, CountCtorCopyAndMove::Ctor);
}
namespace {
struct NonMoveableNonCopyableType {
int Data = 0;
NonMoveableNonCopyableType() = default;
NonMoveableNonCopyableType(int Data) : Data(Data) {}
NonMoveableNonCopyableType(const NonMoveableNonCopyableType &) = delete;
NonMoveableNonCopyableType(NonMoveableNonCopyableType &&) = delete;
};
}
// Test that we can "emplace" an element in the map without involving map/move
TEST(StringMapCustomTest, EmplaceTest) {
StringMap<NonMoveableNonCopyableType> Map;
Map.try_emplace("abcd", 42);
EXPECT_EQ(1u, Map.count("abcd"));
EXPECT_EQ(42, Map["abcd"].Data);
}
// Test that StringMapEntryBase can handle size_t wide sizes.
TEST(StringMapCustomTest, StringMapEntryBaseSize) {
size_t LargeValue;
// Test that the entry can represent max-unsigned.
if (sizeof(size_t) <= sizeof(unsigned))
LargeValue = std::numeric_limits<unsigned>::max();
else
LargeValue = std::numeric_limits<unsigned>::max() + 1ULL;
StringMapEntryBase LargeBase(LargeValue);
EXPECT_EQ(LargeValue, LargeBase.getKeyLength());
// Test that the entry can hold at least max size_t.
LargeValue = std::numeric_limits<size_t>::max();
StringMapEntryBase LargerBase(LargeValue);
LargeValue = std::numeric_limits<size_t>::max();
EXPECT_EQ(LargeValue, LargerBase.getKeyLength());
}
// Test that StringMapEntry can handle size_t wide sizes.
TEST(StringMapCustomTest, StringMapEntrySize) {
size_t LargeValue;
// Test that the entry can represent max-unsigned.
if (sizeof(size_t) <= sizeof(unsigned))
LargeValue = std::numeric_limits<unsigned>::max();
else
LargeValue = std::numeric_limits<unsigned>::max() + 1ULL;
StringMapEntry<int> LargeEntry(LargeValue);
StringRef Key = LargeEntry.getKey();
EXPECT_EQ(LargeValue, Key.size());
// Test that the entry can hold at least max size_t.
LargeValue = std::numeric_limits<size_t>::max();
StringMapEntry<int> LargerEntry(LargeValue);
Key = LargerEntry.getKey();
EXPECT_EQ(LargeValue, Key.size());
}
} // end anonymous namespace