forked from OSchip/llvm-project
557 lines
20 KiB
C++
557 lines
20 KiB
C++
//===--------- SCEVAffinator.cpp - Create Scops from LLVM IR -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Create a polyhedral description for a SCEV value.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/Support/SCEVAffinator.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/GICHelper.h"
|
|
#include "polly/Support/SCEVValidator.h"
|
|
#include "isl/aff.h"
|
|
#include "isl/local_space.h"
|
|
#include "isl/set.h"
|
|
#include "isl/val.h"
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool> IgnoreIntegerWrapping(
|
|
"polly-ignore-integer-wrapping",
|
|
cl::desc("Do not build run-time checks to proof absence of integer "
|
|
"wrapping"),
|
|
cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
|
|
|
|
// The maximal number of basic sets we allow during the construction of a
|
|
// piecewise affine function. More complex ones will result in very high
|
|
// compile time.
|
|
static int const MaxDisjunctionsInPwAff = 100;
|
|
|
|
// The maximal number of bits for which a general expression is modeled
|
|
// precisely.
|
|
static unsigned const MaxSmallBitWidth = 7;
|
|
|
|
/// Add the number of basic sets in @p Domain to @p User
|
|
static isl_stat addNumBasicSets(__isl_take isl_set *Domain,
|
|
__isl_take isl_aff *Aff, void *User) {
|
|
auto *NumBasicSets = static_cast<unsigned *>(User);
|
|
*NumBasicSets += isl_set_n_basic_set(Domain);
|
|
isl_set_free(Domain);
|
|
isl_aff_free(Aff);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/// Determine if @p PWAC is too complex to continue.
|
|
static bool isTooComplex(PWACtx PWAC) {
|
|
unsigned NumBasicSets = 0;
|
|
isl_pw_aff_foreach_piece(PWAC.first.get(), addNumBasicSets, &NumBasicSets);
|
|
if (NumBasicSets <= MaxDisjunctionsInPwAff)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Return the flag describing the possible wrapping of @p Expr.
|
|
static SCEV::NoWrapFlags getNoWrapFlags(const SCEV *Expr) {
|
|
if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
|
|
return NAry->getNoWrapFlags();
|
|
return SCEV::NoWrapMask;
|
|
}
|
|
|
|
static PWACtx combine(PWACtx PWAC0, PWACtx PWAC1,
|
|
__isl_give isl_pw_aff *(Fn)(__isl_take isl_pw_aff *,
|
|
__isl_take isl_pw_aff *)) {
|
|
PWAC0.first = isl::manage(Fn(PWAC0.first.release(), PWAC1.first.release()));
|
|
PWAC0.second = PWAC0.second.unite(PWAC1.second);
|
|
return PWAC0;
|
|
}
|
|
|
|
static __isl_give isl_pw_aff *getWidthExpValOnDomain(unsigned Width,
|
|
__isl_take isl_set *Dom) {
|
|
auto *Ctx = isl_set_get_ctx(Dom);
|
|
auto *WidthVal = isl_val_int_from_ui(Ctx, Width);
|
|
auto *ExpVal = isl_val_2exp(WidthVal);
|
|
return isl_pw_aff_val_on_domain(Dom, ExpVal);
|
|
}
|
|
|
|
SCEVAffinator::SCEVAffinator(Scop *S, LoopInfo &LI)
|
|
: S(S), Ctx(S->getIslCtx().get()), SE(*S->getSE()), LI(LI),
|
|
TD(S->getFunction().getParent()->getDataLayout()) {}
|
|
|
|
Loop *SCEVAffinator::getScope() { return BB ? LI.getLoopFor(BB) : nullptr; }
|
|
|
|
void SCEVAffinator::interpretAsUnsigned(PWACtx &PWAC, unsigned Width) {
|
|
auto *NonNegDom = isl_pw_aff_nonneg_set(PWAC.first.copy());
|
|
auto *NonNegPWA =
|
|
isl_pw_aff_intersect_domain(PWAC.first.copy(), isl_set_copy(NonNegDom));
|
|
auto *ExpPWA = getWidthExpValOnDomain(Width, isl_set_complement(NonNegDom));
|
|
PWAC.first = isl::manage(isl_pw_aff_union_add(
|
|
NonNegPWA, isl_pw_aff_add(PWAC.first.release(), ExpPWA)));
|
|
}
|
|
|
|
void SCEVAffinator::takeNonNegativeAssumption(PWACtx &PWAC) {
|
|
auto *NegPWA = isl_pw_aff_neg(PWAC.first.copy());
|
|
auto *NegDom = isl_pw_aff_pos_set(NegPWA);
|
|
PWAC.second =
|
|
isl::manage(isl_set_union(PWAC.second.release(), isl_set_copy(NegDom)));
|
|
auto *Restriction = BB ? NegDom : isl_set_params(NegDom);
|
|
auto DL = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
|
|
S->recordAssumption(UNSIGNED, isl::manage(Restriction), DL, AS_RESTRICTION,
|
|
BB);
|
|
}
|
|
|
|
PWACtx SCEVAffinator::getPWACtxFromPWA(isl::pw_aff PWA) {
|
|
return std::make_pair(PWA, isl::set::empty(isl::space(Ctx, 0, NumIterators)));
|
|
}
|
|
|
|
PWACtx SCEVAffinator::getPwAff(const SCEV *Expr, BasicBlock *BB) {
|
|
this->BB = BB;
|
|
|
|
if (BB) {
|
|
auto *DC = S->getDomainConditions(BB).release();
|
|
NumIterators = isl_set_n_dim(DC);
|
|
isl_set_free(DC);
|
|
} else
|
|
NumIterators = 0;
|
|
|
|
return visit(Expr);
|
|
}
|
|
|
|
PWACtx SCEVAffinator::checkForWrapping(const SCEV *Expr, PWACtx PWAC) const {
|
|
// If the SCEV flags do contain NSW (no signed wrap) then PWA already
|
|
// represents Expr in modulo semantic (it is not allowed to overflow), thus we
|
|
// are done. Otherwise, we will compute:
|
|
// PWA = ((PWA + 2^(n-1)) mod (2 ^ n)) - 2^(n-1)
|
|
// whereas n is the number of bits of the Expr, hence:
|
|
// n = bitwidth(ExprType)
|
|
|
|
if (IgnoreIntegerWrapping || (getNoWrapFlags(Expr) & SCEV::FlagNSW))
|
|
return PWAC;
|
|
|
|
isl::pw_aff PWAMod = addModuloSemantic(PWAC.first, Expr->getType());
|
|
|
|
isl::set NotEqualSet = PWAC.first.ne_set(PWAMod);
|
|
PWAC.second = PWAC.second.unite(NotEqualSet).coalesce();
|
|
|
|
const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
|
|
if (!BB)
|
|
NotEqualSet = NotEqualSet.params();
|
|
NotEqualSet = NotEqualSet.coalesce();
|
|
|
|
if (!NotEqualSet.is_empty())
|
|
S->recordAssumption(WRAPPING, NotEqualSet, Loc, AS_RESTRICTION, BB);
|
|
|
|
return PWAC;
|
|
}
|
|
|
|
isl::pw_aff SCEVAffinator::addModuloSemantic(isl::pw_aff PWA,
|
|
Type *ExprType) const {
|
|
unsigned Width = TD.getTypeSizeInBits(ExprType);
|
|
|
|
auto ModVal = isl::val::int_from_ui(Ctx, Width);
|
|
ModVal = ModVal.pow2();
|
|
|
|
isl::set Domain = PWA.domain();
|
|
isl::pw_aff AddPW =
|
|
isl::manage(getWidthExpValOnDomain(Width - 1, Domain.release()));
|
|
|
|
return PWA.add(AddPW).mod(ModVal).sub(AddPW);
|
|
}
|
|
|
|
bool SCEVAffinator::hasNSWAddRecForLoop(Loop *L) const {
|
|
for (const auto &CachedPair : CachedExpressions) {
|
|
auto *AddRec = dyn_cast<SCEVAddRecExpr>(CachedPair.first.first);
|
|
if (!AddRec)
|
|
continue;
|
|
if (AddRec->getLoop() != L)
|
|
continue;
|
|
if (AddRec->getNoWrapFlags() & SCEV::FlagNSW)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SCEVAffinator::computeModuloForExpr(const SCEV *Expr) {
|
|
unsigned Width = TD.getTypeSizeInBits(Expr->getType());
|
|
// We assume nsw expressions never overflow.
|
|
if (auto *NAry = dyn_cast<SCEVNAryExpr>(Expr))
|
|
if (NAry->getNoWrapFlags() & SCEV::FlagNSW)
|
|
return false;
|
|
return Width <= MaxSmallBitWidth;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visit(const SCEV *Expr) {
|
|
|
|
auto Key = std::make_pair(Expr, BB);
|
|
PWACtx PWAC = CachedExpressions[Key];
|
|
if (PWAC.first)
|
|
return PWAC;
|
|
|
|
auto ConstantAndLeftOverPair = extractConstantFactor(Expr, SE);
|
|
auto *Factor = ConstantAndLeftOverPair.first;
|
|
Expr = ConstantAndLeftOverPair.second;
|
|
|
|
auto *Scope = getScope();
|
|
S->addParams(getParamsInAffineExpr(&S->getRegion(), Scope, Expr, SE));
|
|
|
|
// In case the scev is a valid parameter, we do not further analyze this
|
|
// expression, but create a new parameter in the isl_pw_aff. This allows us
|
|
// to treat subexpressions that we cannot translate into an piecewise affine
|
|
// expression, as constant parameters of the piecewise affine expression.
|
|
if (isl_id *Id = S->getIdForParam(Expr).release()) {
|
|
isl_space *Space = isl_space_set_alloc(Ctx.get(), 1, NumIterators);
|
|
Space = isl_space_set_dim_id(Space, isl_dim_param, 0, Id);
|
|
|
|
isl_set *Domain = isl_set_universe(isl_space_copy(Space));
|
|
isl_aff *Affine = isl_aff_zero_on_domain(isl_local_space_from_space(Space));
|
|
Affine = isl_aff_add_coefficient_si(Affine, isl_dim_param, 0, 1);
|
|
|
|
PWAC = getPWACtxFromPWA(isl::manage(isl_pw_aff_alloc(Domain, Affine)));
|
|
} else {
|
|
PWAC = SCEVVisitor<SCEVAffinator, PWACtx>::visit(Expr);
|
|
if (computeModuloForExpr(Expr))
|
|
PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
|
|
else
|
|
PWAC = checkForWrapping(Expr, PWAC);
|
|
}
|
|
|
|
if (!Factor->getType()->isIntegerTy(1)) {
|
|
PWAC = combine(PWAC, visitConstant(Factor), isl_pw_aff_mul);
|
|
if (computeModuloForExpr(Key.first))
|
|
PWAC.first = addModuloSemantic(PWAC.first, Expr->getType());
|
|
}
|
|
|
|
// For compile time reasons we need to simplify the PWAC before we cache and
|
|
// return it.
|
|
PWAC.first = PWAC.first.coalesce();
|
|
if (!computeModuloForExpr(Key.first))
|
|
PWAC = checkForWrapping(Key.first, PWAC);
|
|
|
|
CachedExpressions[Key] = PWAC;
|
|
return PWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitConstant(const SCEVConstant *Expr) {
|
|
ConstantInt *Value = Expr->getValue();
|
|
isl_val *v;
|
|
|
|
// LLVM does not define if an integer value is interpreted as a signed or
|
|
// unsigned value. Hence, without further information, it is unknown how
|
|
// this value needs to be converted to GMP. At the moment, we only support
|
|
// signed operations. So we just interpret it as signed. Later, there are
|
|
// two options:
|
|
//
|
|
// 1. We always interpret any value as signed and convert the values on
|
|
// demand.
|
|
// 2. We pass down the signedness of the calculation and use it to interpret
|
|
// this constant correctly.
|
|
v = isl_valFromAPInt(Ctx.get(), Value->getValue(), /* isSigned */ true);
|
|
|
|
isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
|
|
isl_local_space *ls = isl_local_space_from_space(Space);
|
|
return getPWACtxFromPWA(
|
|
isl::manage(isl_pw_aff_from_aff(isl_aff_val_on_domain(ls, v))));
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitTruncateExpr(const SCEVTruncateExpr *Expr) {
|
|
// Truncate operations are basically modulo operations, thus we can
|
|
// model them that way. However, for large types we assume the operand
|
|
// to fit in the new type size instead of introducing a modulo with a very
|
|
// large constant.
|
|
|
|
auto *Op = Expr->getOperand();
|
|
auto OpPWAC = visit(Op);
|
|
|
|
unsigned Width = TD.getTypeSizeInBits(Expr->getType());
|
|
|
|
if (computeModuloForExpr(Expr))
|
|
return OpPWAC;
|
|
|
|
auto *Dom = OpPWAC.first.domain().release();
|
|
auto *ExpPWA = getWidthExpValOnDomain(Width - 1, Dom);
|
|
auto *GreaterDom =
|
|
isl_pw_aff_ge_set(OpPWAC.first.copy(), isl_pw_aff_copy(ExpPWA));
|
|
auto *SmallerDom =
|
|
isl_pw_aff_lt_set(OpPWAC.first.copy(), isl_pw_aff_neg(ExpPWA));
|
|
auto *OutOfBoundsDom = isl_set_union(SmallerDom, GreaterDom);
|
|
OpPWAC.second = OpPWAC.second.unite(isl::manage_copy(OutOfBoundsDom));
|
|
|
|
if (!BB) {
|
|
assert(isl_set_dim(OutOfBoundsDom, isl_dim_set) == 0 &&
|
|
"Expected a zero dimensional set for non-basic-block domains");
|
|
OutOfBoundsDom = isl_set_params(OutOfBoundsDom);
|
|
}
|
|
|
|
S->recordAssumption(UNSIGNED, isl::manage(OutOfBoundsDom), DebugLoc(),
|
|
AS_RESTRICTION, BB);
|
|
|
|
return OpPWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
|
|
// A zero-extended value can be interpreted as a piecewise defined signed
|
|
// value. If the value was non-negative it stays the same, otherwise it
|
|
// is the sum of the original value and 2^n where n is the bit-width of
|
|
// the original (or operand) type. Examples:
|
|
// zext i8 127 to i32 -> { [127] }
|
|
// zext i8 -1 to i32 -> { [256 + (-1)] } = { [255] }
|
|
// zext i8 %v to i32 -> [v] -> { [v] | v >= 0; [256 + v] | v < 0 }
|
|
//
|
|
// However, LLVM/Scalar Evolution uses zero-extend (potentially lead by a
|
|
// truncate) to represent some forms of modulo computation. The left-hand side
|
|
// of the condition in the code below would result in the SCEV
|
|
// "zext i1 <false, +, true>for.body" which is just another description
|
|
// of the C expression "i & 1 != 0" or, equivalently, "i % 2 != 0".
|
|
//
|
|
// for (i = 0; i < N; i++)
|
|
// if (i & 1 != 0 /* == i % 2 */)
|
|
// /* do something */
|
|
//
|
|
// If we do not make the modulo explicit but only use the mechanism described
|
|
// above we will get the very restrictive assumption "N < 3", because for all
|
|
// values of N >= 3 the SCEVAddRecExpr operand of the zero-extend would wrap.
|
|
// Alternatively, we can make the modulo in the operand explicit in the
|
|
// resulting piecewise function and thereby avoid the assumption on N. For the
|
|
// example this would result in the following piecewise affine function:
|
|
// { [i0] -> [(1)] : 2*floor((-1 + i0)/2) = -1 + i0;
|
|
// [i0] -> [(0)] : 2*floor((i0)/2) = i0 }
|
|
// To this end we can first determine if the (immediate) operand of the
|
|
// zero-extend can wrap and, in case it might, we will use explicit modulo
|
|
// semantic to compute the result instead of emitting non-wrapping
|
|
// assumptions.
|
|
//
|
|
// Note that operands with large bit-widths are less likely to be negative
|
|
// because it would result in a very large access offset or loop bound after
|
|
// the zero-extend. To this end one can optimistically assume the operand to
|
|
// be positive and avoid the piecewise definition if the bit-width is bigger
|
|
// than some threshold (here MaxZextSmallBitWidth).
|
|
//
|
|
// We choose to go with a hybrid solution of all modeling techniques described
|
|
// above. For small bit-widths (up to MaxZextSmallBitWidth) we will model the
|
|
// wrapping explicitly and use a piecewise defined function. However, if the
|
|
// bit-width is bigger than MaxZextSmallBitWidth we will employ overflow
|
|
// assumptions and assume the "former negative" piece will not exist.
|
|
|
|
auto *Op = Expr->getOperand();
|
|
auto OpPWAC = visit(Op);
|
|
|
|
// If the width is to big we assume the negative part does not occur.
|
|
if (!computeModuloForExpr(Op)) {
|
|
takeNonNegativeAssumption(OpPWAC);
|
|
return OpPWAC;
|
|
}
|
|
|
|
// If the width is small build the piece for the non-negative part and
|
|
// the one for the negative part and unify them.
|
|
unsigned Width = TD.getTypeSizeInBits(Op->getType());
|
|
interpretAsUnsigned(OpPWAC, Width);
|
|
return OpPWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
|
|
// As all values are represented as signed, a sign extension is a noop.
|
|
return visit(Expr->getOperand());
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitAddExpr(const SCEVAddExpr *Expr) {
|
|
PWACtx Sum = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
Sum = combine(Sum, visit(Expr->getOperand(i)), isl_pw_aff_add);
|
|
if (isTooComplex(Sum))
|
|
return complexityBailout();
|
|
}
|
|
|
|
return Sum;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitMulExpr(const SCEVMulExpr *Expr) {
|
|
PWACtx Prod = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
Prod = combine(Prod, visit(Expr->getOperand(i)), isl_pw_aff_mul);
|
|
if (isTooComplex(Prod))
|
|
return complexityBailout();
|
|
}
|
|
|
|
return Prod;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitAddRecExpr(const SCEVAddRecExpr *Expr) {
|
|
assert(Expr->isAffine() && "Only affine AddRecurrences allowed");
|
|
|
|
auto Flags = Expr->getNoWrapFlags();
|
|
|
|
// Directly generate isl_pw_aff for Expr if 'start' is zero.
|
|
if (Expr->getStart()->isZero()) {
|
|
assert(S->contains(Expr->getLoop()) &&
|
|
"Scop does not contain the loop referenced in this AddRec");
|
|
|
|
PWACtx Step = visit(Expr->getOperand(1));
|
|
isl_space *Space = isl_space_set_alloc(Ctx.get(), 0, NumIterators);
|
|
isl_local_space *LocalSpace = isl_local_space_from_space(Space);
|
|
|
|
unsigned loopDimension = S->getRelativeLoopDepth(Expr->getLoop());
|
|
|
|
isl_aff *LAff = isl_aff_set_coefficient_si(
|
|
isl_aff_zero_on_domain(LocalSpace), isl_dim_in, loopDimension, 1);
|
|
isl_pw_aff *LPwAff = isl_pw_aff_from_aff(LAff);
|
|
|
|
Step.first = Step.first.mul(isl::manage(LPwAff));
|
|
return Step;
|
|
}
|
|
|
|
// Translate AddRecExpr from '{start, +, inc}' into 'start + {0, +, inc}'
|
|
// if 'start' is not zero.
|
|
// TODO: Using the original SCEV no-wrap flags is not always safe, however
|
|
// as our code generation is reordering the expression anyway it doesn't
|
|
// really matter.
|
|
const SCEV *ZeroStartExpr =
|
|
SE.getAddRecExpr(SE.getConstant(Expr->getStart()->getType(), 0),
|
|
Expr->getStepRecurrence(SE), Expr->getLoop(), Flags);
|
|
|
|
PWACtx Result = visit(ZeroStartExpr);
|
|
PWACtx Start = visit(Expr->getStart());
|
|
Result = combine(Result, Start, isl_pw_aff_add);
|
|
return Result;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitSMaxExpr(const SCEVSMaxExpr *Expr) {
|
|
PWACtx Max = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
Max = combine(Max, visit(Expr->getOperand(i)), isl_pw_aff_max);
|
|
if (isTooComplex(Max))
|
|
return complexityBailout();
|
|
}
|
|
|
|
return Max;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitSMinExpr(const SCEVSMinExpr *Expr) {
|
|
PWACtx Min = visit(Expr->getOperand(0));
|
|
|
|
for (int i = 1, e = Expr->getNumOperands(); i < e; ++i) {
|
|
Min = combine(Min, visit(Expr->getOperand(i)), isl_pw_aff_min);
|
|
if (isTooComplex(Min))
|
|
return complexityBailout();
|
|
}
|
|
|
|
return Min;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitUMaxExpr(const SCEVUMaxExpr *Expr) {
|
|
llvm_unreachable("SCEVUMaxExpr not yet supported");
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitUMinExpr(const SCEVUMinExpr *Expr) {
|
|
llvm_unreachable("SCEVUMinExpr not yet supported");
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitUDivExpr(const SCEVUDivExpr *Expr) {
|
|
// The handling of unsigned division is basically the same as for signed
|
|
// division, except the interpretation of the operands. As the divisor
|
|
// has to be constant in both cases we can simply interpret it as an
|
|
// unsigned value without additional complexity in the representation.
|
|
// For the dividend we could choose from the different representation
|
|
// schemes introduced for zero-extend operations but for now we will
|
|
// simply use an assumption.
|
|
auto *Dividend = Expr->getLHS();
|
|
auto *Divisor = Expr->getRHS();
|
|
assert(isa<SCEVConstant>(Divisor) &&
|
|
"UDiv is no parameter but has a non-constant RHS.");
|
|
|
|
auto DividendPWAC = visit(Dividend);
|
|
auto DivisorPWAC = visit(Divisor);
|
|
|
|
if (SE.isKnownNegative(Divisor)) {
|
|
// Interpret negative divisors unsigned. This is a special case of the
|
|
// piece-wise defined value described for zero-extends as we already know
|
|
// the actual value of the constant divisor.
|
|
unsigned Width = TD.getTypeSizeInBits(Expr->getType());
|
|
auto *DivisorDom = DivisorPWAC.first.domain().release();
|
|
auto *WidthExpPWA = getWidthExpValOnDomain(Width, DivisorDom);
|
|
DivisorPWAC.first = DivisorPWAC.first.add(isl::manage(WidthExpPWA));
|
|
}
|
|
|
|
// TODO: One can represent the dividend as piece-wise function to be more
|
|
// precise but therefor a heuristic is needed.
|
|
|
|
// Assume a non-negative dividend.
|
|
takeNonNegativeAssumption(DividendPWAC);
|
|
|
|
DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_div);
|
|
DividendPWAC.first = DividendPWAC.first.floor();
|
|
|
|
return DividendPWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitSDivInstruction(Instruction *SDiv) {
|
|
assert(SDiv->getOpcode() == Instruction::SDiv && "Assumed SDiv instruction!");
|
|
|
|
auto *Scope = getScope();
|
|
auto *Divisor = SDiv->getOperand(1);
|
|
auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
|
|
auto DivisorPWAC = visit(DivisorSCEV);
|
|
assert(isa<SCEVConstant>(DivisorSCEV) &&
|
|
"SDiv is no parameter but has a non-constant RHS.");
|
|
|
|
auto *Dividend = SDiv->getOperand(0);
|
|
auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
|
|
auto DividendPWAC = visit(DividendSCEV);
|
|
DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_q);
|
|
return DividendPWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitSRemInstruction(Instruction *SRem) {
|
|
assert(SRem->getOpcode() == Instruction::SRem && "Assumed SRem instruction!");
|
|
|
|
auto *Scope = getScope();
|
|
auto *Divisor = SRem->getOperand(1);
|
|
auto *DivisorSCEV = SE.getSCEVAtScope(Divisor, Scope);
|
|
auto DivisorPWAC = visit(DivisorSCEV);
|
|
assert(isa<ConstantInt>(Divisor) &&
|
|
"SRem is no parameter but has a non-constant RHS.");
|
|
|
|
auto *Dividend = SRem->getOperand(0);
|
|
auto *DividendSCEV = SE.getSCEVAtScope(Dividend, Scope);
|
|
auto DividendPWAC = visit(DividendSCEV);
|
|
DividendPWAC = combine(DividendPWAC, DivisorPWAC, isl_pw_aff_tdiv_r);
|
|
return DividendPWAC;
|
|
}
|
|
|
|
PWACtx SCEVAffinator::visitUnknown(const SCEVUnknown *Expr) {
|
|
if (Instruction *I = dyn_cast<Instruction>(Expr->getValue())) {
|
|
switch (I->getOpcode()) {
|
|
case Instruction::IntToPtr:
|
|
return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
|
|
case Instruction::PtrToInt:
|
|
return visit(SE.getSCEVAtScope(I->getOperand(0), getScope()));
|
|
case Instruction::SDiv:
|
|
return visitSDivInstruction(I);
|
|
case Instruction::SRem:
|
|
return visitSRemInstruction(I);
|
|
default:
|
|
break; // Fall through.
|
|
}
|
|
}
|
|
|
|
llvm_unreachable(
|
|
"Unknowns SCEV was neither parameter nor a valid instruction.");
|
|
}
|
|
|
|
PWACtx SCEVAffinator::complexityBailout() {
|
|
// We hit the complexity limit for affine expressions; invalidate the scop
|
|
// and return a constant zero.
|
|
const DebugLoc &Loc = BB ? BB->getTerminator()->getDebugLoc() : DebugLoc();
|
|
S->invalidate(COMPLEXITY, Loc);
|
|
return visit(SE.getZero(Type::getInt32Ty(S->getFunction().getContext())));
|
|
}
|